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Abstract

In this paper, we introduce the notion of (ε, δ)-differential privacy in distribution,
a strong version of the existing (ε, δ)-differential privacy, used to mathematically en-
sure that private data of an individual are protected when embedded into a queried
database. In practice, such property is obtained by adding some relevant noise.
Our new notion permits to simplify proofs of (ε, δ) privacy for mechanisms adding
noise with a continuous distribution. As a first example, we give a simple proof
that the Gaussian mechanism is (ε, δ)-differentially private in distribution.
Using differential privacy in distribution, we then give simple conditions for an
instance-based noise mechanism to be (ε, δ)-differentially private. After that, we
exploit these conditions to design a new (ε, δ)-differentially private instance-based
noise algorithm. Compare to existing ones, our algorithm have a better accuracy
when used to answer a query in a differentially private manner.
In particular, our algorithm does not require the computation of the so-called
Smooth Sensitivity, usually used in instance-based noise algorithms, and which
was proved to be NP hard to compute in some cases, namely statistics queries on
some graphs. Our algorithm handles such situations and in particular some cases
for which no instance-based noise mechanism were known to perform well.

1 Introduction

1.1 Context and related work

One big concern in data publishing is the privacy of the individuals concerned with
these data. As the opportunities and the means to release useful information from in-
dividual data (a.k.a. personal data) grow wider, the leakage of information threatens
more and more these individuals. That is the reason why researchers have proposed
several rigorous notions of privacy in the last few years and, among them, one of the
most promising is differential privacy. This notion, usually referred as ε-differential pri-
vacy, was introduced by Dwork, McSherry, Nissim and Smith in [3]. It provides strong
guarantees of privacy, controlled by the parameter ε, and effective even against adver-
saries having arbitrary side information. Informally speaking, a differentially private
mechanism ensures that any of its outputs is essentially likely to occur, independent of
the presence or absence of any individual in the database.
A common way to design an ε-differentially private randomized mechanism A is to add
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noise to some query f on the considered database x: A(x) = f(x) + Z for some well-
chosen random variable Z (independent of x). It may happen that some situations
require noise which cannot provide ε-differential privacy, but satisfy some weaker no-
tions of privacy. The most known and widely used weakening of ε-differential privacy
was introduced in [2] and is called (ε, δ)-differential privacy, where δ is an additional
approximation used to relax the strict relative shift in the case of events that are not es-
pecially likely to occur. The standard example satisfying (ε, δ)-differential privacy, but
not ε-differential privacy, is the so-called Gaussian mechanism which already appeared
in numerous designs of private mechanisms (see for instance [2], [6] or [12]).
The first contribution of this paper is to show how a simple condition, that we called
(ε, δ)-differential privacy in distribution, can be used to give an easy framework for
proofs of (ε, δ)-differential privacy. This notion appeared implicitly in (possibly all)
proofs of (ε, δ)-differential privacy in the literature, but is not stated: we show on two
common examples how proofs of (ε, δ)-differential privacy are easily obtained from this
framework.
Another important family of (ε, δ)-differentially private mechanisms is given by instance-
based noise mechanisms [13] which take the following form: A(x) = f(x) +Zx for some
random variable Zx depending on the considered dataset x. In [13], the differentially
private mechanism is calibrated to a new kind of sensitivity called Smooth Sensitivity,
while previous algorithms were always designed with respect to global sensitivity (see
Section 2 for formal definitions). Such schemes are widely used, in particular to release
differentially private (statistics of) graphs (see [11], [7], [9], [14]). To the best of our
knowledge, the only other instance-based noise technique that exists in the literature
appeared in [9], where another kind of sensitivity (namely local sensitivity of higher
order) was used to calibrate noise in a differentially private manner. In particular, the
authors show that the Smooth Sensitivity of counts of k-triangles in graphs is NP-hard
to compute (relative to edge-privacy). As an alternative, they designed an instance-
based noise mechanism for such queries, that was differentially private and did not rely
on the computation of Smooth Sensitivity.
Our main contribution in this paper is a new method to design instance-based noise dif-
ferentially private algorithms. First, we use our new notion of (ε, δ)-differential privacy
in distribution to give very simple conditions for an instance-based noise mechanism to
be (ε, δ)-differentially private. Then these conditions are used to design an instance-
based noise mechanism, for which we give an algorithm for practical implementations.
This algorithm is very simple, guarantees (ε, δ)-differential privacy, and is easy to de-
ploy in practice. Our result can really improve the accuracy of an answer to a query,
compared to related work algorithms. It moreover handles new cases on which no
instance-based noise differentially private mechanism were known to apply. Finally, we
also discuss some typical cases to which our technique can be usefully applied.

1.2 Details on our contributions

To summarize, our contribution is two-fold: we first introduce the notion of (ε, δ)-
differential privacy in distribution, and we then study instance-based noise mechanisms
theoretically first, and thereafter on examples. More precisely, we have three important
results:
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• we give a precise definition of (ε, δ)-differential privacy in distribution (see Defini-
tion 8), and prove that it implies (ε, δ)-differential privacy. Existing proofs of (ε, δ)-
differential privacy suffer from a lack of standardized method, leading sometimes to
some confusion. Using (ε, δ)-differential privacy in distribution, we give a simple frame-
work that can be applied to all existing proofs of (ε, δ)-differential privacy, and we
illustrate this on two examples: Gaussian mechanism (see section 3.2) and instance-
based noise mechanism (see section 4.1);
• using our new introduced notion, we give simple conditions for a Laplace instance-
based noise mechanism to be (ε, δ)-differentially private (see Theorem 14). Then we use
these conditions to design an algorithm (referred as Algorithm 1 in the sequel) which is
(ε, δ)-differentially private and allows for significantly reducing noise compared to stan-
dard Laplace noise mechanism. Algorithm 1 only needs to compute (or approximate)
a restricted number of local sensitivities, and not all. This is much better that the
so-called Smooth Sensitivity used so far to design instance-based noise algorithms;
• Algorithm 1 can in fact be applied in many more situations than existing instance-
based noise techniques. We then discuss specific examples where Algorithm 1 gives
significantly less noise than existing work, and should be used. In particular, it is useful
to release the number of k-triangles in a graph, even in cases where the graph is not
too much connected. To the best of our knowledge, Algorithm 1 is the best algorithm
to handle such situations, in terms of a trade-off utility/privacy.

1.3 Organization of the paper

In section 2, we recall relevant notions of differential privacy for this paper, and we state
our notations. In section 3, we introduce and discuss our new notion of (ε, δ)-differential
privacy in distribution. Section 4 is devoted to general privacy results for instance-based
noise mechanisms. In section 5, we design our Algorithm 1 and discuss some possible
applications. Complete proofs of all the results are finally given in the appendix.

2 Differential Privacy

In this section, we recall the relevant notions of differential privacy we will need in the
sequel. We refer to [1] and [4] for basic notions about differential privacy.

2.1 Databases and neighbors

All along the paper, we will denote by Dn the database from which we want to extract
data subsets x, y ⊂ Dn. Given a query f defined on Dn, our interest is to understand
how to release privately some values f(x), f(y)... In the sequel, n stands for the number
of individuals in the database. Its value is necessary to tune the privacy parameters
(see [5]).
Differential privacy relies on a notion of neighboring that can be defined as follows.

Definition 1 Let Dn be a database. Two sub-databases x, x′ of Dn are said to be
adjacent if they differ from each other by at most one individual. Then we denote
x ∼ x′.
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We say that the database Dn is connected if for all x, x′ ⊂ Dn, there exist a sequence
(xi)1≤i≤N such that x1 = x, xN = x′ and

xi ∼ xi+1 for all 1 ≤ i ≤ N − 1.

In the sequel, we will always assume that the database Dn is connected. Our results are
very general, so this is the only assumption on the database Dn. For our purpose, this
assumption can be removed since one can handle each connected component in parallel
without loss of privacy (see for instance Theorem 4 in [10]).

2.2 (ε, δ)-differential privacy

The idea of differential privacy is the following: a randomized mechanism is ε-differentially
private if adding or removing a single individual in the underlying database changes the
probability of each mechanism output by at most a eε-factor. Here is the formal defini-
tion.

Definition 2 ([3]) Let Dn be a database. A randomized algorithm A : Dn → R is
ε-differentially private if, for all subsets S ⊂ R, we have

P(A(x) ∈ S) ≤ eε P(A(x′) ∈ S) whenever x ∼ x′.

This definition of ε-differential privacy is sometimes called pure privacy, by con-
trast with the following weaker notion of (ε, δ)-differential privacy, which adds some
approximation δ.

Definition 3 ([2]) Let Dn be a database. A randomized algorithm A : Dn → R is
(ε, δ)-differentially private if, for all subsets S ⊂ R, we have

P(A(x) ∈ S) ≤ eε P(A(x′) ∈ S) + δ whenever x ∼ x′.

In [8] and [5], it is required to have δ < ε2/n in order to satisfy some meaningful
privacy, called semantic differential privacy.
For almost all differentially private mechanisms from the literature which have noise
with continuous distributions (Laplace, Gaussian, ...), proofs of privacy relied on an
estimation of the privacy loss

gx(y)

gx′(y)
for all x ∼ x′, y ∈ R,

where gx denotes the distribution of A(x) = f(x)+Z. Indeed, the quantity gx(y)/gx′(y)
is usually much easier to compute than the ratio P(A(x) ∈ S)/P(A(x′) ∈ S), when con-
sidering continuous distributions. Moreover, it appears that estimates on the privacy
loss characterizes ε-differential privacy for such mechanisms. This motivates the follow-
ing definition.

Definition 4 Let A : Dn → R be a randomized algorithm. Then A is said to be
ε-differentially private in distribution if the following holds:

gx(y)

gx′(y)
≤ eε for all x ∼ x′, y ∈ R.
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As given by the following proposition (which proof is given in the appendices), this
notion is exactly ε-differential privacy.

Proposition 5 Let A : Dn → R be a randomized algorithm. Then A is ε-differentially
private if and only if A is ε-differentially private in distribution.

It is now tempting to define (ε, δ)-differential privacy in distribution as follows:
control the privacy loss gx(y)/gx′(y) by a factor eε for all y in some subset E ⊂ R
such that P(A(x) /∈ E) is small enough, controlled by the parameter δ. Unfortunately,
non-pure (ε, δ)-private mechanisms (such as Gaussian mechanism) do not satisfy such
a condition in general. In fact, due to possible translations of the set E by the f(x)’s,
the control on all the probabilities P(A(x) /∈ E) requires more flexibility, that is a
dependence E = Ex on x (see Definition 8).

2.3 Sensitivity of a query

The notion of sensitivity of a query is crucial to design differentially private algorithms
that are useful in practice. In our paper, for simplicity, we will only work on queries
f : Dn → R with real values. One can easily generalize the following definitions and
our results to any range space R as soon as it is equipped with a distance.

Definition 6 Let f : Dn → R be a query. The global sensitivity GS(f) of f (denoted
GS if there is no confusion) is defined by

GS(f) = sup
x∼x′
|f(x)− f(x′)|.

In some specific situations, the following notion of local sensitivity yields more ac-
curate results. We will explain later in the paper how local sensitivity can be used to
design instance-based noise (ε, δ)-differentially private mechanisms.

Definition 7 For all x ⊂ Dn, the local sensitivity of a query f : Dn → R at x, denoted
by LS(f)(x) (or simply LS(x)), is defined by

LS(f)(x) = sup
x∼x′
|f(x)− f(x′)|.

Note that local sensitivity depends on the participation of an individual in the
database, hence it is not a private notion on its own. Nevertheless, one can use it in
order to design differentially private mechanisms, which are more accurate than their
analogs calibrated to global sensitivity.

2.4 Notations for Laplace and Gaussian mechanisms

In our results, we will calibrate the privacy by a parameter λ defining the considered
distribution, that is distribution g(y) proportional to e−λy for Laplace random variable,
and proportional to e−λy

2
for Gaussian random variable. Laplace (resp. Gaussian)

mechanism is defined by
A(x) = f(x) + Zx

where Zx is a Laplace (resp. Gaussian) random variable of parameter λx, possibly
depending on x ⊂ Dn.
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3 (ε, δ)-differential privacy in distribution

In this section, we introduce (ε, δ)-differential privacy in distribution, a strenghtening
of (ε, δ)-differential privacy. We then show on the example of Gaussian mechanism how
the statement of (ε, δ)-differential privacy in distribution permits clear and short proofs
of (ε, δ)-differential for any mechanism whose noise has a continuous distribution.

3.1 Main definition

We denote by Ac the complementary set of a subset A ⊂ R.

Definition 8 Let f : Dn → R be a query function. Let (Zx)x⊂Dn be a family of
random variables. Let A be a randomized mechanism, given by A(x) = f(x) + Zx for
all x ⊂ Dn. Denote by gx the distribution of A(x). Then we say that the mechanism A
is (ε, δ)-differentially private in distribution if there exist subsets Ex ⊂ R such that:

1. gx(y)
gx′ (y) ≤ e

ε for all x′ ∼ x, and all y ∈ Ex;

2. P(A(x) /∈ Ex) = P(Zx ∈ (Ex − f(x))c) ≤ δ for all x ⊂ D.

Remark 9 •When (Zx)x⊂D is a family of independent variables, identically distributed
with respect to the Laplace distribution, then the mechanism A from the previous def-
inition is the so-called Laplace mechanism.
• As said before, the usual notion of ε-differential privacy is equivalent to ε-differential
privacy in distribution, hence the notion above is a generalization of ε-differential pri-
vacy. We will see in the next proposition that (ε, δ)-differential privacy in distribution
implies (ε, δ)-differential privacy. We have no counter-example to show that they are
not equivalent in general. We let this question open since our interest in this paper is
only to simplify proofs of (ε, δ)-differential privacy.

In practice for continuous distributions, conditions in Definition 8 are much easier
to deal with than the condition of (ε, δ)-differential privacy. The following proposition
shows that it is indeed sufficient to prove (ε, δ)-differential privacy. Its proof is given in
appendix 6.1.

Proposition 10 Let A be a randomized mechanism. If A is (ε, δ)-differentially private
in distribution, then A is also (ε, δ)-differentially private.

3.2 Gaussian mechanism is (ε, δ)-differentially private in distribution

We first show that the Gaussian mechanism satisfies (ε, δ)-differential privacy in dis-
tribution for a good choice of its parameters. The proof follows the same idea as the
existing proofs for traditional (ε, δ)-differential privacy. Our contribution is then to
prove the (a priori) stronger notion of (ε, δ)-privacy in distribution for the Gaussian
mechanism, while giving a proof as general as possible so that the same framework can
be used in other similar situations, for other continuous distributions. The Definition 8
has been introduced as shown above for this particular reason since it gives the expected
general framework. More precisely, one can see that we need to :
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1. define the subsets Ex, in order to have ε-differential privacy for the restriction of
distributions to the subsets Ex;

2. use tail bounds on the distribution to control what is out of Ex − f(x) by the
parameter δ.

Regarding the Gaussian mechanism, we obtain the following proposition.

Proposition 11 Let f : Dn → R be a query, and GS its (global) sensitivity. Let A
be the Gaussian mechanism on f , with parameter λ (see section 2.4). Then A satisfies
(ε, δ)-differential privacy in distribution if the following condition holds:

√
λ =

√
C2 + ε− C
GS

where C = C(δ) = h−1(2
√
πδ) and h(y) = e−y

2

y .

Sketch of proof 12 Full details are given in the appendices. For x ⊂ Dn, we define
Ex = { y ∈ R | λ × (GS2 + GS × 2 × |f(x) − y|) ≤ ε }. Next we show that if the
parameter λ is chosen as in the statement, then we have P(Z /∈ Ex − f(x)) ≤ δ, using
the tail bound of the Gaussian random variable of parameter λ. �

Remark 13 • One can easily derive a simple expression of λ in terms of the parameters
ε, δ (see appendix for details). Indeed, for sufficiently small values of δ, we have the
estimate √

λ ∼ 1

GS
× ε

2×
√

ln( 1
2×
√
π×δ )

.

• In cases where slightly more accuracy is needed, one can find better (i.e. smaller) val-
ues for λ: with notations from the proof, the value t′ can be improved by approximating

the zero of the function e−t
′2

t′ −
√
π × 2× δ.

4 Smooth sensitivity and instance-based noise

We now study the case of instance-based noise and smooth sensitivity with our new
notion, and give several new results.

4.1 Instance-based noise and (ε, δ)-differential privacy in distribution

The first purpose of this section is to show that the instance-based noise technique
introduced in [13] can be generalized, and then satisfies privacy in the sense of (ε, δ)-
differential privacy in distribution.
In fact, the idea from [13] is to consider a mechanism of the form

A(x) = f(x) +
1

λx
Z,

where Z is a Laplace random variable with parameter 1. The instance-based coefficient
λx then defines the noise magnitude. With such a mechanism, one can hope to reduce
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the error, and then manage larger values of λx for subsets x ⊂ Dn which are less sensi-
tive.
The following result gives the right condition for such mechanism to be (ε, δ)-differentially
private, using our new notion. On the one hand, this theorem is our second illustra-
tion that the framework of (ε, δ)-differential privacy in distribution allows for simple
proofs of privacy. On the other hand, it is a generalization of the Smooth Sensitivity
technique introduced in [13] (see section 4.2), which gives simple conditions to design
instance-based noise differentially private algorithms. We use it in the sequel to give
new differentially private algorithms. Before giving our result, we need to introduce the
notation

∆x,x′ = ∆x,x′(f) = |f(x)− f(x′)|.

Theorem 14 Let A be the mechanism defined above, such that the noise magnitude
satisfies the 2 following conditions for all x ⊂ Dn:

1. λx ≤ αx × ε
∆x,x′

for all x′ ∼ x ∈ Dn;

2. |1− λx
λx′
| ≤ (1− αx)× ε

ln(1/δ) for all x′ ∼ x ∈ Dn,

and for some values 0 ≤ αx ≤ 1. Then A is (ε, δ)-differentially private in distribution.
In particular, A is (ε, δ)-differentially private.

Proof We need to find Ex′ ⊂ R such that P(A(x′) ∈ Ecx′) ≤ δ and:

λx|f(x)− y| − λx′ |f(x′)− y| ≤ ε for all y ∈ Ex′ .

Moreover, a triangular inequality gives

λx|f(x)− y| − λx′ |f(x′)− y| ≤ λx∆x,x′ + |λx′ − λx| × |f(x′)− y|.

Hence from the assumptions, it is sufficient to find Ex′ such that:

|λx′ − λx| × |f(x′)− y| ≤ (1− αx)× ε for all y ∈ Ex′ .

Now set Ex′ = { y | |λx′ − λx| × |f(x′) − y| ≤ (1 − αx) × ε }. We need to show that
P(A(x′) /∈ Ex′) ≤ δ. This is a straightforward consequence of the tail bound estimation
for Laplace distribution:

P(A(x′) /∈ Ex′) = P(Z >
(1− αx)× ε× λx′
|λx′ − λx|

)

= e
−((1−αx)×ε)× 1

|1− λx
λx′
|
.

�

Remark 15 • One can easily derive analog results for noises with respect to other
distributions, such as instance-based Gaussian noise.
• Condition 1 in Theorem 14 is equivalent to the condition

λx ≤ αx ×
ε

LS(x)
,
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illustrating that the amplitude λx is calibrated to local sensitivity (see Section 2.3).
• Condition 2 requires that amplitudes of 2 neighbor instances λx and λx′ should be
close one from each other when x ∼ x′, where the distance between them is measured
by the privacy parameters ε and δ.

4.2 Comparison with Smooth Sensitivity calibrated noise

In [13], the authors introduced the notion of Smooth Sensitivity, given in the below
definition. Such notion is between the local and the global sensitivity and has been
designed to achieve private algorithms with better accuracy than those calibrated with
the global sensitivity.

Definition 16 Let β > 0, and let f : Dn → R be a query. A function S : Dn → R+ is
a β-smooth upper bound on the local sensitivity LS(f) if the following conditions hold
for all x ⊂ Dn:
(i) S(x) ≥ LS(f)(x);
(ii) S(x) ≤ eβ × S(x′) for all x′ ∼ x.

Global sensitivity GS(f) is a (constant) 0-upper bound on LS(f). The β-smooth sen-
sitivity is another example of β-smooth upper bound.

Definition 17 Let β > 0, and let f : Dn → R be a query. The β-smooth sensitivity
S∗f,β of f is defined by

S∗f,β(x) = max
y⊂Dn

( LS(f)(y)× e−βd(x,y) )

where d(x, y) is the number of individuals on which the databases x and y differ.

The authors of [13] show that β-smooth sensitivity of f is the optimal β-smooth
upper bound on LS(f). Lemma 2.5 in [13] states that the instance-based noise given in
Section 4.1 is (ε, δ)-differentially private for λx = ε

2×S(x) , where S is a β-smooth upper

bound on local sensitivity with β = ε
2×ln(1/δ) .

For a suitable choice of αx, λx, the Lemma 2.5 given in [13] is a consequence of Theorem
14. Indeed, on can take αx = 1

2 and λx = ε
2×S(x) . For β > 0, we have 1− eβ ≤ β. Since

S is a β-smooth upper bound on local sensitivity, we have for all x′ ∼ x,

|1− S(x)

S(x′)
| ≤ |1− eβ|

≤ β

≤ ε

2
× 1

ln(1/δ)
.

Hence condition 2 in Theorem 14 is satisfied. Moreover, Condition 1 is straightforward
since S is an upper bound on local sensitivity LS.

Remark 18 It was shown in [9] that computing Smooth Sensitivity of some graph
statistics is NP -hard. In the next sections, we introduce an instance-based noise algo-
rithm that avoids the use of Smooth Sensitivity, and allows efficient computations as
long as local sensitivities can be efficiently computed or approximated.
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5 Reducing error with instance-based noise

Since the noise error of the mechanism instance-based noise is precisely 1
λx

(see above),
our goal is to design an algorithm that chooses values of λx as large as possible, while
satisfying both conditions in Theorem 14 (and not based on the Smooth Sensitivity).
In this section, we propose such an algorithm.

5.1 Our instance-base noise algorithm

Let f : Dn → R be a query. We consider values (LS(x))x⊂Dn , corresponding to the local
sensitivities of f that can be ordered increasingly as follows: (LS1, ...LSr), LSi ≤ LSi+1.
Notice that with such notations, we have LSr = GS. We will denote

Dk = { x | LS(x) = LSk },

that we call the k-level of sensitivities. Moreover, we will make use of the notation k ∼ l
when there exist x ∼ x′ such that x ∈ Dk and x′ ∈ Dl. We also write x < x′ if x ∈ Dk,
x′ ∈ Dl for some k < l.
Ideally, we would like to design our instance-based noise algorithm with noise amplitude
at level k equal to λk = ε

LSk
. Unfortunately, it is possible that condition 2 in Theorem

14 is not satisfied, reflecting the fact that local sensitivity is not private in general.
Hence we will find 0 < αk < 1’s as large as possible such that both λk = αk × ε

∆k

and condition 2 hold. For that, we first do an analysis on the situation where only two
local sensitivities are at stake, and then we use careful observations on the neighboring
relationships to design Algorithm 1.
As explained previously, we will need to give a solution to the following optimization
problem, which is the situation of a query whose local sensitivities take only two values.
Let 0 < LS1 < LS2, and 0 < t ≤ 1. Let λ1 = α1 × ε

LS1
, λ2 = α2 × ε

LS2
, for some

0 ≤ α1, α2 ≤ 1. Moreover, assume that we want the following constraints to hold:

|1− λ1

λ2
| ≤ (1− α1)× t (1)

|1− λ2

λ1
| ≤ (1− α2)× t (2) .

Claim 19 The following condition is a sufficient condition to satisfy (1) and (2) in the
situation where LS1 ≤ LS2, and the values α1, α2 are chosen less than 1

2 :

λ2 ≤ λ1 ≤ min( λ2 × (1 +
1

2
t) ,

ε

2× LS1
). (∗)

Proof of Claim 19 is given in the appendices. Now the idea of our algorithm goes as
follows. We build the sequence (λk)k by descending induction, starting from λr = ε

2LSr
.

When λk+1 (≤ ε
2LSk+1

) is given, we try to find λk (≤ ε
2LSk

) greater than λk+1, and

such that the privacy conditions (∗) hold with all previously constructed λk+m (these
conditions were kept in memory in previous steps). During step k also, we compute the
privacy conditions (∗) between λk and the lower neighbors λk−m, to be kept in memory
until we reach the lowest of their levels τk = k −m0. Later in the algorithm, at step
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k −m0 − 1, we are free to delete the privacy conditions associated to λk, in order to
maximize as much as possible further values of (λj)j≤k−m0−1. In the proof, we will see
that in order to choose λk ≥ λk+1 at step k, we need that LSk and LSk+1 are not too
close one from each other. More precisely, we need the condition (1 + 1

2 × t) ≥
LSk
LSk+1

,

for t = ε
ln(1/δ) .

We now use the previous discussion to design the following instance-based noise Algo-
rithm 1. If the algorithm for the computation of the local sensitivities is efficient, then
our Algorithm 1 is efficient as well.

Algorithm 1: Instance-Based Noise Algorithm

Input: data set y ⊂ Dn, query f , privacy parameters ε, δ
Output: private value for f(y)
. set t = ε

ln(1/δ)

. compute LSr and set λr = ε
2LSr

. if y ∈ Dr, return f(y) + Lap(λr)

. end if

. for l ∼ r, l < r, compute LSl

. end for

. compute τr = minl<r,l∼r l

. for k from r-1 to 1, do

. for l ∼ k, l < k, compute LSl

. end for

. compute τk = minl<k,l∼k l

. if
LSk+1

LSk
< (1 + 1

2 × t), set λk = λk+1

. else compute lk = maxτl≤k l

. set λk = min( ε
2LSk

, λlk × (1 + 1
2 × t))

. end if

. if y ∈ Dk, return f(y) + Lap(λk)

. end if

. end for

Proposition 20 Algorithm 1 is (ε, δ)-differentially private in distribution. It follows
that Algorithm 1 is (ε, δ)-differentially private.

First, we notice that Algorithm 1 is well-defined since the induction process is valid.
As already assumed, Dn is connected with respect to our neighboring relation. In
particular, there exists l > k (when k 6= r) such that τl ≤ k. It follows that lk > k, and
then λk is constructed from the sequence (λl)l>k. A complete proof of Proposition 20
is given in appendix 6.2. Now we emphasize on some nice features of Algorithm 1.

Remark 21 • Algorithm 1 does not require to find a β-smooth upper bound, nor to
compute the Smooth Sensitivity S∗f,β (which requires the knowledge of all local sensitiv-
ities for the computation of one single value S∗f,β(x)). Given some x ⊂ Dn, x ∈ Dk, we
only need to know the list (LSi)i≥k and the subjacent relationships for y, y′ ⊂ ∪l≥kDl.
• Compared to standard Laplace mechanism, Algorithm 1 is particularly attractive
when local sensitivities are far apart from each other, and when repeated queries on
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different data sets in Dn are asked. In such a situation, the trusted server can keep in
memory the pairs (λk, LSk) already computed in the past, in order to avoid repeating
computations in the future. Even with reduced memory storage, one can keep in mem-
ory a sparse well-chosen subset of these pairs.
• Sometimes it is easier to compute upper bounds ˜LSk on local sensitivities LSk. Algo-
rithm 1 is still (ε, δ)-differentially private if we replace LSk by its approximation ˜LSk.
• We believe that refined algorithms can be designed relying on Theorem 14, in partic-
ular when a trusted server knows that some query f(x) is more likely to be asked, and
LS(x) is a small value from the list (LSi)i.

5.2 Algorithm 1 working on examples, and discussion about utility

Here we give some insights about when Algorithm 1 should be preferred to other vari-
ants: roughly speaking, Algorithm 1 gives significantly better accuracy when sufficiently
many LSk’s are far apart from each other.

Example 22 To illustrate a typical situation where Algorithm 1 gives significantly
better bounds, let us assume that we have LS1 < ... < LSr, and that for all i, a dataset
x ∈ Di can have neighbors only in Di+1, Di or Di−1. Assume also that local sensitivities
are not too close one from each other, that is LSi+1

LSi
≥ 1 + 1

2 × t for t = ε
ln(1/δ) .

Here we decide to compare mean error of Laplace mechanism to that of mechanism
from Algorithm 1 over r datasets xi, each one from a distinct Di. For standard Laplace
noise, this error is given by the following formula:

errLaplace = r × LSr
ε
.

Now assume that t = f(r) → 0 as r becomes larger. Then the mean error over r
datasets chosen as above can be approximated (as r goes to infinity) by:

errAlgo1 ∼r>>1
2× LSr

ε
× (1 +

2

t
)× (1− e−(1/2)×rt).

From these computations (see the appendix for details), it is clear that if one chooses
parameters ε, δ such that limr→∞ rt =∞, then the error errAlgo1 is equivalent to 2×LSr

ε ×
(1 + 2

t ), which is negligible compared to errLaplace.

For instance, take t = 1
ln(r) . Then we have errAlgo1 ∼ 4 × ln(r) × LSr

ε . Such a value

of t = ε
ln(1/δ) is reasonable from a privacy point of view: indeed, it fits with the values

ε = 1, δ = ε2/r, which are admissible values of the privacy parameters (see [5], [8]).
But when rt << 1, it is easy to see that the error errAlgo1 is equivalent to errLaplace up
to some constant independent of r. Hence, there is no gain in utility with Algorithm 1
if parameters ε, δ are chosen too small (which is anyway not reasonable in practice).

Example 23 In [9] (in their Theorem A.1), it is shown that computing Smooth Sensi-
tivity of some statistics on graphs is a NP hard problem. More precisely, let GN be the
set of (undirected) graphs with N vertices, and consider that two graphs are neighbors
if and only if they differ from each other by exactly one edge (hence Dn = GN , n being
the number of possible edges for graphs in GN ). Let f2∆ the number of 2-triangles (a
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2-triangle is given by two triangles sharing a common edge). Then it is NP hard to
compute S∗f,β(f2∆).
Moreover, authors of [9] give an alternative method to Smooth Sensitivity technique in
order to design an instance-based noise (ε, δ)-differentially private algorithm. They use
a second order local sensitivity, that is local sensitivity of local sensitivity itself. Un-
fortunately, their result gives reasonable accuracy only if one wants to release privately
f2∆(G) for some sufficiently connected graph G. The precise assumption they made
is the existence of a pair of vertices in G which have a number of common neighbors
significantly greater than ln(1/δ)

ε . Our algorithm does not make any assumption on the
graphs we want to release and can be used even when all graphs do not have many
connections. We now explain how it can be performed.
For a graph H ∈ GN , and an edge e /∈ H, denote by H + e the graph obtained from H
by adding the edge e. For an edge e ∈ G and H ∈ GN , denote by aHe the number of
triangles in H involving edge e. Set aH = maxe∈H+e′,e′ /∈H a

H+e′
e , and LS(H) = 5

2 × aH .
Using [9], it is easy to show that LS is an upper bound approximation on LS (see details
in the appendices). Hence Algorithm 1 can be used with LS in place of LS.
Moreover, one can simplify the design of Algorithm 1 by making a further approxima-
tion on LS. Indeed, define the k-layer Lk to be the subset of GN of graphs with k egdes.
In particular, two graphs are neighbors if and only if they lie in successive layers Lk,
Lk+1. Set L̃Sk = maxH∈Lk LS(H). Then (L̃Sk)k is ordered increasingly, and one can
use Algorithm 1 with L̃Sk in place of LSk, and Lk in place of Dk. In particular, the
level τk is always equal to k − 1 in such a situation.

Remark 24 • Since we are looking for values of t which are not too large, the condition
LSk+1

LSk
≥ 1 + 1

2 t should hold in most cases, and especially when the values aH are not

too large (this is in contrast with the assumption of [7] where it is required aH to be
much larger than 1/t).
• For the first f(x) (x ∈ Dl) query asked, computation of the sequence (LSk)k≥l is
required, and this can be computed in time O(dmaxm

2) where m is the number of
possible edges in the overall graph G considered, and dmax a bound on the degree of
vertices. For next computations, the lists (LSk)k≥l already computed can be used,
and many less computations are required. The computation time is more likely to be
O(dmaxm) after a few queries.
• This latter example illustrates that one can obtain a more simple version of Algorithm
1 if it is possible to find an ordering on data subsets (the layers Lk ) which is coherent
with the ordering of local sensitivities (the approximations ˜LSk).

5.3 A few remarks about privacy in Instance-Based Noise Algorithm

Algorithm 1 always gives better bounds than standard Laplace noise. Nevertheless,
privacy guarantees offered by pure ε-differential privacy are stronger than that of (ε, δ)-
differential privacy.
Our methods in the design of Algorithm 1 show an interesting feature of databases
privacy. Even if we want to avoid calibrating noise to global sensitivity, we are in some
sense forced to do it: we can make significantly less noise only for databases far away
(with respect to the neighboring relation we are looking at) from the sensitive databases.
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6 Appendix

Now we show the missing proofs from this paper.

6.1 Proofs for differential privacy in distribution

We prove the equivalence between ε-differential privacy and ε-differential privacy in dis-
tribution.

Proof of Proposition 5 We denote by 1S the indicator function of a subset S ⊂ R.
The result is a consequence of the following formulae

P(A(x) ∈ S) =

∫
S
gx(y)dy for all S ⊂ R.

From ε-differential privacy in distribution, one obtains ε-differential privacy by integrat-
ing the relations gx(y) ≤ eεgx′(y).
Now, if A is ε-differentially private, then we have

1S(y)(gx(y)− eεgx′(y) ≤ 0 for all S.

Then ε-differential privacy in distribution follows by considering S = { y | gx(y) −
eεgx′(y) ≥ 0 }. �

We show that (ε, δ)-differential privacy in distribution implies (ε, δ)-differential pri-
vacy.

Proof of Proposition 10 This follows from the formula P(A(x) ∈ S) =
∫
S gx(y)dy,

and the following inequalities:

P(A(x) ∈ S) = P(A(x) ∈ S ∩ Ex) + P(A(x) ∈ S ∩ Ecx)

≤ P(A(x) ∈ S ∩ Ex) + δ

≤ eεP(A(x′) ∈ S ∩ Ex) + δ

≤ eεP(A(x′) ∈ S) + δ,

using the equality

P(A(x) ∈ S ∩ Ex) =

∫
S∩Ex

gx(y) dy =

∫
S∩Ex

gx(y)

gx′(y)
× gx′(y) dy.

�

Here is the proof that Gaussian mechanism is a (ε, δ)-differentially private mecha-
nism, for a suitable choice of parameters ε, δ.

Proof of Proposition 11 Notice that condition 1 in Definition 8 writes as follows
for the Gaussian mechanism:

λ× |(f(x)− y)2 − (f(x′)− y)2| ≤ ε for all x ⊂ Dn, x ∼ x′, y ∈ Ex.
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Denote by Z the Gaussian random variable of parameter λ. A sufficient condition to
prove the proposition is to find sets Ex such that P(Z ∈ (Ex − f(x))c) ≤ δ and:

λ× (GS2 +GS × 2|f(x)− y|) ≤ ε for all x ⊂ Dn.

Hence we naturally define, for x ⊂ Dn,

Ex = { y ∈ R | λ× (GS2 +GS × 2|f(x)− y|) ≤ ε }.

Hence we have

P(Z ∈ (Ex − f(x))c) = P( |Z| ≥ ε

2λ×GS
− GS

2
)

= 2× P(Z ≥ ε

2λ×GS
− GS

2
)

≤ µ

λ× t
e−λ×t

2

=
1

2
√
π × t′

e−t
′2

where t′ =
√
λ × t =

√
λ × ( ε

2λ×GS −
GS
2 ). Notice that in order to have P( |Z| ≥

ε
2λ×GS −

GS
2 ) small (at least for δ ≤ 1/2), it is necessary to have ε

2λ×GS ≥
GS
2 .

Then we have

1

2
√
π × t′

e−t
′2 ≤ δ

⇔ e−t
′2

t′
≤
√
π × 2× δ

⇔ t′ ≥ h−1(2
√
π × δ)

where h is the decreasing function defined by h(y) = e−y
2

y . We denote by C = C(δ) =

h−1(2
√
π × δ).

Now we have

t′ ≥ C ⇔ ε

2GS
− λ×GS

2
− C ×

√
λ ≥ 0

⇔ ε

2GS
− C × y − GS

2
× y2 ≥ 0

The polynomial above has two roots, namely

y+ =
C −

√
C2 + ε

−GS
and y− =

C +
√
C2 + ε

−GS
.

Hence y satisfies the inequality if and only if y− ≤ y ≤ y+. Then we obtain that t′ ≥ C
if and only if 0 ≤

√
λ ≤ y+.

Since we want to maximize
√
λ in order to reduce noise, the optimal bound (with respect

to the tail bound of the distribution we used) is

√
λ =

√
C2 + ε− C
GS

.
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Notice that if δ is small enough in the above proof, then we have t′ ≥ 1. Indeed, for
δ ≤ 0.1 (δ should be even smaller for applications), one can check that values t′ such
that h(t′) ≤ 2×

√
π× 0.1 satisfy t′ ≥ 1. Then the following condition is sufficient to get

(ε, δ)-differential privacy:

e−t
′2 ≤ 2×

√
π × δ.

As in the previous proof, we can take C =
√

ln( 1
2×
√
π×δ ). Hence, for small values of

δ, ε, we have the estimate

√
λ ∼ 1

GS
× ε

2×
√

ln( 1
2×
√
π×δ )

.

6.2 Proofs relative to Algorithm 1

Our design of Algorithm 1 relies on Claim 19, which is the situation when the query
has only two distinct local sensitivities LS1 < LS2.

Proof of Claim 19 Our goal is the following: α2 6= 1 being fixed, we want to find
α1 as large as possible in order to maximize λ1 (in particular we want λ1 ≥ λ2), and
such that the above conditions (1) and (2) hold. We have λ1

λ2
= α1

α2
× LS2

LS1
= α1

α2
× s,

where s = LS2
LS1

> 1.

• Step 1: We look for some λ ≥ 1 such that λ1
λ2

= λ, and rewrites equations (1) and
(2).

Write λ = 1 + γ, where γ > 0. We have:

(1)⇔ λ− 1 ≤ (1− α1)× t
⇔ γ ≤ (1− α1)× t,

and

(2)⇔ 1− 1

λ
≤ (1− α2)× t

⇔ λ− 1 ≤ λ× (1− α2)× t
⇔ γ ≤ λ× (1− α2)× t.

In particular, notice that it is sufficient to have γ ≤ (1− α2)× t for (2) to hold.

• Step 2: Give the admissible value of α1, depending on a common threashold α for
α1, α2, that is α1 ≤ α and α2 ≤ α. When the threashold α is determined (for us, it is
determined by the value α2), we have γ ≤ α× t⇒ (1) + (2).

In the paper, we use exclusively the threashold α = 1/2. Then γ ≤ (1/2) × t ⇒
(1) + (2), which gives the following admissible values for α1:

α1 ≤ min(
α2

s
× (1 + (1/2)× t) , 1/2 ).

17



�

Now we prove the privacy statement concerning Algorithm 1.

Proof of Proposition 20 We need to show that the mechanism constructed in
Algorithm 1 satsifies condition 2 from Theorem 14, that is

|1− λx
λx′
| ≤ (1− αx)× ε

ln(1/δ)
for all x ∈ Dn, x′ ∼ x

where λx = αx × ε
LS(x) . From the discussion above restricted to the situation with two

sensitivities (with t = ε
ln(1/δ)), we deduce that it is sufficient to find 0 < αx ≤ 1

2 such

that, for all x′ ∼ x, x′ < x, the following inequalities hold:

λx ≤ λx′ ≤ min( λx × (1 +
1

2
t) ,

ε

2× LS(x′)
). (∗)

Inequalities on the left in (∗) is simply requiring that the sequence (λk)k is decreasing.

We only need to prove the monoticity in the case
LSk+1

LSk
≥ (1 + 1

2 × t). For that, we
consider the following two cases:

• Case 1 : λk = ε
2LSk

. Obviously, we have ε
2LSk

≥ ε
2LSk+1

. Moreover, we have

λlk+1
≤ λk+1 (by monoticity in the previous steps), and then λlk+1

≤ ε
2LSk+1

.

Hence, in order to have λk ≥ λk+1, it is sufficient that the following holds:

ε

2LSk
≥ ε

2LSk+1
× (1 +

1

2
× t).

This is the case since we are in the situation where
LSk+1

LSk
≥ (1 + 1

2 × t).

• Case 2 : λk = λlk × (1 + 1
2 × t). This is clear that level lk decreases as k itself

decreases. Hence by monoticity in previous steps, we have λlk ≥ λlk+1
. It follows

λk ≥ min( λlk+1
× (1 +

1

2
× t) , ε

2LSk+1
)

as required.

To finish the proof, we need to show inequalities on the right in (∗). This is a straight-
forward consequence of the choice of λk in Algorithm 1. Indeed, λk is calibrated to
λlk × (1 + 1

2 × t) which is, by definition of lk, the lowest possible value of λl× (1 + 1
2 × t)

among possible upper neighbors l ∼ k, l > k. �

6.3 Proofs for Examples 22 and 23

We explain computations occuring in Example 22.
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Details for Example 22 For standard Laplace mechanism, we have all amplitude
parameters λxi equal to λ = ε

LSr
. Hence we have

errLaplace =
∑
i

E(Lap(λxi))

=
∑
i

1

λxi

= r × ε

LSr
.

On the other hand, we made the assumption that neighbors of a database lie in the
neighboring levels of sensitivities, and that local sensitivities are not too close one from
each other. It follows that λxi = ε

LSr
× (1 + 1

2 t)
r−i, for 1 ≤ i ≤ r and t = ε

ln(1/δ) . Then
the error for instance-based mechanism from Algorithm 1 is as follows:

errAlgo1 =
r∑
i=1

1

λxi

=
2× LSr

ε
× (

r−1∑
i=0

(
1

1 + 1/2× t
)i )

=
2× LSr

ε
×

1− 1
(1+1/2×t)r

1− 1
1+1/2×t

=
2× LSr

ε
× (1 +

2

t
)× (1− 1

(1 + 1/2× t)r
).

Now assume that t is chosen such that t = f(r)→ 0 as r →∞. Then we have

errAlgo1 ∼
2× LSr

ε
× (1 +

2

t
)× (1− e−1/2×rt).

In particular, we have errAlgo1 << errLaplace when rt >> 1. Indeed, we have 1/t << r,
and errAlgo1 ∼ 2×LSr

ε × (1 + 2
t ) << r × LSr

ε . �

Now we give some explanations concerning Example 23.

Details for Example 23 First, we recall notations from [9]. Denote by (xij)i,j∈[N ]

the adjacency matrix, and then aij =
∑

l∈[N ] xilxlj the number of triangles involving
the edge (ij). Hence we have aij = |Nij | where Nij = { l ∈ [N ] | xilxlj = 1 }. We
write ae, Ne for the edge e = (ij). Notice that these notations depend on the graph
H ∈ GN considered. For shorthand, we write LS for LS(f2∆). Moreover, we recall that
aH = maxe∈H+e′,e′ /∈H a

H+e′
e for all graph H ∈ GN .

Lemma 25 For any graph H ∈ GN , we have the following upper bound estimate:

LS(H) ≤ 5

2
× a2

H .
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Proof By Lemma 4.1 in [9], we have LS(H) = maxe′ /∈H maxe∈H+e′ LSe(H), where

LSij(H) =

(
aij
2

)
+
∑
l∈Nij

ail + alj − 2xij .

The result follows since we have

(
aij
2

)
≤ 1

2 × a
2
H and

∑
l∈Nij ail + alj − 2xij ≤ 2× a2

H ,

for all (ij) = e ∈ H + e′, and all edge e′.

Hence formulae LS(H) = 5
2 ×aH define an upper bound LS on local sensitivity LS.

Moreover, when we have an inclusion of graphs H ⊂ H ′, we have LS(H) ≤ LS(H ′) as
well, since more edges (thus more triangles) are considered to compute aH′ . Recall that
we defined the following approximation on LS: L̃Sk = maxH∈Lk LS(H), where Lk ⊂ GN
is the subset of graphs with k edges. In particular, it follows that L̃Sk ≤ L̃Sk+1 since
any graph in layer Lk is included in a graph in layer Lk+1. �
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