
Point-Function Obfuscation:

A Framework and Generic Constructions

Mihir Bellare1 Igors Stepanovs2

July 2015

Abstract

We unify the many prior variants of point-function obfuscation via a definitional framework in
which security is parameterized by a class of algorithms we call target generators, with different
notions corresponding to different choices of this class. This leads to an elegant question, namely
whether it is possible to provide a generic construction, meaning one that takes an arbitrary class
of target generators and returns a point-function obfuscator secure for it. We answer this in the
affirmative with three generic constructions, the first based on indistinguishability obfuscation, the
second on deterministic public-key encryption and the third on universal computational extractors.
By exploiting known constructions of the primitives assumed, we obtain a host of new point-function
obfuscators, including many under standard assumptions.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-1116800 and CNS-1228890. This work was done in part while the author was visiting the Simons Institute for
the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant CNS-1523467.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: istepano@eng.ucsd.edu. Supported in part by NSF grants CNS-1116800 and CNS-1228890.

Contents

1 Introduction 2

2 Notation and standard definitions 5

3 Point-function obfuscation framework 7

4 (d)iO for multi-circuit samplers 9

5 Generic constructions of PFO 11
5.1 PFO from iO . 11
5.2 PFO from DPKE . 13
5.3 PFO from UCE . 14

1

1 Introduction

This paper has no deep technical results. It aims, rather, to bring some order and unity to what felt,
to us at least, like a difficult to navigate area, namely the related but different notions that go under
the broad name of point-function obfuscation. We provide a definitional framework parameterized by a
class X of objects we call target generators that allows us to recover different notions in the literature as
each corresponding to a choice of X. This taxonomy leads to a compelling and general new question: Is
it possible to find a generic construction, meaning a compiler that given an arbitrary X returns a point
function obfuscator secure relative to it? We answer this in the affirmative by providing three such
generic constructions, contributing to a simpler and more modular use of point-function obfuscation in
applications and also yielding as special cases many new point-function obfuscators for particular classes
of interest.

Background and notions. The most desirable form of obfuscation is VBBO (Virtual Black Box Ob-
fuscation), where the obfuscated circuit is no more useful than an oracle for the circuit. Unfortunately,
VBBO for all circuits is impossible [2, 33, 14]. The natural question then was, are there particular
classes of circuits that one can obfuscate? Point functions emerged as the canonical candidate. Indeed,
not only are point functions a basic and natural starting point but also their obfuscation has many
applications [22, 35, 41, 33, 24, 25, 10, 13, 36, 20].

A point function with target k ∈ {0, 1}∗ is the circuit Ik that on input k′ ∈ {0, 1}|k| returns 1 if k′ = k
and 0 otherwise. A point-function obfuscator Obf takes input Ik and returns another circuit P that is
functionally equivalent to Ik. (On input k′ ∈ {0, 1}|k| it also returns 1 if k′ = k and 0 otherwise.) Security
requires that P hides k. The most basic formalization [13] is that the adversary, given P and auxiliary
information a, be unable to tell whether P is an obfuscation of Ik1 or of Ik0 when (k1, a) is drawn from
some known distribution and k0 is drawn at random. This is not achievable if the distribution is arbitrary.
For example, it could always pick k1 to be the string of all zeroes, and the adversary could test whether
or not P returns 1 on input that string. The minimal requirement for security is that k1 is unpredictable
given a. Formalizations in a VBBO style have also been given but we will stick to this one because it is
simpler and the one used by modern applications.

As work on the obfuscation of point functions evolved, we saw the introduction, consideration and
use of a rather large number of variants of the basic notion. Early works [22, 26, 35, 41] did not have
auxiliary information. The latter was introduced by GK [33] and is important for applications [13, 20, 21].
Unpredictability sometimes means that polynomial-time adversaries have negligible advantage [22, 41,
13], sometimes that polynomial-time adversaries have sub-exponential advantage [28] and sometimes
that unbounded adversaries have negligible advantage [6]. Sometimes, a single point function is being
obfuscated and at other times many [24]. (This was called composable point function obfuscation. Note
that many does not reduce to one by a hybrid argument since the points may be related so it must be
considered a separate notion.) And so on.

Constructions. The simplicity of point functions raised the hope that obfuscating them would be easy.
Surprisingly, this has not been true even for the basic case (one point, no auxiliary input) and even less
when auxiliary input is present. Indeed, there are few known constructions and those that exist rely on
strong assumptions.

A primary construction of AIPO (Auxiliary-Input Point-Function Obfuscation) is from the AI-DHI
(Auxiliary-Input Diffie-Hellman Inversion) assumption [22, 13]. The assumption states that there is a
prime-order group G such that if we pick random r, s from G then it is hard to distinguish between
(r, rk) and (r, s), even when given auxiliary information a about k, as long as this information a is k-
prediction-precluding. Obtaining AIPO from this is direct. Namely, to obfuscate Ik, we pick a random r
from G, let s = rk and return the circuit Cr,s that on input k′ returns 1 if rk

′
= s and 0 otherwise. But

this is not entirely satisfactory because security amounts exactly to the AI-DHI assumption and is thus
effectively assumed rather than proved. The benefit of a security proof appears when the assumption is

2

simpler or weaker than the goal, which is not the case here. Another issue is that if VGBO (Virtual Grey
Box Obfuscation) for all circuits is possible then the AI-DHI-based AIPO is insecure [9]. That is, either
VGBO or AI-DHI-based AIPO must fail. This does not necessarily mean that the AI-DHI-based AIPO
fails (it could well be VGBO that fails) but this still motivates finding new constructions not subject to
even such a conditional impossibility result, in particular ones that can co-exist with VGBO.

Wee [41] provides a point-function obfuscator based on a fixed permutation about which a novel strong
uninvertibility assumption is made. He only proves security in the absence of auxiliary information,
and GK [33] show that the construction does not in fact provide security in the presence of auxiliary
information. However BP [13] specify an extension of Wee’s construction with a family of permutations
rather than a fixed one, and show, under a novel assumption called Assumption 2.1 in their paper,
that it achieves security with auxiliary inputs. BP [13] explain that Assumption 2.1 asks for (a weak
form of) extractability, making it a strong assumption in light of the impossibility of related extractable
primitives [12].

There are simple constructions in the ROM [35]. DKL [28] give a construction for sub-exponentially
hard to predict target points under a novel assumption called LSN. BHK [6] give a UCE-based construc-
tion for statistically hard to predict targets and no auxiliary information.

In summary, there are few constructions and they all use strong and novel assumptions. Also, each
construction achieves a different variant of the notion and it is hard to sort out, or say in a precise yet
concise way, what has been done. The latter is due to lack of language which is provided by the framework
that we now discuss.

Framework. We define a target generator X as a polynomial-time algorithm that on input the security
parameter returns a vector k of target points together with auxiliary information a. To measure security
of a candidate point-function obfuscator Obf relative to X, we associate to an adversary A its advantage
AdvpfoObf,X,A(·) in guessing the challenge bit b in the following game. We run X to get (k, a). We let P
be the vector obtained by obfuscating the targets in k (b = 1) or by obfuscating the same number of
random, independent targets (b = 0). The input to A is P and a. Now we let X be a class (set) of target

generators X and say that obfuscator Obf is PFO[X]-secure if AdvpfoObf,X,A(·) is negligible for all polynomial
time A and all X ∈ X.

What we have here (for a formal definition see Section 3) is a notion of point-function obfuscation
parameterized by a class of target generators. We view these as knobs. By turning these knobs (defining
specific classes) we can capture specific restrictions, and by intersecting classes we can combine them,
allowing us to speak precisely yet concisely about different variant notions that are unified in this way. In
particular, in Section 3 we formalize a prediction game and advantage so that we can define the classes
Xcup,Xseup and Xsup of computationally, sub-exponentially and statistically unpredictable target gener-
ators. We let Xq(·) denote the class of target generators outputting q(·) target points and Xε the class of
target generators that produce no auxiliary information. (Formally it is the empty string.) Already we
can characterize prior work in a precise way. For example PFO[Xcup ∩Xε ∩X1] is plain point function
obfuscation where there is just one target point, no auxiliary information, and unpredictability is com-
putational. This is achieved in [22, 26, 35, 41]. PFO[Xcup ∩X1] is AIPO, where there is again one target
point, but auxiliary information is now present, while unpredictability continues to be computational [13].
PFO[Xcup] is composable AIPO, where there are many target points, auxiliary information is present,
and unpredictability is computational. Other prior notions can be captured in obvious ways, and many
natural new ones emerge for consideration.

Generic constructions. As we saw above, constructions so far have been ad hoc, targeting different
security goals and using strong, novel assumptions to achieve them. The above framework allows us to
frame a compelling question, namely whether there are generic constructions. By this we mean that we
are handed an arbitrary class X of target generators and asked to craft an obfuscator that is PFO[X]-
secure. If we can do this, we can, in one unified swoop, obtain constructions for a wide variety of forms
of PFO, not only ones considered in the past, but also new ones.

3

In this paper we provide three such generic constructions. The first is based on indistinguishability
obfuscation, the second on deterministic public-key encryption and the third on UCE.

One natural objection at this point is that we know that PFO[X] is not achievable for some choices
of X. For example, assuming iO, this is true for X = Xcup, meaning composable PFO. (This follows
by combining [19, 23].) So how can our constructions achieve PFO[X] for any given X? In fact, they
do, and this, interestingly, yields new negative results, ruling out the primitives we start from for those
particular values of X. We will explain further below.

PFO from iO. The emergence of candidate constructions for iO (indistinguishability obfuscation) [31,
38, 11, 32] raised a natural hope, namely that one could obtain PFO from iO. But this has not hap-
pened. Despite the many powerful applications of iO, constructing point-function obfuscation from it has
surprisingly evaded effort.

We show that iO plus a OWF yields PFO. More precisely, we show iO+OWF[X]⇒ PFO[X]: Given
iO and a family of functions that is one-way relative to X as defined in Section 5.1 we can construct
an obfuscator that is PFO[X]-secure. The construction, result and proof are in Section 5.1. The idea
is that to obfuscate Ik we pick at random a key fk for the OWF F (formally, the latter is a family of
functions) and let y = F(fk, k). We consider the circuit C that hardwires fk, y and on input k′ returns
1 if F(fk, k′) = y and 0 otherwise. We then apply an indistinguishability obfuscator to C to produce
the obfuscated point function. The security proof is a sequence of hybrids. Although we assume only
iO, we exploit diO [2, 16, 1] in the proof in a manner similar to [8]. We will need it for circuits that
differ only on one input, and in this case the result of BCP [16] says that an iO-secure obfuscator is also
diO-secure, so the assumption remains iO. As part of the proof we state and prove a lemma reducing
(d)iO on polynomially-many, related circuits to the usual single-circuit case.

We highlight the simplest case of this result as still being novel and of interest. Namely, given iO and
an ordinary OWF, we achieve plain point-function obfuscation, PFO[Xcup ∩Xε ∩X1] in our notation.
Previous constructions have been under assumptions that at this point seem less accepted than iO, and
Wee [41] gives various arguments as to why this goal is hard under standard assumptions. Also on the
negative side, combing our result with [19, 23] allows us, under iO, to rule out OWF[Xcup], one-way
functions secure for polynomially-many, computationally unpredictable correlated inputs.

PFO from DPKE. Deterministic public key encryption (DPKE) [3] was motivated by applications to
efficient searchable encryption [3]. It cannot provide IND-CPA security. Instead, BBO [3] provide a
definition of a goal called PRIV which captures the best-possible security that encryption can provide
subject to being deterministic. At this point many constructions of DPKE are known for various variant
goals [3, 15, 4, 17, 30, 5, 17, 42, 44].

We show how to leverage these for point-function obfuscation via our second generic construction.
We show that PRIV1[X]⇒ PFO[X]. That is, given a deterministic public-key encryption scheme that is
PRIV1 secure relative to X we can build a point-function obfuscator secure relative to the same class in
a simple and natural way. Namely to obfuscate Ik we pick at random a public key pk and the associated
secret key sk for the DPKE scheme and let c be the encryption of k under pk. The point-function
obfuscation is the circuit C that hardwires pk, c and on input k′, returns 1 if the encryption of k′ under
pk equals c, and 0 otherwise. The fact that the encryption is deterministic is used crucially to define
the circuit. (The latter must be deterministic.) The secret key sk is discarded and not used in the
construction. We note that we only require security of the DPKE scheme for a single message (PRIV1)
so the negative result of Wichs [43] does not apply. The construction, result and proof are in Section 5.2.

From the LTDF-based DPKE scheme of BFO [15] and LTDFs from [39, 29, 42, 34, 45] we now get
PFO[Xsup ∩ Xε ∩ X1]-secure obfuscators under a large number of standard assumptions. We also get
PFO[Xseup∩X1]-secure obfuscators under the DLIN, Subgroup Indistinguishability and LWE assumptions
via [17, 44, 42]. On the negative side we can rule out PRIV1[Xcup]-secure DPKE under iO via [19, 23].

PFO from UCE. UCE [6] is a class of assumptions on function families crafted to allow instantiation
of random oracles in certain settings. UCE security is parameterized so that we have UCE[S] security of

4

a family of functions for different choices of classes S of algorithms called sources. The parameterization
is necessary because security is not achievable for the class of all sources. Different applications rely on
UCE relative to different classes of sources [6, 18, 20, 37, 5, 27].

We show how to associate to any given class X of target generators a class SX of sources such that
UCE[SX] ⇒ PFO[X], meaning we can build a point-function obfuscator secure for X given a family of
functions that is UCE[SX]-secure. The definition of SX is given in Section 5.3, but what is most relevant
here is that the strength of a UCE assumption is very sensitive to the choice of class of sources that
parameterizes the assumption, and SX has good properties in this regard. The sources are what are
called “split” in [6], and they inherit the unpredictability attributes of the target generators. UCE[SX]-
security is not achievable for all choices of X but the assumption is valid as far as we know for many
choices of X, yielding new constructions.

Discussion and further related work. Point-function obfuscation is sometimes formalized in a
VBBO-style. An obvious critique of our framework is that it does not cover this. We don’t believe
there is benefit in doing so at this point. The definitions used by modern applications of point-function
obfuscation are the ones from our framework and the indistinguishability-based formalism is easier to
work with.

Target generators in our framework output a vector of targets, meaning we are in general considering
the obfuscaton of multiple, related targets. (Intersecting with X1 gets us back to the single target
case.) One may ask why bother since composable AIPO —PFO[Xcup] in our framework— is not possible
assuming iO [19, 23]. But other forms of PFO involving multiple points, such as PFO[Xsup], are still of
interest, and indeed we reach this. Also PFO[X] is of interest for subsets of Xcup such as Xcup ∩Xq for
constant q, or even for polynomial q and generators which are block sources.

In concurrent and independent work, BM [21] take first steps towards a parameterized definition for
point-function obfuscation. Ours goes further by allowing multiple targets and captures more existing
notions as special cases. They also show that UCE for computationally unpredictable split sources making
one oracle query implies AIPO, which is a special case of our UCE result.

2 Notation and standard definitions

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary representation. We let ε
denote the empty string. If s is an integer then Pads(C) denotes circuit C padded to have size s. We say
that circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree on all inputs. If x is a vector then |x|
denotes the number of its coordinates and x[i] denotes its i-th coordinate. We write x ∈ x as shorthand
for x ∈ {x[1], . . . ,x[|x|]}. If X is a finite set, we let x←$ X denote picking an element of X uniformly at
random and assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time
is worst case. “PT” stands for “polynomial-time,” whether for randomized algorithms or deterministic
ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs
x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r at random and
letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked
with inputs x1, We say that f : N → R is negligible if for every positive polynomial p, there exists
λp ∈ N such that f(λ) < 1/p(λ) for all λ > λp. We use the code based game playing framework of [7].
(See Fig. 3 for an example.) By GA(λ) we denote the event that the execution of game G with adversary
A and security parameter λ results in the game returning true.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a circuit C returns a circuit
C such that C ≡ C. (That is, C(x) = C(x) for all x.) We refer to the latter as the correctness condition.
If c is an n-vector of circuits then Obf(1λ, c) denotes the vector (Obf(1λ, c[1]), . . . , Obf(1λ, c[n])) formed
by applying Obf independently to each coordinate of c. We consider various notions of security for
obfuscators, namely iO and variants of point-function obfuscation, including AIPO.

5

Game DIFFD
S (λ)

(C0,C1, aux)←$ S(1λ)

x←$D(C0,C1, aux)

Return (C0(x) ̸= C1(x))

Game IOO
Obf,S(λ)

b←$ {0, 1} ; (C0,C1, aux)←$ S(1λ)

C←$ Obf(1λ,Cb) ; b
′←$O(1λ,C, aux)

Return (b = b′)

Figure 1: Games defining difference-security of circuit sampler S and iO-security of obfuscator Obf relative
to circuit sampler S.

Indistinguishability obfuscation. Although our results need only iO, we use diO [2, 16, 1] in the
proof, applying BCP [16] to then reduce the assumption to iO. To give the definitions compactly, we use
the definitional framework of BST [8] which allows us to capture iO variants (including diO) via classes of
circuit samplers. Let Obf be an obfuscator. A sampler in this context is a PT algorithm S that on input
1λ returns a triple (C0,C1, aux) where C0,C1 are circuits of the same size, number of inputs and number
of outputs, and aux is a string. If O is an adversary and λ ∈ N we let AdvioObf,S,O(λ) = 2Pr[IOO

Obf,S(λ)]−1

where game IOO
Obf,S(λ) is defined in Fig. 1. Now let S be a class (set) of circuit samplers. We say that

Obf is S-secure if AdvioObf,S,O(·) is negligible for every PT adversary O and every circuit sampler S ∈ S .
We say that circuit sampler S produces equivalent circuits if there exists a negligible function ν such
that Pr

[
C0 ≡ C1 : (C0,C1, aux)←$ S(1λ)

]
≥ 1− ν(λ) for all λ ∈ N. Let Seq be the class of all circuit

samplers that produce equivalent circuits. We say that Obf is an indistinguishability obfuscator if it is
Seq-secure [2, 31, 40].

We say that a circuit sampler S is difference secure if AdvdiffS,D(·) is negligible for every PT adversary D,
where AdvdiffS,D(λ) = Pr[DIFFD

S (λ)] and game DIFFD
S (λ) is defined in Fig. 1. Difference security of S means

that given C0,C1, aux it is hard to find an input on which the circuits differ [2, 16, 1]. Let Sdiff be the
class of all difference-secure circuit samplers. We say that circuit sampler S produces d-differing circuits,
where d: N→ N, if for all λ ∈ N circuits C0 and C1 differ on at most d(λ) inputs with an overwhelming
probability over (C0,C1, aux)←$ S(1λ). Let Sdiff(d) be the class of all difference-secure circuit samplers
that produce d-differing circuits, so that Seq ⊆ Sdiff(d) ⊆ Sdiff . The interest of this definition is the
following result of BCP [16] that we use:

Proposition 2.1 If d is a polynomial then any Seq-secure circuit obfuscator is also an Sdiff(d)-secure
circuit obfuscator.

Function families. A family of functions F specifies the following. PT key generation algorithm
F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where F.kl: N → N is the key length function asso-
ciated to F. Deterministic, PT evaluation algorithm F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and an input
x ∈ {0, 1}F.il(λ) to return an output F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N → N are the input
and output length functions associated to F, respectively. We say that F is injective if the function
F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective for every λ ∈ N and every fk ∈ [F.Kg(1λ)]. Notions
of security for function families that we use are UCE and OWF, the latter defined in Section 5.1.

UCE security. We recall the Universal Computational Extractor (UCE) framework of BHK [6]. Let
H be a family of functions. Let S be an adversary called the source and D an adversary called the
distinguisher. We associate to them and H the game UCES,D

H (λ) in the left panel of Fig. 2. We will
use what BHK [6] call the multi-key version of UCE, so that associated to S is a polynomial S.nk that
indicates how many keys S uses. The source has access to an oracle HASH, and a query to HASH
consists of an index i of a key and the actual input x, which is a string required to have length H.il(λ).
When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under a key hk[i] that is
chosen by the game and not given to the source. When b = 0 (the “random” case) it responds as a
random oracle. The source then leaks a string L to its accomplice distinguisher. The latter does get the
key vector hk as input and must now return its guess b′ ∈ {0, 1} for b. The game returns true iff b′ = b,

6

Game UCES,D
H (λ)

b←$ {0, 1}
For i = 1, . . . ,S.nk(λ) do hk[i]←$ H.Kg(1λ)

L←$ SHASH(1λ)

b′←$D(1λ,hk, L)
Return (b′ = b)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then return ⊥
If T [i, x] = ⊥ then

If b = 0 then T [i, x]←$ {0, 1}H.ol(λ)

Else T [i, x]← H.Ev(1λ,hk[i], x)

Return T [i, x]

Game PREDP
S (λ)

X ← ∅
L←$ SHASH(1λ)

x←$ P(1λ, L)
Return (x ∈ X)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then return ⊥
If T [i, x] = ⊥ then

T [i, x]←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [i, x]

Figure 2: Games defining UCE security of function family H and unpredictability of source S.

and the uce-advantage of (S,D) is defined for λ ∈ N via AdvuceH,S,D(λ) = 2Pr[UCES,D
H (λ)] − 1. If S is a

class (set) of sources, we say that H is UCE[S]-secure if AdvuceH,S,D(·) is negligible for all sources S ∈ S and
all PT distinguishers D.

It is easy to see that UCE[S]-security is not achievable if S is the class of all PT sources [6]. To
obtain meaningful notions of security, BHK [6] impose restrictions on the source. A central restriction is
unpredictability. A source is unpredictable if it is hard to guess the source’s HASH queries even given
the leakage, in the random case of the UCE game. Formally, let S be a source and P an adversary called
a predictor and consider game PREDP

S (λ) in Fig. 2. For λ ∈ N we let AdvpredS,P (λ) = Pr[PREDP
S (λ)]. We

say that S is computationally unpredictable if AdvpredS,P (·) is negligible for all PT predictors P, and let Scup

be the class of all PT computationally unpredictable sources. We say that S is statistically unpredictable
if AdvpredS,P (·) is negligible for all (not necessarily PT) predictors P, and let Ssup ⊆ Scup be the class of all
PT statistically unpredictable sources. We say that S is sub-exponentially unpredictable if there is an
ϵ > 0 such that for any PT predictor P there is a λP such that AdvpredS,P (λ) ≤ 2−λϵ

for all λ ≥ λP and let
Sseup ⊆ Scup be the class of all PT sub-exponentially unpredictable sources.

BFM [18] show that UCE[Scup]-security is not achievable assuming that indistinguishability obfusca-
tion is possible. This has lead applications to either be based on UCE[Ssup] or on subsets of UCE[Scup],
meaning to impose further restrictions on the source. UCE[Ssup], introduced in [6, 18], seems at this point
to be a viable assumption. In order to restrict the computational case, one can consider split sources as
defined in BHK [6]. We let Ssplt denote the class of split sources. Another way to restrict a UCE source is
by limiting the number of queries it can make. Let Sn,q be the class of sources S such that S.nk(·) ≤ n(·)
and S makes at most q(·) queries to each key. In particular S1,1 is the class of sources that use only one
key and make only one query to it.

3 Point-function obfuscation framework

The literature considers many different variants of point function obfuscation. Here we provide a def-
initional framework that unifies these concepts and allows us to obtain not just known but also new
variants of point function obfuscation as special cases. The framework parameterizes the security of a
point-obfuscator by a class of algorithms we call target generators. Different notions of point obfuscation
then correspond to different choices of this class. We start by defining target generators.

Target generators. A target generator X specifies a PT algorithm X.Ev that takes 1λ to return a target

7

Game PFOA
Obf,X(λ)

b←$ {0, 1}
(k1, a1)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)

P←$ Obf(1λ, Ikb
)

b′←$A(1λ,P, a1)

Return (b = b′)

Game PREDQ
X (λ)

(k, a)←$ X.Ev(1λ)

k←$Q(1λ, a)
Return (∃i : k[i] = k)

Game MDIFFD
S (λ)

(C0,C1, aux)←$ S(1λ)

x←$D(C0,C1, aux)

Return (∃i : C0[i](x) ̸= C1[i](x))

Game MIOO
Obf,S(λ)

b←$ {0, 1}
(C0,C1, aux)←$ S(1λ)

C←$ Obf(1λ,Cb)

b′←$O(1λ,C, aux)

Return (b = b′)

Figure 3: Games defining PFO security of obfuscator Obf relative to target generator X, unpredictabilty
of target generator X, difference-security of multi-circuit sampler S, and iO-security of obfuscator Obf
relative to multi-circuit sampler S.

vector k and auxiliary information a ∈ {0, 1}∗. The entries of k are the targets, each of length X.tl(λ),
and the vector itself has length X.vl(λ), where X.tl,X.vl : N → N are the target length and target-vector
length functions associated to X, respectively.

Point-function obfuscation. We now define security of point-function obfuscator relative to a class
of target generators. We will then consider various choices of these classes.

If k is a bit-string then Ik: {0, 1}|k| → {0, 1} denotes a canonical representation of the circuit that on
input k′ ∈ {0, 1}|k| returns 1 if k = k′ and 0 otherwise. It is assumed that given Ik, one can compute k in
time linear in |k|. A circuit C is called a point circuit if there is a k, called the circuit target, such that
C ≡ Ik. If k is an n-vector of strings then we let Ik = (Ik[1], . . . , Ik[n]).

Let Obf be an obfuscator, as defined in Section 2. Its correctness condition guarantees that on input
1λ, Ik, it returns a point circuit with target k, which is the condition for calling it a point-function
obfuscator. We say that Obf has target length Obf.tl: N→ N if its correctness condition is only required
on inputs Ik with k ∈ {0, 1}Obf.tl(λ).

Consider game PFO of Fig. 3 associated to a point-function obfuscator Obf, a target generator X
and an adversary A, such that Obf.tl = X.tl. For λ ∈ N let AdvpfoObf,X,A(λ) = 2Pr[PFOA

Obf,X(λ)] − 1. The
game generates a target vector k1 and corresponding auxiliary information a1 via X. It also samples
a target vector k0 uniformly at random, containing X.vl(λ) elements each of length X.tl(λ). It then
obfuscates the targets in the challenge vector kb via Obf to produce P which, as per our notation, will
be the vector (Obf(1λ, Ikb[1]), . . . ,Obf(1

λ, Ikb[X.vl(λ)])) formed by independently obfuscating the targets in

the target vector. Given P and a1, adversary A outputs a bit b′, and wins the game if this equals b,
meaning it guesses whether the target vector that was obfuscated was the one corresponding to auxiliary
information a1 or one independent of it.

Let X be a class (set) of target generators. We say that Obf is PFO[X]-secure if AdvpfoObf,X,A(·) is
negligible for every PT A and every X ∈ X. Now we can capture different notions in the literature, as
well as new ones, by considering particular classes X.

Classes. One important (and necessary) condition on a target generator is unpredictability. To define
this, consider game PRED of Fig. 3 associated to X and a predictor adversary Q. For λ ∈ N let
AdvpredX,Q(λ) = Pr[PREDQ

X (λ)]. The game generates a target vector k and associated auxiliary information
a. The adversary Q gets a and wins if it can predict any entry of the vector k.

The first dimension along which point-function obfuscators are classified is the type of unpredictability,
within which there are two sub-dimensions: the success probability of predictors (may be required to be
negligible or sub-exponential) and their computational power (PT and computationally unbounded are
the popular choices, but one could also consider sub-exponential time). Some relevant classes are the
following:

8

— Xcup — Class of computationally unpredictable target generators — X ∈ Xcup if AdvpredX,Q(·) is negli-
gible for all PT predictor adversaries Q.

— Xseup — Class of sub-exponentially unpredictable target generators — X ∈ Xseup if there exists
0 < ϵ < 1 such that for every PT predictor adversary Q there is a λQ such that AdvpredX,Q(λ) ≤ 2−λϵ

for all λ ≥ λQ.

— Xsup — Class of statistically unpredictable target generators — X ∈ Xsup if AdvpredX,Q(·) is negligible
for all (even computationally unbounded) predictor adversaries Q.

Another dimension is the number of target points in the target vector, to capture which, for any polyno-
mial q: N→ N, we let

— Xq(·) — Class of generators producing q(·) target points — X ∈ Xq(·) if X.vl = q. An important
special case is q(·) = 1.

Another important dimension is auxiliary information, which may be present or absent (the latter, for-
mally means it is the empty string), to capture which we let

— Xε — Class of generators with no auxiliary information — X ∈ Xε if a = ε for all (k, a) ∈ [X.Ev(1λ)]
and all λ ∈ N.

We can recover notions in the literature as follows:

— PFO[Xcup ∩ Xε ∩ X1] — This is basic point-function obfuscation, where there is just one target
point, no auxiliary information, and unpredictability is only required relative to PT predictors. It is
achieved in [22, 26, 35, 41].

— PFO[Xcup ∩X1] — This is AIPO [33, 13], where there is just one target point, auxiliary information
is present, and unpredictability is only required relative to PT predictors. It is achieved under
AI-DHI [22] and by the extended construction of [41] from [13].

— PFO[Xcup] — This is composable AIPO [23], where there are many target points, auxiliary informa-
tion is present, and unpredictability is only required relative to PT predictors.

4 (d)iO for multi-circuit samplers

We state and prove a lemma we will use that may be of independent interest. We extend the standard
definition of circuit samplers from Section 2 to get multi-circuit samplers, which are samplers that may
produce a vector of circuit pairs (but still only a single auxiliary information string). We also extend
the security definition of differing-inputs obfuscation to work with respect to multi-circuit samplers. We
then use a hybrid argument to show that the security of the latter is implied by the standard definition
of differing-inputs obfuscation for circuit samplers that produce only a single pair of circuits. This result
will be used for our iO-based construction of a point-function obfuscator, BCP [16] being applied to move
from diO to iO. (We stress that diO is used as a tool but not as an assumption in our results.)

iO for multi-circuit samplers. A multi-circuit sampler is a PT algorithm S with an associated
circuit-vector length function S.vl : N → N. Algorithm S on input 1λ returns a triple (C0,C1, aux)
where aux is a string and C0,C1 are circuit vectors of length S.vl(λ), such that circuits C0[i] and C1[i]
are of the same size, number of inputs and number of outputs for every i ∈ {1, . . . , S.vl(λ)}.

Consider game MIO of Fig. 3 associated to an obfuscator Obf, a multi-circuit sampler S and an
adversary O. For λ ∈ N let Advm-io

Obf,S,O(λ) = 2Pr[MIOO
Obf,S(λ)] − 1. Let S be a class of multi-circuit

samplers. We say that Obf is S-secure if Advm-io
Obf,S,O(·) is negligible for every multi-circuit sampler S ∈ S

and every PT adversary O.
Consider game MDIFF of Fig. 3 associated to a multi-circuit sampler S and an adversary D. For

λ ∈ N let Advm-diff
S,D (λ) = Pr[MDIFFD

S (λ)]. We say that a multi-circuit sampler S is difference secure

if Advm-diff
S,D (·) is negligible for every PT adversary D. Let Sm-diff be the class of all difference-secure

multi-circuit samplers and let d: N → N. We say that multi-circuit sampler S produces d-differing

9

Game Gℓ

b←$ {0, 1} ; (C0,C1, aux
m)←$ Sm(1λ) ; n← S.vl(λ)

For i = 1, . . . , ℓ do C[i]←$ Obf(1λ,C0[i])
For i = ℓ+ 1, . . . , n do C[i]←$ Obf(1λ,C1[i])
b′←$Om(1λ,C, auxm) ; Return (b = b′)

Figure 4: Games for proof of Lemma 4.1.

circuits if circuits C0[i] and C1[i] differ on at most d(λ) inputs with an overwhelming probability over
(C0,C1, aux) ∈ [S(1λ)], for all λ ∈ N and all i ∈ {1, . . . , S.vl(λ)}. Let Sm-diff(d) be the class of all
difference-secure multi-circuit samplers that produce d-differing circuits.

Lemma 4.1 Let d : N → N. Let Obf be an Sdiff(d)-secure obfuscator. Then Obf is also an Sm-diff(d)-
secure obfuscator.

Proof of Theorem 4.1: Let Sm ∈ Sm-diff(d) be a multi-circuit sampler. Let Om be a PT adversary.
Let λ ∈ N and n = S.vl(λ). Consider the games Gℓ of Fig. 4 for ℓ ∈ {0, . . . , n}. By construction, we have

Pr[G0] = Pr
[
MIOOm

Obf,Sm(λ) | b = 1
]

and Pr[Gn] = Pr
[
MIOOm

Obf,Sm(λ) | b = 0
]
.

It follows that Advm-io
Obf,Sm,Om(λ) = Pr[G0] − Pr[Gn] =

∑n
i=1(Pr[Gi−1] − Pr[Gi]). We will show that this

sum is bounded by a negligible function, therefore proving the lemma. We construct a circuit sampler Ss

and a PT adversary Os as follows:

Circuit Sampler Ss(1λ)

n← S.vl(λ) ; ℓ←$ {1, . . . , n} ; (C0,C1, aux
m)←$ Sm(1λ)

For i = 1, . . . , ℓ− 1 do C[i]←$ Obf(1λ,C0[i])

For i = ℓ+ 1, . . . , n do C[i]←$ Obf(1λ,C1[i])

e←$ {0, 1} ; Cl ← C[1], . . . ,C[ℓ− 1] ; Cr ← C[ℓ+ 1], . . . ,C[n]

aux s ← (Cl,Cr, e, aux
m) ; Return (C0[ℓ],C1[ℓ], aux

s)

Adversary Os(1λ,C, aux s)

(Cl,Cr, e, aux
m)← aux s

C← (Cl,C,Cr)

e′←$Om(1λ,C, auxm)
If (e = e′) then return 1
Else return 0

Let ℓ be the value sampled by Ss in game IOOs

Obf,Ss(λ). For any i ∈ {1, . . . , n} we have Pr[Gi−1]−Pr[Gi] =

Pr
[
AdvioObf,Ss,Os(λ) : ℓ = i

]
, and hence

∑n
i=1(Pr[Gi−1] − Pr[Gi]) = n · AdvioObf,Ss,Os(λ). We will now

prove that AdvioObf,Ss,Os(λ) is negligible by showing that Ss ∈ Sdiff(d). Since n = S.vl(λ) is a polynomial,
it will follow that the above sum is negligible. Given a PT adversary Ds we construct a PT adversary
Dm such that Advm-diff

Sm,Dm(λ) ≥ AdvdiffSs,Ds(λ).

Adversary Dm(1λ,C0,C1, aux
m)

n← S.vl(λ) ; ℓ←$ {1, . . . , n}
For i = 1, . . . , ℓ− 1 do C[i]←$ Obf(1λ,C0[i])

For i = ℓ+ 1, . . . , n do C[i]←$ Obf(1λ,C1[i])

e←$ {0, 1} ; Cl ← C[1], . . . ,C[ℓ− 1] ; Cr ← C[ℓ+ 1], . . . ,C[n]

aux s ← (Cl,Cr, e, aux
m) ; x←$Ds(C0[ℓ],C1[ℓ], aux

s) ; Return x

Now, Ss ∈ Sdiff(d) follows from the assumption that Sm ∈ Sm-diff(d), which concludes the proof.

10

Game OWFF
F,X(λ)

(k, a)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

fk[i]←$ F.Kg(1λ)

y[i]← F.Ev(1λ, fk[i],k[i])

k←$ F(1λ, fk,y, a)
Return (∃i : F.Ev(1λ, fk[i], k) = y[i])

Game PRIV1ADPKE,X(λ)

b←$ {0, 1} ; (k1, a)←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}DPKE.ml(λ)

(pk[i], sk[i])←$ DPKE.Kg(1λ)

c[i]← DPKE.Enc(1λ,pk[i],kb[i])

b′←$A(1λ,pk, c, a) ; Return (b = b′)

Figure 5: Games defining one-wayness of function family F relative to target generator X and PRIV1-
security of deterministic public-key encryption scheme DPKE relative to target generator X.

5 Generic constructions of PFO

Prior constructions have targeted PFO[X] for specific choices of X in ad hoc ways and used strong
assumptions. In this section we provide constructions that are generic. This means they take an arbitrary,
given class X of target generators and return a point-function obfuscator that is PFO[X]-secure.

5.1 PFO from iO

OWFs. Consider game OWF of Fig. 5 associated to a function family F, a target generator X with
X.tl = F.il, and an adversary F . For λ ∈ N let AdvowfF,X,F (λ) = Pr[OWFF

F,X(λ)]. Let X be a class of target

generators with target length F.il. Let X1ur be the target generator with X1ur.vl(·) = 1 and X1ur.tl = F.il,
where the target is sampled from a uniform distribution and the auxiliary information is always empty,
meaning a = ε. We say that F is OWF[X]-secure if AdvowfF,X,F (·) is negligible for all PT adversaries F
and all X ∈ X ∪ {X1ur}. Relevant classes X are the same as for PFO. The standard notion of a OWF is
recovered as X = ∅, meaning that F is secure only with respect to X1ur.

The definition of CD [23] is the special case of ours with vectors of length one. That of FOR [30], like
ours, considers evaluations of the function on multiple inputs, but in their case the key for the evaluations
is the same and there is no auxiliary input, while in our case the key is independently chosen for each
evaluation and auxiliary inputs may be present. We stress that we require only one-wayness; we do not
require extractability. The latter is a much stronger assumption [12].

We now show that indistinguishability obfuscation can be used to build a PFO[X]-secure point-
function obfuscator for an arbitrary target generator class X from any OWF[X]-secure function family.

Construction. Let F be a family of functions. Let Obf io be an obfuscator. We construct a point-function
obfuscator Obf with Obf.tl = F.il as follows:

Algorithm Obf(1λ, Ik)

fk←$ F.Kg(1λ) ; y ← F.Ev(1λ, fk, k)
P←$ Obf io(C1λ,fk,y) ; Return P

Circuit C1λ,fk,y(k
′)

If (y = F.Ev(1λ, fk, k′)) then return 1
Else return 0

Theorem 5.1 Let F be an injective family of functions. Let X be a class of target generators with target
length F.il. Assume that F is OWF[X]-secure. Let Obf io be an indistinguishability obfuscator. Then Obf
constructed above from F and Obf io is a PFO[X]-secure point-function obfuscator.

Proof of Theorem 5.1: The injectivity of F implies that Obf satisfies the correctness condition of a
point-function obfuscator. We now prove security.

Let X ∈ X be a target generator. Let A be a PT adversary. Consider the games and the associated
circuits of Fig. 6, where s is defined as follows. For any λ let s(λ) be a polynomial upper bound on

11

Games G0, G1

b←$ {0, 1} ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ) ; fk[i]←$ F.Kg(1λ) ; y[i]← F.Ev(1λ, fk[i],kb[i])
P[i]←$ Obf io(C

1
1λ,fk[i],y[i]) // G0

P[i]←$ Obf io(Pads(λ)(C
2)) // G1

b′←$A(1λ,P, a1) ; Return (b = b′)

Circuit C1
1λ,fk,y(k)

If (y = F.Ev(1λ, fk, k)) then return 1
Else return 0

Circuit C2(k)

Return 0

Figure 6: Games for proof of Theorem 5.1.

max(|C1
1λ,fk,y

|), where the maximum is over all fk ∈ [F.Kg(1λ)] and y ∈ {0, 1}F.ol(λ). Lines not annotated
with comments are common to all games.

Game G0 is equivalent to PFOA
Obf,X(λ). The inputs to adversary A in game G1 do not depend on the

challenge bit b, so we have Pr[G1] = 1/2. It follows that

AdvpfoObf,X,A(λ) = 2 · (Pr[G1] + Pr[G0]− Pr[G1])− 1 = 2 · (Pr[G0]− Pr[G1]).

We now show that Pr[G0]−Pr[G1] is negligible, meaning that AdvpfoObf,X,A(·) is also negligible. This proves
the the theorem.

We construct a multi-circuit sampler S and a PT iO-adversary O as follows:

Multi-circuit Sampler S(1λ)

d←$ {0, 1} ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i]←$ {0, 1}X.tl(λ)
fk[i]←$ F.Kg(1λ) ; y[i]← F.Ev(1λ, fk[i],kd[i])
C1[i]← C1

1λ,fk[i],y[i]
; C0[i]← Pads(λ)(C

2)

aux ← (d, a1) ; Return (C0,C1, aux)

Adversary O(1λ,C, aux)

(d, a1)← aux

d′←$A(1λ,C, a1)
If (d = d′) then return 1
Else return 0

We have Pr[G0]−Pr[G1] = Advm-io
Obf io,S,O(λ) by construction. Next, we show that S ∈ Sm-diff(1). According

to Proposition 2.1 (the result of BCP [16]), any indistinguishability obfuscator is also an Sdiff(1)-secure
obfuscator. And according to Lemma 4.1, any Sdiff(1)-secure obfuscator is an Sm-diff(1)-secure obfuscator.
It follows that Advm-io

Obf io,S,O(·) is negligible by the iO-security of Obf io.

Let Xur be the target generator with Xur.vl = X.vl and Xur.tl = F.il, where the targets are sampled
independently, from a uniform distribution and auxiliary information is always a = ε. Given any PT
difference adversary D against multi-circuit sampler S, we build PT adversaries F0 and F1 against the
OWF-security of F relative to target generators Xur and X, respectively. The constructions are as follows:

Adversary F0(1
λ, fk,y, a)

d← 0 ; (k1, a1)←$ X.Ev(1λ)
For i = 1, . . . , |y| do

C1[i]← C1
1λ,fk[i],y[i]

; C0[i]← Pads(λ)(C
2)

aux ← (d, a1) ; x←$D(C1,C0, aux) ; Return x

Adversary F1(1
λ, fk,y, a)

d← 1
For i = 1, . . . , |y| do

C1[i]← C1
1λ,fk[i],y[i]

; C0[i]← Pads(λ)(C
2)

aux ← (d, a) ; x←$D(C1,C0, aux) ; Return x

12

Let d denote the value sampled by multi-circuit sampler S in game MDIFFD
S (λ). Then we have

Pr[MDIFFD
S (λ) | d = 0] = Pr[OWFF0

F,Xur(λ)] and Pr[MDIFFD
S (λ) | d = 1] = Pr[OWFF1

F,X(λ)] ,

and Advm-diff
S,D (λ) = 1

2(Adv
owf
F,Xur,F0

(λ)+AdvowfF,X,F1
(λ)). We note that AdvowfF,Xur,F0

(λ) is negligible according to

the OWF[X]-security of F, part of which requires that AdvowfF,X1ur,F (λ) is negligible for all PT adversaries
F . The former can be proved using a standard hybrid argument based on the latter. It follows that the
multi-circuit sampler S is difference-secure. The injectivity of F also implies that S produces 1-differing
circuits. Therefore, S ∈ Sm-diff(1).

5.2 PFO from DPKE

Our next generic construction is based on deterministic public-key encryption [3]. As before we aim to
provide point-function obfuscation secure for any given class of target generators. We are able to do this
assuming the existence of a deterministic public-key encryption scheme that is secure relative to the same
class viewed as a class of message generators. We can then exploit known constructions of deterministic
public-key encryption to get a slew of point-function obfuscators based on standard assumptions. We
begin with a parameterized definition of security for deterministic public-key encryption.

DPKE. A deterministic public-key encryption scheme DPKE [3] specifies the following. PT key generation
algorithm DPKE.Kg takes 1λ to return a public encryption key pk and a secret decryption key sk. Deter-
ministic PT encryption algorithm DPKE.Enc takes 1λ, pk and a plaintext message k ∈ {0, 1}DPKE.ml(λ) to
return a ciphertext c, where DPKE.ml: N→ N is the message length function associated to DPKE. Deter-
ministic decryption algorithm DPKE.Dec takes 1λ, sk, c to return plaintext message k. We do not require
the decryption algorithm to be PT but we do require decryption correctness, namely that for all λ ∈ N, all
(pk, sk) ∈ [DPKE.Kg(1λ)] and all k ∈ {0, 1}DPKE.ml(λ) we have DPKE.Dec(1λ, sk,DPKE.Enc(1λ, pk, k)) =
k.

Now consider game PRIV1 of Fig. 5 associated to a deterministic public-key encryption scheme DPKE,
a target generator X satisfying X.tl = DPKE.ml, and an adversary A. For λ ∈ N let Advpriv1DPKE,X,A(λ) =

2Pr[PRIV1ADPKE,X(λ)]−1. If X is a class of target generators then we say that DPKE is PRIV1[X]-secure

if Advpriv1DPKE,X,A(·) is negligible for all PT adversaries A and all X ∈ X.

This definition reflects what BBO [3] call the multi-user setting where there are many, independent
public keys. However, in our case, only a single message is encrypted under each key. The single-key
version of this is called PRIV1 in the literature, so we retained the name in moving to the multi-user
setting. The definition is in the indistinguishability style of [4, 15] rather than the semantic security
style of [3]. These definitions however did not allow auxiliary inputs. We are allowing those following
BS [17]. Finally, while prior definitions require unpredictability of the message distribution, ours is simply
parameterized by the latter. Prior definitions are captured as special cases, meaning they can be recovered
as PRIV1[X] for some choice of X.

Construction. Let DPKE be a deterministic public-key encryption scheme. We construct an obfuscator
Obf with Obf.tl = DPKE.ml as follows:

Algorithm Obf(1λ, Ik)

(pk, sk)←$ DPKE.Kg(1λ)
c← DPKE.Enc(1λ, pk, k) ; Return C1λ,pk,c

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ, pk, k) = c)
Then return 1 else return 0

The construction is simple. To obfuscate Ik we pick a new key pair for the deterministic public-key
encryption scheme and return a circuit that embeds the public key pk as well as the encryption c of the
target point k. The circuit, given a candidate target point k′, re-encrypts it under the embedded public
key pk and checks that the ciphertext so obtained matches the embedded ciphertext c. Note that the
determinism of DPKE.Enc is used crucially to ensure that the circuit is deterministic. For randomized

13

encryption, one cannot check that a message corresponds to a ciphertext by re-encryption. The secret
key sk is discarded and not used in the construction, but its existence will guarantee correctness of the
point-function obfuscator.

Result. We show that this is a generic construction. Namely, a point-function obfuscator for a given
class X of target generators can be obtained if we have a deterministic public-key encryption scheme
secure for the same class.

Theorem 5.2 Let DPKE be a deterministic public-key encryption scheme and X a class of target gener-
ators such that X.tl = DPKE.ml for all X ∈ X. Assume DPKE is PRIV1[X]-secure. Let Obf be as defined
above. Then Obf is a PFO[X]-secure point-function obfuscator.

Proof of Theorem 5.2: The correctness of Obf follows from the decryption correctness of DPKE, and it
does not require the decryption algorithm DPKE.Dec to be PT. We now prove that Obf is PFO[X]-secure.

Let X ∈ X be a target generator with X.tl = DPKE.ml. Let A be PT adversary against the PFO security
of Obf relative to X. We construct a PT adversary B against the PRIV1 security of DPKE relative to X
as follows:

Adversary B(1λ,pk, c, a)
For i = 1, . . . , |c| do P[i]← C1λ,pk[i],c[i]

b′←$A(1λ,P, a) ; Return b′

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

We have Advpriv1DPKE,X,B(λ) = AdvpfoObf,X,A(λ) by construction. Hence, for any X ∈ X the PFO-security of
Obf relative to X follows from the assumed PRIV1-security of DPKE relative to X.

In applying Theorem 5.2 to get point function obfuscators, the first case of interest is X = Xsup ∩
Xε ∩ X1. In this case, PRIV1[X]-secure deterministic public-key encryption is a standard form of the
latter for which many constructions are known. The central construction, due to BFO [15], is from lossy
trapdoor functions (LTDFs). But the latter can be built from a wide variety of standard assumptions [39,
29, 42, 34, 45]. Thus we get PFO[Xsup ∩ Xε ∩ X1]-secure point-function obfuscators under the same
assumptions. The second case of interest is X = Xseup∩X1. Unlike in the first case, there is now auxiliary
information, but it leaves the targets sub-exponentially unpredictable. Constructions of PRIV1[X]-secure
deterministic public-key encryption are known under standard assumptions including DLIN, Subgroup
Indistinguishability and LWE [17, 44, 42]. Accordingly we get PFO[Xseup ∩ X1]-secure point-function
obfuscators under the same assumptions.

Theorem 5.2 also yields negative results. Assume iO exists. Then we know that there do not exist
point function obfuscators that are PFO[Xcup]-secure [19]. Theorem 5.2 then implies that there also do
not exist deterministic public-key encryption schemes that are PRIV1[Xcup]-secure.

5.3 PFO from UCE

Our next generic construction is based on UCE, a class of assumptions on function families from [6]. As
before we aim to provide point-function obfuscation secure for any given class of target generators. We
are able to do this with UCE by associating to the class of target generators a class of sources such that
the existence of a UCE-secure function family relative to the latter suffices to construct a point-function
obfuscator secure relative to the former.

Construction. Let H be a family of functions. Associate to it a point-function obfuscator Obf defined
as follows. Let Obf.tl = H.il, and

Algorithm Obf(1λ, Ik)

hk←$ H.Kg(1λ) ; y ← H.Ev(1λ, hk, k)
Return C1λ,hk,y

Circuit C1λ,hk,y(k
′)

y′ ← H.Ev(1λ, hk, k′)
If (y = y′) then return 1 else return 0

14

The construction is simple and natural. The point-function obfuscation of Ik is a circuit that embeds the
hash y of k under a freshly-chosen key hk also embedded in the circuit, and, given a candidate target k′,
checks whether its hash under hk equals the embedded hash value.

Source classes. To state the result, we need a few definitions. Associate to a target generator X a
source SX defined as follows:

Source SX(1λ)
(k, a)←$ X.Ev(1λ)
For i = 1, . . . , |k| do y[i]←$ HASH(i,k[i])
L← (y, a) ; Return L

The number of keys for this source is SX.nk = X.vl, the number of points in the target vector. Now let X
be a class of target generators and let SX = { SX : X ∈ X } be the corresponding class of sources. We
will show that the construction above is PFO[X]-secure assuming H is UCE[SX]-secure. To appreciate
what this provides we now discuss the assumption further.

UCE security is very sensitive to the class of sources for which security is assumed. Accordingly one
tries to restrict sources in different ways. In this regard SX = { SX : X ∈ X } has some good attributes
as we now discuss, referring to definitions of classes of UCE sources recalled in Section 2.

The first attribute is that the sources in SX are what BHK [6] call “split,” so that SX ⊆ Ssplt. “Split”
means that the leakage is a function of the oracle queries and answers separately, but not both together.
(Above, a depends only on the oracle queries, and y depends only on the answers.) The second attribute
is that the sources make only one query per key. (In particular when there is only one target point, the
source makes only one query overall.) That is, SX ⊆ Sn,1 if S.nk(·) ≤ n(·) for all S ∈ SX. The third
attribute is that the source class inherits the unpredictability properties of the target generator class.
Thus if X ⊆ Xcup then SX ⊆ Scup consists of computationally unpredictable sources; if X ⊆ Xsup then
SX ⊆ Ssup consists of statistically unpredictable sources; and if X ⊆ Xseup then SX ⊆ Sseup consists of
sources that are sub-exponentially unpredictable.

We warn that UCE[SX]-security is not achievable for all choices of X. The value of our result is that
it is entirely general, reducing PFO security for a given X to a question of UCE security for a related class
of sources, and we can then investigate the latter separately. In this way we get many new constructions.

Result. The following theorem shows that our construction above provides secure point-function obfus-
cation in a very general and modular way, namely the point-function obfuscator is secure relative to a
class of target generators if H is UCE-secure relative to the corresponding class of sources. After stating
and proving this general result we will look at some special cases of interest.

Theorem 5.3 Let H be an injective family of functions and X a class of target generators such that
X.tl = H.il for all X ∈ X. Assume H is UCE[SX]-secure. Let Obf be as defined above. Then Obf is a
PFO[X]-secure point-function obfuscator.

The injectivity of H is assumed in order to meet the correctness condition of a point-function obfuscator.
It is not important for security. We note that the perfect correctness we have required for point-function
obfuscators can be relaxed to a computational correctness requirement, namely that given an obfuscation
P of a point function Ik, no PT adversary can find k′ ̸= k such that P(k′) = 1 holds with better than a
negligible probability. The relaxed form of correctness can be achieved assuming nothing but UCE for
the corresponding class of sources, meaning the injectivity requirement can be dropped.

Proof of Theorem 5.3: Correctness of the obfuscator follows from the assumed injectivity of H,
meaning that the output of Obf(1λ, Ik) is always a point circuit with target k. We now prove that Obf is
PFO[X]-secure.

Let X ∈ X be a target generator with X.tl = H.il. Let SX be the source as defined above. Let A be a PT
adversary against the PFO-security of Obf relative to X and define PT distinguisher D via

15

Distinguisher D(1λ,hk, L)
(y, a)← L

For i = 1, . . . , |y| do P[i]← C1λ,hk[i],y[i]

b′←$A(1λ,P, a) ; Return b′

Circuit C1λ,hk,y(k
′)

y′ ← H.Ev(1λ, hk, k′)
If (y = y′) then return 1
Else return 0

Then AdvuceH,SX,D(λ) = AdvpfoObf,X,A(λ). So for any X ∈ X the PFO security of Obf relative to X follows from

the assumed UCE[{SX}]-security of H.

One special case of this we mention is when X = Xcup ∩X1, so that PFO[X] is AIPO. Theorem 5.3 and
the remarks preceding it imply that we get this assuming UCE[Scup ∩ Ssplt ∩ S1,1]-security. This special
case of our result was independently and concurrently obtained in [21]. Note that BM [20] showed that
UCE[Scup ∩ Ssplt ∩ S1,1]-security is achievable assuming iO and AIPO. It follows from our result that
UCE[Scup ∩ Ssplt ∩ S1,1] and AIPO are equivalent, assuming iO.

Acknowledgments

We thank Stefano Tessaro for discussions and insights.

References

[1] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689. 4, 6

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Aug. 2001. 2, 4, 6

[3] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. 4, 13

[4] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences
and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
360–378. Springer, Aug. 2008. 4, 13

[5] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic and hedged public-key
encryption in the standard model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 627–656. Springer, Apr. 2015. 4, 5

[6] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. Cryptology ePrint
Archive, Report 2013/424, 2013. Preliminary version in CRYPTO 2013. 2, 3, 4, 5, 6, 7, 14, 15

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. 5

[8] M. Bellare, I. Stepanovs, and S. Tessaro. Poly-many hardcore bits for any one-way function and a framework
for differing-inputs obfuscation. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874
of LNCS, pages 102–121. Springer, Dec. 2014. 4, 6

[9] M. Bellare, I. Stepanovs, and S. Tessaro. Contention in cryptoland: Obfuscation, leakage and UCE. Cryptology
ePrint Archive, Report 2015/487, 2015. http://eprint.iacr.org/2015/487. 3

[10] N. Bitansky and R. Canetti. On strong simulation and composable point obfuscation. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 520–537. Springer, Aug. 2010. 2

[11] N. Bitansky, R. Canetti, Y. T. Kalai, and O. Paneth. On virtual grey box obfuscation for general circuits. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 108–125. Springer,
Aug. 2014. 4

16

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2015/487

[12] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable one-way functions. In
D. B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press, May / June 2014. 3, 11

[13] N. Bitansky and O. Paneth. Point obfuscation and 3-round zero-knowledge. In R. Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 190–208. Springer, Mar. 2012. 2, 3, 9

[14] N. Bitansky and O. Paneth. On the impossibility of approximate obfuscation and applications to resettable
cryptography. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 241–250.
ACM Press, June 2013. 2

[15] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008. 4, 13, 14

[16] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 52–73. Springer, Feb. 2014. 4, 6, 9, 12

[17] Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting.
In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 543–560. Springer, Aug. 2011. 4, 13, 14

[18] C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and UCEs: The case of computa-
tionally unpredictable sources. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 188–205. Springer, Aug. 2014. 5, 7

[19] C. Brzuska and A. Mittelbach. Indistinguishability obfuscation versus multi-bit point obfuscation with aux-
iliary input. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
142–161. Springer, Dec. 2014. 4, 5, 14

[20] C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs. In P. Sarkar and T. Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 122–141. Springer, Dec. 2014. 2, 5, 16

[21] C. Brzuska and A. Mittelbach. Universal computational extractors and the superfluous padding assumption
for indistinguishability obfuscation. Cryptology ePrint Archive, Report 2015/581, 2015. http://eprint.

iacr.org/2015/581. 2, 5, 16

[22] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In B. S.
Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 455–469. Springer, Aug. 1997. 2, 3, 9

[23] R. Canetti and R. R. Dakdouk. Extractable perfectly one-way functions. In L. Aceto, I. Damg̊ard, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume
5126 of LNCS, pages 449–460. Springer, July 2008. 4, 5, 9, 11

[24] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 489–508. Springer, Apr. 2008. 2

[25] R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and point obfuscation. In
D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 52–71. Springer, Feb. 2010. 2

[26] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions (preliminary
version). In 30th ACM STOC, pages 131–140. ACM Press, May 1998. 2, 3, 9

[27] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment of backdoored pseudoran-
dom generators. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 101–126. Springer, Apr. 2015. 5

[28] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In M. Mitzenmacher, editor,
41st ACM STOC, pages 621–630. ACM Press, May / June 2009. 2, 3

[29] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-
secure trapdoor functions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 279–295. Springer, May 2010. 4, 14

[30] B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New constructions and
a connection to computational entropy. Journal of Cryptology, 28(3):671–717, July 2015. 4, 11

17

http://eprint.iacr.org/2015/581
http://eprint.iacr.org/2015/581

[31] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, Oct.
2013. 4, 6

[32] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the multilinear subgroup
elimination assumption. Cryptology ePrint Archive, Report 2014/309, 2014. http://eprint.iacr.org/2014/
309. 4

[33] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input. In 46th FOCS, pages
553–562. IEEE Computer Society Press, Oct. 2005. 2, 3, 9

[34] B. Hemenway and R. Ostrovsky. Building lossy trapdoor functions from lossy encryption. In K. Sako and
P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 241–260. Springer, Dec. 2013. 4,
14

[35] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 20–39. Springer, May 2004. 2, 3, 9

[36] T. Matsuda and G. Hanaoka. Chosen ciphertext security via point obfuscation. In Y. Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 95–120. Springer, Feb. 2014. 2

[37] T. Matsuda and G. Hanaoka. Chosen ciphertext security via UCE. In H. Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 56–76. Springer, Mar. 2014. 5

[38] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-secure multilinear encod-
ings. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517.
Springer, Aug. 2014. 4

[39] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and C. Dwork,
editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. 4, 14

[40] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In D. B.
Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. 6

[41] H. Wee. On obfuscating point functions. In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages
523–532. ACM Press, May 2005. 2, 3, 4, 9

[42] H. Wee. Dual projective hashing and its applications - lossy trapdoor functions and more. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 246–262. Springer, Apr. 2012.
4, 14

[43] D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In R. D. Kleinberg, editor, ITCS
2013, pages 111–126. ACM, Jan. 2013. 4

[44] X. Xie, R. Xue, and R. Zhang. Deterministic public key encryption and identity-based encryption from lattices
in the auxiliary-input setting. In I. Visconti and R. D. Prisco, editors, SCN 12, volume 7485 of LNCS, pages
1–18. Springer, Sept. 2012. 4, 14

[45] H. Xue, B. Li, X. Lu, D. Jia, and Y. Liu. Efficient lossy trapdoor functions based on subgroup membership
assumptions. In M. Abdalla, C. Nita-Rotaru, and R. Dahab, editors, CANS 13, volume 8257 of LNCS, pages
235–250. Springer, Nov. 2013. 4, 14

18

http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/309

	Introduction
	Notation and standard definitions
	Point-function obfuscation framework
	(d)iO for multi-circuit samplers
	Generic constructions of PFO
	PFO from iO
	PFO from DPKE
	PFO from UCE

