
Chosen IV Cryptanalysis on Reduced Round ChaCha and Salsa

Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

subho@isical.ac.in

Abstract. Recently, ChaCha20 (the stream cipher ChaCha with 20 rounds) is in the process of
being a standard and thus it attracts serious interest in cryptanalysis. The most significant effort
to analyse Salsa and ChaCha had been explained by Aumasson et al long back (FSE 2008) and
further, only minor improvements could be achieved. In this paper, first we revisit the work of
Aumasson et al to provide a clearer insight of the existing attack (2248 complexity for ChaCha7,
i.e., 7 rounds) and showing certain improvements (complexity around 2243) by exploiting additional
Probabilistic Neutral Bits. More importantly, we describe a novel idea that explores proper choice
of IVs corresponding to the keys, for which the complexity can be improved further (2239). The
choice of IVs corresponding to the keys is the prime observation of this work. We systematically
show how a single difference propagates after one round and how the differences can be reduced with
proper choices of IVs. For Salsa too (Salsa20/8, i.e., 8 rounds), we get improvement in complexity,
reducing it to 2245.5 from 2247.2 reported by Aumasson et al.

Keywords: Stream Cipher, ChaCha, Salsa, Non-Randomness, Probabilistic Neutral Bit (PNB),
ARX Cipher.

1 Introduction

The Salsa20 [2] stream cipher has been designed by Bernstein in 2005 as a candidate for eS-
tream [12] and Salsa20/12 has been accepted in the eStream software portfolio. There are several
works that studied the cryptanalysis of Salsa [4, 5, 10, 1, 6, 9, 8, 7] and these works show weak-
nesses of this cipher in reduced rounds. The central idea in this field of cryptanalysis is as
follows.

– Apply some input difference at the initial state and then investigate for biases at some
output.

– Once one can proceed a few rounds forward as above, it may be possible to get back a few
rounds from a final state to obtain further non-randomness.

The ChaCha [3] stream cipher has been proposed in early 2008 to conjecturally provide better
diffusion and cryptanalytic resistance than Salsa. Though ChaCha has been designed long back,
the cipher got renewed attention in recent time due to its deployment in several applications
of Google as evident from the following news report [11]: “Given recent attacks against older,
commonly-used encryption modes RC4 and CBC, the Google team began implementing new
algorithms - ChaCha 20 for symmetric encryption and Poly1305 for authentication in OpenSSL
and NSS in March 2013.” The only significant cryptanalysis of reduced round Salsa and ChaCha
has been presented long back in [1] that introduced Probabilistic Neutral Bits (PNBs) and the
works [9, 7] achieved only some incremental advancements over [1]. The idea of Column Chaining
Distinguisher (CCD) [9] could only provide minor advantage over the complexities described
in [1] for both Salsa and ChaCha. In [7], an interesting observation regarding round reversal
of Salsa has been studied, but no significant cryptanalytic improvement could be obtained
using this method. However, the work of [7] revisits the attack of [1] in detail, providing some
corrections to the values of the parameters that constitute the attack complexity.



Contribution In this paper, we attempt to obtain significant improvement in the cryptanalysis
of ChaCha over the work of [1]. First, in Section 1.2, we put a disciplined effort to study the
same method of [1] in greater details. This is in line of [7], where the work of [1] has been
revisited too in the context of Salsa. We perform detailed experiments and exploit more PNBs
than in [1] to obtain better results. In [1], the time complexity of the attack against ChaCha7
(7 round ChaCha) was estimated as 2248, though a careful analysis shows that it is actually
slightly better (less), which is 2246.71. The effort of [9] with the idea of CCD required 2246.5

complexity and thus one may note that the improvement is indeed minor. In Section 2, with
additional PNBs and following the similar method as in [1], we show that the complexity can
be reduced to 2242.82.

Next we show how our idea of exploiting specific IVs corresponding to the secret key helps
in improving the attack of [1]. While the cryptanalysis of reduced round Salsa and ChaCha has
been presented long back [1], this observation of choosing selected IVs could not be discovered
earlier. The cryptanalytic technique presented in [1] depends on some biases related to certain
output differences in the forward direction given the input difference(s). Our idea improves such
biases significantly. Using this, in Section 3, we show that for proper choices of IVs, the time
complexity of ChaCha7 cryptanalysis reduces to 2238.94.

We apply the similar technique for Salsa in Section 4. For Salsa20/8, the complexity de-
scribed in [1] was 2251, but a detailed study in [7] shows that it is actually better, i.e., 2247.2.
The idea of [9] using CCD required 2250, and naturally the improvement was not significant.
Our technique, considering the properly chosen IVs, improves the complexity to 2245.5.

Before proceeding further, let us explain the structure of ChaCha stream cipher as provided
in the draft towards standardization [13]. We will come back to the description related to Salsa
in Section 4.

1.1 Description of ChaCha

The cipher state is of 16 words, each 32-bit and it can be written in 4 × 4 matrix format as
follows:

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

The rightmost matrix shows the initial state, that takes four predefined constants c0, . . . , c3 as
c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574, 256-bit key k0, . . . , k7,
32-bit block counter t0 and 96-bit nonce v0, v1, v2.

Primitive nonlinear operation here is the quarterround function. Each quarterround(a, b, c, d)
consists of four ARX rounds, each of which comprises of addition (A), cyclic left rotation (R)
and XOR (X) operation (one each) as given below.

a = a+ b; d = d⊕ a; d = d≪ 16;
c = c+ d; b = b⊕ c; b = b≪ 12;
a = a+ b; d = d⊕ a; d = d≪ 8;
c = c+ d; b = b⊕ c; b = b≪ 7;

 (1)

Each columnround works as four quarterrounds on each of the four columns of the state matrix
and each diagonalround consists of four quarterrounds on each of the four diagonals. In ChaCha20,
ten times the rowround and ten times the diagonalround are applied alternatively on the initial
state (total 20 times).



In each of the odd rounds, we first apply quarterround on all the four columns in the following
order. This is a complete columnround.

quarterround(x0, x4, x8, x12), quarterround(x1, x5, x9, x13),
quarterround(x2, x6, x10, x14), and quarterround(x3, x7, x11, x15).

In each of the even rounds, we consider the order

quarterround(x0, x5, x10, x15), quarterround(x1, x6, x11, x12),
quarterround(x2, x7, x8, x13), and quarterround(x3, x4, x9, x14).

This describes a complete diagonalround.

By X(r), we mean that r such rounds have been applied (in total, alternatively the colum-
nround in odd rounds and diagonalround in even rounds, the initial round applied is considered
as the round 1) on the initial state X. Here X(0) is the initial state X. Finally, after R rounds
we have X(R). Then a keystream block of 16 words or 512 bits is obtained as

Z = X +X(R).

For ChaCha20, there are 20 rounds, i.e., R = 20. It is quite natural that less rounds achieve
higher speed and conjecturally, more rounds provide higher security.

Each round of ChaCha is reversible as the state-transition operations are reversible. If
X(r+1) = round(X(r)), then X(r) = reverseround(X(r+1)), where reverseround is the inverse
of round. The reverse of each quarterround is defined as below.

b = b≫ 7; b = b⊕ c; c = c− d;
d = d≫ 8; d = d⊕ a; a = a− b;
b = b≫ 12; b = b⊕ c; c = c− d;
d = d≫ 16; d = d⊕ a; a = a− b;

 (2)

Consider that one obtains a state X(1) after one round of ChaCha. Now to know whether it
is a valid state after one round, one needs to come back by one reverse round and then check
whether the constants in the first row are indeed the specified ones.

Here xi is the i-th word of the matrix X. Further, by xi,j , we mean the j-th bit (0-th bit

is the least significant bit) of xi. Given two states X(r), X ′(r), we denote ∆
(r)
i = x

(r)
i ⊕ x

′(r)
i . By

∆
(r)
i,j = x

(r)
i,j ⊕ x

′(r)
i,j , we mean the difference between two states at the j-th bit of the i-th word

after r many rounds. For example, ‘∆
(0)
13,5 = 1’ means that we have two initial states X(0), X ′(0)

that differ at the 5-th bit of the 13-th word. Towards cryptanalysis, we are interested to input
a difference at the initial state (call it Input Differential or ID) and then try to obtain certain
biases corresponding to combinations of some output bits (call it Output Differential or OD).
In this direction, one can compute

Pr(∆(r)
p,q = 1|∆(0)

i,j = 1) =
1

2
(1 + εd),

where the probability is estimated for a fixed key and all the possible choices of nonces and
counter words v0, v1, v2 and t0 respectively, other than the constraints imposed due to the input
differences on the nonces or counters. For ChaCha and Salsa, most of the biases in literature are
discovered through experimentation, and those are estimated by a large number of experiments.



1.2 Revisiting PNBs [1]

The idea that we discuss in this section applies for both ChaCha and Salsa. This is a brief
explanation of what has been done in [1] and our discussion is in line of [7] where the presentation
was in the context of Salsa.

The method described here is a known plain text only attack. The 512-bit key stream of
ChaChaR or Salsa20/R is X + X(R). In this model X + X(R) is completely available to the
attacker. However, the 256 key bits are not available, thus only rest 256 bits of X are known. The
motivation is to guess the 256 key bits of ChaChaR or Salsa20/R with a key search complexity
less than 2256, the complexity for exhaustive search.

The concept of Probabilistic Neutral Bits (PNBs) in [1] was exploited in this framework.
Before describing our parameters for an improved attack complexity, we first describe the generic
attack using PNBs on ChaCha (similar in case of Salsa). For detailed understanding and formal
definitions in this area, one may refer to [1, Section 3].

Bias in forward direction (εd). Let X,X ′ be two valid initial states with a given ID ∆
(0)
i,j =

1, for which we observe a high bias εd in an OD ∆
(r)
p,q after r < R ChaCha rounds. Thus,

Pr(∆
(r)
p,q = 1|∆(0)

i,j = 1) = 1
2(1 + εd), where ∆(r) = X(r) ⊕X ′(r). The two keystream blocks after

R rounds are given by Z = X +X(R) and Z ′ = X ′ +X ′(R).

Probabilistic Neutral Bits (PNBs) and related bias (γ). Consider that in bothX andX ′,
we complement a particular key bit position κ to yield the states X and X ′ respectively. Next,
we reverse the states Z−X and Z ′−X ′ by R−r rounds to yield the states Y and Y ′ respectively.

Let Γp,q = Yp,q ⊕ Y ′p,q. Given the ID, if the bias in the event (∆
(r)
p,q ⊕ Γp,q = 0|∆(0)

i,j = 1) is high,

i.e., ∆
(r)
p,q = Γp,q with high probability, then we call the key bit κ a Probabilistic Neutral Bit

(PNB). If Pr(∆
(r)
p,q ⊕ Γp,q = 0|∆(0)

i,j = 1) = 1
2(1 + γκ), then γκ is called the neutrality measure of

the key bit. One should run this experiment for each key bit several times over randomly chosen
nonces and counter. We experiment this for 226 samples corresponding to each key bit, which is
more than enough to identify the biases. Repeating this for all the 256 key bits, a subset of the
key bits can identified, which are called the PNBs. Typically, a threshold probability 1

2(1 + γ)
is chosen to filter the PNBs. If γκ ≥ γ, then the key bit κ is included in the set of the PNBs.
Suppose the size of this subset is n and therefore the number of non-PNB bits are m = 256−n.
The main idea behind the key recovery is to search these two sets separately.

Biases in reverse direction (ε, εa). After the set of PNBs is determined, the actual attack
considers search over the key bits which are not PNBs. By considering a distinguisher, it is
possible to identify when the correct keys have appeared. For practical simulations, it is not
possible to complete this attack as the complexity is very high. Nevertheless, one can obtain
certain biases to estimate the complexity of the attack and that can be achieved by trying out
the following.

While studying the PNBs, in X and X ′, we complemented a particular key bit position κ
to yield the states X and X ′ respectively. However, in this case, we assign random values to all
the PNBs and keep the correct values of the keys in other places. That is, we assign correct key
values to the m non-PNB key bits and assign random binary values to the n PNB key bits in
both X and X ′ to yield the states X̂ and X̂ ′ respectively. Then we reverse the states Z− X̂ and
Z ′ − X̂ ′ by R − r rounds to yield the states Ŷ and Ŷ ′ respectively. Let Γ̂p,q = Ŷp,q ⊕ Ŷ ′p,q and

Pr(Γ̂p,q = 1|∆(0)
i,j = 1) = 1

2(1 + ε̂). A higher absolute value of ε̂ identifies that the PNBs have



been chosen properly and even without knowing the n PNBs it is possible to guess the rest of
the key bits which are not PNBs.

Next, we assign random binary values to all the 256 key bits in both X and X ′ to yield the
states X̃ and X̃ ′ respectively. Then we reverse the states Z− X̃ and Z ′− X̃ ′ by R− r rounds to

yield the states Ỹ and Ỹ ′ respectively. Let Γ̃p,q = Ỹp,q⊕Ỹ ′p,q and Pr(Γ̃p,q = 1|∆(0)
i,j = 1) = 1

2(1+ε̃).
In actual key recovery attack, if the biases ε̂ and ε̃ can be efficiently distinguished, i.e., if the

gap between the biases is significant with ε̃ ≈ 0 (as it corresponds to a random event and should
not have any bias), then we can conclude that the assignment X̂ yields the correct values for
the non-PNB bits. This is what that needs to be experimented while choosing the set of PNBs.
This also provides the estimate of ε̂ that will be involved in the obtaining the complexity. To
follow the same notation as in [1], we denote ε = ε̂ in following discussion.

In [1], the bias in the event (Γ̂p,q = ∆
(r)
p,q) is denoted by εa.

Estimation of biases using median. In [1], the estimation of this bias is as follows. The key
is fixed and one can vary the nonces and the counters to calculate one εa. Then we consider
many randomly chosen keys to obtain a set of εa’s and finally compute the median ε∗a’s from
this set. Similarly, the median ε∗d is estimated from the values of several εd’s corresponding to
different keys. Finally one can estimate ε∗ as the median value of ε’s. The idea of using median
is that, one can guarantee that the estimated probabilities will work for at least half of the keys.

It was noted in [1] that one can approximate ε∗ as ε∗d · ε∗a. We have also observed this trend.
Thus, it is very clear that if one can come up with a set of IVs corresponding to a specific
key for which εd can be increased substantially, then ε should also increase. Consequently, the
complexity of the attack will decrease. This is used for the improved cryptanalysis of ChaCha7
and Salsa20/8 as described in Sections 3, 4 respectively.

Estimating the complexity of the cryptanalysis. Following [1], if the number of samples
used is N and if the probability of false alarm is Pfa = 2−α, the complexity of the attack is
then given by

2m(N + 2nPfa) = 2mN + 2256−α, (3)

where the required number of samples is

N ≈

(√
α log 4 + 3

√
1− (ε∗)2

ε∗

)2

(4)

for probability of non-detection Pnd = 1.3× 10−3.

2 Cryptanalysis of ChaCha7 as in [1] and exploiting more PNBs

Let us start with the parameters as described in [1]. As in [1], we consider R = 7 and we move
r = 3 forward rounds, and come back R−r = 7−3 = 4 rounds from the 7-th round. Throughout

this paper, we consider the ID-OD pair (∆
(0)
13,13, ∆

(3)
11,0) that has been exploited in [1]. Let us

now provide the estimation that has been detailed in [1] for the attack complexity.

Estimate 1 [1] In this case, the experiments show 1
2(1+ε∗d) = 0.513, i.e., ε∗d = 2×0.013 = 0.026.

Taking γ = 0.5, n = 35 PNBs (see Table 1 for exact key bits) the estimation in [1] had been
ε∗ = 0.00059, ε∗a = 0.023 as the median bias over all keys. In this case, m = 256 − 35 = 221.
Taking α = 11, one obtains N ≈ 227.03 ≈ 227 (the data complexity) and thus, the total complexity
becomes 2221+27 + 2256−11, which is approximately 2248 as described in [1].



3 6 15 16 31 35 67 68 71 91 92 93
0.58 0.53 0.71 0.56 0.59 0.59 0.74 0.52 0.56 0.95 0.92 0.88

94 95 96 97 98 99 100 103 104 127 136 191
0.82 0.76 0.97 0.94 0.89 0.78 0.59 0.70 0.58 1.00 0.66 0.66

223 224 225 248 249 250 251 252 253 253 255
0.88 0.68 0.54 1.0 0.1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 1. Key-bits κ and the corresponding biases γκ ≥ 0.5 for the 35 PNBs of the 7-round attack on ChaCha [1].
The index of the key bit κ and the corresponding γκ are presented one below the other in each cell.

However, we have got improved results than [1] with our experiments in a completely similar
set-up as in [1]. Note that the exact experimental figures related to the number of samples are
not available in the paper [1]. We take 28 randomly chosen keys and for each of them we take
230 randomly chosen counters and nonces. For each of these keys, we take the average data ε
and then we consider the median of those ε’s which comes to be ε∗ = 0.001116. We believe that
the multiplication by two while estimating ε∗ was missed in [1]. This happens for the estimation
of ε∗a too. We obtain ε∗a = 0.043572 which is almost twice than the estimate of [1]. However, we
obtain ε∗d = 0.0262, that almost exactly matches with that of [1].

Estimate 2 With this estimate, keeping all the other parameters same, the complexity of [1]
can be revised as follows. In this case, for ε∗ = 0.001116, we obtain N ≈ 225.19 and thus, the
total complexity becomes 2221+25.19 + 2256−11 ≈ 2246.71.

In fact, this is almost the same as the the minor improvement proposed in [9] using Column
Chaining Distinguisher (CCD) that could achieve the complexity of 2246.5.

2.1 Adding more PNBs

In [1], the authors commented that “we note that the described complexities may be improved
by choosing a smaller γ”. However, for a long time (since 2008), it has never been studied how
much improvement can exactly be achieved. Given that ChaCha is being considered to be a
standard [13] and may have wide deployment, it is necessary to obtain the exact figures. For

our study, we look at the PNBs more carefully. We use the same ID-OD pair (∆
(0)
13,13, ∆

(3)
11,0).

Lowering γ one can find more PNBs and after a few rounds of trial and error we take γ = 0.3.
With this, we obtain additional 10 PNBs, i.e., in total 35 + 10 = 45 PNBs (see Table 2 for
details).

7 17 36 38 72 105 137 156 159 194
0.33 0.35 0.31 0.35 0.40 0.43 0.49 0.47 0.43 0.38

Table 2. Key-bits and the corresponding biases γκ ≥ 0.3 for the 10 additional PNBs of the 7-round improved
attack on ChaCha.

Estimate 3 Here we have m = 256− 45 = 211. We estimate ε∗ = 0.000132 as the median bias
over all keys. We also note that ε∗d = 0.025750 and ε∗a = 0.005082 in this case. Taking α = 18,
we obtain N ≈ 231.77 and thus, the total complexity becomes 2211+31.77 + 2256−18 ≈ 2242.82. Note
that ε∗ is reduced from 0.001116 (as in Estimate 2) to 0.000132 (by a factor of more than 8)
here. This increases N , but due to the ten additional PNBs, the overall complexity reduces.



Estimate 4 We will consider another case with 41 PNBs. In this case, we do not consider 4
PNBs that correspond to the keywords k1 (i.e., key bits 35, 36, 38) and k5 (i.e., key bit 191).
This case has worse complexity than the case with 45 PNBs, but this is done consciously so that
we can explain our improvements over this result in Section 3. Here, m = 256− 41 = 215 and
we obtain ε∗ = 0.000404. Further, ε∗d = 0.027418 and ε∗a = 0.014498 in this case. Taking α = 17,
we obtain N ≈ 228.49 and thus, the total complexity becomes 2215+28.49 + 2256−17 ≈ 2243.56. One
may refer to Figure 1 to see the graphical plot corresponding to this data.

We present the summary of the comparative results in Table 3 in the concluding section. So far
we have studied the scenario for any random key and taking the medians for the calculations
guarantee that the attack works for at least half of the keys. However, we discover that if one
can properly choose some words of keys and IVs, then εd can be increased, and thus ε will also
increase. Following the exact calculations of εa is quite complicated as it relates to several PNBs
in the reverse rounds. However, studying the improvement in the bias εd during forward rounds
is somewhat possible as we start with a single bit input difference. We describe this in the next
section.

3 Improved attack on ChaCha7: Choosing proper IVs

We start our explanation following the Figure 1 and Example 1. In the figure we show how the
choice of two words of the secret key and one word of the IVs increase εd significantly than the
cases where this choice is not made. This, in turn, increases ε in each of the runs and finally ε∗

to provide an improved attack complexity.

Example 1. We consider x5 = x9 = 0 and x13 = 0xaaaaaaaa, that is k1 = k5 = 0, and v0 =
0xaaaaaaaa. With this, we observe that ε∗ = 0.002012, ε∗a = 0.014406 and ε∗d = 0.140344 as the
median bias over all the keys other than the fixed ones. Taking α = 21, we obtain N ≈ 224.05

and thus, the total complexity becomes 2215+24.05 + 2256−21 ≈ 2239.14.

3.1 Reducing number of differences after one quarterround

The main issue here is that εd increases quite significantly with the specific choice of some

keywords and the nonces. We are considering the ID as ∆
(0)
13,13. The initial state is as follows:

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15


and the column marked in bold font is the column that will be affected by the ID ∆

(0)
13,13 after

one columnround. The words in other columns will remain the same after one round and there
will be no difference. To understand how the differences propagate in the words of the marked
column depends on the design of quarterround as in (1). Naturally, if one can minimize the
differences after the first round, then one may obtain better biases in form of εd. We try to
identify how this happens.

One may note that if the +’s (modulo additions over 232) in (1) are replaced by ⊕, then the

ID ∆
(0)
13,13 generates output differences at 10 places after quarterround is applied over the said

column. We try to achieve this scenario in the case of (1) (i.e., with modulo addition) and this
depends on the values of and interactions among x1, x5, x9, x13. For ChaCha, we have x1 = c1 =



Fig. 1. We have the data corresponding to 256 runs, and the data corresponding to each run is an average of
230 samples. The X axis in each of the four graphs are indices of different runs. Y axis: (i) for random Key/IV
(a) Top Left: ε (blue), (b) Bottom Left: εd (green) and εa (red); (ii) for random Key/IV with the constraints
k1 = k5 = 0 and v0 = 0xaaaaaaaa (a) Top Right: ε (blue), (ii) Bottom Right: εd (green) and εa (red). For better

representation, in the plots, ε is multiplied by 104, εa by 103 and εd by 102. This is for the ID-OD pair (∆
(0)
13,13,

∆
(3)
11,0). One may note how the values of εd (green) and ε (blue) increase in the right graph than the left graph

and εa remains at the same level.

0x3320646e, a constant. As explained above, we consider x5 = x9 = 0 and x13 = 0xaaaaaaaa,
that provides only 10 differences after one quarterround.

Taking x1 = 0x3320646e, and experimenting with random choices for x5, x9, x13, we have
noted that the number of differences after one quarterround is 20.5 on an average (the experi-
mental results are similar in case we modify the constant at x1 too. We run the experiments 16
times, where the average is taken over 232 data, for all the distinct values of the IV word x13,
in each run.

We have noted that for random case (considering all the values of x13), with ID-OD pair

(∆
(0)
13,13, ∆

(3)
11,0), εd ≈ 0.026. However, for the special choices, such that there are only 10 differ-

ences after one quarterround, we obtain a much better bias (more than 5 times), εd ≈ 0.14. As one
can approximate ε∗ = ε∗a ·ε∗d, considering ε∗a remains same given the fixed set of PNBs, we obtain
significant improvement in ε∗, that in turn reduces the time complexity of the cryptanalysis.

3.2 Choosing IVs corresponding to the keys

To have the number of differences exactly 10 after one quarterround, we studied a scenario as
follows. First the constant at x1 is fixed as in the description of ChaCha. Next we fix x5 = k1
and x9 = k5 at a particular value. Then we find out what are the IVs for which we obtain



exactly 10 differences after one quarterround given the ID ∆
(0)
13,13. We experimented with 211

random choices of k1, k5 and in each case, we have studied how many IVs (out of total 232

choices of x13 = v0) are there for which we obtain only 10 differences after one quarterround. We
note that there are 373 cases (out of 2048), where for some choices of k1, k5, there is not a single
IV for which the condition is satisfied. However, the average, median and the maximum are
respectively 227.08, 226.73 and 228.98 out of 232 possible cases. One may note that if we consider
more than 10 differences, then we will get valid IV’s x13 for the fixed keywords x5, x9 where we
were not getting any IVs for the difference 10. Subsequently, the value of εd will be decreased
as the number of differences grow.

Now let us relate it with the the parameter N as calculated in (4). This is dependent on the
value of ε∗ and given a value of the order of ε∗ = 0.002012, we get N ≈ 224.05. Thus, it is very
clear that even if the other IVs are fixed, then also it is possible to obtain enough samples in
at least half of the choices of keys given the median value of 226.73, which is larger than N .

Moreover, it is possible to obtain high bias for ε∗d even when the number of differences is
little more than 10 after one quarterround. In such a case we can proceed with the attack for
almost all the keys. A mathematical study of the characterization of differences after a single
quarterround would be an interesting combinatorial problem, though it may not be easy due to
the complicated quarterround structure in ChaCha.

3.3 How to choose the PNBs to mount the attacks

We need to obtain the exact values of k1, k5 along with the constant c1 to decide v0. We know
that there are n PNBs that we do not search initially, but search for the other 256− n key bits
exhaustively. If the PNBs do not fall inside the bits of k1, k5 then we need to search these 64
bits as a part of the exhaustive search. We may preprocess this part. That is, for all the 264

choices of k1, k5, we need to search and store the IV’s that are suitable for the attack so that
we obtain a higher value of ε∗d, i.e., that provide a low value of number of differences after a
quarterround. The total time and space complexity of this is 296, which is much less than the
complete attack complexity.

Note that we have first made experiments with the n = 35 PNBs [1] and presented it in
Estimate 2. Then, to get an improved (reduced) attack complexity (in Estimate 3), we added
10 more PNBs, i.e., total 35 + 10 = 45 PNBs. Further, out of those PNBs, we removed 4 (in
Estimate 4) so that there is no PNB from the keywords k1, k5. Thus, we provide results with
n = 41 PNBs in two cases, (i) when the IV’s are chosen without any constraint (Estimate 4)
and (ii) when the IVs are properly chosen with the constraint that after one quarterround the
number of differences become small, i.e., 10 only (Estimate 5).

As we are following in all the cases for ChaCha, we take the ID-OD pair (∆
(0)
13,13, ∆

(3)
11,0).

Now we choose random secret keys in each run. Thus, x5, x9 is fixed in each run. Corresponding
to that we try out all the possible IVs x13 (out of total 232) such that we obtain 10 differences
in the said column after one quarterround. We try with 320 such runs and in each case we choose
a key randomly and fixed that. Indeed there are a few cases (63 out of 320) where we do not
obtain any such IV to mount the attack.

Estimate 5 Considering all the 320 cases, we take the median. With this, we observe that ε∗ =
0.002158, ε∗a = 0.015862 and ε∗d = 0.136778 as the median bias over all the keys. Taking α = 22,
we obtain N ≈ 223.89 and thus, the total complexity becomes 2215+23.89 + 2256−22 ≈ 2238.94. As
we consider the median bias over the complete data, this complexity works for more than half
of the keys. For the 63 keys, where we do not obtain 10 differences with any IV, the attack can
be mounted considering more than 10 differences in the said column after one quarterround.



However, to run the experiment with each possible key (without considering the PNBs), we
have to consider each possible pair of keywords k1, k5. The sets of IVs that should be properly
chosen with such a pair of keywords vary too. However, as the number of IVs corresponding to
x13 = v0 is 232, it is enough to have these many samples of the keystream. This is a nominal
increase in the data complexity that is insignificant to the time complexity of the attack. The
scenario is the same for Salsa as we will discuss in the next section.

4 The impact on Salsa

We have the following initial structure in Salsa.

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 ,

where the matrix at right shows the initial state, that takes four predefined constants c0, . . . , c3
(same values as in ChaCha), 256-bit key k0, . . . , k7, 64-bit nonce v0, v1 and 64-bit counter t0, t1.
We will refer to the nonce and counter words as IV words in the following discussion. For Salsa,
the quarterround is as follows, which is much simpler than ChaCha.

b = b⊕ ((a + d) ≪ 7),
c = c⊕ ((b + a) ≪ 9),
d = d⊕ ((c + b) ≪ 13),
a = a⊕ ((d + c) ≪ 18).

 (5)

In each round, one applies quarterround on all the four columns in the following order:

quarterround(x0, x4, x8, x12), quarterround(x5, x9, x13, x1), quarterround(x10, x14, x2, x6), and
quarterround(x15, x3, x7, x11), and then a transpose(X) as follows:

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

→ XT =


x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

 .

As described earlier, by X(r), we mean that r such rounds have been applied on the initial state
X. Here X(0) is the initial state and after R rounds we have X(R). Then a keystream block of
16 words or 512 bits is obtained as Z = X +X(R). While for Salsa20, R = 20, the one accepted
in eStream [12] software portfolio is Salsa20/12, where R = 12.

In [1], the attack has been studied on Salsa20/8, i.e., on reduced round Salsa where R = 8,
and 4 forward rounds and 4 reverse rounds have been considered. In this case, the ID-OD pair

had been taken as (∆
(0)
7,31, ∆

(4)
1,14) and the experimental results showed ε∗d = 0.1314.

If the +’s (modulo addition over 232) in (5) is replaced by ⊕, then the ID ∆
(0)
7,31 generates

output differences at 4 places after quarterround is applied over the final column. In fact, with
the actual quarterround as in (5), one obtains the value 5 on an average. Thus here the minimum
value is close to the average case and the difference is less significant than the case of ChaCha.

Here the final column contains x3 = k2, x7 = v1, x11 = k4 and x15 = c3 = 0x6b206574. If
we consider a special case x3 = k2 = 0, x15 = k7 = 0xaaaaaaaa and x11 = v1 = 0, then we
always get the minimum number of difference 4 after one round.



Example 2. With this we observe that the value of ε∗d = 0.224494, which is more than what
observed in [1]. Further, we need to discard the PNBs corresponding to the keywords k2, k4.
This reduces 3 PNBs (two from k2 and one from k4) from the list of 36 PNBs described in [1, 7].
Thus we have n = 33 PNBs here. Finally we obtain, ε∗a = 0.014030 and ε∗ = 0.003150. Taking
α = 15, we get N = 22.46. Thus, we get the total complexity as 2223+22.46 + 2256−15 = 2245.52.

While we got different kinds of results related to the number of IVs for the selected keys
that provide less (for example 10) number of differences after one quarterroundfor ChaCha, the
situation is much more exact in case of Salsa. In this case, for a specific pair of keywords, we
obtain that out of 232 IVs, there are exactly/approximately 231−(δ−4) IVs corresponding to the
number of differences δ = 4 to 21 after one quarterround. For the cases δ = 4 to 12 we find
that this is exact for all the experiments. For δ = 13 to 19, it is approximately equal. For
δ = 20 (respectively 21), it deviates slightly from the formula and we obtain the number of IVs
producing the number of differences δ after one quarterround is approximately 214.6 (respectively
213) instead of 215 (respectively 214). We believe that answering this combinatorially may be
easier in the case of Salsa (as the quarterround structure is less complicated) than ChaCha. In
this direction, we provide some combinatorial insight to this in the next section.

4.1 How to choose an input difference in Salsa

We concentrate further on a quarterround of Salsa. In a columnround, the quarterrounds are as
follows: quarterround(x0, x4, x8, x12), quarterround(x5, x9, x13, x1), quarterround(x10, x14, x2, x6),
and quarterround(x15, x3, x7, x11). The IVs words x7, x8 come in the third position in the re-
spective quarterrounds, whereas the IV word x9 comes in the second position and the IV word
x6 comes in the last position. If one looks at a quarterround(see (5)), it is easy to note that the
third word is involved in the second step of a quarterround, all the other words are involved in
the first step itself. Thus, to have less number of differences after one quarterround, it is natural
to put a difference in the third word of the quarterround, i.e., c rather than the other words, i.e.,
a, b, d. In general, to present an attack scenario, the differences are put in the IV words where
the attacker can have access. Thus, it is better to consider the IV words that come in the third
position of quarterround. This happens for x7, x8 but not for x6, x9. This is why the IDs in the
words x7, x8 provide substantially high biases after 4 rounds than the IDs in the words x6, x9.

Next we refer why it is logical to choose the most significant bit (i.e., the 31st or the
leftmost bit) to put the input difference. We refer to the case corresponding to any one of
quarterround(x0, x4, x8, x12), quarterround(x15, x3, x7, x11). In this case the word where we put
the difference comes at c (5). There is no difference in a, b, d that are involved in the first
step of quarterround. Thus no difference will be generated. In the second step too, there is no
difference in a, b. The difference is only in c, which is XORed. Thus, only one bit difference will
be remaining in the MSB of c. In the third step c is added to b. Since the difference is at the
most significant bit, even if there is a carry, that will be lost and not be propagated. Thus,
one more difference will be produced at the 12-th bit of d. In the last step c, d are added. The
differential in the MSB of c will not be propagated, but the one at the 12-th bit of d may be
propagated.

Adding the bits 0 to 11 of c and d one may or may not get a carry. If one does not get a
carry, then keeping the 12-th bit of c as zero will guarantee that the difference will not propagate
further. If one does get a carry, then keeping the 12-th bit of c as 1 will guarantee that the
carry will be propagated in both the cases and thus no difference will be be generated further.
Thus, there will be two differences in (d+ c), one at the 12-th bit and one at the 31-st bit. That
will be left rotated by 18 places and thus the differences in a will be at 30-th and 17-th bits. In
summary, we will have only four differences in such cases after one quarterround, the 17-th and



30-th bits of a, 31-st bit of c and 12-th bit of d. There will be no difference in the word b. Thus,
it is very clear that given a pair of keywords in a specific column, one can get exactly half of the
IVs (corresponding to “no carry, 12th bit of c is 0” and “carry, 12th bit of c is 1”) for which the
number of differences after one quarterround is exactly 4 and that will provide a better result
than choosing any IV. If such a condition is not satisfied, there will be more differences, but
that will occur only at the last step of quarterround. In such a case more than two differences
may appear in a, but naturally the probability of obtaining more differences will decrease.

Estimate 6 As already discussed, we work with the ID-OD pair (∆
(0)
7,31, ∆

(4)
1,14). Now we choose

random secret keys in each run. Thus, x3, x11 are fixed in each run. Corresponding to that we try
out all the properly chosen IVs x7 such that we obtain 4 differences in the said column after one
quarterround. As explained above, in each case we get 231 such suitable IVs out of total 232. We
experiment with 256 such runs, randomly choosing the secret keys in each case. With this, we
observe that ε∗ = 0.003154, ε∗a = 0.013778 and ε∗d = 0.228538 as the median bias. Taking α = 15,
we obtain N ≈ 222.45 and thus, the total complexity becomes 2223+22.45 + 2256−15 ≈ 2245.52. That
is the special case in Example 2 provides a good representation of the general case. Our result
provides improved cryptanalysis of Salsa20/8 over the existing results [1, 9, 7].

5 Conclusion

The most significant cryptanalysis of reduced round Salsa and ChaCha had been described
in [1]. After that there are minor tweaks over that technique, but no significant improvement
in reducing the overall complexity of the attack could be achieved. In this paper we note that
the forward bias can be improved significantly by properly choosing the IVs during the search
process over the secret keys. This helps in obtaining notable improvement the time complexity
of the attack as summarized in Table 3. The data complexity N is much lower in general, and
to have chosen IVs corresponding to differnt keys, it is always upper bounded by 232, given the
32-bit IV word on which we make the choices.

ChaCha7

Reference # PNBs (n) ε∗ α Total Complexity

[1] 35 0.000590 11 2248

[1] (corrected, our experiments) 35 0.001116 11 2246.71

CCD[9] See Section 4.4 and Table 8 in [9] 2246.5

Our (Section 2.1) 45 0.000132 18 2242.82

Our (Section 2.1) 41 0.000404 17 2243.56

Our (Section 3, specific IVs) 41 0.002012 21 2238.94

Salsa20/8

[1] 36 0.00015 8 2251

[7] (correction of [1]) 36 0.00060 12.82 2247.2

CCD[9] See Section 4.4 of [9] 2250

Our (Section 4.1, specific IVs) 33 0.003154 15 2245.52

Table 3. Summary of the attack complexity against ChaCha7 (top) and Salsa20/8 (bottom).

We show how one should choose the PNBs so that they are not present in the keywords in
the same column with the IV word where the input difference is considered. The basic idea of
our choice of IVs are from the fact that one should have minimal number of differences after the
application of the quarterround function. This helps in obtaining higher biases in the forward
direction. We provide several justifications in this regard to explain the interactions between



the key and IV words in the same column. Our results provide best attack on reduced round
ChaCha (ChaCha7, with 7 rounds) and Salsa (Salsa20/8, with 8 rounds). However, it should
be noted that the ChaCha standardization (ChaCha20) considers 20 rounds and the version of
Salsa that is in eStream (Salsa20/12) employs 12 rounds. Thus, our findings, as in the case of
all the state-of-the-art results in this area, do not provide any cryptanalytic threat towards the
ciphers with full rounds.

References

1. J. -P. Aumasson, S. Fischer, S. Khazaei, W. Meier and C. Rechberger. New Features of Latin Dances: Analysis
of Salsa, ChaCha, and Rumba. FSE 2008, LNCS 5086, pp. 470-488, Springer. See also http://eprint.iacr.

org/2007/472

2. D. J. Bernstein. Snuffle 2005: the Salsa20 encryption function. http://cr.yp.to/snuffle.html
3. D. J. Bernstein. ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html, January 2008.
4. P. Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. SASC 2006. http://www.

ciphergoth.org/crypto/salsa20/

5. S. Fischer, W. Meier, C. Berbain, J. -F. Biasse and M. J. B. Robshaw. Non-randomness in eSTREAM candi-
dates Salsa20 and TSC-4. INDOCRYPT 2006. LNCS 4329, pp. 2-16, Springer.

6. T. Ishiguro, S. Kiyomoto and Y. Miyake. Latin Dances Revisited: New Analytic Results of Salsa20 and
ChaCha. ICICS 2011, LNCS 7043, pp. 255-266, Springer. See corrections in http://eprint.iacr.org/2012/065

7. S. Maitra, G. Paul and W. Meier. Salsa20 Cryptanalysis: New Moves and Revisiting Old Styles. WCC 2015,
the Ninth International Workshop on Coding and Cryptography, April 13-17, 2015, Paris, France. See also
http://eprint.iacr.org/2015/217

8. N. Mouha and B. Preneel. Towards Finding Optimal Differential Characteristics for ARX: Application to
Salsa20. Cryptology ePrint Archive: Report 2013/328, http://eprint.iacr.org/2013/328

9. Z. Shi, B. Zhang, D. Feng and W. Wu. Improved Key Recovery Attacks on Reduced-Round Salsa20 and
ChaCha. ICISC 2012, LNCS 7839, pp. 337-351, Springer.

10. Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki and Hiroki Nakashima. Differential Cryptanalysis of Salsa20/8.
SASC 2007. http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

11. http://www.infosecurity-magazine.com/news/google-swaps-out-crypto-ciphers-in-openssl/

12. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers. http://www.ecrypt.eu.org/
stream/

13. https://tools.ietf.org/html/draft-irtf-cfrg-chacha20-poly1305-10


