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Abstract

Kleptography, introduced 20 years ago by Young and Yung [Crypto ’96], studies how to steal
information securely and subliminally from cryptosystems. The basic framework considers the
(in)security of malicious implementations of a standard cryptographic primitives by embedding
a “backdoor” into the system. Remarkably, crippling subliminal attacks are possible even if
the subverted cryptosystem produces output indistinguishable from a truly secure “reference
implementation.” Bellare, Paterson, and Rogaway [Crypto ’14] recently initiated a formal study
of attacks on symmetric key encryption algorithms, demonstrating a kleptographic attack that
can be mounted in broad generality against randomized components of cryptographic systems.

We enlarge the scope of current work on the problem by permitting adversarial subversion
of (randomized) key generation; in particular, we initiate the study of cryptography in the
full subversion model, where all relevant cryptographic primitives are subject to kleptographic
attacks. We formally study one-way permutations and trapdoor one-way permutations in this
“complete subversion” model, describing a general, rigorous immunization strategy to clip the
power of kleptographic subversions. We augment this strategy with a “split program” model
that can directly inform practical deployment.

We then examine two standard applications of (trapdoor) one-way permutations in this
complete subversion model. First, we consider construction of “higher level” primitives via
black-box reductions. We showcase a digital signature scheme that preserves existential unforge-
ability when all algorithms (including key generation, which was not considered to be under
attack before) are subject to kleptographic attacks. Additionally, we demonstrate that the classic
Blum–Micali pseudorandom generator (PRG), using an “immunized” one-way permutation,
yields a backdoor-free PRG. Second, we apply our general immunization strategy to directly
yield a backdoor-free PRG. This notably amplifies previous results of Dodis, Ganesh, Golovnev,
Juels, and Ristenpart [Eurocrypt ’15], which require an honestly generated random key.

Alongside development of these secure primitives, we set down a hierarchy of kleptographic
attack models which we use to organize past results and our new contributions; this taxonomy
may be valuable for future work.
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1 Introduction

Consider the conventional use of a cryptographic primitive, such as an encryption scheme: To
encrypt a desired plaintext, one simply runs an implementation of the encryption algorithm
obtained from a hardware or software provider with the plaintext as input. Although the un-
derlying algorithms may be well-studied and proven secure, malicious implementations may
cleverly embed sensitive information—such as the secret key—into the ciphertext in a fashion
that permits recovery by the provider/manufacturer but is undetectable to other parties. It is
notable that such leakage is possible even if the implementation produces “functionally and statistically
clean” output that is indistinguishable from that of a faithful implementation. While the underlying
concept of kleptography was proposed by Young and Yung two decades ago [YY96, YY97], the
recent Snowden revelations [PLS13, LPS13] provided striking real-world examples that reawak-
ened the security community to the seriousness of these issues [Rog15]. As a result, the topic
has recently received renewed attention; see, e.g., [BPR14, BH15, DGG+15, MS15, AMV15]. In
particular, Bellare, Paterson, and Rogaway [BPR14] studied algorithm substitution attacks—with a
focus on symmetric key encryption—and demonstrated a devastating framework for such attacks
that apply in broad generality to randomized algorithms. Soon after, Dodis, Ganesh, Golovnev,
Juels, and Ristenpart [DGG+15] studied methods for “immunizing” pseudorandom generators
(PRG) in such backdoored settings.

Our contributions. We continue this line of pursuit. Specifically, we are motivated to develop
cryptographic schemes in a complete subversion model, in which all algorithms of a scheme are
potentially subverted by the adversary. This model thus significantly amplifies previously studied
settings, which rely on trusted key generation or clean randomness that is assumed private from
the adversary. We study two fundamental cryptographic primitives in the complete subversion
model—(trapdoor) one-way permutations (OWP)—and apply these primitives to construct other
cryptographic tools such as digital signatures and PRGs. Along the way, we identify novel generic
defending strategies and a hierarchy of attack models. We hope to stimulate a systematic study
of “cliptography,” the challenge of developing a broad class of familiar cryptograhpic tools that
remain secure in such kleptographic settings. As mentioned above, prior to our work kleptographic
attacks on various primitives have been addressed in weaker models; see Related work in Section 1.
In detail, we show the following:

• We set down a hierarchy of three security models that capture practical kleptographic
settings. The models are characterized by three parties: an adversary, who may provide
potentially subverted implementations of cryptographic algorithms; a “watchdog,” who
either certifies or rejects the implementations by subjecting them to (black-box) interrogation
1; and a challenger, who plays a conventional security game (using the potentially subverted
algorithms) with the adversary. The role of the watchdog is thus the novel feature in the
model: armed with the “specification” of the cryptographic algorithms and oracle access to
the implementations provided by the adversary, he attempts to detect any subversion in the
implementations. Various models arise by adjusting the supervisory power of the watchdog;
see Section 2.

• We study (trapdoor) one-way permutations in the presence of kleptographic attacks, introduc-
ing notions of subversion-resistance that can survive various natural kleptographic attacks.

1Without the watchdog, it is elusive to achieve interesting cryptographic functionalities.
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We first give a simple example of OWP that can be proven secure in the conventional sense,
but can be completely broken under the kleptograhic attack. This demonstrates the need for
judicious design of cryptographic primitives to defend against kleptographic attacks.

We then construct subversion-resistant (trapdoor) one way permutations via a general trans-
formation that “sanitizes” arbitrary OWPs by randomizing the function index. This trans-
formation clips potential correlation between the function and the possible backdoor that
the adversary may possess. Additionally, we introduce a split-program to make the general
method above applicable using only standard hash functions. In the split-program model.
We remark that our results allow all algorithms to be implemented by the adversary; see
Section 3.

• In Section 4, we then observe that subversion-resistant trapdoor OWPs give us a way to
construct key generation algorithms (for digital signature schemes) against kleptographic
attacks. We then showcase a concrete example of digital signature scheme in the complete
subversion model. More concretely, we achieve this result by (1) using the subversion-
resistant trapdoor one way permutation directly as a key generation algorithm, and then
(2) instantiating the unique signature generation mechanism via full domain hash (FDH).
We stress that the reduction of the standard FDH signature scheme does not go through in
the cliptographic setting. To resolve this issue, we slightly modify the FDH approach by
hashing the message together with the public key, to make the proof go through. We remark
that, in previous works, [BPR14, AMV15] demonstrated that a unique signature scheme is
secure against kleptographic attacks, assuming that the key generation algorithm is honest and
all the message-signature pairs can be checked by the lab/user. Our result is the first digital
signature scheme allowing the adversary to sabotage all algorithms.

• We then turn our attention to PRGs. Previous work of Dodis et al. [DGG+15] investigated a
notion of “backdoored PRG” in which the adversary sets up a PRG instance (i.e., the public
parameter), and is able to distinguish the output from uniform with a backdoor. They then
proposed powerful immunizing strategies applying a keyed hash function to the output—
assuming the key is unknown to the adversary—in the public parameter generation phase.
Motivated by their success, we focus on constructing backdoor-free PRGs in the complete
subversion model (where such clean randomness is not permitted). Our first construction
is based on the classic Blum-Micali construction, using our subversion-resistant OWP and
the Goldreich-Levin hardcore predicate. Dodis et al. [DGG+15] additionally show that it
is impossible to achieve a public immunizing strategy for all PRGs by applying a public
function to the PRG output. We sidestep this impossibility result via an alternative public
immunizing strategy: Rather than randomizing the output of the PRG, we randomize the
public parameter of PRG, which yields a general construction for PRG in the complete
subversion model. See Section 5.

Finally, we remark that black-box constructions and reductions do not, in general, survive in the
kleptographic model. However, two of the results above—the Blum-Micali construction and the
signature scheme—give explicit examples of reductions that can be salvaged.

Remarks: permitting use of randomized algorithms. We remark that our general defending
technique differs from known methods: We here use a—potentially subverted—hash function
to “randomize” the index and public parameter of a (perhaps randomized) algorithm so that
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any correlation with some potential backdoor can be eliminated. Previous results either use
a trusted random source to re-randomize the output of a randomized algorithm, or consider
only deterministic algorithms. Permitting randomized algorithms in a kleptographic framework
immediately invites the (devastating) general “stegochannel” attack of Bellare et al. [BPR14]. While
our primitives do permit randomized algorithms, the security games we analyze invoke them
only once (to, e.g., derive a key). The prospect of full “immunization” for general randomized
algorithms, in particular to destroy the stegnochannel, is a—presumably challenging—direction of
future work. This already improves the state-of-the-art of defending strategy of addressing only
deterministic algorithms.

For simplicity, we focus on (potentially subverted) algorithms that are not permitted to maintain
“state” between invocations, (we mention that typical steganographic attacks, can indeed be carried
out in a stateless model [BJK15].) Actually, in all constructions in the paper, however, we can relax
this assumption and allow the algorithm to maintain some internal state.

Related work. The concept of kleptography—subverting cryptographic algorithms by modifying
their implementations to leak secrets covertly, was proposed by Young and Yung [YY96, YY97] in
1996. They gave concrete examples showing that backdoors can be embeded into the public keys
of commonly used cryptographic schemes; while the resulting public keys appear normal to the
users, the adversary is nevertheless capable of learning the secret keys. It may not be surprising
that defending against such deliberate attacks is challenging and only limited feasibility results
exist. We next briefly describe these existing results.

In [JG02], Juels and Guajardo suggested the following idea: the user and a trusted certificate
authority (CA) jointly generate the public key; as a part of this process, the user proves to the CA
that the public key is generated honestly. This contrasts markedly with our setting, where the the
user does not have any secret, and every component is provided by the “big brother” (adversary).

Bellare et al. considered a powerful family of kleptographic attacks that they call algorithm
substitution attacks, and explore these in both symmetric key [BPR14] and public key [BH15] set-
tings. They first proposed a generic attack, highlighting the relevance of steganographic techniques
in this framework: specifically, a sabotaged randomized algorithm can leak a secret bit-by-bit
by invoking steganographic rejection-sampling; then an adversary possessing the backdoor can
identify the leaked bits from the biased output, which appears unmolested to other observers. The
attack and analysis relies on the effectiveness of covert subliminal channels [Sim83, Sim86, HLv02],
and is particularly striking because it can be applied in such generality. They then introduced
a framework for defending against such attacks by focusing on algorithms that having a unique
output for each input: relevant examples of such algorithms include unique ciphertext encryption
algorithms. These results were later refined by [DFP15]. Their defending mechanism does not,
however, address the (necessarily randomized) process of key generation—it implicitly assumes key
generation to be honest. This state of affairs is the direct motivation of the current article: we adopt
a significantly amplified complete subversion model where all cryptographic algorithms—including
key generation—are subject to kleptographic (i.e., substitution) attacks. This forces us to manage
certain randomized algorithms (such as key generation) in a kleptographic setting. The details of
the model, with associated commentary about its relevance to practice, appear below.

Dodis et al. [DGG+15] pioneered the rigorous study of pseudorandom generators in such
settings, developing an alternative family of kleptographic attacks on pseudorandom generators in
order to formalize the notorious Dual EC PRG subversion [NIS12, CNE+14]. In their model, the
adversary subverts the security of the PRG by opportunistically setting the public parameter while
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privately keeping some backdoor information (instead of providing an implementation). They
prove the equivalence of such a “backdoored PRG” and public key encryption with pseudorandom
ciphertexts. Then they proposed and analyzed immunizing strategies obtained by applying a keyed
hash function to the output (of the PRG). Note that the (hash) key plays a special role in their model:
it is selected uniformly and is unknown to the adversary during the public parameter generation
phase. These results likewise inspire our adoption of the amplified complete subversion model,
which excludes such reliance on public randomness beyond the reach of the adversary. We remark
that our results on subversion-resistant OWFs can be applied to construct a specific “backdoor-
free” PRG following the classic Blum-Micali framework. Moreover, our general immunizing
strategy, randomizing the public parameter of a backdoored PRG instead of randomizing the PRG
output, permits us to bypass an impossibility result established by Dodis et al. for general public
immunization based on the PRG output.

Other works suggest different angles of defense against mass surveillance. For example,
in [MS15, DMSD15], the authors proposed a general framework of safeguarding protocols by
randomizing the incoming/outgoing messages via a trusted (reverse) firewall. Their results demon-
strate that with a trusted random source, many tasks become achievable. As they rely on a
“subversion-free” firewall, these results require a more generous setting than provided by our
complete subversion model.

Ateniese et al. [AMV15] continued the study of algorithm substitution attacks on signatures
and propose two defending mechanisms, one utilizes a unique signature scheme assuming the
key generation and verify algorithms to be honest; the other adopts the reverse firewall model
that assumes trusted randomness. We construct a signature scheme that can be proven secure
in the full subversion model which does not make assumptions on honesty or require trusted
randomness. We remark that the strength of the “watchdog” that is required for the signature
scheme is, however, stronger than that required for the other primitives; it must be permitted a
transcript of the security game. See Section 4.

2 A Definitional Framework for Cliptography

2.1 From Cryptography to Cliptography

In this section, we lay down a definitional framework for cliptography. As mentioned in the
introduction, the new framework must reflect the ability of the adversary to provide (potentially
subverted) implementations of the cryptographic primitives of interest, the ability of an efficient
“watchdog” to interrogate such implementations in order to check their veracity, and a classical
“challenger-adversary” security game. In general, our model considers an adversary that commences
activities by supplying a (potentially subverted) implementation of the cryptographic primitive;
one then considers two parallel procedures: a classical challenger-adversary security game in which
the challenger must use only (oracle access to) the adversary’s implementations, and a process in
which the “watchdog” compares—also via oracle access—the adversary’s implementations against
a specification of the primitives. (For entertainment, we occasionally refer to the adversary as “big
brother.”)

Choosing the right watchdog. By varying the information provided to the watchdog, one obtains
different models that reflect various settings of practical interest. The weakest (and perhaps most
attractive) model is the offline watchdog, which simply interrogates the supplied implementations,
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comparing them with the specification of the primitives, and declares them to be “fit” or “unfit.”
Of course, we must insist that such watchdogs find the actual specification “fit”: formally, the
definition is formulated in terms of distinguishing an adversarial implementation from the spec-
ification. One can strengthen the watchdog by permitting it access to the full transcript of the
challenger-adversary security game, resulting in the online watchdog. Finally, we consider an even
more powerful omniscient watchdog, which is even privy to private data of the challenger.

We remark that an offline watchdog cannot ensure that deterministic algorithms are faithfully
implemented by the adversary; however, such a watchdog can ensure that they are correct with
overwhelming probability for particular known distributions of inputs. Likewise, an offline
watchdog can additionally ensure that distributions produced by the adversary’s implementations
are (computationally) indistinguishable from their “laboratory” counterparts. On the other hand,
an online watchdog has significantly enhanced powers: he can now effectively ensure, for example,
that all applications of a deterministic algorithm to arguments appearing in the transcript are
correct. In many cases of interest, this is as good as ensuring that all deterministic functions have
been faithfully implemented. The omniscient watchdog can actually provide such an iron-clad
guarantee.

We remark these various watchdogs reflect various levels of “checking” that a society might
entertain for cryptographic algorithms (and conversely, various levels of tolerance that an adversary
may have to exposure): the offline watchdog reflects a “one-time” laboratory that attempts to check
the implementations; an online watchdog actually crawls public transcripts of cryptographic proto-
cols to detect errors; the omniscient watchdog requires even more, involving (at least) individuals
effectively checking their results again the specification.

The complete subversion model. Another question concerns the selection of algorithms the
adversary is permitted to subvert. We work exclusively in a setting where the adversary is permitted
to provide implementations of all the relevant cryptographic elements of a scheme, a setting we
refer as the complete subversion model. Thus, all guarantees about the quality of the algorithms
are delivered by the watchdog’s activities. (As remarked above, a strong watchdog can enforce
significant constraints on the algorithms.) This contrasts with previous work, which explicitly
protected some of the algorithms from subversion, or assumed clean randomness. Such a setting
we refer to as partial subversion model.

Stateless/stateful cryptographic schemes and classical security games. A cryptographic scheme
Π consists of a set of (possibly randomized) algorithms (F1, . . . ,Fk) where each Fi is with input space
X i , output space Y i , and randomness space Ri . For example, a digital signature scheme consists of
three algorithms, a randomized key generation algorithm, a signing algorithm, and deterministic
verification algorithm.

The definition of a scheme Π = (F1, . . . ,Fk) results in a specification of the associated algo-
rithms; for concreteness, we label these (F1

spec
, . . . ,Fk

spec
); when a scheme is (perhaps adversar-

ially) implemented, we denote the implementation as Π
impl

= (F1
impl

, . . . ,Fk
impl

). If the imple-
mentation honestly follows the specification of the scheme, we denote the implementation as
Π

h-impl
= (F1

h-impl
, . . . ,Fn

h-impl
).

Note that, in principle, algorithms in the specification of a cryptographic scheme or imple-
mentations provided by an adversary could be stateful; for simplicity, we focus on stateless
algorithms/implementations. However, to jump ahead a bit, as we will see in the analysis, we only
require the implementation of randomized algorithm to produce unpredictable distribution. In the
case of stateful implementation which maintains a local state, the unpredictability requirement
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can still be ensured by an offline watchdog who can rewind the implementation. See the remark
below for more details.

Remark 2.1 If the implementation is stateless, an offline watchdog simply draws enough samples to
observe collision to test the unpredictability. Actually, this similar idea can be applied to even stateful
implementation. Suppose the watchdog wants to guarantee that n draws X1, . . . ,Xn from a randomize
algorithm, each Xi is unpredictable to the big brother. He just need now to check the conditional collision,
i.e., given a fixed sequence of values x1, . . . ,xi−1, the watchdog rewinds the implementation and make a
bunch of samples for xi . Doing this can ensure some kind of the “independence” across samples.

One may wonder would testing such a conditional entropy require to rewind for all sequences of
values x1, . . . ,xi the size of which grows exponentially fast. However, this is not necessary. Observe that
if a sequence y1, . . . , yi appears frequently, the watchdog will notice this value when drawing enough
samples; that said, if the watchdog never sees a sequence of values, it would not appear when using the
implementation anyway, estimating collision conditioned on such sequence thus is not needed. We will
also see a similar analysis in lemma 2.4.

Cryptographic games. We express the security requirements of cryptographic schemes via crypto-
graphic games between a “challenger” and an “adversary.”

Definition 2.2 (Cryptographic Game [HH09]) A cryptographic game G = (C,δ) is defined by a ran-
dom system C, called the challenger, and a constant δ ∈ [0,1). On security parameter λ, the chal-
lenger C(1λ) interacts with some adversary A(1λ) and outputs a bit b. We denote this interaction by
b = (A(1λ)⇔C(1λ)). The advantage of an attacker A in the game G is defined as

AdvA,G(1λ) = Pr
[
(A(1λ)⇔C(1λ)) = 1

]
− δ .

We say a cryptographic game G is secure if for all ppt attackersA, the advantage AdvA,G(1λ) is negligible.

The above conventional security notions are formulated under the assumption that the relevant
algorithms of the cryptographic scheme are faithfully implemented and, moreover, that participants
of the task have access to truly private randomness (thus have truly random keys).

2.2 A Formal Definition

Having specified the power of the big brother (the adversary) and that of the watchdog, we are
ready to introduce cliptographic games to formulate security. To simplify the presentation, we here
initially consider complete subversion with an offline watchdog. In the next section, we will consider
the other variants.

In our definition, the adversary A will interact with both the challenger C and the watchdog
W . (In the offline case, these interactions are independent; in the online case, W is provided
a transcript of the interaction with C.) Following the definition of cryptographic game, we use
bC = (A(1λ) ! CF1

impl
,...,Fk

impl(1λ)) to denote the interaction between A and C; bC denotes the bit
returned by the challenger C. (Note that the challenger must use the implementation of Π provided
by the adversary.)
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As for the watchdogW , the adversary providesW his potentially subverted implementations
of the primitive (as oracles);W may then interrogate them in an attempt to detect divergence from
the specification, which he possesses. On the basis of these tests, the watchdog produces a bit

bW =WF1
impl

,...,Fk
impl(1λ) .

(Intuitively, the bit bW indicates whether the implementations passed whatever tests the watchdog
carried out to detect inconsistencies with the specification.)

Definition 2.3 (Cliptographic Game) A cliptographic game Ĝ = (C,Π
spec

,δ) is defined by a chal-
lenger C, a primitive Π

spec
, and a constant δ ∈ [0,1). Given an adversary A, a watchdog W , and a

security parameter λ, we define the detection probability of the watchdogW with respect to A to be

DetW ,A(1λ) =
∣∣∣∣Pr[WF1

impl
,...,Fk

impl(1λ) = 1]−Pr[WF1
spec

,...,Fk
spec(1λ) = 1]

∣∣∣∣ ,
where Π

impl
= (F1

impl
, . . . ,Fk

impl
) denotes the implementation produced by A . The advantage of the

adversary is defined to be

AdvA(1λ) =
∣∣∣∣Pr

[
(A(1λ) ! CF

1
impl

,...,Fk
impl(1λ)) = 1

]
− δ

∣∣∣∣ .
We say that a game is subversion-resistant if for all ppt adversaries A, either there exists a watchdog
W so that DetW ,A is non-negligible or AdvA is negligible.

Remark: the quantifier of the watchdog. There are two points we would like to stress.
(i) The existing watchdog model is already no weaker than most of the models in the literature, it

captures the feature that A prefers the subversion is not detectable by any watchdog. Furthermore,
such model is still highly non-trivial in that the adversary is likely to be randomized, i.e., selecting
a random backdoor. Knowing the code only does not really help the watchdog to learn any
information from oracle access to the implementation which contains a random backdoor. See the
simple attack we show in lemma 3.2, the proof is presented in appendix C.

(ii) All our results actually work in a stronger universal watchdog model, where the order of
quantifiers is ∃W ,∀A,∃N , andW does not need to depend on A. Instead, only his running time
and number of samples are proportional to the parameter N . This type of universal watchdog
has been considered in literature [DFP15]; however, their watchdog has to take the transcript
between C,A as inputs which implicitly implies the dependence of the running time on A. Here,
our watchdog could be offline.

For the ease of presentation, we will choose the current watchdog model, we can see all results
hold straightforwardly in the universal watchdog model as well, since the watchdogs we use in the
security analysis are simply drawing samples to see collision, or drawing samples to compare with
the specification.

Remarks: random oracles. We remark that the definition of a cliptographic game requires setting
down both the challenger and the specification of the primitive Π, as this latter data determines the
notion of “detection probability.” In many settings, we establish results in the conventional random
oracle model which requires some special treatment in the model above. In general, we consider a
random oracle to be an (extremely powerful) heuristic substitute for a deterministic function with
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strong cryptographic properties. In a kleptographic setting with complete subversion, we must
explicitly permit the adversary to tamper with the “implementation” of the random oracle supplied
to the challenger. In such settings, then, we provide the watchdog—as usual—oracle access to
both the “specification” of the random oracle (simply a random function) and the adversary’s
“implementation” of the random oracle, which may arbitrarily deviate from the random oracle
itself. Likewise, during the security game, the challenger is provided oracle access only to the
potentially subverted implementation of the random oracle. As usual, the probabilities defining
the security (and detection) games are taken over the choice of the random oracle.

Discussion: the guarantees provided by an offline watchdog. We make some general observations
about the guarantees that an offline watchdog can provide for deterministic algorithms.

First, consider a deterministic algorithm implemented by the adversary; an offline adversary
cannot ensure that such an algorithm is perfectly implemented, but it can ensure that the im-
plementation agrees with the specification with overwhelming probability with respect to any
particular distributions of the watchdog’s choice. In particular, in our security analysis we are
free to assume that such testing has been carried out for any fixed family of distributions (perhaps
involving sampling from other parts of the implementation).

Lemma 2.4 Consider an adversarial implementation Π
impl

:= (F1
impl

, . . . ,Fk
impl

) of a specification Π
spec

=
(F1

spec
, . . . ,Fk

spec
), where F1, . . . ,Fk are deterministic algorithms. Additionally, for each λ define public

input distributions X1
λ, . . . ,X

k
λ respectively. If for some j ∈ [k], Pr[Fjimpl(x) , Fjspec(x) : x ← X

j
λ] is

non-negligible, there is an offline watchdog with detection probability 1− o(1).

Proof 1 Suppose there exists an implementation Fs
impl

and a public input distribution Xsλ so that
Pr[Fs

impl
(x) , Fs

spec
(x) : x← Xsλ] ≥ δ. Then a watchdog that simply checks equality on dδ−1e samples

will discover an inconsistency with constant probability. This can be amplified by repetition to achieve
detection probability 1−negl(λ). We remark that the lemma does not require the implemented algorithms
to be deterministic.

In our analysis, we will use this simple observation extensively. In particular, when a hash
specification is modeled as a random oracle, on most of the input points, the implementation has
to be consistent with it, and thus the corresponding random oracle queries have to be asked.

2.2.1 The online watchdog; the omniscient watchdog

We develop one-way permutations and pseudorandom generators in the offline model. However, it
appears that richer primitives may require qualitatively stronger watchdogs. Considering that an
offline watchdog cannot ensure exact equality for deterministic algorithms, we remark that a clever
adversary may be able to launch attacks by altering such deterministic functions at only a few
locations. Imagine a security game where the adversary supplies a string m to which the challenger
is expected to apply one of the subverted algorithms; this takes place, e.g., in the typical signature
security game. The adversary may now select a random string w and implement the deterministic
algorithm in such a way that it diverges from the specification at (only) this preselected point.
Observe that such inconsistencies are (essentially) undetectable to the watchdog; however, the
adversary can ensure that the subverted algorithm is indeed queried at w during the security
game. We remark that the above attack was noticed in various settings, e.g., input-triggering
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attack in [BPR14, DFP15, AMV15] that motivate them to consider the decryptability condition and
verifiability condition.

An online watchdogWonline can guard against this possibility; an online watchdog is permitted
to monitor the public interactions between users. More precisely, the online watchdog is permitted
to certify both the implementations themselves and the transcript between the challenger and
adversary. The security game is then altered by consideringWΠ

impl(1λ, τ), identical to the offline
case except for the fact that the watchdog is provided the transcript τ 2 of the security game
(C ! A). (We use the shorthand notation Π

impl
here to denote the full collection of oracles

F1
impl

, . . . ,Fk
impl

.) The detection game must then be adjusted, guaranteeing except negligible error,
the transcripts that produced when the challenger uses Π

impl
are indistinguishable from that when

the challenger uses Π
spec

. Our results on digital signature schemes will require suchWonline.
An omniscient watchdog Womni is even stronger. In addition to access to the transcript, the

omniscient watchdog is aware of the entire internal state of the challenger (and can monitor the
interactions between users and the subverted implementations). Similarly, by replacing W in
Definition 2.3 above withWomni, we obtain cliptographic games with omniscient watchdog. As
mentioned, omniscient watchdog has been considered in literature [BPR14, DFP15]. While we
do not require omniscient watchdog in our constructions in this paper, we discuss omniscient
watchdog here as part of definitional framework.

2.2.2 Schemes with augmented system parameter

Often, deployment of a cryptographic scheme may involve a system parameter generation algorithm
pp← Gen(1λ). When we consider such an augmented scheme Π = (Gen,F1,F2,F3) in our setting,
we can treat the system parameter pp in two natural ways: (1.) as in Definition 2.3, the adversary
simply provides the implementation Gen

impl
toW (and C) as usual and the challenger computes pp

by running Gen
impl

during the security game; (2) the adversary provides pp directly to the watchdog
W (and C); we writeWΠ

impl(1λ,pp) to reflect this. By replacingWΠ
impl(1λ) in Definition 2.3 with

WΠ
impl(1λ,pp), and suitably changing the security game so that the challenger does not generate

pp, we can obtain the adversarially chosen parameter model.
It is clear that if a primitive is secure in the adversarially chosen parameter model, then it is

secure according to Definition 2.3 (even the implementation Gen is stateful). (Observe that the
adversary is always free to generate pp according to the algorithm provided to the challenger.) We
record this below.

Lemma 2.5 If Π is secure in cliptographic definition in the adversarially chosen parameter model, then
Π is secure according to Definition 2.3.

2.2.3 The split-program model

Randomized algorithms play a distinguished role in our kleptographic setting. One technique we
propose for immunization will rely on the decomposition of a randomized generation algorithm
y← Gen(1λ) into two algorithms: a random string generation algorithm
RG responsible for producing a uniform poly(λ)-bit random string r, and a deterministic output
generation algorithm dKG that transforms the randomness r into an output y. Note that dKG is
deterministic and is always applied to a public input distribution. In light of Lemma 2.4, we may

2We remark that the transcript τ includes the final output bit of the challenger in the security game.
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assume that the maliciously implemented dKG
impl

is consistent with the honest implementation
dKG

spec
with overwhelming probability. See results in this model in appendix D.

We remark that this perspective only requires a change in the specification of Π. When we apply
Definition 2.3 with a specification that has been altered to reflect this split-program convention, we
say that a primitive is proven secure in the split-program model.

Discussions. Intuitively, exposing the random coins offers the watchdog more flexibility. It seems a
solution to the original scheme Π will immediately give us a solution to the modified scheme ΠSP.
However, this is not necessary to be true. The adversary may also take advantage of the “exposed
internal state” to break the scheme. See Section 3.3 for a concrete example.

The split-program model is quite general and can be applied to most practical algorithms. To
see this, the user gets the source code of the implementation, which makes calls to some API for
generating randomness (e.g., rand()) whenever necessary. The user can hook up the interface with
the calls to the API with the separate program RG provided by the big brother. In principle, one
can always augment a randomized KG to output the function index i together with the coin r in
this way.

3 Subversion-Resistant One-Way Permutations

In this section, we study one-way permutations (OWP) in our cliptographic framework. In particu-
lar, we propose general constructions for subversion-resistant OWPs that require only the weakest
(offline) watchdog. Our “immunizing strategy” consists of coupling the function generation algo-
rithm with a cryptographic hash function that is applied to the function index—intuitively, this
makes it challenging for an adversary to meaningfully embed a backdoor in the permutation or its
index. 3 We prove that if the specification of the hash function is modeled as a random oracle, then
randomizing the permutation index using the (adversarially implemented) hash function destroys
any potential backdoor structure. We emphasize that the permutation evaluation algorithm, the
name generation algorithm, and the hash function may all be subverted by the adversary. 4

In many cases of practical interest, however, the permutation index may have special algebraic
structure, e.g., RSA or DLP. In such cases, it would appear that the public hash function would
require some further “structure preserving” property (so that it carries the space of indices to the
space of indices). Alternatively, one can assume that the space of indices can be “uniformized,” that
is, placed in one-to-one correspondence with strings of a particular length. In order to apply our
approach to broader practical settings, we propose a natural “split-program” model that provides
such uniformization by insisting that the function generation algorithm is necessarily composed of
two parts: a random string generation algorithm RG that outputs random bits r, and a deterministic
function index generation algorithm dKG which uses r to generate the index.

Finally, the complete subversion model introduces a number of new perspectives on the (basic)
notion of security for one-way permutations. We actually consider three different notions below,
each of which correspond to distinct practical settings: the first corresponds to the classical notion,
where the challenger chooses the index of the function (using subverted code provided by the
adversary)—we call this OWPC; the second corresponds to a setting where the adversary may

3In concrete constructions, the hash function becomes a component of e.g., the evaluation function, so that the syntax
of the primitive is still the same.

4While for TDOWP, to maintain correctness, the hash is applied to the trapdoor, assuming there is a public determin-
istic procedure that generates the function index from a trapdoor.
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choose the index—we call this OWPA; the last corresponds to our “split program model,” discussed
above–we call this OWPSP.

3.1 Defining subversion-resistant OWP/TDOWP

In this subsection, following our general definitional framework, we define the security of one-way
permutations and trapdoor one-way permutations. We first recall the conventional definitions.

One-way permutation (OWP). A family of permutations F = {fi : Xi → Xi}i∈I is one-way if there are
ppt algorithms (KG,Eval) so that (i) KG, given a security parameter λ, outputs a function index i
from Iλ = I ∩ {0,1}λ; (ii) for x ∈ Xi , Eval(i,x) = fi(x); (iii) F is one-way; that is, for any ppt algorithm
A, it holds that Pr[A(i,y) ∈ f −1

i (y) | i← KG(λ);x← Xi ;y := fi(x)] ≤ negl(λ).

Trapdoor one-way permutation (TDOWP). A family of permutations F = {fi : Xi → Xi}i∈I is trapdoor
one-way if there are ppt algorithms (KG,Eval, Inv) such that (i) KG, given a security parameter λ,
outputs a function index and the corresponding trapdoor pair (i, ti) from Iλ×T , where Iλ = I∩{0,1}λ,
and T is the space of trapdoors; (ii) Eval(i,x) = fi(x) for x ∈ Xi ; (iii) F is one-way; and (iv) it holds
that Pr[Inv(ti , i,y) = x | i← KG(λ);x← Xi ;y := fi(x)] ≥ 1−negl(λ).

Sometimes, we simply write fi(x) rather than Eval(i,x).

Subversion-resistant one-way permutations: OWPC. As described in Section 2, we assume a
“laboratory specification” of the OWP, (KG

spec
,Eval

spec
), which has been rigorously analyzed and

certified (e.g., by the experts in the cryptography community). The adversary provides an alternate
(perhaps subverted) implementation (KG

impl
,Eval

impl
). We study OWP/TDOWP in the offline

watchdog model; while the implementations may contain arbitrary backdoors or other malicious
features, they can not maintain any state.

Intuitively, the goal of the adversary is to privately maintain some “backdoor information” z
so that the subverted implementation KG

impl
will output functions that can be inverted using z.

In addition, to avoid detection by the watchdog, the adversary must ensure that implementations
(KG

impl
(z),Eval

impl
(z)) are computationally indistinguishable from the specification (KG

spec
,Eval

spec
)

given only oracle access. Formally,

Definition 3.1 A one-way permutation family F = {fi : Xi → Xi}i∈I with the specification F
spec

=
(KG

spec
,Eval

spec
), is subversion-resistantC in the offline watchdog model if, for any ppt adversary A

playing with the challenger C in the following game, (Fig. 1), there exists a watchdog W , such that:
either the detection probability DetW ,A is non-negligible, or the advantage AdvA is negligible. Here the
detection probability of the watchdogW with respect to A is defined as

DetW ,A(1λ) =
∣∣∣Pr[WKG

impl
,Eval

impl(1λ) = 1]−Pr[WKG
spec

,Eval
spec(1λ) = 1]

∣∣∣ ,
and the advantage of the adversary A is defined as

AdvA(1λ) = Pr
[
(A(1λ) ! CKGimpl

,Eval
impl(1λ)) = 1

]
.

For convenience, we also say that such F
spec

is a OWPC in the offline watchdog model.
In addition, when this definition fails for a OWP, we say that it is subvertible.5
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test phase

W A
�
KG

impl
,Eval

impl prepare KG
impl

,Eval
impl

bW ←WKG
impl

,Eval
impl(1λ)

execute phase

C A
run i← KG

impl
(1λ)

sample x

run y := Eval
impl

(i,x) i,y
-

� x′

bC := 1 if x = x′

bC := 0 otherwise

Figure 1: Subversion-resistantC security game: OWPC.

Subversion-resistant trapdoor OWPs. We define the notion of subversion-resistantC TDOWP
analogously. (Note that a subvertible TDOWP means that the adversary can invert the TDOWP
using a private backdoor which may have no relation to the regular trapdoor created by the
challenger.) We defer the formal definition to Appendix A.

Next we observe that it is easy for an adversary to break the security of a conventional OWP
in the kleptographic setting. In particular, the following lemma shows that one can construct
a subvertible OWP (so the subverted implementation can evade detection by the watchdog and
the adversary can invert) using a conventional trapdoor OWP. In particular, if we wish to use
public-key cryptography in a kleptographic setting, nontrivial effort is required to maintain the
security of even the most fundamental cryptographic primitives.

Our construction of a subvertible OWP substantiates the folklore knowledge that sufficient
random padding can render cryptosystems vulnerable to backdoor attacks, e.g., [YY96, YY97].
Specifically, the random padding in the malicious implementation can be generated so that it
simply encrypts the corresponding trapdoor using the backdoor as a key. For detailed proofs, we
defer to Appendix C.

Lemma 3.2 One can construct a subvertible OWP from any TDOWP. In particular, given a TDOWP,
we can construct a OWP that is not a OWPC.

We defer the question of the existence of a OWPC to the next section, where we will construct
permutations that satisfy a stronger property.

Subversion-resistant OWPs with adversarially chosen indices: OWPA. The notion of OWPC

formulated above defends against kleptographic attacks when the adversary provides a subverted
implementation of the defining algorithms. In many cases, however, it is interesting to consider
a more challenging setting where the adversary may directly provide the public parameters,
including the function index. Indeed, this is the case in many real-world deployment settings,

5To be notationally consistent, this could be called subvertibleC; however, the only example of a subvertible function
we construct will be in this C model and, moreover, subvertibilty in this model will imply subvertibility in the other
models.
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where a “trusted” agency sets up (or recommends) the public parameters. One notorious example
in a different setting is the Dual EC PRG [CNE+14]. Note that this notion is not very suitable for
asymmetric key primitives, e.g. TDOWP, since allowing the adversary to set up the public key
gives him the chance to generate the trapdoor. We will focus on OWPA.

Definition 3.3 A one-way permutation family F = {fi : Xi → Xi}i∈I with the specification F
spec

=
(KG

spec
,Eval

spec
), is subversion-resistantA in the offline watchdog model, if for any ppt adversary A

playing the following game (Fig. 2) with the challenger C, there exists a watchdogW , such that: either the
detection probability DetW ,A is non-negligible, or the advantage AdvA is negligible. Here the detection
probability of the watchdogW with respect to A is defined as

DetW ,A(1λ) =
∣∣∣Pr[WEval

impl(1λ, i•) = 1]−Pr[WEval
spec(1λ, i) = 1]

∣∣∣ ,
and the advantage of the adversary A is defined as

AdvA(1λ) = Pr
[
(A(1λ) ! CEvalimpl(1λ, i•)) = 1

]
.

where i← KG
spec

(1λ), and i• is chosen by the adversary.
For convenience, we also say that such F

spec
is a OWPA in the offline watchdog model.

test phase

W A
�

i•,Evalimpl prepare i•,Evalimpl
bW ←WEval

impl(1λ, i•)

execute phase

C A
sample x
run y := Eval

impl
(i•,x) y

-

� x′

bC := 1 if x = x′

bC := 0 otherwise

Figure 2: Subversion-resistantA security game: OWPA.

Note that security games like this do not make much sense in the classical cryptographic setting;
without the watchdog, the adversary can implement arbitrary functionalities so that the security
can be trivially broken. As mentioned above, such security notions for OWP (or related symmetric
key cryptographic primitives, like PRG [DGG+15]) are meaningful in the cliptographic setting and
model relevant practical settings.

Relating OWPC and OWPA. Following Lemma 2.5, an adversary that successfully breaks the
OWPC game can be easily transformed into an adversary that breaks the OWPA game; We can
claim that any OWPA is also a OWPC. As far as existence is concerned, then, it suffices to construct
a OWPA (which satisfies the stronger subversion-resistantA condition).
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3.2 Constructing subversion-resistantA OWP

In this section, we discuss methods for safeguarding OWP against kleptographic attacks. We first
present a general approach that transforms any OWP to a OWPA under the assumption that a
suitable hash function can be defined on the index space. Specifically, we prove that randomizing
the function index (via hashing, say) is sufficient to eliminate potential backdoor information.
These results assume only the weakest (offline) watchdog. Furthermore, we permit the hash
function —like the other relevant cryptographic elements—to be implemented and potentially
subverted by the adversary.

Note that we treat only the specification of the hash function in the random oracle model,
assuming that the adversary may arbitrary subvert the (randomly specified) hash function; thus
the watchdog is provided both the adversary’s arbitrarily subverted “implementation” and the
correct (random) hash function “specification.”6 Despite the adversary’s control over the OWP and
the hash function (which is partially constrained by the watchdog), it is difficult for the adversary
to arrange a backdoor that works for a large enough target subset of function indices that these can
be reliably “hit” by the hash function.

One more difficulty left is that, since we are constructing OWPA, to keep the syntax intact,
we propose to treat the hash function only as a component of (jumping ahead) the evaluation
algorithm (see Fig. 3). The big brother only implements the evaluation algorithm as a whole with
(or without) the hash function built in. In this case, the hash implementation (and specification)
are not explicitly given to the watchdog anymore. However, we still manage to show the security by
exploring the fact that both hash and the evaluation algorithm are deterministic algorithms with
public input distribution, so that the offline watchdog can force the implementation of Eval

impl

to agree with the specification Eval
spec

with overwhelming probability when inputs are sampled
according to the input generation distribution.

EvalF
spec

y
h
spec

i

x

i′

EvalGspec

Figure 3: New specification EvalGspec.

General feasibility results for OWPA. Let F
be any OWP family with specification F

spec
:=

(KGF
spec

,EvalF
spec

); while we assume, of course,
that it is one-way secure (in the classical sense),
it may be subvertible. We assume that KGF

spec
(λ)

outputs uniform i from the index set Iλ and
that we have a public hash function with spec-
ification h

spec
: Iλ → Iλ, acts on this set. Then

we construct a subversion-resistantA OWP fam-
ily G with specification G

spec
:= (KGGspec,Eval

G
spec)

defined as follows:

• Function index generation i← KGGspec, where KGGspec is given by:

Sample i← KGF
spec

(λ); output i.

• Function evaluation y← EvalGspec(i,x), where EvalGspec is given by:

Upon receiving inputs (i,x), compute i′ = h
spec

(i) and compute y = EvalF
spec

(i′ ,x), output y.

6Note that we place no a priori constraints on the subverted hash function provided by the adversary. The watchdog,
of course, can ensure that the subverted function and the specification (which is just a random function, in this case)
agree with high probability on slices of the space, or possess other common statistical properties.
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See also the pictorial illustration for EvalGspec in Fig. 3.

Remark 3.4 Note that the specification of the hash function is “part of” of the specification of the
evaluation function. In fact, an interesting property of the construction above is that it is secure even if
the (subverted) hash function is not separately provided to watchdog.7

Security analysis. Roughly, the proof relies on the following two arguments: (1.) any particular ad-
versary can only invert a sparse subset of the one-way permutations; otherwise, such an adversary
could successfully attack the (classical) security of the specification OWP. Thus, randomizing the
function index will map the function index to a “safe” index, and destroy the possible correlation
with any particular backdoor. (2.) The hash function and Eval are both deterministic functions that
are only called on fixed public input distributions (known to the watchdog). Following Lemma 2.4
of Section 2, the watchdog can ensure that EvalGimpl is consistent with its specification an over-
whelming fraction of the inputs. We remark that on all inputs for which the hash implementation
(running inside EvalGimpl) is consistent with h

spec
, random oracle queries have to be made.

Theorem 3.5 Assume h
spec

is random oracle, and F with specification F
spec

is a OWP. Then G with
specification G

spec
defined above is a OWPA in the offline watchdog model.

Proof 2 Suppose that G is not subversion-resistantA. Then there is a ppt adversary AG so that the
detection probability Det is negligible and the advantage Adv is non-negligible, say δ. We will construct
an adversary AF which will break the one-way security of F

spec
:= (KGF

spec
,EvalF

spec
) with non-negligible

probability.

Construction of AF . Suppose (i∗, y∗) are the challenges that AF receives from the challenger CF (the
challenger for one way security of F

spec
), where y∗ = EvalF

spec
(i∗,x∗) for a randomly selected x∗. AF

simulates a copy of AG. In addition AF simulates the subversion-resistantA OWP game with AG.
Before receiving the function index i• and the implementation EvalGimpl from AG, the adversary AF

operates as follows: First, note that h
spec

is random oracle; whenever AG wants to evaluate h
spec

on some
points (or implementing the component for EvalGimpl that is consistent with h

spec
for those points), AG has

to make random oracle queries. Without loss of generality, assume AG asks q number of random oracle
queries on i1, . . . , iq where q = poly(λ). Here AF randomly chooses a bit b to decide whether to embed i∗

to the answers of random oracle queries. If b = 0, AF randomly selects an index t ∈ {1, . . . , q}, and sets i∗

as the answer for h
spec

(it); for all others j ∈ {1, . . . , q} \ {t}, AF uniformly samples i′j from the index set I
and sets h

spec
(ij ) = i′j . If b = 1, for all j ∈ {1, . . . , q}, the adversary AF uniformly samples i′j from the index

set I and sets h
spec

(ij ) = i′j .

After receiving i•,Eval
G
impl from AG, if b = 1 the adversary AF sets i∗ as h

spec
(i•). Next, AF gives y∗

to AG as the challenge and receives an answer x′ from AG. Note that in this phase, whenever AG makes
random oracle queries on i, if i ∈ {i1 . . . , iq} ∪ {i•}, then returns the previous response as answer; otherwise,
randomly choose i′ in the index set I , and return i′ as the answer.

Last, AF checks whether b = 0∧ i• , it, or b = 1∧ i• ∈ {i1, . . . , iq}; if yes, AF aborts; otherwise, AF
submits x′ to challenger CF as his answer.

7In general, development of secure primitives in the complete subversion model would presumably be easier if the
watchdog can separately “check” the implementation of h even though we do not need this for the above construction.
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Probabilistic analysis. Now we bound the success probability of AF . Suppose x∗ is the random input
chosen by CF ; Let W denote the event that AF aborts, W1 the event that b = 0∧ i , it, and W2 the event
that b = 1∧ i ∈ {i1, . . . , iq}. Recall that Pr[x′ = x∗] = Pr[x′ = x∗|W ]Pr[W ]. Let Q = {i1 . . . , iq}.

We first bound Pr[W ]. Note that Pr[W ] = 1−Pr[W ], and Pr[W ] = Pr[W1∨W2] ≤ Pr[W1] + Pr[W2] .
Assuming Pr[i ∈Q] = η, it follows that:

Pr[W1] = Pr[b = 0∧ i , it] = Pr[b = 0]Pr[i , it]

=
1
2

(Pr[i , it |i ∈Q]Pr[i ∈Q] + Pr[i , it |i <Q]Pr[i <Q])

=
1
2

[(1− (1/q))η + (1− η)]

=
1
2

(1− η/q)

While Pr[W2] = Pr[b = 1]Pr[i ∈Q] = η/2, we have:

Pr[W ] ≤ (1/2)(1− η/q+ η) ≤ (1/2)(1− 1/q+ 1) = 1− 1/(2q)

Thus we can derive that Pr[W ] ≥ 1/(2q).

Next, we bound Pr[x′ = x∗|W ]. From the assumption that AG breaks the security of G, we have
the following two conditions: (1) the detection probability Det is negligible; (2) the advantage Adv is
non-negligible δ. From condition (1), we claim:

Pr[EvalG
impl

(i•,x) = EvalG
spec

(i•,x)] ≥ 1−negl(λ).

The probability is over the choices of x. If not, the portion of inputs that EvalGimpl deviates from its
specification is non-negligible (say, δ1) in the whole domain. Then there always exists a watchdogW
(that simply samples an x and tests if the values EvalGimpl(i•,x) and EvalGspec(i•,x) are equal) so that
Pr[WEval

impl(1λ, i•) = 1] = 1− δ1. On the other hand, Pr[WEval
spec(1λ, i) = 1] = 1. This implies that Det

is δ1, which contradicts to condition (1).
Conditioned on W , the equalities y∗ = EvalF

spec
(i∗,x∗) = EvalF

spec
(h

spec
(i•),x∗) = EvalGspec(i•,x∗) =

EvalGimpl(i•,x∗), hold with overwhelming probability. That said, conditioned on W , from AG’s view, the
distribution of y∗ is identical to what she expects as a challenge in the subversion-resistantA game, even if
AG never queried random oracle on i•. Recall now from condition (2) the advantage Adv is non-negligible
δ; this means AG inverts challenge y∗ = EvalGimpl(i•,x∗) and returns a correct x′ = x∗ with probability δ.

Combining the above, we can conclude that:

Pr[x′ = x∗] ≥ δ(1−negl(λ))
1

2q
=
δ

2q
−negl(λ)

which is non-negligible; note that q = poly(λ). Thus AF breaks the security of F
spec

, which leads to a
contradiction.

One way functions and stateful implementations. To define a subversion-resistantA one way
function, we can easily adjust definition 3.3 that the output bit of the challenger is decided by
checking whether Eval

impl
(i,x′) = y. Our construction above already works for immunizing one

way function, if we are working in the online watchdog model. Observe that the current proof
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can be (almost) directly carried over, if the output bit is determined by the specification. Since
evaluation is deterministic, an online watchdog can guarantee that x′ is indeed a valid inversion.

Also, it is not hard to see that the above construction works even if the subverted implementa-
tions are stateful.

4 Subversion-Resistant Signatures

In this section, we consider how to design digital signatures against the kleptographic attacks.
Previously results [AMV15, BPR14] suggest that a unique signature scheme [GO93, Lys02] is
secure against subversion on the signing algorithm assuming it satisfies the verifiability condition
that every message signed by the sabotaged Sign

impl
should be verified via Verify

spec
. The main

question left is that in those constructions the key generation and verification algorithms have to
be faithfully implemented, while in practice, all implementations normally come together. Note
that all our results obtained in previous sections are actually in the complete subversion model.
Here we will apply our subversion-resistant TDOWPs to bridge this gap, and construct the first
subversion-resistant signature schemes in the more realistic complete subversion model.

We stress that whether a reduction between two primitives in the classical crypto world can
be bring to clipto world turns out to be highly non-trivial. We will see that the well-known
reduction for full domain hash can not go through in clipto setting when we try to build a
subversion-resistantC signature from a TDOWPC. (see remark 4.2 and the proof for Thm. 4.3 for
more details).

Following our general framework, it is easy to derive a definition for subversion-resistant
signature scheme. As pointed out in [AMV15], it is impossible to achieve unforgeability without the
verifiability condition. Using our terminology, it is impossible to construct a subversion-resistant
signature scheme with just an offline watchdog, even if only the Sign algorithm is subverted. So we
will work in the online watchdog model where the watchdog can obtain and check the transcripts
generated during the game between C and A.8 Next we define the security for digital signature
scheme in the complete subversion model where all algorithms are implemented by the adversary,
including the key generation algorithm.

Definition 4.1 Given a signature scheme Π, a specification defined as Π
spec

= (KG
spec

,Sign
spec

,Verify
spec

),
is subversion-resistantC in the online watchdog model, if for any ppt adversaryA playing the following
game (Fig 4) with the challenger C, there exists a watchdogW , such that: either the detection probability
DetW ,A is non-negligible, or the advantage AdvA is negligible. Here the detection probability of the
watchdogW with respect to A is defined as

DetW ,A(1λ) =
∣∣∣Pr[WKG

impl
,Sign

impl
,Verify

impl(1λ, τ) = 1]−Pr[WKG
spec

,Sign
spec

,Verify
spec(1λ, τ̂) = 1]

∣∣∣ ,
and the advantage of the adversary A is defined as

AdvA(1λ) = Pr
[
(A(1λ) ! CKGimpl

,Sign
impl

,Verify
impl(1λ)) = 1

]
.

where τ is the transcript that generated when the challenger uses Π
impl

and τ̂ is the transcript generated
when the challenger uses Π

spec
.

8 Note that for digital signature schemes in practice, it is much more reasonable to assume an online watchdog than
an omniscient watchdog as in [BPR14, DFP15]. Indeed, due to the nature of signature schemes, the transcripts consist of
message-signature pairs, can be publicly verified, and an online watchdog is sufficient.
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C/W A
prepare KG

impl
,Sign

impl
,

�
KG

impl
,Sign

impl
,Verify

impl and Verify
impl

run (pk,sk)← KG
impl

(1λ) pk
-

�
mi query for q times

run σi ← Sign
impl

(sk,mi)
σi -

� m∗,σ ∗

bC := 1 if Verify(vk,m∗,σ ∗) = 1∧m∗ < {m1, . . . ,mq}
bC := 0 otherwise
bW ←WKG

impl
,Sign

impl
,Verify

impl(τ)

Figure 4: Subversion-resistantC Signature Game, where τ := (pk, {mi ,σi}i∈[q],m
∗,σ ∗)

To upgrade the previous results to the complete subversion model, the main challenging part
is to protect the randomized key generation algorithm against subversion attacks. While the
attacks shown by Bellare et al [BPR14] are so devastating that the adversary can use a sabotaged
randomized implementation to leak any secret bit by bit, we observe that the key generation
algorithm will be run only once (as in the security definition). It leaves us the opportunity that
if we suggest a better designed specification, the leaked information via the implementations
is very limited, so that unforgeability of the signature scheme might still be preserved. Next,
we will prove that a variant of the widely deployed full domain hash scheme [Cor00, BR96]
can achieve the security in the complete subversion model. More concretely, in this variant, the
signing algorithm needs to hash m together with pk; we remark that this modification is critical
for the security reduction. We further remark that when instantiating its key generation with our
subversion-resistant TDOWP, this variant gives a subversion-resistant signature scheme.

Constructing signature schemes with an online watchdog. Given a subversion-resistantC

TDOWP, with specification F
spec

:= (KGF
spec

,EvalF
spec

, InvF
spec

), and a public hash function with specifi-
cation h

spec
: PK×M→M, where PK is the public key space,M is the message space, we construct

a subversion-resistantC signature scheme SS with specification SS
spec

:= (KGSS
spec

,SignSS
spec

,VerifySS
spec

)
as follows:

• Key generation (pk,sk)← KGSS
spec

(λ), where KGSS
spec

is given by:

Compute (i, ti)← KGF
spec

(λ), and set pk := i and sk := ti ;

• Signature generation σ ← SignSS
spec

(pk,sk,m), where SignSS
spec

is given by:

Upon receiving message m, compute m̃ = h
spec

(pk,m), and σ = InvF
spec

(pk,sk, m̃), where pk =
i,sk = ti .

• Verification algorithm b← VerifySS
spec

(pk,m,σ ), where VerifySS
spec

is given by:

Upon receiving message-signature pair (m,σ ), if EvalSS
spec

(pk,σ ) = h
spec

(pk,m) then set b := 1,
otherwise set b := 0; here pk = i.
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Remark 4.2 We emphasize that using the full domain hash directly without inputting pk into the hash,
it is possible that the random oracle query for m∗ is asked before the implementations are prepared, in this
case, the simulator has not received y∗ yet, thus has no way to embed y∗ into the target.

Theorem 4.3 Assume h
spec

is random oracle, and F with specification F
spec

is a TDOWPC in the
offline watchdog model. Then the signature scheme SS with specification SS

spec
constructed above is

subversion-resistantC in the online watchdog model.

Proof 3 Assume that SS is subvertible by a ppt adversary ASS , we have the following: (1) the detection
probability Det is negligible; (2) the advantage Adv is non-negligible δ. This means the implementations
provided by ASS will be accepted by all online watchdog who will see the transcripts generated in the
game; in addition ASS outputs a valid new forgery with non-negligible probability, say δ. We will next
construct an adversary AF that can break the security of F

spec
.

Construction of AF . AF simulates a copy of ASS . In addition AF simulates the subversion-resistantC

security game in the online watchdog model with ASS .
Suppose m1,1, . . . ,mq1,1 are the random oracle queries that ASS makes before outputting the imple-

mentations, AF answers all those using uniform strings.
Upon receiving the implementations of (KGSS

impl
,SignSS

impl
,VerifySS

impl
) from ASS , AF prepares faithful

implementations of EvalF
spec

, InvF
spec

and sends them together with KGSS
impl

to the F
spec

watchdogWF . It is
easy to see thatWF will not complain since all ppt offline watchdogs accept KGSS

impl
(without even need

the transcripts).
Upon receiving i∗, y∗ from the F

spec
challenger CF , AF directly forwards i∗ as the public key to ASS .

Note that i∗ comes exactly from KGF
impl

= KGSS
impl

.
Now if ASS makes another set of random oracle queries for (pk,m1,2), . . . , (pk,mq2,2), AF chooses

a random index t ∈ [q2] and answers y∗ as h
spec

(pk,mt,2), and randomly chooses {σj}j,t and returns
{EvalF

spec
(pk,σj)}j,t as answers for all other queries {(pk,mj,2)}j,t. AF keeps a list for the values of all

those queries. (We remark that without loss of generality here we assume all the prefixes are pk.)
If ASS then makes signing queries on m1,3, . . . ,mq3,3, AF can simply find the corresponding {σi,3}

from the list and return them as the signatures. If ASS outputs a forgery m∗,σ ∗ and mt,2 = m∗, AF
returns σ ∗ to CF as the pre-image for y∗.

Probabilistic analysis. Now we bound the success probability of AF . Let δ′ = Pr[σ ∗ = x∗], where x∗ is the
input chosen by CF . It is easy to see that δ′ ≥ Pr[σ ∗ = x∗|mt,2 =m∗]Pr[mt,2 =m∗].

Following condition (1), there exists a watchdog that checks (m∗,σ ∗) using VerifySS
spec

. We can claim
that ASS made a random oracle query for pk||m∗; if not, the probability that EvalF

spec
(pk,σ ∗) hits a

completely random value is negligible.
With the above claim, (pk,m∗) will appear in the adversaries’ random oracle queries. Observe that pk

is output by KGSS
impl

, and we can see that with overwhelming probability, pk||m∗ will appear in the random
oracle queries after pk is provided. It follows that: Pr[mt,2 =m∗] ≥ 1

q2
(1−negl(λ)).

Conditioned on mt,2 = m∗, from ASS ’s view, in the subversion-resistantC game, she is supposed to
receive σ1, . . . ,σq that are output by SignSS

impl
on inputting the corresponding sk and messages. With the

offline watchdog, and the property of the full domain hash, that those signatures will pass VerifySS
spec

,
i.e., EvalF

spec
(σi) = h

spec
(mi). This implies that the distribution of σi is the same from that comes

from SignSS
spec

by calling InvF
spec

(h
spec

(mi)), which is identically distributed as how AF simulates the
answers for the signing queries.Now together with condition (2), ASS will output a valid forgery w.r.t
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VerifySS
impl

. With the offline watchdog, VerifySS
impl

(m∗,σ ∗) = VerifySS
spec

, i.e., EvalF
spec

(σ ∗) = h
spec

(m∗) = y,
thus Pr[σ ∗ = x∗|m∗ =mt,2] ≥ δ(1−negl(λ)).

Combing all above, we see that δ′ ≥ δ/q2 which is non-negligible. We can see that AF breaks the
security of F

spec
. This means our assumption is wrong, which completes the proof.

Remark about the general feasibility of TDOWPC. Our construction is based on TDOWPC. We
have already constructed a concrete scheme for subversion-resistant TDOWP in the split program
model. This construction is applicable to broader practical settings and it may be used to instantiate
our signature construction in the split program model. An alternative approach to constructing
TDOWPC is to follow the construction idea for OWPC. (Note that the OWPA construction in the
previous section directly give us a OWPC construction.) We remark that the function name of
TDOWP consists of a index-trapdoor pair (i, ti), if we directly follow the OWPC construction idea,
we need to assume the hash function can map from a pair to another pair. Alternatively, we may
apply the hash to the trapdoor, and in addition we assume there is a public procedure that can
compute the public index from its trapdoor. Due to lack of space, we omit the discussion of this
and defer the details to the full version.

5 Subversion-Resistant Pseudorandom Generators

Having studied the classical fundamental building blocks (OWPs and TDOWPs) in the full subver-
sion model, we now attempt to mimic the classical program of constructing richer cryptographic
primitives from OWP/TDOWPs. We remark that typical “black-box” constructions and reductions
may not survive in the full subversion model (indeed, even such basic features as the presence of
multiple calls to a randomized algorithm can significantly affect security [BPR14].) We begin by
focusing on pseudorandom generators (PRG).

The topic of backdoor-free pseudorandom generators was pioneered by Dodis et al. [DGG+15].
They give a remarkable construction and security proof of a pseudorandom generator that can
survive subversion. Their immunization procedure involves introducing some clean random bits
beyond the control the adversary and so requires a more generous setting than our desired full
subversion model. One of our results will provide similar security guarantees in the full subversion
model, which does not require such clean randomness.

We first review the basic notions of PRG under subversion attacks and then provide a spe-
cific construction that mimics the classical Blum-Micali PRG construction in this kleptographic
context. We then examine how to extend the applicability of our general sanitizing strategy for
OWP/TDOWPs to more general settings, demonstrating a strategy of public immunization for
PRGs. We remark that all algorithms in our backdoor-free PRG construction—including the san-
itizing function (which can be part of the KG algorithm in the specification)—can be subverted.
Thus we provide the first PRG constructions secure in the complete subversion model.

We remark that since we follow the formalization of [DGG+15], the stretching algorithm is
stateful. However it is a deterministic algorithm with public input distribution, so it does not
influence the results established in the stateless model. Furthermore, according to remark 2.1, all
our previous results works in the stateful model. For simplicity, we do not make explicit those in
the rest of the section.

22



5.1 Preliminaries: The definition of a subversion-resistantA PRG

We adopt the definition from [DGG+15]: a pseudorandom generator consists of a pair of algorithms
(KG,PRG), where KG outputs a public parameter pk and PRG : {0,1}∗ × {0,1}`→ {0,1}` × {0,1}`′ takes
the public parameter pk and an `-bit random seed s as input; it returns a state s1 ∈ {0,1}` and an
output string r1 ∈ {0,1}`

′
. PRG may be iteratively executed; in the i-th iteration, it takes the state

from the previous iteration si−1 as the seed and generates the current state si and output ri . We use
PRGq to denote the result of q iterations of PRG with outputs r1, . . . , rq (each ri ∈ {0,1}`

′
).

They then define the notion of a backdoored PRG [DGG+15]: the adversary sets up a public
parameter pk and may keep the corresponding backdoor sk. The output distribution PRG(pk,U )
must still look pseudorandom to all algorithms that do not hold the backdoor sk (e.g., it fools
the watchdog), where U is the uniform distribution; however, with sk, the adversary is able to
distinguish the output from a uniform string, breaking the PRG.

The definition of a backdoored-PRG [DGG+15] is closely related to the subversion-resistantA

definition in our definitional framework, as the adversary is empowered to choose the “index”
pk. Although there are several variants that all appear meaningful and interesting for PRG in the
cliptographic settings, we will initially focus on the subversion-resistantA PRG as the striking real
world example of Dual EC subversion is indeed in this model. Additionally, from Lemma 2.5, we
remark that any PRGA is a PRGC.

We first reformulate the definition of [DGG+15] in the subversion-resistantA cliptographic
framework: There exist “specification” versions of the algorithms and an offline watchdog. The
parameter generation algorithm KG

spec
has the requirement that the distribution of the adversarially

generated public parameter must be indistinguishable from the output distribution of KG
spec

.
Additionally, as the PRG algorithm is deterministic, and its input distribution is public, a offline
watchdog can ensure that it is consistent with its specification PRG

spec
on an overwhelming fraction

of the inputs. The formal definitions are as follows:

Definition 5.1 We say that a PRG (with the specification (KG
spec

,PRG
spec

)) is q-subversion-resistantA

in the offline watchdog model if, for any ppt adversaryA playing the following game (Fig. 5) with the chal-
lenger C, there exists a watchdogW such that: either the detection probability DetW ,A is non-negligible,
or the advantage AdvA is negligible. Here the detection probability of the watchdogW with respect to
A is defined as

DetW ,A(1λ) =
∣∣∣Pr[WPRG

impl(1λ,pk•) = 1]−Pr[WPRG
spec(1λ,pk) = 1]

∣∣∣ ,
and the advantage of the adversary A is defined as

AdvA(1λ) =
∣∣∣∣∣Pr

[
(A(1λ) ! CPRGimpl(1λ,pk•)) = 1

]
− 1

2

∣∣∣∣∣ .
where pk← KG

spec
(1λ), and PRG

impl
,pk• are chosen by the adversary.

We say that such PRG is a PRGA to stress that the public parameters are generated by the adversary.

5.2 Constructing q-subversion-resistantA PRG from a OWPA

In this section, we provide constructions of a PRGA based on a OWPA. We start with a construction
based on a (simplified) Blum-Micali PRG, and then extend it to a full-fledged solution. We
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test phase

W A

�
pk•,PRGimpl prepare pk•,PRGimpl

bW ←WPRG
impl(1λ,pk•)

execute phase

C A
sample s← {0,1}`
sample ȳ0← {0,1}`

′q

choose b← {0,1}
run ȳ1 := PRG

impl
(pk•, s)

ȳb -

� b′

bC := 1 if b = b′

bC := 0 otherwise

Figure 5: Subversion-resistantA PRG Game

remark that a similar reduction can be used to construct a subversion-resistantC PRG from a
subversion-resistantC OWP (where the challenger queries the KG implementation to choose a
public parameter).

Before describing the details of our construction, we recall the classic generic construction of
Goldreich-Levin (GL), yielding a hardcore predicate [GL89] for any OWF f . We suppose the input
x of f is divided into two halves x = (x1,x2) and define the bit B(x) = 〈x1,x2〉; B(x) is hard to predict
given x1, f (x2), assuming that f is one-way. Moreover, if there is a PPT algorithm that predicts B(x)
with significant advantage δ given x1, f (x2), then there is a PPT algorithm I that inverts f with
probability poly(δ).

Basic construction. We will show that given a subversion-resistantA one-way permutation (OWP)
family F with specifications and implementations F

spec
:= (KGF

spec
,EvalF

spec
) and (KGF ,EvalF ) respec-

tively, the classic Blum-Micali PRG [BM82] (using the GL hardcore predicate) is 1-subversion-resistantA.
Our basic construction G with the specification G

spec
:= (KGGspec,PRG

G
spec) is as follows:

• Parameter generation algorithm pk← KGGspec(λ):

compute i← KGF
spec

(λ) and set pk := i;

• Bit string generation algorithm (s′ ,b)← PRG(pk,s):

upon receiving s and pk, where pk = i, s = s1||s2 and |s1| = |s2| = `, compute the following:
s′1 := s1, s′2 := EvalF

spec
(i, s2), and s′ = s′1||s

′
2, b := 〈s1, s2〉.

Security analysis. We can show in the lemma below that, with a specification designed as above,
the basic construction above is a 1-subversion-resistant PRG. The intuition is that in the (simplified)
Blum-Micali PRG, a distinguisher can be transformed into an OWP inverter (following the GL
proof); thus an adversary who can build a backdoor for this PRG violates the subversion-resistance
of F . We present the lemma for its security, while due to lack of space, we refer the detailed proof
to appendix C

Lemma 5.2 If F with specification F
spec

is a OWPA in the offline watchdog model, then G with specifi-
cation G

spec
constructed above is a 1-subversion-resistantA PRG in the offline watchdog model.
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(pk,s) PRGF
spec

(s′ , r)
h
spec

pk

s

p̃k

PRGGspec

Figure 6: Public immunization strategy for PRG.

Full-fledged PRGA. We can easily adapt our basic construction to the full-fledged PRGA construc-
tion via the iteration as the BM-PRG and argue the security following the classic hybrid lemma.
We refer the details of the construction and analysis to appendix B.1.

5.3 A general public immunization strategy for PRGA

An impossibility result concerning public immunization of a PRG (to yield a PRGA) was presented
in [DGG+15]. However, we observe that this impossibility result only applies to an immunization
procedure that operates on the output of the PRGA . The general construction of OWPA shown
above inspires us to consider an alternate general immunizing strategy for (potentially subvertible)
PRGs. We establish that—similar to the procedure above for eliminating backdoors in OWPs—one
can randomize the public parameter to sanitize a PRG. 9

The intuition for this strategy to be effective in the setting of PRG is similar: considering a
specification KG

spec
that outputs a uniform pk from its domain, no single backdoor can be used

to break the security for a large fraction of public parameter space; otherwise, one can use this
trapdoor to break the PRG security of the specification. As above, while the adversary can subvert
the hash function, an offline watchdog can ensure the hash function is faithful enough to render it
difficult for the adversary arrange for the result of the hashed parameter to be amenable to any
particular backdoor.

Consider a (potentially subvertible) PRG with specification F
spec

= (KGF
spec

,PRGF
spec

); we assume
that KGF

spec
outputs a uniform element of its range P P . Consider hash function with specification

h
spec

: P P → P P . Then we construct a PRGA G with its specification G
spec

:= (KGGspec,PRG
G
spec):

• Parameter generation algorithm pk← KGGspec:

Compute KGF
spec

, resulting in the output pk;

• Bit string stretch algorithm (s′ , r)← PRGGspec(pk,s) which is given by:

Upon receiving a random seed s and public keys pk as inputs, it computes p̃k = h
spec

(pk) and
it computes PRGF

spec
(p̃k, s) and obtains s′ , r as outputs. PRG

See also the pictorial illustration for PRGGspec in Fig 6.
The security analysis is very similar to that of Theorem 3.5; we defer the proof it to the full

version.
9To interpret this results, the solution of [DGG+15] is in a semi-private model which requires a trusted seed/key

generation, thus part of the PRG algorithms can not be subverted. It follows that the construction of PRG in the complete
subversion model was still open until our solution. In contrast, our sanitizing strategy does not require any secret, and
even the deterministic hash function can be implemented by the adversary as part of the KG algorithm.
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Theorem 5.3 Assume h
spec

is random oracle, and F with specification F
spec

= (KGF
spec

,PRGF
spec

) is a
pseudorandom generator, where KGF

spec
outputs pk randomly from its range. Then G with specification

G
spec

in the above construction yields a q-subversion-resistant PRGA for any polynomially large q.

Remark 5.4 There are several points we would like to stress:

• If the public parameter contains only random group elements, e.g., the Dual EC PRG, we may
simply encode them into bits and use a regular hash function like SHA-256, and convert the
resulting bits back to a group element;

• All the results in this section can be applied to construct PRGC (instead of PRGA). In that case, the
adversary provides a stateless KG implementation, we can even work in the split-program model to
apply our immunizing strategy to broader practical settings.
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A Omitted Definitions

Definition A.1 A trapdoor OWP family F = {fi : Xi → Yi}i∈I with specification (KG
spec

,Eval
spec

,
Inv

spec
), is subversion-resistantC in the offline watchdog model, if for any ppt adversary A playing

with the challenger C in the following game, (Fig 7), there exists a watchdogW , such that: either the
detection probability DetW ,A is non-negligible, or the advantage AdvA is negligible. Here the detection
probability of the watchdogW with respect to A is defined as

DetW ,A(1λ) =
∣∣∣Pr[WKG

impl
,Eval

impl
,Inv

impl(1λ) = 1]−Pr[WKG
spec

,Eval
spec

,Inv
spec(1λ) = 1]

∣∣∣ ,
and the advantage of the adversary A is defined as

AdvA(1λ) = Pr
[
(A(1λ) ! CKGimpl

,Eval
impl

,Inv
impl(1λ)) = 1

]
.

For convenience, we also say that such F
spec

is a TDOWPC in the offline watchdog model.
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test phase

W A
�
KG

impl
,Eval

impl
, Inv

impl prepare KG
impl

,Eval
impl

, Inv
impl

bW ←WKG
impl

,Eval
impl

,Inv
impl(1λ)

execute phase

C A
run i← KG

impl
(1λ)

sample x

run y := Eval
impl

(i,x) i,y
-

� x′

bC := 1 if x = x′

bC := 0 otherwise

Figure 7: Subversion-resistantC TDOWP Game

Definition A.2 A function family F is trapdoor one way in the split-program model if there exist a
pair of algorithms (RG,dKG,Eval, Inv) where (i.) RG, given a security parameter λ, outputs a uniform
`(λ)-bit string r; (ii.) dKG is deterministic: given the randomness r it outputs a function index and
trapdoor pair i, t; and (iii.) F is one-way under this procedure for generating (i, t)← dKG(r) : r← RG;
(4). ∀x, Inv(t,Eval(i,x)) = x.

B Omitted Constructions

B.1 Full Fledged Subversion Resistant PRGA

We now extend our basic construction via iteration to show that the full-fledged Blum-Micali PRG
construction, using a subversion-resistantA OWP, achieves a q-subversion-resistantA PRG for any
q = poly(λ). Given a subversion-resistantA OWP F with its specification F

spec
:= (KGF

spec
,EvalF

spec
),

our full-fledged construction with its specification H
spec

:= (KGH
spec

,PRGH
spec

) 10 is as follows:

• Parameter generation algorithm pk← KGH
spec

(λ):

compute i← KGF
spec

(λ) and set pk := i;

• Bit string generation algorithm (s′ , r)← PRGH
spec

(pk,s):

upon receiving s and pk where pk = i, s = s1||s2, and |s1| = |s2| = `, compute the following:

– let s01 := s1 and s02 := s2;

– for j = 1, . . . `′,

bj := 〈sj−1
1 , s

j−1
2 〉;

s
j
1 := sj−1

1 ; sj2 := EvalF
spec

(i, sj−1
2 ); sj := sj1||s

j
2;

10PRGq can be defined in a straightforward manner that runs the above PRG for q iterations, each iteration outputs `′

bits and updates the state for next iteration.
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– s′ = s`
′
= s1||s`

′

2 ; and r = b1 . . .b`′ .

Please see also Figure 8 for pictorial illustration for implementations.

s1||s2→ s1||fi(s2)→ s1||f 2
i (s2)→ . . .→ s1||f `

′

i (s2)→ . . .

↓ 〈s1, s2〉 ↓ 〈s1, fi(s2)〉 ↓ 〈s1, f `
′−1

i (s2)〉
b1 b2 . . . b`′

Figure 8: One iteration of BM-PRG, and fi(x) := EvalF
impl

(i,x)

Theorem B.1 The full fledged construction above with specification H
spec

is q-subversion-resistantA

(for any polynomially large q), if F with specification F
spec

is a subversion-resistantA OWP.

Proof 4 (Proof sketch) Following Lemma 5.2, s1||fi(s2)||b1 is pseudorandom, i.e., it is indistinguishable
from “u1, . . . ,u2`,v1”, even to an adversary A who may set the public parameter i, where {ut}t∈[`],v1 are
all random bits, and fi(s2) = EvalF

impl
(i, s2).

Observe that b2 can be computed from s1, fi(s2); it follows that the adversaryA (who has the backdoor)
can not predict b2 from b1, otherwise she trivially distinguishes s1||f 1

i (s2)||b1 from random, simply by
computing b2 from s1||f 1

i (s2) and predicting using b1 to see whether these are consistent. Similarly, A
cannot predict b3 from b1,b2: To see this, first observe that A can not predict b3 from b2, thus A can not
predict b3 from v1,b2 where v1 is a random bit. If b3 is predictable by A from b1,b2, then starting from
s1||fi(s2), A computes b2,b3, and simply uses b1 to test whether the predication is correct, so that she can
distinguish s1||fi(s2)||b1 from s1||fi(s2)||v1, and further from u1 . . . ,u2`,v1.

The above argument can be applied to any j ∈ [`′], so that A can not predict bj+1 from b1, . . . , bj .
Then—following the classic reduction from pseudorandomness to next-bit unpredictability—we can
conclude that b1 . . .b`′ is indistinguishable from uniform bits {0,1}`′ , even to A. (This can be shown via
the standard hybrid argument.) Last, inductively, we can conclude that r1, . . . , rq are indistinguishable
from `′ · q uniform bits.

C Omitted Proofs

Proof 5 (Proof of Lemma 3.2) Consider a TDOWP F = {fi} with the associated specifications F
spec

:=
(KGF

spec
,EvalF

spec
, InvF

spec
). Assuming the trapdoors can be represented using `(λ) bits, we construct a

subvertible OWP family G with specification G
spec

:= (KGGspec,Eval
G
spec, Inv

G
spec) as follows:

• Function generation (i, r)← KGGspec, where KGGspec is given by:

Run the KGF
spec

algorithm and receive a function index/trapdoor pair (i, ti); then discard ti , and
sample randomly r← {0,1}`(λ); It outputs (i, r).

• Function evaluation y← EvalGspec(i, r,x), where EvalGspec is given by:

Upon inputting i, r,x, discard r, compute y← EvalspecF (i,x); it outputs y.

• Invert function InvGspec is the same as InvF
spec

.
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It is easy to see that G is one way because F is one way (without ti) in the classical setting.
While in the cliptographic setting, an adversary can first chooses a random key k for a symmetric key

encryption scheme SE = (SE.Enc,SE.Dec). Then she provides a implementations below that can evade the
detection and breaks the one-way security of the functions generated by the implementation:

• Function generation implementation, (i, r̃)← KGGimpl(k), where KGGimpl(k) is given by:

It first runs KGF
spec

, and receives an index i together with the corresponding trapdoor ti ; r̃ =
SE.Enc(k, ti), i.e., r̃ is generated by encrypting ti using k. It outputs (i, r̃).

• EvalF
impl

and InvF
impl

are the same as the specifications.

It is easy to see that when adversary obtains i, r̃, and y = EvalF
spec

(i,x) she can simply decrypts r̃ to
get ti = SE.Dec(k, r̃), and then inverts y to get x.

Furthermore, since SE.Enc is modeled as a which is assumed to be a pseudorandom permutation
(PRP). PRP, the distributions of (i, r) returned by KGGspec and (i, r̃) returned by KGGimpl(k) for any k are
computationally indistinguishable.

Proof 6 (Proof for Lemma: 5.2) The specification KGGspec of the simplified Blum-Micali PRG outputs a
random function index from the index set (by simply running KGF

spec
).

It is easy to see that the OWP function family F given by EvalF
spec

(i,x1||x2) := x1||EvalFspec(x2), is
subversion-resistantA if F is subversion-resistantA. If the above basic construction is not subversion-resistantA,
then there exists a PPT adversary A such that (i.) all watchdogs will accept the public parameter pk
and the implementation PRGGimpl, and (ii.) A distinguishes the PRG output from a random 2` + 1-bit
string with some non-negligible probability δ. To expand condition (ii.), A can distinguish s1||fi(s2)||B(s)
(where B(s) = 〈s1, s2〉) from a uniform (2` + 1)-bit string for an uniform s.

Now from A, we construct an adversary AF that breaks the subversion-resistance of F
spec

, as an
OWPA: AF runs A to get pk,PRGGimpl. AF then implements EvalF

impl
as follows: when evaluating on

inputs pk,x, EvalF
impl

calls PRGGimpl using pk, 0̄||x and receives 0̄||y||0, EvalGimpl then discards the first `
bits and the last bit, and returns y. We can see that EvalF

impl
and PRGGimpl have identical input/output

behavior; thus for any watchdog, if it accepts pk,PRGGimpl, it also accepts pk,EvalF
impl

. AF then continues
the simulation: when receiving a challenge y, AF randomly samples r, and a bit b and sends r ||y||b for A
to distinguish. If b = B(s), A will output 1 with probability 1/2 + δ. It is easy to see that such adversary
can predict the GL hardcore predicate B with advantage δ/2. Following the GL proof [GL89], there exists
another algorithm IA that can invert y with probability δ′ = poly(δ/2).
AF runs IA to invert y, and will output a correct pre-image with probability δ′. Combing both claims

above, AF subverts F
spec

with a non-negligible probability. This leads to a contradiction.

D Constructing subversion-resistantSP OWP/TDOWP

Indices (names) of a one-way function family may have structure. For example, for OWFs based
on the discrete logarithm, fg,p(x) = gx mod p, the function index consists of an algebraically
meaningful pair (p,g), where p is a prime and g a random generator. As mentioned previously,
applying the immunization strategy above would then require a hash function that respects this
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algebraic structure, mapping meaningful pairs (g,p) to meaningful pairs (g ′ ,p′). Furthermore, for
a TDOWP, we must assume there is a public algorithm that can compute the public key based on a
trapdoor.

To address these difficulties, we propose a practical split-program model in which every function
generation algorithm (and, in general, any randomized algorithm) is composed of two (sub-
)algorithms: a “random string generation algorithm” RG that outputs a uniform `-bit random string
r, and a deterministic function index generation algorithm dKG that transforms the randomness r
into a function index i. In this model, dKG is deterministic and is coupled with a known public
input distribution (the output distribution of RG). Following Lemma 2.4 and the elaboration
in Section 3.1, a watchdog can ensure that the implementation dKG

impl
is “almost consistent”

with dKG
spec

(the specification) over this input distribution, i.e., Pr[dKG
impl

(r) = dKG
spec

(r) : r ←
RG

impl
] ≈ 1. Morally, this forces the adversary to concentrate his malicious efforts on subverting RG.

11

There are some subtle differences between the security of cliptographic constructions in the
split-program model and those in the previous sections. Although exposing the random coins
offers the watchdog improved access to the “internals” of the algorithm, it also gives the adversary
extra opportunities. Randomizing the function index directly destroys the backdoor structure;
however, simply hashing the randomness publicly does not provide defense against kleptographic
attacks, in that the adversary simply uses the new randomness to generate a new backdoor. Thus it
is critical in the split program model that the RG algorithm is stateless so that the watchdog can
enforces its output to be unpredictable to the adversary (when RG

spec
outputs uniform bits).

Since we already demonstrated how to analyze the immunizing strategy for OWP, in this section
we present results for TDOWPSP. It is straightforward to adapt the construction and analysis to
OWPSP. The standard TDOWP definitions can be easily adapted in the split-program model, where
the challenge index is generated by running dKG

spec
on an uniform string r generated by RG

spec
. It

is easy to see that a standard TDOWP is also a TDOWP in the split program model. For detailed
definition, we refer to Definition A.2 in Appendix A.

Next we define the notion of a subversion-resistantSP TDOWP in the split-program model by
simply augmenting Definition 3.1. It is easy to see the same method applies to OWPSP as well. For
detailed discussions of OWPSP in the split program model, we defer to the full version.

Generic construction of TDOWPSP. Consider a TDOWP family F with specification F
spec

:=
(RGF

spec
,dKGF

spec
,EvalF

spec
, InvF

spec
), where RGF

spec
outputs uniform bits. Assuming a public hash func-

tion with specification h
spec

: {0,1}∗→ {0,1}∗, we construct a TDOWPSP family G with specification
G
spec

= (RGGspec,dKG
G
spec,Eval

G
spec, Inv

G
spec), defined below:

• Randomness generation r← RGGspec:

RGGspec is the same as RGF
spec

. That is, RGGspec runs RGF
spec

to get r and outputs r.

• Index/trapdoor generation algorithm (i, ti)← dKGGspec(r), which is given by:

Upon receiving inputs r, it computes r̃← h
spec

(r), and outputs (i, ti)← dKGF
spec

(r̃).

• EvalGspec, Inv
G
spec are the same as EvalF

spec
, InvF

spec
.12

11This gives us more flexibility to apply the sanitizing strategy. Incidentally, we can also decouple the immunizing
strategy in the previous section (e.g., Fig 3) so that EvalG

impl
explicitly implements h and EvalF

impl
.

12 We remark that in the split-program model, the hash function applies to the random bits, and the hash function is
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test phase

W A
prepare RG

impl
,dKG

impl

�
RG

impl
,dKG

impl
,Eval

impl
, Inv

impl and Eval
impl

, Inv
impl

bW ←WRG
impl

,dKG
impl

,Eval
impl

,Inv
impl(1λ)

execute phase

C A
run r← RG

impl
(1λ)

run (i, t)← dKG
impl

(r)
sample x

run y := Eval
impl

(i,x) i,y
-

� x′

bC := 1 if x = x′

bC := 0 otherwise

Figure 9: Subversion-resistantSP TDOWP Game

See also the pictorial description for dKGGspec in Fig. 10:

r dKGF
spec

h
spec

(i, ti)
r̃

dKGGspec

Figure 10: New specification dKGGspec.

Security analysis. The security of OWPSP/TDOWPSP

is more subtle than it looks. Randomizing the
function index directly indeed destroys any
backdoor structure; however, simply random-
izing the random coins for generating the func-
tion index might lead the adversary to another
index/backdoor pair. It will be critical that in
the split-program model, the implementations
provided by the adversary are stateless: With
an offline watchdog, the output of a stateless
RG is unpredictable even to the adversary who implements it.

A few words about the security proof: Recall that in the OWPA proof, the reduction tries to
“program the random oracle” so that the challenge of the specification can be embedded into the
challenge to the adversary. In the split-program model, however, the reduction can directly embed
the challenge if outputs of RG are unpredictable to the adversary; in this case, from the view of the
adversary, any random index as challenge is possible to appear in the TDOWPSP game. Therefore,
we here do not need to program the random oracle.

Theorem D.1 Assume h
spec

is random oracle, and F with specification F
spec

is a TDOWP. Then G with
specification G

spec
defined above is a TDOWPSP in the offline watchdog model.

Proof 7 Suppose the is a ppt adversary AG that subvertes G in the game defined in Fig. 9. We will build
an adversary AF that breaks the one-way security of F

spec
.

implemented by the adversary inside EvalG
impl

. The specification of the hash function can be modeled as a random oracle
so that replacing the random oracle with an explicit function like SHA256 may be heuristically justified.
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Construction of AF . Assume (i∗, y∗) are the challenges sent from the F
spec

challenger CF (suppose x∗ is
the input chosen by CF that generates this challenge). AF will simulate the game with AG. When AG
asks random oracle queries r1, . . . , rq, AF answers all those queries with uniform strings.
AG then provides the implementations (RGGimpl,dKG

G
impl,Eval

G
impl, Inv

G
impl). AF continues the simula-

tion, querying RGGimpl to receive r. If r ∈ {r1, . . . , rq}, AF aborts; otherwise AF sends (i∗, y∗) to AG. Finally,
AF submits the answer x′ from AG as his answer to AF .

Probabilistic analysis. Now we bound the success probability ofAF . Suppose x is the random input chosen

by CF , and let W denote the event that AF aborts. It follows that: Pr[x∗ = x′] = Pr[x∗ = x′ |W ]Pr[W ].
From the assumption that AG breaks the security of G, we can infer that the following two conditions:

(1) the detection probability Det is negligible; (2) the advantage Adv is non-negligible δ. From condition
(1), we have

Pr[r < {r1, . . . , rq} : r← RGG
impl

] ≥ 1−negl(λ) .

Otherwise, there is a watchdog algorithm that simply a sample to detect whether there is collision, in
which case the implementation RGGimpl is rejected. On the other hand, if RGGspec outputs uniform bits, the
collision probability is negligible; note that here RGGspec = RGF

spec
. Thus Pr[W ] ≥ 1−negl(λ).

Next, we bound Pr[x′ = x∗|W ]. From condition (1) again, following the proof of Lemma 2.4, we claim:

Pr[dKGG
impl

(r) = dKGG
spec

(r) : r← RGF
impl

] ≥ 1−negl(λ); (1)

Pr[EvalG
impl

(i∗,x) = EvalF
spec

(i∗,x)] ≥ 1−negl(λ); (2)

otherwise there is a trivial watchdog that samples, tests equality, and rejects misbehaving implementations.
Now let us analyze the view of the adversary AG in the subversion-resistantSP TDOWP game. From

Ineq. (1), with overwhelming probability AG is supposed to see an index i in (i, t) ← dKGGimpl(r) =
dKGGspec(r), where r ← RGGimpl; similarly, y ← EvalGimpl(i,x) for a randomly selected x. While i∗ is
generated by calling dKGF

spec
(r∗) for an uniform r∗. Conditioned on W , the distribution of dKGGspec(r) =

dKGF
spec

(h
spec

(r)) is identical to dKGF
spec

(r∗). Also, from Ineq. (2), with overwhelming probability, y∗ =
EvalF

spec
(i∗,x∗) would be consistent with EvalGimpl(i∗,x∗). Thus we can claim that the distribution of i∗, y∗

is indistinguishable from what AG expects. Together with condition (2), AG will return a correct x∗ with
a noticeable probability δ. Combined all above, we can conclude that

Pr[x = x∗] ≥ δ(1−negl(λ))(1−negl(λ)) ≥ δ −negl(λ) .

Thus AF breaks the security of F
spec

, a contradiction.
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