
Cliptography: Clipping the Power of Kleptographic Attacks

Alexander Russell∗ Qiang Tang† Moti Yung‡ Hong-Sheng Zhou§

July 11, 2015

Abstract

Kleptography, originally introduced by Young and Yung [Crypto ’96], studies how to steal
information securely and subliminally from cryptosystems. Secure cryptosystems can be broken if
they are maliciously implemented since the adversary may have some backdoors embedded in the
implementation. Although kleptographic attacks have been investigated about two decades ago, for
too long the possibility of kleptographic attacks have been dismissed and been viewed only as a
far-fetched theoretical concept. This is dramatically changed when real-world examples were recently
revealed by Edward Snowden, demonstrating that such deliberate attacks (directly inspired by the
original work) exist and probably have been used for massive surveillance. In light of such possible
failures of basic protective technology, the security community started to seriously re-investigate this
important issue: one notable example is the work of Bellare, Paterson, and Rogaway [Crypto ’14],
which initiated the formal studies of attacks on symmetric key encryption algorithms.

Motivated by the original examples of subverting key generation algorithms in the kleptography
papers from Young and Yung [Crypto ’96, Eurocrypt ’97], we initiate the study of cryptography in the
case that all algorithms are subject to kleptographic attacks—we call it cliptography. As a first step,
we formally study the fundamental primitives of one-way function and trapdoor one-way function
in this complete subversion model. And more interesting, we investigate the general immunization
strategy to clip the power of kleptographic subversions; concretely, we propose a general framework
for sanitizing the (trapdoor) one-way function generation algorithm by hashing the function index, and
prove that such procedure indeed destroys the connection between a subverted function generation
procedure and any possible backdoor. Along the way, we propose a split program model for practical
deployment.

We then examine the applications of (trapdoor) one way function secure in the complete subversion
model in two ways. First we consider to build “higher level” primitives via black-box reductions. In
particular, we consider how to use our trapdoor one-way function to defend against key generation
sabotage, and showcase a digital signature scheme that preserves existential unforgeability when all
algorithms (including key generation, which was not considered to be under attack before) are subject
to kleptographic attacks. Also we demonstrate that the classic Blum-Micali pseudorandom generator
(PRG) using our “unforgeable” one-way function yields a backdoor-free PRG. Second, we generalize
our immunizing technique for one way functions, and propose a new public immunization strategy
to randomize the public parameters of a (backdoored) PRG. Since the previous result by Dodis,
Ganesh, Golovnev, Juels, and Ristenpart [Eurocrypt ’15] requires an honestly generated random key,
construction of secure PRG in the complete subversion model was also open until our paper.

∗University of Connecticut, acr@cse.uconn.edu
†University of Connecticut, qiang@cse.uconn.edu
‡Columbia University and Google, moti@cs.columbia.edu
§Virginia Commonwealth University, hszhou@vcu.edu

Contents

1 Introduction 3
1.1 Our contribution . 3
1.2 Related work . 4

2 Kleptographic Attacks and the Complete Subversion Model 5

3 Constructing One-Way Functions in the Complete Subversion Model 6
3.1 Formalizing kleptographic attacks on one way functions 6

3.1.1 Strong-forgeability and unforgeability for OWF/TDOWF 6
3.1.2 Forgeability and strong-unforgeability for OWF 8

3.2 Eliminating backdoors . 8
3.2.1 General feasibility results . 9
3.2.2 Practical results in the split-program model . 10

4 Constructing Signatures in the Complete Subversion Model 13

5 Constructing Pseudorandom Generator in the Complete Subversion Model 16
5.1 Preliminaries: backdoored and backdoor-free PRGs . 16
5.2 Constructing backdoor-free PRG from strongly unforgeable OWP 17
5.3 General public immunization strategy for PRG . 19

6 Conclusion and Open Problems 20

A Omitted Proofs 22

1 Introduction

Consider the conventional use of a cryptographic primitive, such as an encryption scheme: To encrypt a
plaintext, the encryptor simply runs an implementation of the encryption algorithm that obtained from
a hardware or software provider with the plaintext as input to generate the corresponding ciphertext.
Although the underlying algorithms are well-studied and proven secure, malicious implementations could
still leak secret information exclusively to the provider/manufacturer without being noticed (through a
covert channel that is built/constructed using an embedded backdoor). It is notable that such leakage
is possible even if the implementation produces “functionally and statistically clean” output that is
indistinguishable from that of a faithful implementation. While the underlying concept of kleptography
was proposed by Young and Yung two decades ago [19, 20], the recent Snowden revelations [12, 16]
provided striking real-world examples that awakened the security community to the seriousness of these
issues. As a result, the topic has recently received renewed attention; see, e.g., [1, 2, 7, 14]. In particular,
Bellare, Paterson, and Rogaway [2]1 studied algorithm substitution attacks, with focus on symmetric key
encryption. Soon, Dodis, Ganesh, Golovnev, Juels, and Ristenpart [7] studied the backdoored version of
pseudorandom generator (PRG).

1.1 Our contribution

We continue this line of pursuit. Specifically, we are motivated to develop cryptographic schemes in
complete subversion model, in which all algorithms of a scheme are potentially subverted by the adversary.
We study the fundamental cryptographic primitives, (trapdoor) one-way functions (OWFs) in the complete
subversion model, and apply these primitives to construct other cryptographic schemes such as digital
signatures and PRG. Along the way, we identify novel generic defending strategies. We intend to stimulate
a systematic study of cliptography, to provide a broader class of cryptographic building blocks and
a larger set of defending strategies, eventually clipping out potential kleptographic attacks that arise
from maliciously implemented components. We note that, prior to our work, only restricted type of
kleptographic attacks can be addressed; see Related work in Section 1.2. In detail, we show the following:

• We study (trapdoor) one-way functions in the presence of kleptographic attacks. We first introduce
strong forgeability that captures natural kleptographic attacks, namely: there is a specification that
is proven secure for a (trapdoor) one-way function; the sabotaged function generation algorithm
delivers a similar output distribution as the specification distribution; however with a pre-chosen
backdoor, the adversary can invert the entire family of functions that are generated by this subverted
algorithm. We then show that such (adversarial) objects can indeed be constructed from (trapdoor)
one-way functions by showing that random padding, in particular, renders the cryptosystem vulner-
able to those kind of attacks. We also provide a weaker notion, forgeability for one-way functions,
that captures the case where the adversary only sets up the public parameters for which she keeps a
backdoor.

• Our main goal is to provide defending mechanisms against kleptographic attacks. We construct
unforgeable (trapdoor) one-way functions via a general transformation that “sanitizes” arbitrary
OWFs by randomizing the function index. This transformation clips out all potential correlation
between the function and the possible backdoor that the adversary may possess. Additionally, we
introduce a split-program strategy to make the general method above applicable using only standard
hash functions. In the split-program model, the function generation algorithm is composed of
two parts: a (randomized) randomness generation algorithm RG that outputs a uniform bit string,

1This paper won the 2015 PET award.

3

and a (deterministic) function generation algorithm dKG that converts such random string into the
function index. Remark that our results even allow the sanitizing algorithm to be implemented by
the adversary.

• Having unforgeable (trapdoor) one-way functions constructed, we next show the power of the
primitives. In Section 4, we observe that unforgeable trapdoor one-way functions immediately
give us a way to construct key generation algorithms (for digital signature schemes) against
kelptographic attacks. We then showcase a concrete example of digital signature scheme in the
complete subversion model. More concretely, we achieve this result by (1) using the unforgeable
trapdoor one way permutation directly as a key generation algorithm, and then (2) instantiating the
unique signature mechanism with the full domain hash. Previously, Bellare et al [2] demonstrated
that unique signature scheme is secure against kelptographic attacks, but assuming the key generation
algorithm is honest. Our result is the first digital signature scheme allowing the adversary to sabotage
all algorithms.

• In Section 5, we investigate how to construct backdoor-free PRGs. Previously, Dodis et al. [7]
investigated “backdoored PRG” in which the adversary sets up a PRG instance (i.e., the public
parameter), and is able to distinguish the output from uniform with a backdoor. They then proposed
immunizing strategies that one applies a keyed hash function to the output, but assuming the key is
uniformly generated, and is not known to the adversary in the public parameter generation phase.

We construct backdoor-free PRGs in the complete subversion model. Our first construction is based
on the classic Blum-Micali using our strongly unforgeable OWF and the Goldreich-Levin hardcore
predicate [8]. In addition, in [7], Dodis et al show that it is impossible to have a public immunizing
strategy for all PRGs by applying a public function to the PRG output. This is because there always
exists a PRG (having the immunizing function built in) that reveals the secret to the adversary bit
by bit in each iteration. We go beyond their impossibility via an alternative public immunizing
strategy. Instead of randomizing the output of the PRG as considered in [7], we randomize the
public parameter of PRG, which gives us another construction for PRG in the complete subversion
model.

1.2 Related work

The concept of kleptography, subverting cryptographic algorithms by modifying its implementation to
leak secrets covertly, was proposed by Young and Yung [19, 20]. They showed concrete examples that
backdoors can be embed into the public keys of commonly used schemes; while the public keys look
as normal to the users, the adversary is nevertheless capable of learning the secret keys. It may not be
surprising that defending against such deliberate attacks is challenging and only limited feasibility results
exist. We next briefly describe these existing results.

In [11], Juels and Guajardo suggested the following idea: the user and a trusted certificate authority
(CA) jointly generate the public key, and the user has to prove to the CA that the public key is generated
honestly. While in our paper, in contrast, the user does not have any secret, and every component is
provided by the big brother.

Bellare et al. considered special cases of kleptographic attacks (without necessarily requiring protection
from reverse engineering), that they call algorithm substitution attacks on symmetric key encryption [2]
and public key encryption [1]. They first proposed a generic attack: a sabotaged randomized algorithm
can leak the secret bit-by-bit by sampling biased output; the adversary who knows the backdoor can
identify the leaked bits from the biased output. The attack is successful due to the effectiveness of covert
subliminal channels [10,17,18] built using the backdoor. They then introduced a defending mechanism of
using algorithms that has unique output for each input; Good examples of such algorithms include unique

4

ciphertext encryption algorithm (of encryption scheme), and unique signature generation algorithm of
(digital signature scheme). Note that their defending mechanism implicitly assumes the key generation
algorithm to be honest. We, on the other hand, cope with the issue left unfinished in their work, and
deal with attacks under the generally accepted setting that a proper defense against kleptographic attacks
should allow all the underlying algorithms to be subverted, and we give an affirmative answer under this
complete subversion model (i.e., allow also the key generation algorithm to be backdoored).

Dodis et al [7] studied another type of special kleptographic attacks on pseudorandom generators, to
formalize the study of the notorious Dual EC PRG subversion [5, 15]. In their model, the adversary sets
the public parameter and keeps some backdoor information (instead of providing an implementation), to
break the PRG security. They first proved the equivalence of backdoored PRG and public key encryption
with pseudorandom ciphertext. Then they proposed immunizing strategies that one applies a keyed hash
function to the output. Note that the key is selected uniformly and not known to the adversary during
the public parameter generation phase, thus in our terminology, they are not shown to be secure in the
complete subversion model. Our results of strongly unforgeable OWF can be applied to construct a specific
“backdoor-free” PRG following the classic Blum-Micali framework. Also our general immunizing strategy
that randomizing the public parameter of backdoored PRG instead of randomizing PRG output is indeed
effective. This indeed allows us to bypass an impossibility result that Dodis et al showed for general
public immunization on the PRG output.

Other works suggest different angles of considerations about defending against mass surveillance. For
example, in [14], the authors proposed a general framework of safeguarding the protocols by randomizing
the incoming and outgoing messages via a trusted (reverse) firewall. Their results demonstrate that with a
clean trusted random source, many tasks become reachable. Again, they rely on the firewall not to be
subverted, thus not in the complete subversion model.

2 Kleptographic Attacks and the Complete Subversion Model

In this section, we explain the kleptographic attacks in more detail and introduce the complete-subversion
model.

Classical cryptography assumes that all the algorithms are faithfully implemented. In reality, these
algorithms could be implemented by an adversary (e.g., the Big brother); this potentially allows the
adversary to gain advantage to influence the input/output behaviors of certain algorithms maliciously,
and/or learn secret information that is not supposed to be leaked thru the algorithms. Kleptography studies
how to apply these attacks on real-world cryptosystems but under the condition that the attacks will not
be detected. Apparently, even the Big brother wants to “monitor” the system, he does not expect to get
himself exposed (to get pressure from the whole society). Technically, for every cryptographic scheme,
there exists a specification that is rigorously analyzed (proven secure) and designed by the experts; At the
same time, the experts actively check whether implementations are honestly generated. Therefore, the
adversary expects the output distributions of the subverted implementations should be computationally
indistinguishable according to any publicly known input distributions.

Efforts have been made to defend against kleptographic attacks. However, the state-of-the-art of
defending mechanisms are for limited scopes. For example, the key generation is assumed to be honest
in [2]. Indeed, key generation, as shown in the original papers of Young and Yung, [19, 20], can be
subjected to kleptographic attacks. This bring our attention to the feature (which makes the attack
more devastating) of kleptography that the subversion attacks can be launched to any cryptographic
algorithms. They include, e.g., the key generation algorithm, and even the defending algorithm (the
immunizing strategy requires a honestly generated uniform seed and unknown to the adversary when
she implements the algorithms [7].). This naturally motivates us to study cryptography in a model that

5

all algorithms are provided by the adversary (thus can be sabotaged); we name the model, complete
subversion model. We will define security for each primitive we consider in this complete subversion
model. More importantly, we make our first attempt to provide general defending mechanisms, i.e.,
preserve security of the underlying cryptographic primitive, in the setting that all algorithms can be
subverted. We call this general paradigm cliptography.

Detection principle. As we pointed out above, the adversary in order to avoid being detected, provides
an implementation that is consistent with the specification. In particular, for deterministic algorithms, and
for each public input distribution, one can simply compute the function on given inputs, and compare with
the outputs generated by the specification.

In more detail, for a deterministic algorithm F with its specification FSPEC, a public input distribution
D, the testing simply generates samples x1, . . . , xq from D independently for arbitrary polynomially large
q, and test for each xi, if it holds that F (xi) = FSPEC(xi). From the adversary’s point of view, if she
implements F in a way with a probability 1/p(λ) (for some polynomial p, and the security parameter
λ), D samples an input x such that F (x) 6= FSPEC(x), then there exists a PPT tester can notice this
inconsistency using about O(p2(λ)) samples. Thus, we can safely claim that for any deterministic
algorithms with a public input distribution D, the adversary has to faithfully implement the specifaction
with an overwhelming probability.

Therefore, in our complete subversion model, we need to consider all randomized algorithms and
deterministic algorithms with hidden input distributions chosen by the adversary to be subverted.

In this paper, when the deterministic algorithms are used, they indeed have a public input distribution.
For the ease of presentation, we will use the specification directly (or omit those parts) for such determin-
istic algorithms in the definitions. We remark that our results are still in the complete subversion model
even with those simplifications in the definition.

3 Constructing One-Way Functions in the Complete Subversion Model

3.1 Formalizing kleptographic attacks on one way functions

Before studying the security for one-way functions (OWF) and trapdoor one-way functions (TDOWF) in
the presence of kelptographic attacks, we first recall the conventional definitions of OWF and TDOWF.

One-way function (OWF). A function family F = {fi : Xi → Yi}i∈I is one-way if there are PPT
algorithms (KG,Eval) so that (i) KG, given a security parameter λ, outputs a function index i from
Iλ = I ∩ {0, 1}λ; (ii) for x ∈ Xi, Eval(i, x) = fi(x); (iii) F is one-way; that is, for any PPT algorithm
A, it holds that Pr[A(i, y) ∈ f−1i (y) | i← KG(λ);x← Xi; y := fi(x)] ≤ negl(λ).

Trapdoor one way function (TDOWF). A function family F = {fi : Xi → Yi}i∈I is trapdoor one-way
if there are PPT algorithms (KG,Eval, Inv) such that (i) KG, given a security parameter λ, outputs a
function index and the corresponding trapdoor pair (i, ti) from Iλ × T , where Iλ = I ∩ {0, 1}λ, and
T is the domain of ti; (ii) Eval(i, x) = fi(x) for x ∈ Xi; (iii) F is one-way; and (iv) it holds that
Pr[Inv(ti, i, y) = x | i← KG(λ);x← Xi; y := fi(x)] ≥ 1− negl(λ).

We note that, (trapdoor) one-way permutations can be defined similarly by setting Yi := Xi. For
simplicity, we often ignore Eval; for evaluating function with index i on input x, i.e., Eval(i, x), we write
it as fi(x).

3.1.1 Strong-forgeability and unforgeability for OWF/TDOWF

In this subsection, we define strong-forgeability to capture kleptographic attacks on one-way functions.
Note that the complemented security notion, unforgeability, provides the guarantee that OWF is immune

6

to kleptographic attacks. Similarly, we can define strong-forgeability and the complemented notion,
unforgeability, for trapdoor OWF. Next, let’s start with expressing the intuition of capturing kleptographic
attacks on one-way functions.

We begin with a “laboratory specification” version of the OWF, (KGSPEC,EvalSPEC), which has been
rigorously analyzed and certified (e.g., by the experts in the cryptography community).

The adversary then provides an alternate implementation. Note that Eval is deterministic on publicly
known input distribution, and it is easy to test the correctness, thus we can consider it as honestly
implemented (see detection principle in section 2). We therefore focus on KG (the algorithm which
generates a function name). The goal of the adversary is to privately maintain some “backdoor information”
z so that the subverted implementation of KG will output functions that can be inverted using z. In
addition, the adversary must be sure that the output distributions of KG(z) and that of specification
function generation algorithm KGSPEC are computationally indistinguishable, to avoid detection. Formally,
we define strongly-forgeable OWFs; we note that this immediately allows us to define the complemented
notion, unforgeable OWFs.

Definition 3.1. A one-way function family F = {fi : Xi → Yi}i∈I (with the specification function
generation algorithm KGSPEC) is δ-strongly forgeable if there exist PPT algorithms (BG,KG, Inv) so
that given a backdoor z produced by backdoor generation algorithm BG, i.e., z ← BG(λ), the function
generation algorithm KG generates a function index i that is (1) invertible given z, and (2) computationally
indistinguishable from that generated by the specification function generation algorithm KGSPEC. That is,
for every z ← BG(λ), it holds that:

(1) Pr[x′ = x | i← KG(λ, z);x← Xi; y := fi(x);x
′ ← Inv(z, i, y)] ≥ δ

(2) {i | i← KG(λ, z)}
c
≈ {i | i← KGSPEC(λ)}

Correspondingly, we say a one-way function family is unforgeable if it is not δ-strongly forgeable for any
non-negligible function δ.

The notion of strongly-forgeable OWF is closely related to the conventional notion, TDOWF. See
the following lemmas. These results state that if we want to use public key cryptography, we have to
accept the possibility of kleptographic attacks on OWFs. For detailed proofs of the lemmas, we defer to
Appendix A.

Lemma 3.1. A (1− ε)-strongly forgeable OWF family is also a TDOWF family, where ε is a negligible
function of the security parameter.

Next, we show how to construct a strongly-forgeable OWF from any TDOWF. This substantiates
the folklore knowledge that sufficient random padding can render cryptosystems vulnerable to backdoor
attacks, e.g., [19, 20]. Specifically, the random padding in the malicious implementation can be generated
so that it encrypts the corresponding trapdoor using the backdoor as a key.

Lemma 3.2. One can construct a (1− ε)-strongly forgeable OWF from a TDOWF, where ε is a negligible
function on the security parameter.

The notions of strongly-forgeable OWF and TDOWF are similar in the sense that they both posit a
secret that enables inversion of the OWF. Observe, however, that a strongly-forgeable OWF has a further
(critical) property: the distribution of function names, is indistinguishable from a particular specification
distribution. The same principle yields a notion of strongly-forgeable TDOWF. Moreover, the adversary
can invert using the backdoor, without referring to the regular trapdoor. The formal definition is presented
below.

7

Definition 3.2. A trapdoor one-way function family F = {fi : Xi → Yi}i∈I (with the specification
algorithms KGSPEC, InvSPEC

2) is δ-strongly forgeable if there exist PPT adversarial algorithms A =
(BG,KG, Inv) so that given a backdoor z produced by backdoor generation algorithm BG, the function
generation algorithm KG generates a function index i and the corresponding trapdoor ti, with the following
properties: (1) fi is invertible given z without providing ti, and (2) the output of KG is computationally
indistinguishable from that generated by the specification function generation algorithm KGSPEC. That is,
for every z ← BG(λ), it holds that

(1) Pr[x′ = x | (i, ti)← KG(λ, z);x← Xi; y := fi(x);x
′ ← InvSPEC(z, i, y)] ≥ δ

(2) {(i, ti) | (i, ti)← KG(λ, z)}
c
≈ {(i, ti) | (i, ti)← KGSPEC(λ)}

Correspondingly, we say a trapdoor one-way function family is unforgeable if it is not δ-strongly forgeable
for any non-negligible function δ.

3.1.2 Forgeability and strong-unforgeability for OWF

The notion of strong forgeability models an attack where the adversary may provide a subverted imple-
mentation of the defining algorithms. In many cases, it may also be interesting to consider a weaker form
of attack that the adversary simply provides the function index, this is similar to the notion of backdoored
PRG that the adversary sets up the public parameters (as in the Dual EC PRG example [5]). This is a
weaker definition in that the adversary only have to generate a backdoor that can be helpful for inverting
one single function instead of a family of functions (as in the case of strongly-forgeable OWF). It is
easy to see that this notion is equivalent to the standard notion of TDOWF if the KGSPEC outputs the
same distribution of the function index as the regular generation algorithm of the TDOWF, thus we only
consider this notion for OWF. However, putting into the context of kleptography, it is suggested that when
the experts recommend standard for OWF, TDOWF should not be a good candidate.

More importantly, we will later consider unforgeability for OWF, thus the reverse of the weaker notion
will yield a stronger definition for unforgeability, and we will give a generic construction that converts any
OWF into a strongly unforgeable OWF, which means we can destroy the trapdoor structure generically.

Definition 3.3. A one-way function family F = {fi : Xi → Yi}i∈I (with the specification of function
generation algorithm KGSPEC) is δ-forgeable if there exist PPT adversarial algorithms A = (KG, Inv) so
that

1. Pr[x′ = x | (i, z)← KG(λ);x← Xi; y ← fi(x);x
′ ← Inv(z, i, y)] ≥ δ

2. The distribution of i is indistinguishable from the output distribution of KGSPEC.

Correspondingly, we say a one-way function family is strongly-unforgeable if it is not δ-forgeable for
any non-negligible function δ.

3.2 Eliminating backdoors

In this section, we discuss methods for safeguarding OWF generation against kleptographic attacks. We
first present a general approach that immunizes any OWF generation procedure. We prove that hashing
the function index is sufficient to eliminate potential backdoor information. However, in many cases of
interest, function indices have specific algebraic structure. It is not clear in general how one can guarantee

2Following the detection principle, the inversion algorithm of the TDOWF is deterministic and with a public input distribution,
thus we omit the indistinguishability condition for this algorithm, considering it is honestly implemented as InvSPEC, and focus
only on KG.

8

that a public hash function has such “structure preserving” properties. In order to apply our approach in
more realistic settings, we propose a “split-program” model in which the function generation algorithm is
necessarily composed of two parts: a random string generation algorithm RG that outputs random bits r,
and a deterministic function index generation algorithm dKG which uses r to generate the index.

Before going to the details of our feasibility results, we remark that the definitions of (strongly)
unforgeable OWFs can be found in Definitions 3.1 and 3.3. The definitions essentially insist the sabotaged
KG looks the same as the specification KGSPEC which is rigorously analyzed. To put it another way,
invertibility in the backdoored mode will be restricted by the indistinguishability condition for the function
index.

3.2.1 General feasibility results

We will show below that randomizing the function index (that is, the relationship between names and
functions) can provide satisfactory immunization against possibly sabotaged function generation. The
intuition behind this idea is that according to the definition of forgeable OWF, each backdoor that
frequently appears can only be useful for inverting a sparse subset of one way functions (i.e., the range of
KG(z) is exponentially sparse for every z, otherwise, one can use such backdoor to break the one-wayness
of the functions generated by KGSPEC). Thus, randomizing the function index will map the function index
to a “safe” domain, and destroys the possible correlation with any selected backdoor. That said, it is
difficult for the adversary to arrange a backdoor that works for a disturbed subset of function index (after
hashing), even if she knows the immunizing strategy.

Constructing strongly-unforgeable OWFs. Given any OWF family F := (KGF ,EvalF) := {fi}i∈I
(which might be forgeable) that is secure if KGSPEC(λ) outputs uniform i from Iλ, we will construct a
strongly unforgeable OWF family G := (KGG ,EvalG) = {gi}. We assume a (public) hash function family
Hλ = {hλ : Iλ → Iλ} modeled as a random oracle (for each λ), and that h is randomly sampled from
Hλ. The key generation algorithm KGG is given as (h,KGF) and is defined as h ◦ KGF , 3 and EvalG is
the same as EvalF . (thus for each i, gi(·) = fh(i)(·)) . See also the pictorial illustration in Fig 1.

KGF → i i→ h → ĩ x→ EvalF (̃i, ·) → y

Figure 1: Immunization strategy for OWF.

Remark 3.4. In the case that we can build hash functions that hash directly onto the index space Iλ, then
we can use the above immunization strategy. However, in practice, it is not clear if we can always easily
build hash functions on index space. To address this issue, in Section 3.2.2, we introduce a new framework
called “split-program model”. There, we can use standard hash function, e.g., SHA-256 to work on the
random bits directly.

Theorem 3.5. The OWF family G defined above is strongly unforgeable in the random oracle model.

Proof. Suppose that G is δ-forgeable for a non-negligible function δ, and let (AKG,AInv) be the adversarial
algorithms of Definition 3.3. We will construct a simulator S which will break the one-way security of F .

Suppose (fĩ, y) are the challenges S receives from the one way security challenger C, where y = fĩ(x)
for a randomly selected x. Then (i.) S first randomly samples a bit b to decide whether to embed j into

3 Note that the hash function can be implemented by the adversary, since it is deterministic and with a public input distribution
(the output distribution of KGF). We can also interpret the function generator of the strongly-unforgeable OWF G as a single
algorithm h ◦ KGF , and then we insist it outputs both i, ĩ, for checking using the specifications hSPEC and KGSPEC.

9

the answers to the random oracle queries from AKG or AInv. (W.l.o.g., we assume all the random oracle
queries are different.) (ii.) S runsAKG. SupposeAKG makes q1 random oracle queriesQ1 = {i1, . . . , iq1}.
If b = 0, S randomly selects an index t1 ∈ {1, . . . , q1}. When answering the random oracle queries
i1, . . . , iq1 from AKG, S answers ĩ for h(it1); for all other queries, S answers with random elements from
the index set Iλ. If b 6= 0, S answers all these queries using random elements from Iλ. S maintains a list
for the query-answer pairs. AKG outputs a pair (i, z).

If [b = 0 ∧ i 6= it1], S aborts; otherwise, S runs AInv with inputs (i, y, z). Assuming AInv asks q2
random oracle queries, S sets ĩ as h(i) (even if i is not asked) and for all others queries, S answers with
random elements from Iλ. AInv outputs x′.

If [b = 1 ∧ i ∈ Q1], S aborts; otherwise, it returns x′ as his answer to C.

Probabilistic analysis. Now we bound the success probability of S . Let us use W to denote the event that
S aborts, W1 to denote the event that b = 0 ∧ i 6= it1 , and W2 to denote the event that b = 1 ∧ i ∈ Q1.
We have

Pr[x′ = x] = Pr[x′ = x|W] Pr[W] + Pr[x′ = x|W] Pr[W] ≥ Pr[x′ = x|W] Pr[W]

We first bound Pr[W] as 1− Pr[W], we have Pr[W] = Pr[W1 ∨W2] ≤ Pr[W1] + Pr[W2] . Assuming
Pr[i ∈ Q1] = η, we bound Pr[W1] as follows:

Pr[W1] = Pr[b = 0 ∧ i 6= it] = Pr[b = 0]Pr[i 6= it1]

=
1

2
(Pr[i 6= it1 |i ∈ Q1] Pr[i ∈ Q1] + Pr[i 6= it1 |i 6∈ Q1] Pr[i 6∈ Q1])

=
1

2

[(
1− 1

q1

)
η + (1− η)

]
While Pr[W2] = Pr[b = 1]Pr[i ∈ Q1] = η/2, we have: Pr[W] ≤ 1

2

(
1− 1

q1

)
η + 1

2 ≤ 1 − 1
2q1

. Thus

we can derive that Pr[W] ≥ 1/(2q1).
Furthermore, conditioned on S not aborting, the input distributions of the adversaries (AKG,AInv)

are identical to that of Definition 3.3. By definition of δ-forgeability, Pr[AInv(̃i, fĩ(x), z) = x] ≥ δ, thus
Pr[x′ = x|W] ≥ δ.

Combing these facts, we conclude that if G is δ-forgeable for some non-negligible δ, then there
exists an algorithm S that breaks the one-way security of F with probability at least δ/(2q1) (which is
non-negligible). This completes the proof.

Remark 3.6. We may also prove a similar result in the standard model, that the random oracle is
instantiated with a pseudorandom function PRF. However, in this case, the adversary KG can only have
oracle access to the PRF, but the Inv can have full access to the PRF key. Still, this result will not be in
the complete subversion model that the PRF requires a trusted key. Thus we leave as an open problem
that how to establish a general immunizing result in the standard model. Furthermore, the above proof
works even if the distribution of i is different with the output distribution of KGSPEC, as long as it still
belongs to the index set.

3.2.2 Practical results in the split-program model

Indices (names) of a one-way function family may have structure. For example, for OWF based on
discrete logarithm, fg,p(x) = gx mod p, the function index consists of an algebraically meaningful pair
(p, g), where p is a prime and g a random generator. This would require that the hash function in the
general immunization method above maps (g, p) to (g′, p′); note that (g′, p′) is another algebraically
meaningful pair with the same structure. Furthermore, for a TDOWF, the hash function needs to map the

10

function/trapdoor pair to another function/trapdoor pair. It is not clear in general how one can guarantee
that a public hash function has such “structure preserving” properties.

To address this problem, we propose a split-program model in which every function generation
algorithm is composed of two algorithms, a random string generation algorithm RG that outputs a uniform
`-bit random string r, and a deterministic function index generation algorithm dKG that transforms
the randomness r into a function index i. In this model, as dKG is deterministic with a public input
distribution, we can consider it to be honestly implemented and we can focus on “cleaning up” the
randomness generated by RG. 4

Remark 3.7. It is not hard to see, the split-program model is quite general and can be applied to most
practical algorithms. To see this, the user gets the source code of the implementation, which makes calls
to some API for generating randomness (e.g., rand()) whenever necessary. The user can hook up the
interface with the calls to the API with the separate program RG provided by the big brother. In principle,
one can always augment a randomized KG algorithm to output the function index i together with the
randomness r used to generate i, thus the RG can be implemented as this augmented KG, and discards
the function index i from the output.

We first rephrase the standard OWF/TDOWF definitions in the split-program model.

Definition 3.8. A function familyF is one way in the split-program model if there exist a pair of algorithms
(RG, dKG) where (i.) RG, given a security parameter λ, outputs a uniform `(λ)-bit string r; (ii.) dKG is
deterministic: given the randomness r it outputs a function index i ∈ Iλ; and (iii.) F is one-way under
this procedure for generating i.

Similarly, we can define a TDOWF family in the split program model (In this case, dKG outputs
a function index together with a trapdoor). For the ease of presentation, we often use the pair of
algorithms (RG, dKG) to represent the OWF/TDOWF family F in the split-program model. Next we
define δ-forgeable OWF in the split-program model by modifying Definition 3.3; we immediately have
the complemented security notion of strongly-unforgeable OWF in the split-program model. 5

Definition 3.9. A one-way function family F = {fi : Xi → Yi}i∈I (with the specification version of func-
tion generation algorithm RGSPEC, dKGSPEC) is δ-forgeable if there exist PPT algorithms (RG, dKG, Inv)
such that:

1. Pr[x′ = x | (r, z)← RG(λ); i← dKGSPEC(λ, r, z);x← Xi; y := fi(x);x
′ ← Inv(z, i, y)] ≥ δ .

2. The distribution of r is indistinguishable from the output distribution of RGSPEC.

Correspondingly, we say a one-way function family is strongly-unforgeable in the split-program model if
it is not δ-forgeable in the split-program model for any non-negligible function δ.

4 The split-program model essentially forces the adversary to concentrate the parts which may potentially contain backdoors
of a malicious implementation into RG. This gives us more flexibility to apply the sanitizing strategy. Furthermore, conceptually,
the immunizing strategy itself (e.g., Fig 1) can be seen as a bigger piece of implementation in the split-program model, i.e., the
hash function and the actual KG algorithm should be individually implemented and checked.

5Note that it is easy to provide a more general definition to capture the fact dKG is also implemented by the adversary, we
can simply require the indistinguishability condition hold for the joint output distribution of RG, dKG. However as pointed out
in section 2, it is fine for us to consider them as honestly implemented for simplicity, as it is deterministic and with a public input
distribution.

11

Strongly-unforgeable OWF in the split-program model. Given a OWF familyF := (RGF , dKGF ,EvalF)
(in the split program model) whose RGSPEC outputs uniform bits, and a public hash function h(·) ran-
domly selected from a hash family H : {0, 1}`(λ) → {0, 1}`(λ) which is modeled as a random oracle,
we construct an strongly-unforgeable OWF family G. G := (RGG, dKGG ,EvalG) can be described as
(h ◦ RGF , dKGF ,EvalF), i.e., the function index i is generated by dKGF using h(r) as randomness,
where r ← RGF . See Figure 2 below:6

RGF → r r → h → r̃ r̃ → dKGF → ĩ x→ EvalF (̃i, ·) → y

Figure 2: Immunization strategy for OWF in the split-program model.

The intuition is analogous to that captured in the proof of Theorem 3.5: For a backdoor z that
frequently appears in the output of ARG, the “bad” set of randomness (i.e., for which the dKG algorithm
outputs a function that can be efficiently inverted using z) should be sparse in {0, 1}`(λ). (Otherwise, one
can break the one way security of F by simply running AKG to get z.) In this case, the probability that
a uniform random string falls into the “bad” set that z is useful for inverting is negligible. Hashing the
random bits will then break the delicate connection between the backdoor and the function index that will
be generated using the cleaned randomness. Specifically, it will be challenging for the adversary to design
an efficient connection between a backdoor z and the “scrambled” sets of functions backdoored by z.

Theorem 3.10. The OWF family G described above is strongly unforgeable in the split-program model if
H is modeled as a random oracle.

Proof. Assume G is δ-forgeable in the split program model, i.e., there exist PPT adversaries (ARG,AdKG,AInv)
satisfying Definition 3.9. Then we can construct a simulator S that breaks the one-way security of F in
the split-program model.

Suppose r∗ is the randomness and y = fi(x) is the challenge value (for a randomly chosen x) received
from the one-way security challenger C, where i = dKG(r∗).
S first chooses a random bit b and runs ARG, which asks random oracle queries {r01, . . . , r0q0} := Q0.

If b = 0, S randomly selects t0 ∈ {1, . . . , q0}, and answers h(r0t0) = r∗; all other queries are answered
with uniform `-bit strings. If b 6= 0, S answers all queries with random strings. S maintains a list for the
query-answer pairs.

If [b = 0∧ r 6= r0t0], S aborts; otherwise, it sets h(r) = r∗ and it runsAKG with inputs r∗, and expects
AKG to output i. S then runs AInv with inputs (i, y, z) and receives the response x′.

If b = 1 ∧ r ∈ Q0, S aborts; otherwise, it sends x′ to the challenger C as his answer.
Similar to the proof of Theorem 3.5, let W denote the event that S aborts: we can bound Pr[W] ≤

1− 1
q0

. Thus,

Pr[x′ = x] ≥ Pr
[
x′ = x |W

]
Pr
[
W
]
≥

Pr
[
x′ = x |W

]
2q0

.

While following Definition 3.9,

Pr[x′ = x|W] = Pr[AInv(z, i, fi(x)) = x] ≥ δ.

To summarize, in the split-program model, if G is δ-forgeable, S will break the one way security of F
with probability at least δ/(2q0).

6We emphasize that in the split-program model, we can use any regular hash function such as SHA-256.

12

Constructing unforgeable TDOWFs in the split-program model. More interestingly, we can apply
the same method to immunize a TDOWF in the split-program model, whose RGSPEC outputs uniform
bits r and whose (deterministic) dKGSPEC, given r, outputs a function index and a trapdoor pair. Similar
to the OWF case, hashing the randomness ensures that the resulting function index together with the
corresponding trapdoor will be “safe.” However, as pointed out in Section 3.1, it is preferable to
consider strong forgeability for TDOWF (since a forgeable TDOWF can be seen as itself), thus we adapt
Definition 3.2 to the split-program model: 7

Definition 3.11. A trapdoor one-way function family F = {fi : Xi → Yi}i∈I (with the specification
algorithms RGSPEC, dKGSPEC) is δ-strongly forgeable if there exist PPT adversarial algorithms A =
(BG,RG, dKG, Inv) so that given a backdoor z produced by backdoor generation algorithm BG, the
random string generation algorithm RG generates an `(λ)-bit random string r, and based on such r the
deterministic function generation algorithm dKG generates a function index i and the corresponding
trapdoor ti, with the following properties: (1) fi is invertible given z without providing ti, and (2) the
output distribution of RG is computationally indistinguishable from that generated by the specification
algorithms RGSPEC. That is, for every z ← BG(λ), it holds that:

(1) Pr[x′ = x | z ← BG; r ← RG(λ, z); (i, ti) ← dKGSPEC(λ, r);x ← Xi; y := fi(x);x
′ ←

Inv(i, y, z)] ≥ δ

(2) {r | z ← BG; r ← RG(λ, z)}
c
≈ {r | r ← RGSPEC(λ)}

Correspondingly, we say a TDOWF family is unforgeable if it is not δ-strongly forgeable for any non-
negligible δ.

The immunization methodology for OWF discussed before can also be used for immunizing TDOWF
in the split program model. That is, given any TDOWF family F whose RGSPEC outputs uniform bits r, a
hash function h randomly selected from a hash family Hλ : {0, 1}λ → {0, 1}λ can be used to determine
an unforgeable TDOWF family G, see Figure 3 below:

RG(z) → r r → h → r̃ r̃ → dKG → (i, ti) x→ Eval(i, ·) → y

Figure 3: Immunization strategy for TDOWF in the split-program model. The modified key generation
algorithm c

Theorem 3.12. The TDOWF family G described above is unforgeable in the split-program model if H is
modeled as a random oracle.

The proof of Theorem 3.12 is similar to that of Theorem 3.10; we can think (i, ti) as an extended
form of function index.

4 Constructing Signatures in the Complete Subversion Model

As an immediate application, in this section, we will demonstrate how to use unforgeable OWFs and
unforgeable TDOWFs as fundamental building blocks to construct backdoor-free digital signature schemes
in the complete subversion model.

We build on recent works of Bellare et al. [1, 2], who studied a family of algorithm-substitution
attacks (ASAs) on cryptographic primitives. In their ASAs, an encryption algorithm is implemented by a

7Again, since dKG is deterministic with public input distributions, for simplicity we consider they are honestly implemented
as dKGSPEC, even though they are implemented by the adversary.

13

saboteur who may have backdoors embedded; then the sabotaged implementation judiciously samples
randomness in order to generate the outputs (e.g., ciphertexts) in a way that leaks the secret bit-by-bit via
a steganographic channel.

To defend against the ASAs, Bellare et al provided successful mechanisms of using deterministic
algorithms (e.g., signing) with unique outputs. However, we note that the ASAs considered in [1, 2] are
restricted in the sense that the adversary is not allowed to launch the ASAs on all algorithms; In particular,
the key generation algorithm is assumed to be implemented honestly and the adversary is not allowed to
attack on it.

We are interested in securing cryptographic schemes in the complete subversion model where the
adversary is allowed to launch algorithm-substitution attacks on all components of the schemes. We
demonstrate below how our unforgeable TDOWF can be applied to defend against the ASAs, even if the
key generation algorithm has been sabotaged. Together with the results of [1, 2], we then show a concrete
example of a digital signature scheme, achieving security in the case that all the algorithms are sabotaged.

Digital signature scheme in the complete subversion model. We can define the existential unforge-
ability in the setting of complete subversion 8 in a way that the public key is generated using the adversarial
implementation, and the signing/verification algorithm can also be implemented by the adversary, while
all the other steps are the same as the standard definition.

Definition 4.1. We say a signature scheme (KG,Sign,Verify) (with the specification version of key gener-
ation algorithm KGSPEC, signing algorithm SignSPEC and verification algorithm VerifySPEC) is existentially
unforgeable in the complete subversion setting, if for all PPT adversary A = (AINITIAL,AFORGE), the
following properties hold:

• The adversary A wins the unforgeability game defined below, with no more than a negligible
probability.

UNFORGEABILITY GAME between PPT adversary A = (AINITIAL,AFORGE) and a challenger C:

1. AINITIAL provides an implementation of KG, Sign, Verify to the challenger (which may contain
backdoor information z).

2. C queries KG to learn the key pair (pk, sk), and sends the public key pk to AFORGE.

3. AFORGE, having the backdoor z from AINITIAL, asks signing queries for arbitrarily chosen
messages m1, . . . ,mq; for each mi from AFORGE, the challenger C queries Sign with input
(sk,mi) to learn the corresponding signature σi, and return σi to AFORGE.

4. AFORGE returns a message-signature pair (m∗, σ∗) to the challenger C; now C queries Verify
with input (pk,m∗, σ∗) to learn output b.

5. A = (AINITIAL,AFORGE) wins the game if m∗ 6∈ {m1, . . . ,mq} and b = 1.

• In the above game the output distribution of KG, Sign and Verify are indistinguishable from the
output distribution of KGSPEC, SignSPEC and VerifySPEC

9 respectively.

8This definition may be weaker than the general definition of surveillance security defined in [2] that the output distribution of
subverted algorithms looks the same as that of the specification even to the adversary who has the backdoor. However, preserving
its standard security in this complete subversion model (we think) is good enough for each primitive to be used as normal.

9The checking for the Verify algorithm is a bit subtle since the tester can not generate message-signature pairs himself for a
given public key to to run the specification. However, in the security game in definition 4.1, if a deterministic Verify algorithm
is consistent with the the specification on the “forgery” returned by the adversary, then we can safely assume it is honestly
implemented; otherwise, the challenger can notice the difference.

14

Construction. Following the result of [2], if the key generation algorithm is honest, a unique signature
scheme [9, 13] remains existentially unforgeable against the algorithm substitution attack. In this case,
the signing and verification algorithms are both deterministic and the detection condition “forces” the
adversary to honestly implement these two. To obtain a complete subversion-secure solution from a
unique signature scheme, we still need to “upgrade” the key generation algorithm so that it is secure
against subversion attack.

We may consider the following approach to obtain a subversion-secure key generation algorithm:
initially generate an unforgeable OWF f , and then randomly select a secret key sk and compute the public
key pk = f(sk). Since the OWF is unforgeable, it seems that we may be able to force the adversarial key
generation algorithm to output a “safe” OWF. However, it is not clear how to show that the key pairs are
well distributed.

We here consider an alternative approach; we use an unforgeable TDOWF, (KGF , InvF). More
concretely, we use the key generation algorithm of unforgeable TDOWF to generate a function index i
together with the corresponding trapdoor ti, and set the index i as the public key, and the trapdoor ti as
the secret key. To be compatible with the unique signature scheme, we choose to instantiate the unique
signature scheme from the full domain hash construction [3, 6]. Details of the construction can be found
below:

• Key generation (pk, sk)← KG(λ):

compute (i, ti)← KGF (λ), and set pk := i and sk := ti;

• Signature generation σ ← Sign(sk,m):

upon receiving message m, compute σ := InvF (sk, i, h(m)); here sk = ti;

• Signature verification b := Verify(pk,m, σ):

upon receiving message-signature pair (m,σ), if fi(σ) = h(m) then set b := 1, otherwise set
b := 0; here pk = i.

Theorem 4.2. Given an unforgeable TDOWF F , the full domain hash signature scheme is existentially
unforgeable (under complete subversion) in the random oracle model.

Proof. First, since the Sign,Verify and the hash algorithms we use are all deterministic, and in the
unforgeability game, they are all with public input distributions, as explained in section 2, we can assume
they are honestly implemented, i.e., consistent with the specifications.

We will show that if there is a subversion attack, then one can break the unforgeability of F . Suppose
(AINITIAL,AFORGE) are the adversaries who break the existential unforgeability of the full domain hash
signature scheme in the complete subversion model with a non-negligible probability δ, we will construct
S to simulate the adversaries (BG,KG, Inv) as in Definition 3.2.

BG first runs AINITIAL to receive the backdoor z and the implementation KG0 for the signature key
generation. KG simply runs KG0 and outputs a function index i := pk and the corresponding trapdoor
ti. S discards ti and sends pk to AFORGE. Suppose y = fi(x) is the challenge that Inv receives from the
unforgeable TDOWF challenger, Inv (constructed by S) will feed AFORGE with z and runs it as follows to
try to invert.

W.l.o.g, we assume AFORGE asks a random oracle query for a message before she asks for the signing
query, (if not, the simulator can ask instead of her), and AFORGE asks the random oracle query for her final
forgery m∗.

Suppose AFORGE asks q random oracle queries m1, . . . ,mq. Inv randomly choose j ∈ {1, . . . , q}, and
answers the query with y = h(mj); He then chooses q − 1 random elements σ1, . . . , σj−1, σj+1, . . . , σq,
and answers the random oracle queries as h(mk) = fi(σk) for k 6= j. Inv maintains a list.

15

When AFORGE asks a signing query mk, if mk = mj , Inv aborts, otherwise, Inv checks the list and
returns the corresponding σk. (Note that Sign algorithm can only have one output for each message, thus
the above procedure perfectly simulates the signing oracle implemented by the subverted Sign algorithm).
AFORGE outputs m∗, σ∗. If m∗ 6= mj , Inv aborts, otherwise, Inv outputs σ∗.

Let us use W to denote the event that Inv aborts. Following the classic proof of security of the
full domain hash signature scheme (e.g., [6]), Pr[W] ≤ 1− poly(1q), thus Inv successfully inverts with
probability at least δ0 = poly(1q)δ (as we assumeAFORGE has δ advantage, and the Verify has to be honestly
implemented to avoid detection). This means F is δ0-forgeable, which contradicts our condition.

5 Constructing Pseudorandom Generator in the Complete Subversion
Model

As mentioned in the Introduction, our goal is to stimulate a systematic study of Cliptography. Having
studied the fundamental backdoor-free building blocks, unforgeable OWFs, and unforgeable TDOWFs,
we intend to mimic the classic footprints of constructing cryptographic primitives from OWF/TDOWF,
and provide solutions to other important backdoor-free building blocks. As our first example, we will
show an interesting connection between our notion of unforgeable OWF and the notion of backdoor-free
PRG, recently studied by Dodis et al. [7]. Next we first review the basic notions of PRG under subversion
attacks. We then provide a specific solution based on the Blum-Micali PRG; this result can be viewed as a
mimic of the classic result of Blum-Micali construction in cliptography. Furthermore, we examine how to
extend the applicability of our general sanitizing strategy for OWF/TDOWF to more settings. We will
demonstrate a general method of public immunizing strategy for PRG. We remark that, all algorithms
in our backdoor-free PRG construction, including the sanitizing function (which can be part of the KG
algorithm in the specification), can be subverted. Thus we provide the first PRG constructions secure in
the complete subversion model.

5.1 Preliminaries: backdoored and backdoor-free PRGs

We adopt the definition from [7], that a pseudorandom generator consists of a pair of algorithms
(KG,PRG), where KG outputs a public parameter pk and PRG : {0, 1}∗ × {0, 1}` → {0, 1}` × {0, 1}`′

takes the public parameter pk and an `-bit random seed s as input; it returns a state s1 ∈ {0, 1}` and an
output string r1 ∈ {0, 1}`

′
. PRG may be iteratively executed; in the i-th iteration, it takes the state from

the previous iteration si−1 as the seed and generates the current state si and output ri. We use PRGq to
denote the result of q iterations of PRG with outputs r1, . . . , rq (each ri ∈ {0, 1}`

′
).

In a backdoored PRG, the algorithms (in particular KG) are implemented by the adversary (repre-
sented by AINITIAL), outputs a public parameter pk together with a backdoor sk. The output distribution
PRG(pk,U) is still pseudorandom, where U is the uniform distribution; however, with the corresponding
backdoor sk, the adversary (represented by ADIST) is able to break the PRG security (e.g., the adversary
can distinguish the output from a uniform string).

We will rephrase the definition for backdoored PRG in our setting—as in the definition of a forgeable
OWF—there exist “specification” versions of the algorithms. In particular, the parameter generation
algorithm KGSPEC is with the requirement that the distribution of the adversarially generated public
parameter must be indistinguishable from the output distribution of KGSPEC. It is easy to see that the output
distribution of PRG(pk, s) for a uniformly chosen s is pseudorandom even pk is generated by AINITIAL.
(Otherwise, one can easily distinguish the output distribution of AINITIAL from KGSPEC.) Additionally, as
the PRG algorithm is deterministic, and its input distribution is public, we may assume that the adversary
implements it honestly as the PRGSPEC to avoid easy detection so that we can focus on the KG algorithm.

16

The formal definitions are presented as follows:

Backdoored PRG. We re-phrase the definition of (q, δ)-backdoored PRG 10 as follows: We define a
backdoored PRG game (see Figure 4) with a PPT adversary A = (AINITIAL,ADIST) such that (i) the pk
distribution is indistinguishable from that generated by KGSPEC; and (ii) the adversary wins the backdoored
PRG game with probability δ, i.e., Pr[b = b′]− 1

2 ≥ δ.

(pk, sk)← AINITIAL

s← {0, 1}`

r01, . . . , r
0
q ← PRGq(pk, s)

r11, . . . , r
1
q ← {0, 1}`

′·q

b← {0, 1}
b′ ← ADIST(pk, sk, r

b
1, . . . , r

b
q)

Figure 4: The backdoored PRG game

Backdoor-free PRG. Then we say that a PRG is q-backdoor free if, in the above backdoored PRG game,
for all PPT adversaries A = (AINITIAL,ADIST), whenever pk is indistinguishable from the specification
distribution, the advantage is negligible, i.e.,

∣∣Pr[b = b′]− 1
2

∣∣ ≤ negl(λ).

Remark 5.1. The generation of the seed s is out of the scope of this paper (same as [7]), since even the
specification of pseudorandom generators do not cover this part. Our techniques can guarantee a received
implementation is as good as the specification. Of course, it would be an important open question to
consider the random seed generation for practice.

5.2 Constructing backdoor-free PRG from strongly unforgeable OWP

In this subsection, we provide constructions for backdoor-free PRG based on strongly unforgeable one-way
permutation. We start with a basic solution based on a (simplified) Blum-Micali PRG, and then extend it
to a full-fledged solution. Before going to the details of our constructions, we recall the classic generic
construction of Goldreich-Levin (GL), yielding a hardcore predicate [8] for any OWF f . We suppose the
input x of f is divided into two halves x = (x1, x2) and define the bit B(x) = 〈x1, x2〉; B(x) is hard to
predict given x1, f(x2), assuming that f is one-way. Moreover, if there is a PPT algorithm that predicts
B(x) with significant advantage δ given x1, f(x2), then there is a PPT algorithm I that inverts f with
probability poly(δ).

Basic construction. We will show that given a strongly unforgeable one-way permutation (OWP) family
F with algorithms (KGF ,EvalF), the classic Blum-Micali PRG [4] (using the GL hardcore predicate) is
1-backdoor free. Our basic construction (KG,PRG) is as follows:

• Parameter generation algorithm pk ← KG(λ):

compute i← KGF (λ) and set pk := i;

• Bit string generation algorithm (s′, b)← PRG(pk, s):

upon receiving s and pk, where pk = i, s = s1||s2 and |s1| = |s2| = `, compute the following:
s′1 := s1, s′2 := fi(s2) (or s′2 := EvalF (i, s2)), and s′ = s′1||s′2, b := 〈s1, s2〉.

10We ignore the running time of the adversary here for simplicity. Also, according to the detection principle in section 2, the
PRG algorithm is deterministic and with a user selected input distribution, thus we can treat it as honest implemented.

17

We can show in the lemma below that the basic construction above is a 1-backdoor free PRG. The
intuition is that in the (simplified) Blum-Micali PRG, a distinguisher can be transformed into an OWF
inverter (following the GL proof), thus an adversary who can build a backdoor for this PRG implies that
she has the ability to make F (forgeable), which violates the strong unforgeability of F .

Lemma 5.2. Given a strongly unforgeable one way permutation family F , the basic construction above
is 1-backdoor free.

Proof. The specification KGSPEC of the simplified Blum-Micali PRG outputs a random function index
from the corresponding index set (by simply running the key generation specification of F).

First, it is easy to see that the OWF function family G = {gi}, where gi(x1||x2) := x1||fi(x2), is
strongly unforgeable if F is strongly unforgeable.

If the above basic construction is a (1, δ)-backdoored PRG for some non-negligible δ, there exist PPT
adversaries (AINITIAL,ADIST) such that (i.) AINITIAL can output a pair (pk, sk), where pk is indistinguish-
able from a randomly sampled public parameter; and (ii.) ADIST, with the backdoor sk, can distinguish
s1||fi(s2)||B(s) (where B(s) = 〈s1, s2〉) from a uniform (2`+ 1)-bit string. It is not hard to see that we
can then construct algorithms (KG, Inv) that break the strong unforgeability of G.

In particular, KG runs AINITIAL and outputs the received key pair (pk, sk), where pk here corresponds
to a function index i that is indistinguishable from a random index, and sk corresponds to the backdoor z.
Inv receives a challenge y = gi(x) and the backdoor z; it first constructs an algorithm AP . AP selects a
random bit b, and runs ADIST(pk, sk, y||b). By the definition of ADIST, if b = B(s), ADIST (with sk) will
output 0 with probability 1/2 + δ. It is easy to see that AP can predict the GL hardcore predicate B with
advantage δ/2, following the GL proof [8], there exists another algorithm IAP (pk, sk, ·) that can invert
y with probability δ′ = poly(δ/2). Inv runs IAP (pk, sk, i, y) and recovers x′; Inv then outputs x′ if it
is a valid pre-image of y. It follows that Pr[x′ = x] ≥ poly(δ/2) = δ′ and G will be δ′-forgeable for a
non-negligible δ′, thus contradicts our assumption.

Full-fledged construction. We now extend our basic construction via iterations to show that the full
fledged Blum-Micali PRG construction, using our strongly unforgeable OWF, achieves a q-backdoor free
PRG for any q = poly(λ). Our full-fledged construction (KG,PRG) 11 is as follows:

• Parameter generation algorithm pk ← KG(λ):

compute i← KGF (λ) and set pk := i;

• Bit string generation algorithm (s′, r)← PRG(pk, s):

upon receiving s and pk where pk = i, s = s1||s2, and |s1| = |s2| = `, compute the following:

– let s01 := s1 and s02 := s2;

– for j = 1, . . . `′,
bj := 〈sj−11 , sj−12 〉;
sj1 := sj−11 ; sj2 := fi(s

j−1
2); sj := sj1||s

j
2;

– s′ = s`
′
= s1||f `

′
i (s2); and r = b1 . . . b`′ .

Please see Figure 5 for pictorial illustration.

11PRGq can be defined in a straightforward manner that runs PRG for q iterations, each iteration outputs `′ bits and updates
the state for next iteration.

18

s1||s2 → s1||fi(s2)→ s1||f2i (s2)→ . . .→ s1||f `
′
i (s2)→ . . .

↓ ↓ ↓
〈s1, s2〉 〈s1, fi(s2)〉 . . . 〈s1, f `

′−1
i (s2)〉

Figure 5: One iteration of BM-PRG

Theorem 5.3. The full fledged construction above is q-backdoor free (for any polynomially large q), if
the underlying OWP family F is strongly unforgeable.

Proof sketch. Following Lemma 5.2, s1||f ji (s2)||bj is pseudorandom, i.e., it is indistinguishable from
“u1, . . . , u`, v1”, even to the adversaries (AINITIAL,ADIST) who set i, where {ui}, v1 are all random bits.
While bj+1 is only related to s1, f

j
i (s2), it follows that to the adversary ADIST (who has the backdoor),

b1 . . . b`′ satisfies the next-bit unpredictability. Following the classic reduction from pseudorandomness
to next-bit unpredictability, we can conclude that b1 . . . b`′ is indistinguishable from uniform bits from
{0, 1}`′ , even to ADIST. (This can be shown via the hybrid argument.) Then, inductively, we can conclude
that r1, . . . , rq are indistinguishable from `′ · q uniform bits.

Remark 5.4. It is easy to see that if starting from an OWF(not necessarily unforgeables), the full fledged
construction can be easily modified by replacing fi(·) with fh(i)(·).

5.3 General public immunization strategy for PRG

An impossibility result about public immunization of a backdoored PRG was presented in [7]. However,
we observe that this impossibility result only applies to an immunization procedure that operates on the
output of the backdoored PRG . The application of strongly unforgeable OWF to backdoor-free PRG
shown above inspires us to consider a new, general immunizing strategy for backdoored PRG . We suggest
that—similar to the procedure above for eliminating backdoors in OWFs—one can randomize the public
parameters to sanitize the PRG. 12 The intuition for this strategy to be effective in the setting of PRG is
similar: if a specification KGSPEC that outputs a uniform pk from its domain, no single backdoor can be
used to break the security for large amount of public parameters; otherwise, one can use this trapdoor to
break the PRG security of the specification.

Consider a PRG implementation (KG,PRG) (in which the KG algorithm might be backdoored), which
is proven secure if the KGSPEC outputs uniformly from its range PP . Let h be randomly selected from a
hash family H : PP → PP which is modeled as a random oracle. Then we can construct a backdoor-free
PRG, (h ◦KG,PRG), i.e., applying the hash to the given public parameter to derive the actual pk that will
be fed into the PRG algorithm (alternatively, we can think as the new deterministic pseudo randomness
generation algorithm to be defined as PRG(h(pk), ·)). Note that in order for this method to work, we must
insist that pk can not be null, and is indeed used by the PRG algorithm, as in the case of, e.g., Dual EC
PRG. Also see the pictorial illustration in Fig 6.

KG → pk pk → h → p̃k s→ PRG(p̃k, ·) → r

Figure 6: Public immunization strategy for PRG.

12To interpret this results, since the solution of [7] requires a trusted seed/key generation and apply the function to the PRG
output, thus part of the PRG algorithm can not be subverted. It follows that the construction of PRG in the complete subversion
model was still open until our solution. In contrast, our sanitizing strategy does not require any secret, and even the deterministic
hash function can be implemented by the adversary as part of the KG algorithm.

19

Theorem 5.5. Assume (KGSPEC,PRGSPEC) is a pseudorandom generator if KGSPEC outputs pk randomly
from its domain. Given any implementation (KG,PRG), hashing the public parameters as described
above, i.e., (h ◦ KG,PRGSPEC) yields a q-backdoor-free pseudorandom generator in the random oracle
model for any polynomially large q.

Proof sketch. Suppose (h ◦ KG,PRGSPEC) is a (q, δ)- backdoored PRG . Then there exist a pair of
adversaries (AINITIAL,ADIST) that can win the backdoored PRG game defined in Figure 4 with advantage
δ. We will transform these adversaries into an adversary S that breaks the security of (KGSPEC,PRGSPEC).

Suppose the challenger of the specification version of PRG selects the parameter pk∗ and the challenge
string r∗ is either PRG(pk∗, s) (for a uniform s ∈ {0, 1}`) or a uniform string from {0, 1}`′·q for some `′.

The reduction follows the proof of Theorem 3.5: S attempts to embed pk∗ into the answers to the
random oracle queries. In particular, if AINITIAL outputs pk, S wishes to answer the random oracle query
about pk using pk∗, i.e., h(pk) = pk∗. We then proceed with a similar probabilistic analysis.

It is easy to see that if ADIST can distinguish r∗ from an uniform string, then S will be able to
distinguish the output of the specification version from random which violates the PRG security of the
specification.

Remark 5.6. There are several points we would like to stress:

• If the public parameter contains only random elements from a group, e.g., the Dual EC PRG, we
may simply encode them into bits and use the regular hash functions like SHA-256, directly and
convert the resulting bits back to a group element;

• If the public parameters are structured elements, or the KGSPEC does not output a uniform distri-
bution, we can work on the split-program model that forces the adversarial implementation to
explicitly isolate its generation of randomness, and make the randomness public as part of the
public parameter.

• If we treat the immunizing method as part of the KG algorithms, i.e., h ◦ KG is a single algorithm,
we can let the adversary sets both (pk, p̃k) as the public parameter, regular user simply uses p̃k
as the actual parameter and the crypto experts can check the validity of it. Similarly, in the split-
program model, we can let the big brother set the original randomness r and sanitized randomness
r̃, together with p̃k as the public parameters.

6 Conclusion and Open Problems

We initiate the systematic study of defending mechanism against kleptographic attacks of cryptographic
primitives when all algorithms are subject to the subversion, we call cliptography.

We start from the fundamental primitives of (trapdoor) one way functions. We formalize the notions
of forgeable (trapdoor) OWF to capture the possibility of embedding backdoors, in particular, into the
function generation algorithms, and show how to launch such attacks. More interestingly, we suggest
a general sanitization method employing randomization of the function index to destroy the possibility
of embedding backdoor information. To instantiate our method in practice, we propose a split-program
model in which the function generation algorithm consists of two components, a randomized component
RG and a deterministic component dKG; here, the first component RG generates a uniform random string
for the second component dKG, and then the second component generates an index based on such random
string. In such split-program model, we can directly apply our general method of immunizing one way
function generation to the randomness generated by RG.

We then pursue the possibility of building cliptography from unforgeable (trapdoor) OWFs. In
particular, we show how to construct a signature scheme and a pseudorandom generator that preserves its

20

security in the complete subversion model. These are done by using our unforgeable trapdoor OWF and
strongly unforgeable OWF as the key/parameter generation algorithm. Finally, we show how to apply our
immunizing technique directly to the setting of PRG and present a general public immunizing strategy for
PRG.

Many important problems remain open about defending against kleptogaphic attacks, and in general
against mass surveillance. The immediate open questions left by our paper would be: to what extend
the results and techniques developed in this paper can be used to build cliptography. In particular, can
we construct other cryptographic primitives that preserves their security in the setting that all algorithms
are subject to kleptographic attacks? There are also many other related open questions, to name a few:
(1) how to sanitize the OWF generation in the standard model? (2) how to eliminate the subliminal
channel in general? (3). Can we show some results in the complete subversion model so that we can
preserve the security for multiparty protocols? and finally, (4) how to design an accountable mechanism
for surveillance, such that key escrow is provided but not abused?

References

[1] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic and hedged public-
key encryption in the standard model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 627–656. Springer, Apr. 2015. 3, 4, 13, 14

[2] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption against mass
surveillance. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 1–19. Springer, Aug. 2014. 3, 4, 5, 13, 14, 15

[3] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and
Rabin. In U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416. Springer,
May 1996. 15

[4] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo random bits.
In 23rd FOCS, pages 112–117. IEEE Computer Society Press, Nov. 1982. 17

[5] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart, D. J. Bernstein,
J. Maskiewicz, H. Shacham, and M. Fredrikson. On the practical exploitability of dual EC in TLS
implementations. In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014., pages 319–335, 2014. 5, 8

[6] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 229–235. Springer, Aug. 2000. 15, 16

[7] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment of backdoored
pseudorandom generators. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 101–126. Springer, Apr. 2015. 3, 4, 5, 16, 17, 19

[8] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC,
pages 25–32. ACM Press, May 1989. 4, 17, 18

[9] S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-knowledge proofs are
equivalent (extended abstract). In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
228–245. Springer, Aug. 1993. 15

21

[10] N. J. Hopper, J. Langford, and L. von Ahn. Provably secure steganography. In M. Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 77–92. Springer, Aug. 2002. 4

[11] A. Juels and J. Guajardo. RSA key generation with verifiable randomness. In D. Naccache and
P. Paillier, editors, PKC 2002, volume 2274 of LNCS, pages 357–374. Springer, Feb. 2002. 4

[12] J. Larson, N. Perlroth, and S. Shane. Revealed: The NSA’s secret campaign to crack, undermine
internet security. Pro-Publica, 2013. http://www.propublica.org/article/the-nsas-secret-campaign-to-
crack-undermine-internet-encryption. 3

[13] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation.
In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Aug. 2002. 15

[14] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 657–686. Springer,
Apr. 2015. 3, 5

[15] NIST. Special publication 800-90: Recommendation for random number generation using
deterministic random bit generators. National Institute of Standards and Technology, 2012.
http://csrc.nist.gov/publications/PubsSPs.html. 5

[16] N. Perlroth, J. Larson, and S. Shane. N.S.A. able to foil basic safeguards of privacy on web. The New
York Times, 2013. http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html.
3

[17] G. J. Simmons. The prisoners’ problem and the subliminal channel. In D. Chaum, editor,
CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983. 4

[18] G. J. Simmons. A secure subliminal channel (?). In H. C. Williams, editor, CRYPTO’85, volume
218 of LNCS, pages 33–41. Springer, Aug. 1986. 4

[19] A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we trust capstone?
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103. Springer, Aug. 1996. 3, 4,
5, 7

[20] A. Young and M. Yung. Kleptography: Using cryptography against cryptography. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer, May 1997. 3, 4, 5, 7

A Omitted Proofs

Lemma 3.1. A (1− ε)-strongly forgeable OWF family is also a TDOWF family, where ε is a negligible
function of the security parameter.

Proof. Suppose F := (BGF ,KGF , InvF) is a (1 − ε) strongly-forgeable OWF family. We can define
(KG,Eval, Inv) for the TDOWF family as follows. The generation algorithm KG is as follows: first run
BGF (λ) and receive a string z; then run KGF with input (λ, z) and receive a function index i; finally
output (i, z). The inversion algorithm Inv for the TDOWF is simply InvF , and the evaluation algorithm is
defined as Eval(i, x) = fi(x).

We can easily see that (KG,Eval, Inv) is invertible once trapdoor is given: since F is a (1−ε) strongly-
forgeable OWF family, it holds that by definition, Pr[InvF (z, i, y) = x | x← Xi; y := fi(x)] ≥ 1− ε;
therefore, Pr[Inv(i, y, z) = x | x← Xi; y := fi(x)] ≥ 1− ε.

22

We can also show the one-wayness: without z, no PPT algorithm can invert y for a random x;
otherwise assume (KG,Eval, Inv) is not one-way, then there exists an adversary A who for i ← KGF ,
can invert y := fi(x) with non-negligible probability. We note that the specification function generation
algorithm is one-way, i.e., for i ← KGSPEC, no one can invert y := fi(x) except negligible probability.
Now, one can distinguish the output distribution of KGF (z) from the output distribution of KGSPEC, simply
by trying inversion using A.

Lemma 3.2. One can construct a (1− ε)-strongly forgeable OWF from a TDOWF, where ε is a negligible
function on the security parameter.

Proof. Consider a TDOWF F = {fi} with the associated algorithms (KGF , InvF). Assuming the
trapdoors can be represented using `(λ) bits, we construct a strongly forgeable OWF family G = {gi,r},
where gi,r(x) = fi(x)||r and r ∈ {0, 1}`(λ).

The specification version of the sfunction generation algorithm KGSPEC is defined as follows: run the
KGF algorithm and receive a function index/trapdoor pair (i, ti); then discard ti and sample randomly
r ← {0, 1}`(λ); finally output (i, r). It is easy to see that gi,r is one way because fi is one way (without
ti).

While for the backdoored implementations, BG first outputs a random key k for a symmetric key
encryption scheme SE = (SE.Enc,SE.Dec) which is assumed to be a pseudorandom permutation (PRP).
KG(k) is defined as follows: it first runs KGF , and receives an index i together with the corresponding
trapdoor ti; the second part r̃ is generated by encrypting ti using k, i.e., r̃ = SE.Enc(k, ti). KG(k) outputs
(i, r̃). (gi,r̃(x) = fi(x)||SE.Enc(k, ti)). It is easy to see that with the backdoor k, one can define the Inv
as follows: it first decrypts r̃ using k to retrieve ti, and then inverts fi(x) by running InvF with ti as an
input.

Furthermore, since SE.Enc is modeled as a PRP, the distributions of (i, r) returned by KGSPEC and
(i, r̃) returned by KG(k) for any k are computationally indistinguishable.

23

	Introduction
	Our contribution
	Related work

	Kleptographic Attacks and the Complete Subversion Model
	Constructing One-Way Functions in the Complete Subversion Model
	Formalizing kleptographic attacks on one way functions
	Strong-forgeability and unforgeability for OWF/TDOWF
	Forgeability and strong-unforgeability for OWF

	Eliminating backdoors
	General feasibility results
	Practical results in the split-program model

	Constructing Signatures in the Complete Subversion Model
	Constructing Pseudorandom Generator in the Complete Subversion Model
	Preliminaries: backdoored and backdoor-free PRGs
	Constructing backdoor-free PRG from strongly unforgeable OWP
	General public immunization strategy for PRG

	Conclusion and Open Problems
	Omitted Proofs

