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Abstract. We present a new technique for robust secret reconstruction withO(n)
communication complexity. By applying this technique, we achieve O(n) com-
munication complexity per multiplication for a wide class of robust practical
Multi-Party Computation (MPC) protocols. In particular our technique applies
to robust threshold computationally secure protocols in the case of t < n/2 in
the pre-processing model. Previously in the pre-processing model, O(n) com-
munication complexity per multiplication was only known in the case of compu-
tationally secure non-robust protocols in the dishonest majority setting (i.e. with
t < n) and in the case of perfectly-secure robust protocols with t < n/3. A sim-
ilar protocol was sketched by Damgård and Nielsen, but no details were given
to enable an estimate of the communication complexity. Surprisingly our robust
reconstruction protocol applies for both the synchronous and asynchronous set-
tings.

1 Introduction

Secure MPC is a fundamental problem in secure distributed computing [28,23,6,12].
An MPC protocol allows a set of n mutually distrusting parties with private inputs to
securely compute a joint function of their inputs, even if t out of the n parties are cor-
rupted. Determining the communication complexity of MPC in terms of n, is a task
which is both interesting from a theoretical and a practical standpoint. It is a folklore
belief that the complexity should be essentially O(n) per multiplication in the compu-
tation. However, “most” robust secret-sharing based MPC protocols which are practical
have complexity O(n2).

To understand the problem notice that apart from the protocols for entering parties
inputs and determining parties outputs, the main communication task in secret-sharing
based MPC protocols is the evaluation of the multiplication gates (we assume a stan-
dard arithmetic circuit representation of the function to be computed for purely expos-
itory reasons, in practice other representations may be better). If we consider the clas-
sic information-theoretic passively secure sub-protocol for multiplication gates when
t < n/2 (locally multiply the shares, reshare and then recombine) we require O(n2)
messages per multiplication gate [6,22]. This is because each party needs to send the



shares representing its local multiplication to every other party, thus requiring O(n2)
messages, and hence O(n2) bits if we only look at complexity depending on n.

Even if we look at such protocols in the pre-processing model, where the so-called
“Beaver multiplication triples” are produced in an offline phase [2], and we are pri-
marily concerned about the communication complexity of the online phase, a similar
situation occurs. In such protocols, see for example [16], the standard multiplication
sub-protocol is for each party to broadcast a masking of their shares of the gate input
values to every other party. This again has O(n2) communication complexity.

In the SPDZ protocol [19], for the case of non-robust4 maliciously secure MPC
(with abort) in the dishonest majority setting (i.e. with t < n), an online communi-
cation complexity of O(n) was achieved. This is attained by replacing the broadcast
communication of the previous method with the following trick. For each multiplica-
tion gate one party is designated as the “reconstructor”. The broadcast round is then
replaced by each party sending their masked values to the reconstructor, who then re-
constructs the value and then sends it to each party. This requires exactly 2 ·n messages
being sent, and is hence O(n). However, this protocol is only relevant in the dishonest
majority setting as any dishonest behaviour of any party is subsequently detected via
the SPDZ MAC-checking procedure, in which case the protocol aborts. Our goal is to
achieve such a result for robust protocols in the pre-processing model.

Related Work: With t < n/3, information-theoretically secure an online protocols
with O(n) communication per multiplication are presented in [18]. There the basic
idea is a new method of reconstructing a batch ofΘ(n) secret-shared values withO(n2)
communication complexity, thus providing a linear overhead. However, the method is
tailor-made only for t < n/3 (as it is based on the error-correcting capability of the
Reed-Solomon (RS) codes) and will not work with t < n/2. Hence with t < n/2 in
the computational setting, a new technique to obtainO(n) online complexity is needed.
In [18] a similar protocol in the pre-processing model is also sketched, which uses the
designatred reconstructor idea (similar to the idea used in SPDZ, discussed above). The
protocol is only sketched, and appears to require O(t) rounds to identify the faulty
shares; as opposed to our method which requires no additional rounds.

In [24], a computationally-secure MPC protocol with t < n/2 and communication
complexity O(n) per multiplication is presented. The protocol is not designed in the
pre-processing model, but rather in the player-elimination framework, where the cir-
cuit is divided into segments and each segment is evaluated “optimistically”, assuming
no fault will occur. At the end of the segment evaluation, a detection protocol is exe-
cuted to identify whether the segment is evaluated correctly and if any inconsistency
is detected, then a fault-localization protocol is executed. The fault-localization pro-
cess identifies a pair of parties, with at least one of them being corrupted. The pair
is then neglected for the rest of the protocol execution and the procedure is repeated.
There are several drawbacks of this protocol. The protocol cannot be adapted to the pre-
processing model; so the benefits provided by the pre-processing based MPC protocols

4 An MPC protocol is called robust if the honest parties obtain the correct output at the end
of the protocol irrespective of the behaviour of the corrupted parties, otherwise it is called
non-robust.



(namely efficiently generating circuit-independent raw materials for several instances
of the computation in parallel) cannot be obtained. The protocol also makes expensive
use of zero-knowledge (ZK) machinery throughout the protocol and it does not seem
to be adaptable to the asynchronous setting withO(n) communication complexity. Our
techniques on the other hand are focused on efficient protocols in the pre-processing
model. For example we use ZK tools only in the offline phase, and our online meth-
ods are easily applicable to the asynchronous communication setting5, which models
real-world networks like the Internet more appropriately than the synchronous commu-
nication setting.

In [7], an information-theoretically secure MPC protocol in the pre-processing model
with t < n/2 and O(n) communication complexity per multiplication is presented.
Both the offline and online phase of [7] are designed in the dispute control frame-
work [3], which is a generalisation of the player-elimination technique and so like other
papers in the same framework it is not known if the protocol can be made to work
in the more practical asynchronous communication setting. Moreover since their on-
line phase protocol is in the dispute control framework, it requires O(n2 + D) rounds
of interaction in the online phase, where D is the multiplicative depth of the circuit.
This is unlike other MPC protocols in the pre-processing model whose online phase
requires only O(D) rounds of interaction [18,4,8,19]. Our technique for the online
phase protocol does not deploy any player-elimination/dispute-control techniques and
so requires fewer rounds than [7]. And our online phase can be executed even in the
asynchronous setting with t < n/2 and O(n) communication complexity. Imagine a
scenario involving a large number of parties, participating from various parts of the
globe. Clearly (an asynchronous) online protocol with less number of communication
rounds is desirable here and so our online phase protocol will fit the bill appropriately.
In the non-preprocessing model, information-theoretically secure MPC protocols with
“near linear” amortized communication complexity but non-optimal resilience are pre-
sented in [1,17,21]. Namely the overall communication complexity of these protocols
are O (polylog(n,C) · C), where C is the circuit size. While the protocol of [17] is
perfectly-secure and can tolerate upto t < (1/3− ε) ·n corruptions where 0 < ε < 1/3,
the protocols in [1,21] are statistical with resilience t < (1/2−ε)·nwhere 0 < ε < 1/2.
The central idea in these protocols is to take advantage of the non-optimal resilience by
deploying packed secret-sharing, where “several” values are secret shared simultane-
ously via a single sharing instance. None of the protocols are known to work in asyn-
chronous settings and all of them heavily rely on the fact that there are more honest
parties than just 1/2 (making them non-optimal in terms of resilience).

Finally we note that an asynchronous MPC protocol with t < n/3 and O(n) com-
munication complexity in the pre-processing model is presented in [15]. However the
online phase protocol of [15] is based on theO(n) reconstruction method of [4,18] with
t < n/3 and hence cannot be adapted to the t < n/2 setting.

Our Contribution: We present a computationally-secure method to obtainO(n) com-
munication complexity for the online phase of robust MPC protocols with t < n/2.

5 We stress that we are interested only in the online complexity. Unlike our online phase, our
offline phase protocol cannot be executed in a completely asynchronous setting with t < n/2.



We are focused on protocols which could be practically relevant, so we are interested
in suitable modifications of protocols such as VIFF [16], BDOZ [8] and SPDZ [19].
Our main contribution is a trick to robustly reconstruct a secret with an amortized com-
munication complexity of O(n) messages. Assuming our arithmetic circuit is suitably
wide, this implies an O(n) online phase when combined with the standard method for
evaluating multiplication gates based on pre-processed Beaver triples.

To produce this sub-protocol we utilize the error-correcting capability of the under-
lying secret-sharing scheme when error positions are already known. To detect the error
positions we apply the the pair-wise BDOZ MACs from [8]. The overall sub-protocol is
highly efficient and can be utilized in practical MPC protocols. Interestingly our recon-
struction protocol also works in the asynchronous setting. Thus we obtain a practical
optimization in both synchronous and asynchronous setting.

Before proceeding we pause to examine the communication complexity of the of-
fline phase of protocols such as SPDZ. It is obvious that in the case of a computationally
secure offline phase one can easily adapt the somewhat homomorphic encryption (SHE)
based offline phase of SPDZ to the case of Shamir secret sharing when t < n/2. In ad-
dition one can adapt it to generate SPDZ or BDOZ style MACs. And this is what we
exactly do to implement our offline phase in the synchronous setting. In [19] the offline
communication complexity is given as O(n2/s) in terms of the number of messages
sent, where s is the “packing” parameter of the SHE scheme. As shown in the full
version of [20], assuming a cyclotomic polynomial is selected which splits completely
modulo the plaintext modulus p, the packing parameter grows very slowly in terms of
the number of parties (for all practical purposes it does not increase at all). In addition
since s is in the many thousands, for all practical purposes the communication com-
plexity of the offline phase isO(n) in terms of the number of messages. However, each
message is O(s) and so the bit communication complexity is still O(n2).

As our online phase also works in the asynchronous setting, we explore how the of-
fline phase, and the interaction between the offline and online phases can be done asyn-
chronously. For this we follow the VIFF framework [16], which implements the offline
phase asynchronously with t < n/3 via the pseudo-random secret sharing, assuming a
single synchronization point between the offline and online phases. Following the same
approach, we show how the interaction between our offline and online phase can be
handled asynchronously with t < n/2. However we require an additional technicality
for t < n/2 to deal with the issue of agreement among the parties at the end of asyn-
chronous offline phase. Specifically, we either require “few” synchronous rounds or a
non-equivocation mechanism at the end of offline phase to ensure agreement among the
parties. We stress that once this is done then the online phase protocol can be executed
in a completely asynchronous fashion with t < n/2.

2 Preliminaries

We assume a set of parties P = {P1, . . . , Pn}, connected by pair-wise authentic chan-
nels, and a centralized static, active PPT adversary A who can corrupt any t < n/2
parties. For simplicity we assume n = 2t+ 1, so that t = Θ(n). The functionality that
the parties wish to compute is represented by an arithmetic circuit over a finite field F,



where |F| > n. We denote by µ and κ the statistical and cryptographic security param-
eter respectively. A negligible function in κ (µ) will be denoted by negl(κ) (negl(µ)),
while negl(κ, µ) denotes a function which is negligible in both κ and µ. We use both
information-theoretic and public-key cryptographic primitives in our protocols. The se-
curity of the information theoretic primitives are parameterised with µ, while that of
cryptographic primitives are parametrised with κ. We assume F = GF(p), where p is
a prime with p ≈ 2µ, to ensure that the statistical security of our protocol holds with
all but negl(µ) probability. Each element of F can be represented by µ bits. For vectors
A = (a1, . . . , am) and B = (b1, . . . , bm), A⊗B denotes the value

∑m
i=1 aibi. The ith

element in a vector A is denoted as A[i] and (i, j)th element in a matrix A as A[i, j].

2.1 Communication Settings

In this paper we consider two communication settings. The first setting is the popular
and simple, but less practical, synchronous channel setting, where the channels are syn-
chronous and there is a strict upper bound on the message delays. All the parties in this
setting are assumed to be synchronized via a global clock. Any protocol in this setting
operates as a sequence of rounds, where in every round: A party first performs some
computation, then they send messages to the others parties over the pair-wise channels
and broadcast any message which need to be broadcast; this stage is followed by receiv-
ing both the messages sent to the party by the other parties over the pair-wise channels
and the messages broadcast by the other parties. Since the system is synchronous, any
(honest) party need not have to wait endlessly for any message in any round. Thus the
standard behaviour is to assume that if a party does not receive a value which it is sup-
posed to receive or instead it receives a “syntactically incorrect” value, then the party
simply substitutes a default value (instead of waiting endlessly) and proceeds further to
the next round.

The other communication setting is the more involved, but more practical, asyn-
chronous setting; here the channels are asynchronous and messages can be arbitrarily
(but finitely) delayed. The only guarantee here is that the messages sent by the honest
parties will eventually reach their destinations. The order of the message delivery is de-
cided by a scheduler. To model the worst case scenario, we assume that the scheduler
is under the control of the adversary. The scheduler can only schedule the messages
exchanged between the honest parties, without having access to the “contents” of these
messages. As in [5,10], we consider a protocol execution in this setting as a sequence
of atomic steps, where a single party is active in each step. A party is activated when
it receives a message. On receiving a message, it performs an internal computation and
then possibly sends messages on its outgoing channels. The order of the atomic steps
are controlled by the scheduler. At the beginning of the computation, each party will
be in a special start state. A party is said to terminate/complete the computation if it
reaches a halt state, after which it does not perform any further computation. A proto-
col execution is said to be complete if all the honest parties terminate the computation.

It is easy to see that the asynchronous setting models real-world networks like the
Internet (where there can be arbitrary message delays) more appropriately than the syn-
chronous setting. Unfortunately, designing protocol in the asynchronous setting is com-
plicated and this stems from the fact that we cannot distinguish between a corrupted



sender (who does not send any messages) and a slow but honest sender (whose mes-
sages are arbitrarily delayed). Due to this the following unavoidable but inherent phe-
nomenon is always present in any asynchronous protocol: at any stage of the protocol,
no (honest) party can afford to receive communication from all the n parties, as this
may turn out to require an endless wait. So as soon as the party hears from n− t parties,
it has to proceed to the next stage; but in this process, communication from t potentially
honest parties may get ignored.

2.2 Primitives

Linearly-homomorphic Encryption Scheme (HE). We assume an IND-CPA secure
linearly-homomorphic public-key encryption scheme set-up for every Pi ∈ P with
message space F; a possible instantiation could be the BGV scheme [9]. Under this
set-up, Pi will own a secret decryption key dk(i) and the corresponding encryption
key pk(i) will be publicly known. Given pk(i), a plaintext x and a randomness r,

anyone can compute a ciphertext HE.c(x)
def
= HE.Encpk(i)(x, r) of x for Pi, using

the encryption algorithm HE.Enc, where the size of HE.c(x) is O(κ) bits. Given a
ciphertext HE.c(x) = HE.Encpk(i)(x, ?) and the decryption key dk(i), Pi can re-
cover the plaintext x = HE.Decdk(i)(cx) using the decryption algorithm HE.Dec.
The encryption scheme is assumed to be linearly homomorphic: given two ciphertexts
HE.c(x) = HE.Encpk(i)(x, ?) and HE.c(y) = HE.Encpk(i)(y, ?), there exists an oper-
ation, say ⊕, such that HE.c(x)⊕ HE.c(y) = HE.Encpk(i)(x+ y, ?). Moreover, given
a ciphertext HE.c(x) = HE.Encpk(i)(x, ?) and a public constant c, there exists some
operation, say �, such that c� HE.c(x) = HE.Encpk(i)(c · x, ?).

Information-theoretic MACs: We will use information-theoretically secure MAC,
similar to the one used in [8]. Here a random pair K = (α, β) ∈ F2 is selected as
the MAC key and the MAC tag on a value a ∈ F, under the key K is defined as

MACK(a)
def
= α · a + β. The MACs will be used as follows: a party Pi will hold

some value a and a MAC tag MACK(a), while party Pj will hold the MAC key K.
Later when Pi wants to disclose a to Pj , it sends a along with MACK(a); Pj verifies
if a is consistent with the MAC tag with respect to its key K. A corrupted party Pi on
holding the MAC tag on a message gets one point on the straight-line y = αx + β
and it leaves one degree of freedom on the polynomial. Therefore even a computation-
ally unbounded Pi cannot recover K completely. So a corrupted Pi cannot reveal an
incorrect value a′ 6= a to an honest Pj without getting caught, except with probabil-
ity 1
|F| ≈ 2−µ = negl(µ), which is the probability of guessing a second point on the

straight-line. We call two MAC keys K = (α, β) and K′ = (α′, β′) consistent if α = α′.
Given two consistent MAC keys K = (α, β) and K′ = (α, β′) and a public constant c,
we define the following operations on MAC keys:

K+ K′
def
= (α, β + β′), K+ c

def
= (α, β + αc) and c · K def

= (α, c · β).

Given two consistent MAC keys K,K′ and a value c, the following linearity properties
hold for the MAC:



– Addition:
MACK(a) +MACK′(b) = MACK+K′(a+ b).

– Addition/Subtraction by a Constant:

MACK−c(a+ c) = MACK(a) and MACK+c(a− c) = MACK(a).

– Multiplication by a constant:

c ·MACK(a) = MACc·K(c · a).

2.3 The Various Sharings

We define following two types of secret sharing.

Definition 1 ([·]-sharing). We say a value s ∈ F is [·]-shared among P if there exists
a polynomial p(·) of degree at most t with p(0) = s and every (honest) party Pi ∈ P
holds a share si

def
= p(i) of s. We denote by [s] the vector of shares of s corresponding

to the (honest) parties in P . That is, [s] = {si}ni=1.

Definition 2 (〈·〉-sharing). We say that a value s ∈ F is 〈·〉-shared among P if s is
[·]-shared among P and every (honest) party Pi holds a MAC tag on its share si for a
key Kji held by every Pj . That is, the following holds for every pair of (honest) parties
Pi, Pj ∈ P: party Pi holds MAC tag MACKji(si) for a MAC key Kji held by Pj . We
denote by 〈s〉 the vector of such shares, MAC keys and MAC tags of s corresponding to
the (honest) parties in P . That is, 〈s〉 =

{
si, {MACKji(si),Kij}nj=1

}n
i=1

.

While most of our computations are done over values that are 〈·〉-shared, our efficient
public reconstruction protocol for 〈·〉-shared values will additionally require a tweaked
version of 〈·〉-sharing, where there exists some designated party, say Pj ; and the parties
hold the shares and the MAC tags in an encrypted form under the public key pk(j) of
an HE scheme, where Pj knows the corresponding secret key dk(j). We stress that the
shares and MAC tags will not be available in clear. More formally:

Definition 3 (〈〈·〉〉j-sharing). Let s ∈ F and [s] = {si}ni=1 be the vector of shares
corresponding to an [·]-sharing of s. We say that s is 〈〈·〉〉j-shared among P with re-
spect to a designated party Pj , if every (honest) party Pi holds an encrypted share
HE.c(si) and encrypted MAC tag HE.c(MACKji(si)) under the public key pk(j), such
that Pj holds the MAC keys Kji and the secret key dk(j). We denote by 〈〈s〉〉j the
vector of encrypted shares and encrypted MAC tags corresponding to the (honest)
parties in P , along with the MAC keys and the secret key of Pj . That is, 〈〈s〉〉j ={
{HE.c(si),HE.c(MACKji(si))}ni=1, {Kji}ni=1,dk

(j)
}

.



Private Reconstruction of 〈·〉 and 〈〈·〉〉-shared Value Towards a Designated Party.
Note that with n = 2t+1, a [·]-shared value cannot be robustly reconstructed towards a
designated party just by sending the shares, as we cannot do error-correction. However,
we can robustly reconstruct a 〈·〉-sharing towards a designated party, say Pj , by asking
the parties to send their shares, along with MAC tags to Pj , who then identifies the cor-
rect shares with high probability and reconstructs the secret. A similar idea can be used
to reconstruct an 〈〈s〉〉j-sharing towards Pj . Now the parties send encrypted shares and
MAC tags to Pj , who decrypts them before doing the verification. We call the resultant
protocols RecPrv(〈s〉, Pj) and RecPrvEnc(〈〈s〉〉j) respectively, which are presented in
Fig. 1. We stress that while 〈s〉 can be reconstructed towards any Pj , 〈〈s〉〉j can be re-
constructed only towards Pj , as Pj alone holds the secret key dk(j) that is required to
decrypt the shares and the MAC tags.

Protocol RecPrv(〈s〉, Pj)

– Every party Pi ∈ P sends its share si and the MAC tag MACKji(si) to the party Pj .
– Party Pj on receiving the share s′i and the MAC tag MAC′Kji(si) from Pi computes

MACKji(s
′
i) and verifies if MACKji(s

′
i)

?
= MAC′Kji(si).

– If the verification passes then Pj considers s′i as a valid share.
– Once t+ 1 valid shares are obtained, using them Pj interpolates the sharing polynomial

and outputs its constant term as s.

Protocol RecPrvEnc(〈〈s〉〉j)

– Every party Pi ∈ P sends HE.c(si) and HE.c(MACKji(si)) to the party Pj .
– Party Pj , on receiving these values, computes s′i = HE.Decdk(j)(HE.c(si)) and

MAC′Kji(si) = HE.Decdk(j)(HE.c(MACKji(si))). The rest of the steps are the same
as for RecPrv(?, Pj).

Fig. 1. Protocols for Reconstructing a 〈·〉-sharing and 〈〈·〉〉-sharing Towards a Designated Party

It is easy to see that if Pj is honest, then Pj correctly reconstructs the shared value
in protocol RecPrv as well as in RecPrvEnc, except with probability at most t

|F| ≈
negl(µ). While protocol RecPrv has communication complexity O(µ · n) bits, proto-
col RecPrvEnc has communication complexity O(κ · n) bits. Also note that both the
protocols will work in the asynchronous setting. We argue this for RecPrv (the same
argument will work for RecPrvEnc). The party Pj will eventually receive the shares of
s from at least n− t = t+ 1 honest parties, with correct MACs. These t+ 1 shares are
enough for the robust reconstruction of s. So we state the following lemma for RecPrv.
Similar statements hold for protocol RecPrvEnc. Thus we have the following Lemmas.

Lemma 1. Let s be 〈·〉-shared among the partiesP . Let Pj be a specific party. Protocol
RecPrv achieves the following in the synchronous communication setting:

– Correctness: Except with probability negl(µ), an honest Pj reconstructs s.
– Communication Complexity: The communication complexity is O(µ · n) bits.



Lemma 2. Let s be 〈·〉-shared among the partiesP . Let Pj be a specific party. Protocol
RecPrv achieves the following in the asynchronous communication setting:

– Correctness & Communication Complexity: Same as in Lemma 1.
– Termination: If every honest party participates in RecPrv, then an honest Pj will
eventually terminate.

Linearity of Various Sharings. All of the previously defined secret sharings are linear,
which for ease of exposition we shall now overview. We first define what is meant by
key consistent sharings.

Definition 4 (Key-consistent 〈·〉 and 〈〈·〉〉j Sharings). Two 〈·〉-sharings 〈a〉 and 〈b〉
are said to be key-consistent if every (honest) Pi holds consistent MAC keys for every
Pj across both the sharings.

Sharings 〈〈a〉〉j and 〈〈b〉〉j with respect to a designated Pj are called key-consistent
if Pj holds consistent MAC keys for every Pi across both the sharings, and the encryp-
tions are under the same public key of Pj .

Linearity of [·]-sharings: Given [a] = {ai}ni=1 and [b] = {bi}ni=1 and a public constant
c, we have:

– Addition: To compute [a+ b], every party Pi needs to locally compute ai + bi,

[a] + [b] = [a+ b] = {ai + bi}ni=1 .

– Addition by a Public Constant: To compute [c+a], every party Pi needs to locally
compute c+ ai,

c+ [a] = [c+ a] = {c+ ai}ni=1 .

– Multiplication by a Public Constant: To compute [c · a], every party Pi needs to
locally compute c · ai,

c · [a] = [c · a] = {c · ai}ni=1 .

Linearity of 〈·〉-sharing: Given 〈a〉 =
{
ai, {MACKji(ai),Kij}nj=1

}n
i=1

, and 〈b〉 ={
bi, {MACK′

ji
(bi),K

′
ij}nj=1

}n
i=1

that are key-consistent and a publicly-known constant
c, we have:

– Addition: To compute 〈a + b〉, every party Pi needs to locally compute ai + bi,
{MACKji(ai) +MACK′

ji
(bi)}nj=1 and {Kij + K′ij}nj=1,

〈a〉+ 〈b〉 = 〈a+ b〉 =
{
ai + bi, {MACKji+K′

ji
(ai + bi),Kij + K′ij}nj=1

}n
i=1

.

– Addition by a Public Constant: To compute 〈c+a〉, every party Pi needs to locally
compute c + ai, In addition recall that MACKji−c(ai + c) = MACKji(ai). Hence
we assign MACKji(ai) to MACKji−c(ai + c) and compute {Kij − c}nj=1.

c+ 〈a〉 = 〈c+ a〉 =
{
c+ ai, {MACKji−c(ai + c),Kij − c}nj=1

}n
i=1

.



– Multiplication by a Public Constant: To compute 〈c · a〉, every party Pi needs to
locally compute c · ai, {c ·MAC·Kji(ai)}nj=1 and {c · Kij}nj=1,

c · 〈a〉 = 〈c · a〉 =
{
c · ai, {MACc·Kji(c · ai), c · Kij}nj=1

}n
i=1

.

Linearity of 〈〈·〉〉j-sharings: Given 〈〈a〉〉j =
{
{HE.c(ai),HE.c(MACKji(ai)), }ni=1,

{Kji}ni=1,dk
(j)
}

and 〈〈b〉〉j =
{
{HE.c(bi),HE.c(MACKji(bi))}ni=1, {K′ji}ni=1,dk

(j)
}

that are key-consistent we can add the sharings via the operation

〈〈a〉〉j + 〈〈b〉〉j = 〈〈a+ b〉〉j

=
{
{HE.c(ai + bi),HE.c(MACKji+K′

ji
(ai + bi))}ni=1,

{Kji + K′ji}ni=1,dk
(j)
}

So to compute 〈〈a + b〉〉j , every party Pi ∈ P needs to locally compute the values
HE.c(ai) ⊕ HE.c(bi) and HE.c(MACKji(ai)) ⊕ HE.c(MACK′

ji
(bi)), while party Pj

needs to compute {Kji + K′ji}ni=1.

Generating 〈〈·〉〉j-sharing from 〈·〉-sharing. In our efficient protocol for public re-
construction of 〈·〉-shared values, we come across the situation where there exists: a
value r known only to a designated party Pj , a publicly known encryption HE.c(r) of
r, under the public key pk(j), and a 〈·〉-sharing 〈a〉 =

{
ai, {MACKji(ai),Kij}nj=1

}n
i=1

.
Given the above, the parties need to compute a 〈〈·〉〉j sharing:

〈〈r · a〉〉j =
{
{HE.c(r · ai),HE.c(MACr·Kji(r · ai))}ni=1, {r · Kji}ni=1,dk

(j)
}

of r · a. Computing the above needs only local computation by the parties. Specifically,
each party Pi ∈ P locally computes the values HE.c(r · ai) = ai � HE.c(r) and

HE.c(MACr·Kji(r · ai)) = HE.c(r ·MACKji(ai)) = MACKji(ai)� HE.c(r),

since r·MACKji(ai) = MACr·Kji(ai·r). Finally party Pj locally computes {r·Kji}ni=1.

3 Public Reconstruction of 〈·〉-sharings with a Linear Overhead

We present a new protocol to publicly reconstruct n(t + 1)κµ = Θ(n
2κ
µ ) 〈·〉-shared

values with communication complexityO(κ·n3) bits. So the amortized communication
overhead for public reconstruction of one 〈·〉-shared value is linear in n i.e.O(µ·n) bits.
For a better understanding of the ideas used in the protocol, we first present a protocol
RecPubSimple to publicly reconstruct n(t + 1) 〈·〉-shared values with communication
complexityO(κ ·n3) bits. We will then extend this protocol for n(t+1)κµ secrets while
retaining the same communication complexity; the resulting protocol is called RecPub.

Let {〈a(i,j)〉}n,t+1
i=1,j=1 be the 〈·〉-sharings, which need to be publicly reconstructed.

The naive way of achieving the task is to run Θ(n3) instances of RecPrv, where Θ(n2)



instances are run to reconstruct all the values to a single party. This method has com-
munication complexity O(κ · n4) bits and thus has a quadratic overhead. Our approach
outperforms the naive method, and works for both synchronous as well as asynchronous
setting; for simplicity we first explain the protocol assuming a synchronous setting.

Let A be an n × (t + 1) matrix, with (i, j)th element as a(i,j). Let Ai(x) be a

polynomial of degree t defined over the values in the ith row of A; i.e. Ai(x)
def
=

A[i, 1]+A[i, 2]x+. . . , A[i, t+1]xt. LetB denote an n×nmatrix andB[i, j]
def
= Ai(j),

for i, j ∈ {1, . . . , n}. Clearly A can be recovered given any t + 1 columns of B. We
explain below how to reconstruct at least t + 1 columns of B to all the parties with
communication complexity O(κ · n3) bits. In what follows, we denote ith row and
column of A as Ai and Ai respectively, with a similar notation used for the rows and
columns of B.

Since Bi is linearly dependent on Ai, given 〈·〉-sharing of Ai, it requires only local
computation to generate 〈·〉-sharings of the elements in Bi. Specifically, 〈B[i, j]〉 =
〈A[i, 1]〉 + 〈A[i, 2]〉 · j + . . . + 〈A[i, t + 1]〉 · jt. Then we reconstruct the elements of
A to all the parties in two steps. First Bi is reconstructed towards Pi using n instances
of RecPrv with an overall cost O(µ · n3) bits. Next each party Pi sends Bi to all the
parties, requiring O(µ · n3) bits of communication. If every Pi behaves honestly then
every party would possess B at the end of the second step. However a corrupted Pi
may not send the correct Bi. So what we need is a mechanism that allows an honest
party to detect if a corrupted party Pi has sent an incorrect Bi. Detecting is enough,
since every (honest) party is guaranteed to receive correctly the Bi columns from t+ 1
honest parties. Recall that t+ 1 correct columns of B are enough to reconstruct A.

After Pi reconstructs Bi, and before it sends the same to party Pj , we allow Pj to
obtain a random linear combination of the elements inBi (via interaction) in a way that
the linear combiners are known to no one other than Pj . Later, when Pi sends Bi to
Pj , party Pj can verify if the Bi received from Pi is correct or not by comparing the
linear combination of the elements of the received Bi with the linear combination that
it obtained before. It is crucial to pick the linear combiners randomly and keep them
secret, otherwise Pi can cheat with an incorrect Bi without being detected by an honest
Pj . In our method, the random combiners for an honest Pj are never leaked to anyone
and this allowsPj to reuse them in a latter instance of the public reconstruction protocol.
Specifically, we assume the following one time setup for RecPubSimple (which can
be done beforehand in the offline phase of the main MPC protocol). Every party Pj
holds a secret key dk(j) for the linearly-homomorphic encryption scheme HE and the
corresponding public key pk(j) is publicly available. In addition, Pj holds a vector
Rj of n random combiners and the encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [n]) of the
values in Rj under Pj’s public key pk(j) are available publicly. The above setup can be
created once and for all, and can be reused across multiple instances of RecPubSimple.

Given the above random combiners in an encrypted form, party Pj can obtain the

linear combination c(i,j)
def
=
∑n
l=1B

i[l]Rj [l] of the elements of Bi as follows. First
note that the parties hold 〈·〉-sharing of the elements of Bi. If the linear combiners
were publicly known, then the parties could compute 〈c(i,j)〉 =

∑n
l=1R

j [l]〈Bi[l]〉
and reconstruct c(i,j) to party Pj using RecPrv. However since we do not want to dis-



close the combiners, the above task is performed in an encrypted form, which is doable
since the combiners are encrypted under the linearly-homomorphic PKE. Specifically,
given encryptions HE.c(Rj [l]) under pk(j) and sharings 〈Bi[l]〉, the parties first gen-
erate 〈〈Rj [l] · Bi[l]〉〉j for every Pj (recall that it requires only local computation).
Next the parties linearly combine the sharings 〈〈Rj [l] · Bi[l]〉〉j for l = 1, . . . , n to
obtain 〈〈c(i,j)〉〉j , which is then reconstructed towards party Pj using an instance of
RecPrvEnc. In total n2 such instances need to be executed, costing O(κ · n3) bits.
Protocol RecPubSimple is presented in Fig. 2.

Protocol RecPubSimple({〈a(i,j)〉}n,t+1
i=1,j=1)

Each Pj ∈ P holds Rj and the encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [n]), under Pj’s
public key pk(j), are publicly known. Let A be the matrix of size n × (t + 1), with (i, j)th
entry as a(i,j), for i ∈ {1, . . . , n} and j ∈ {1, . . . , t+ 1}. We denote the ith row and column

of A as Ai and Ai respectively. Let Ai(x)
def
= a(i,1) + . . .+ a(i,t+1)xt for i ∈ {1, . . . , n}.

Let B be the matrix of size n × n, with the (i, j)th entry as B[i, j]
def
= Ai(j) for i, j ∈

{1, . . . , n}. We denote the ith row and column of B as Bi and Bi respectively. The parties
do the following to reconstruct A:
• Computing 〈·〉-sharing of every element of B: For i, j ∈ {1, . . . , n}, the parties com-

pute 〈B[i, j]〉 = 〈A[i, 1]〉+ j · 〈A[i, 1]〉+ . . .+ jt · 〈A[i, t+ 1]〉.
• Reconstructing Bi towards Pi: For i ∈ {1, . . . , n}, the parties execute

RecPrv(〈B[1, i]〉, Pi), . . . ,RecPrv(〈B[n, i]〉, Pi) to enable Pi robustly reconstruct Bi.
• ReconstructingBi⊗Rj towards Pj: Corresponding to each Pi ∈ P , the parties execute

the following steps, to enable each Pj ∈ P to obtain the random linear combination

c(i,j)
def
= Bi ⊗Rj :

• The parties first compute 〈〈Rj [l] · Bi[l]〉〉j from HE.c(Rj [l]) and 〈Bi[l]〉 for l ∈
{1, . . . , n} and then compute 〈〈c(i,j)〉〉j =

∑n
l=1〈〈R

j [l] ·Bi[l]〉〉j .
• The parties execute RecPrvEnc(〈〈c(i,j)〉〉j) to reconstruct c(i,j) towards Pj .

• Sending Bi to all: Each Pi ∈ P sends Bi to every Pj ∈ P . Each Pj then reconstructs
A as follows:
• On receiving B̄i from Pi, compute c′(i,j) = B̄i ⊗ Rj and check if c(i,j) ?

= c′(i,j). If
the test passes then Pj considers B̄i as the valid ith column of the matrix B.

• Once t+ 1 valid columns of B are obtained by Pj , it then reconstructs A.

Fig. 2. Robustly Reconstructing 〈·〉-shared Values with O(κ · n) Communication Complexity

The correctness and communication complexity of the protocol are stated in Lemma 3,
which follows in a straight forward fashion from the protocol description and the de-
tailed protocol overview. The security of the protocol will be proven, in the full version,
in conjunction with the online phase of our MPC protocol.

Lemma 3. Let {〈a(i,j)〉}n,t+1
i=1,j=1 be a set of n(t + 1) shared values which need to be

publicly reconstructed by the parties. Then given a setup (pk(1),dk(1)), . . . , (pk(n),

dk(n)) for the linearly-homomorphic encryption scheme HE for the n parties and en-
cryptions HE.c(Rj [1]), . . . ,HE.c(Rj [n]) of n random values in Rj on the behalf of



each party Pj ∈ P , with only Pj knowing the random values, protocol RecPubSimple
achieves the following in the synchronous communication setting:

– Correctness: Except with probability negl(κ, µ), every honest party reconstructs
{a(i,j)}n,t+1

i=1,j=1.
– Communication Complexity: The communication complexity is O(κ · n3) bits.

FromO(κ ·n) toO(µ ·n) Amortized cost of Reconstruction. We note that the amor-
tized complexity of reconstructing one secret via RecPubSimple is O(κ · n), where κ
is the cryptographic security parameter. To improve the amortized cost to O(µ · n), we
make the following observation on the communication in RecPubSimple. There is a
scope to amortize part of the communication to reconstruct more than n(t+ 1) secrets.
This leads to a trick that brings down the amortized communication complexity per se-
cret to O(µ · n) bits. We call our new protocol RecPub. which starts with κ

µ batches
of secrets where each batch consists of n(t + 1) secrets. For each batch, RecPub ex-
ecutes exactly the same steps as done in RecPubSimple except for the step involving
the reconstruction of Bi ⊗ Rj . RecPub keeps the communication cost of this step un-
perturbed by taking a random linear combination of κµ B

i columns together. Therefore
RecPub still needs private reconstruction of n2 〈〈·〉〉j-shared values and a communica-
tion of O(κ · n3) bits for this step. For the rest of the steps, the communication com-
plexity of RecPub will be κ

µ times the communication complexity of the same steps in
RecPubSimple. Since RecPubSimple requires O(µ · n3) bits of communication for the
rest of the steps, the communication complexity of RecPub will turn out to beO(κ ·n3)
bits of communication overall. Since the number reconstructed secrets are n(t + 1)κµ ,
RecPub offers an amortized cost ofO(µ ·n) bits per secret. The formal specification of
protocol RecPub is in Fig. 3.

We note that RecPub takes random linear combination of κn
µ values. So the one

time set up has to be enhanced where every Pj now holds κn
µ random combiners, and

the encryptions of them are available in public. Namely Rj is a vector of κn/µ random
values and the encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [κn/µ]) done under Pj’s public
key pk(j) are available publicly. We thus have the following Lemma.

Lemma 4. Let {〈a(i,j,k)〉}n,t+1,κ/µ
i=1,j=1,k=1 be a set of n(t+ 1)κµ shared values which need

to be publicly reconstructed by the parties. Then given a setup (pk(1),dk(1)), . . . ,

(pk(n),dk(n)) for the linearly-homomorphic encryption scheme HE for the n parties
and encryptions HE.c(Rj [1]), . . . ,HE.c(Rj [κn/µ]) of κn/µ random values in Rj on
the behalf of each party Pj ∈ P , with only Pj knowing the random values, protocol
RecPub achieves the following in the synchronous communication setting:

– Correctness: Except with probability negl(κ, µ), every honest party reconstructs
{a(i,j,k)}n,t+1,κ/µ

i=1,j=1,k=1.
– Communication Complexity: The communication complexity is O(κ · n3) bits.

Protocol RecPubSimple and RecPub in the Asynchronous Setting: Consider the
protocol RecPubSimple, and note that the steps involving interaction among the parties
are during the instances of RecPrv and RecPrvEnc. All the remaining steps involve only



Protocol RecPub({〈a(i,j,k)〉}n,t+1,κ/µ
i=1,j=1,k=1)

Each Pj ∈ P holds Rj = (Rj [1], . . . , Rj [κn/µ]) and the encryptions HE.c(Rj [1]), . . . ,
HE.c(Rj [κn/µ]), under Pj’s public key pk(j), are publicly known. For a k that varies over
1, . . . , κ/µ, the set of secrets {a(i,j,k)}n,t+1

i=1,j=1 is denoted as the kth batch of secrets. LetA(k)

be the matrix of size n × (t + 1) consisting of the kth batch i.e., the (i, j)th entry of A(k)

is a(i,j,k), for i ∈ {1, . . . , n} and j ∈ {1, . . . , t+ 1}. We denote the ith row and column of

A(k) asA(k)
i andA(k)i respectively. We defineA(k)

i (x)
def
= A(k)[i, 1]+A(k)[i, 2] ·x+ . . .+

A(k)[i, t+ 1] · xt for i ∈ {1, . . . , n}. Let B(k) be the matrix of size n× n, with the (i, j)th

entry as B(k)[i, j]
def
= A(k)

i (j) for i, j ∈ {1, . . . , n}. We denote the ith row and column of
B(k) as B(k)

i and B(k)i respectively. We denote the concatenation of the ith column of all the

B(k)s as Bi i.e. Bi =
[
(B(1)i)tr, . . . , (B( κ

µ
)i

)tr
]

where (·)tr denotes vector transpose. The

parties do the following to reconstruct A(1), . . . ,A( κ
µ
):

– Computing 〈·〉-sharing of elements of B(k) for k = 1, . . . , κ/µ: Same as in
RecPubSimple.

– Reconstructing B(k)i towards Pi for k = 1, . . . , κ/µ: Same as in RecPubSimple.
Party Pi holds Bi at the end of this step.

– Reconstructing Bi ⊗ Rj towards Pj: Corresponding to each Pi ∈ P , the parties exe-
cute the following steps, to enable each Pj ∈ P to obtain the random linear combination

c(i,j)
def
= Bi ⊗Rj =

∑κn/µ
l=1 Rj [l]Bi[l]:

• The parties first compute 〈〈Rj [l]Bi[l]〉〉j from HE.c(Rj [l]) and 〈Bi[l]〉 for l ∈
{1, . . . , κn

µ
} and then compute 〈〈c(i,j)〉〉j =

∑κn
µ

l=1〈〈R
j [l]Bi[l]〉〉j .

• The parties execute RecPrvEnc(〈〈c(i,j)〉〉j) to reconstruct c(i,j) towards Pj .
– Sending Bi to all: Every party Pi ∈ P sends Bi to every party Pj ∈ P . Each party Pj

then reconstructs A(1), . . . ,A( κ
µ
) as follows:

• On receiving B̄i from Pi, compute c′(i,j) = B̄i ⊗ Rj and check if c(i,j) ?
= c′(i,j).

If the test passes then Pj interprets B̄i as
[
(B(1)i)tr, . . . , (B( κ

µ
)i

)tr
]

and considers

B(k)i as the valid ith column of the matrix B(k) for k = 1, . . . , κ/µ.
• For k = 1, . . . , κ/µ, once t + 1 valid columns of B(k) are obtained by Pj , it then

reconstructs A(k).

Fig. 3. Robustly Reconstructing 〈·〉-shared Values with O(µ · n) Communication Complexity

local computation by the parties. As the instances of RecPrv and RecPrvEnc eventually
terminate for each honest party, it follows that RecPubSimple eventually terminates for
each honest party in the asynchronous setting. Similar arguments hold for RecPub, so
we get the following lemma.

Lemma 5. Protocol RecPub achieves the following in the asynchronous communica-
tion setting:

– Correctness & Communication Complexity: Same as in Lemma 4
– Termination: Every honest party eventually terminates the protocol.



4 Linear Overhead Online Phase Protocol

Let f : Fn → F be a publicly known function over F, represented as an arithmetic
circuit C over F, consisting of M multiplication gates. Then using our efficient recon-
struction protocol RecPub enables one to securely realize the standard ideal function-
ality Ff (see Fig. 4 for an explicit functionality) for the MPC evaluation of the circuit
C, in the FPREP-hybrid model, with communication complexity O(µ · (n ·M + n2))
bits, thus providing a linear overhead per multiplication gate. More specifically, assume
that the parties have access to an ideal pre-processing and input processing function-
ality FPREP, which creates the following one-time setup: (i) Every Pj holds a secret
key dk(j) for the linearly-homomorphic encryption scheme HE and the corresponding
public key pk(j) is available publicly. In addition, each Pj holds n random combin-
ers R(j) = (r(j,1), . . . , r(j,n)) and the encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)) of
these values under Pj’s public key are publicly available. (ii) Each Pi holds αij , the α-
component of all its keys for party Pj (recall that for key-consistent sharings every Pi
has to use the same α-component for all its keys corresponding to Pj). The above setup
can be reused across multiple instances of ΠONLINE and can be created once and for all.
In addition to the one-time setup, the functionality also creates at least M random 〈·〉-
shared multiplications triples (these are not reusable and have to be created afresh for
every execution of ΠONLINE) and 〈·〉-shared inputs of the parties. Functionality FPREP is
presented in Fig. 5. In FPREP, the ideal adversary specifies all the data that the corrupted
parties would like to hold as part of the various sharings generated by the functional-
ity. Namely it specifies the shares, MAC keys and MAC tags. The functionality then
completes the sharings while keeping them consistent with the data specified by the
adversary.

Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-
input function f : Fn → F represented as an arithmetic circuit C.

– Upon receiving (i, x(i)) from every party Pi ∈ P where x(i) ∈ F, the functionality
computes y = C(x(1), . . . , x(n)), sends y to all the parties and the adversary S and
halts. Here C denotes the arithmetic circuit over F representing f .

Fig. 4. The Ideal Functionality for Computing a Given Function

Using FPREP we design a protocol ΠONLINE (see Fig. 6) which realizes Ff in the
synchronous setting and provides universal composability (UC) security [11,8,19,14].
The protocol is based on the standard Beaver’s idea of securely evaluating the circuit
in a shared fashion using pre-processed shared random multiplication triples [2] and
shared inputs. Namely, the parties evaluate the circuit C in a 〈·〉-shared fashion by
maintaining the following invariant for each gate in the circuit. Given a 〈·〉-sharing
of the inputs of the gate, the parties generate an 〈·〉-sharing of the output of the gate.
Maintaining the invariant for linear gates requires only local computation, thanks to
the linearity property of the 〈·〉-sharing. For multiplication gates, the parties deploy a



Functionality FPREP

The functionality interacts with the parties in P and the adversary S as follows. Let C ⊂ P
be the set of corrupted parties.

– Setup Generation: On input Setup from the parties in P , the functionality does the
following:
• It creates n public key, secret key pairs {pk(i),dk(i)}ni=1 of the linearly-

homomorphic encryption scheme HE,
• For each Pi, it selects κn

µ
random values Ri = (r(i,1), . . . , r

(i,κn
µ

)
), computes

HE.c(r(i,1)), . . . ,HE.c(r
(i,κn

µ
)
) under pk(i),

• To party Pi it sends(
dk(i), (r(i,1), . . . , r

(i,κn
µ

)
), {pk(j)}nj=1, {HE.c(r(j,1)), . . . ,HE.c(r

(j,κn
µ

)
)}nj=1

)
.

• On the behalf of each honest Pi ∈ P \ C, it selects n random values {αij}nj=1,
where the jth value is designated to be used in the MAC key for party Pj . On the
behalf of each corrupted party Pi ∈ C, it receives from S the αij values that Pi
wants to use in the MAC keys corresponding to the honest party Pj . On receiving,
the functionality stores these values.

– Triple Sharings: On input Triples from all the parties in P , the functionality generates
〈·〉-sharing of χ random multiplication triples in parallel. To generate one such sharing
(〈a〉, 〈b〉, 〈c〉), it does the following:
• It randomly selects a, b and computes c = ab. It then runs ‘Single 〈·〉-sharing Gen-

eration’ (see below) for a, b and c.
– Input Sharings: On input (x(i), i, Input) from party Pi and (i, Input) from the remain-

ing parties, the functionality runs ‘Single 〈·〉-sharing Generation’ (given below) for x(i).

Single 〈·〉-sharing Generation: The functionality does the following to generate 〈s〉-sharing
for a given value s:

– On receiving the shares {si}Pi∈C from S on the behalf of the corrupted parties, it selects
a polynomial S(·) of degree at most t, such that S(0) = s and S(i) = si for each
Pi ∈ C. For Pi 6∈ P \ C, it computes si = S(i).

– On receiving {βij}Pi∈C, Pj 6∈C from S, the second components of the MAC key that
Pi ∈ C will have for an honest party Pj , it sets Kij = (αij , βij) where αij was specified
by S in ‘Setup generation’ stage. It computes the MAC tag MACKij (sj) of sj for every
honest Pj corresponding to the key of every corrupted Pi.

– On receiving MAC tags {MACij}Pi∈C, Pj 6∈C that the corrupted parties would like to
have on their shares si corresponding to the MAC key of honest Pj , it fixes the key of
Pj corresponding to Pi as Kji = (αji, βji) where βji = MACij −αji · si and αji was
selected by the functionality in ‘Setup generation’ stage.

– For every pair of honest parties (Pj , Pk), it chooses the key of Pj as Kjk = (αjk, βjk)
where αjk is taken from ‘setup generation phase’ and βjk is chosen randomly. It then
computes the corresponding MAC tag of Pk as MACKjk (sk).

– It sends
{
sj , {MACKkj ,Kjk}

n
k=1

}
to honest party Pj (no need to send anything to cor-

rupted parties as S has the data of the corrupted parties already).

Fig. 5. Ideal Functionality for Setup Generation, Offline Pre-processing and Input Processing



shared multiplication triple received from FPREP and evaluate the multiplication gate by
using Beaver’s trick. Specifically, let 〈p〉, 〈q〉 be the sharing corresponding to the inputs
of a multiplication gate and let (〈a〉, 〈b〉, 〈c〉) be the shared random multiplication triple
obtained from FPREP, which is associated with this multiplication gate. To compute an
〈·〉-sharing of the gate output p · q, we note that p · q = (p − a + a) · (q − b + b) =

d ·e+d ·b+e ·a+c, where d
def
= p−a and e

def
= q−b. So if d and e are publicly known

then 〈p · q〉 = d · e + d · 〈b〉 + e · 〈a〉 + 〈c〉 holds. To make d and e public, the parties
first locally compute 〈d〉 = 〈p〉−〈a〉 and 〈e〉 = 〈q〉−〈b〉 and publicly reconstruct these
sharings. Note that even though d and e are made public, the privacy of the gate inputs
p and q is preserved, as a and b are random and private. Finally once the parties have
the sharing 〈y〉 for the circuit output, it is publicly reconstructed to enable every party
obtain the function output.

To achieve the linear overhead in ΠONLINE, we require that the circuit is “wide” in
the sense that at every level there are at least n(t + 1)κµ independent multiplication
gates that can be evaluated in parallel. This is to ensure that we can use our linear-
overhead reconstruction protocol RecPub. We note that similar restrictions are used in
some of the previous MPC protocols to achieve a linear overhead in the online phase.
For example, [18,4,13] requires Θ(n) independent multiplication gates at each level to
ensure that they can use their linear-overhead reconstruction protocol to evaluate these
gates. In practice many functions have such a level of parallel multiplication gates when
expressed in arithmetic circuit format, and practical systems use algorithms to maximise
the level of such parallelism in their execution, see e.g. [27].

The properties of ΠONLINE are stated in Theorem 1, which is proved in the full ver-
sion. In the protocol, 2M 〈·〉-shared values are publicly reconstructed via RecPub while
evaluating the multiplication gates. Assuming that theM multiplication gates can be di-
vided into blocks of n(t + 1)κµ independent multiplication gates, evaluating the same
will cost O(κn3 · µM

n(t+1)κ ) = O(µ · n · M) bits. The only steps in ΠONLINE which
require interaction among the parties are during the instances of the reconstruction pro-
tocols, which eventually terminate for the honest parties. Hence we get Theorem 2 for
the asynchronous setting.

Theorem 1. Protocol ΠONLINE UC-securely realizes the functionality Ff in the FPREP-
hybrid model in the synchronous setting. The protocol has communication complexity
O(µ · (n ·M + n2)) bits.

Theorem 2. Protocol ΠONLINE UC-securely realizes the functionality Ff in the FPREP-
hybrid model in the asynchronous setting. The protocol has communication complexity
O(µ · (n ·M + n2)) bits.

5 The Various Secure Realizations of FPREP

Securely Realizing FPREP in the Synchronous Setting. In the full version, we present
a protocol ΠPREP which realizes FPREP in the synchronous setting and achieves UC
security. The protocol is a straight forward adaptation of the offline phase protocol of
[8,19] to deal with Shamir sharing, instead of additive sharing.



Protocol ΠONLINE

Every party Pi ∈ P interact with FPREP with input Setup, Triples and
(x(i), i, Input) and receives dk(i), {pk(j)}nj=1, Ri = (r(i,1), . . . , r

(i,κn
µ

)
),

{HE.c(r(j,1)), . . . ,HE.c(r
(j,κn

µ
)
)}nj=1, its information for multiplication triples

{(〈a(l)〉, 〈b(l)〉, 〈c(l)〉)}Ml=1 and its information for inputs {〈x(j)〉}nj=1. The honest
parties associate the sharing (〈a(l)〉, 〈b(l)〉, 〈c(l)〉) with the lth multiplication gate for
l ∈ {1, . . . ,M} and evaluate each gate in the circuit as follows:

– Linear Gates: using the linearity property of 〈·〉-sharing, the parties apply the linear
function associated with the gate on the corresponding 〈·〉-shared gate inputs to obtain
an 〈·〉-sharing of the gate output.

– Multiplication Gates: M multiplication gates as grouped as a batch of n · (t +
1) · κ

µ
. We explain the evaluation for one batch. Let the inputs to the ith batch be

{(〈p(l)〉, 〈q(l)〉)}
n·(t+1)· κ

µ

l=1 and let {(〈a(l)〉, 〈b(l)〉, 〈c(l)〉)}
n·(t+1)· κ

µ

l=1 be the correspond-
ing associated multiplication triples. To compute 〈p(l) ·q(l)〉, the parties do the following:
• Locally compute 〈d(l)〉 = 〈p(l)〉 − 〈a(l)〉 = 〈p(l) − a(l)〉 and 〈e(l)〉 = 〈q(l)〉 −
〈b(l)〉t = 〈q(l) − b(l)〉.

• Publicly reconstruct the values {d(l)}
n·(t+1)· κ

µ

l=1 and {e(l)}
n·(t+1)· κ

µ

l=1 using two in-
stances of RecPub.

• On reconstructing d(l), e(l), the parties set 〈p(l) · ql)〉 = d(l) · e(l) + d(l) · 〈b(l)〉+
e(l) · 〈a(l)〉+ 〈c(l)〉.

– Output Gate: Let 〈y〉 be the sharing of the output gate. The parties execute
RecPrv(〈y〉, Pi) for every Pi ∈ P , robustly reconstruct y and terminate.

Fig. 6. Realizing Ff with a Linear Overhead in FPREP-hybrid Model for the Synchronous Setting

Securely Realizing FPREP with Abort in the Partial Synchronous Setting. Any se-
cure realization of FPREP has to ensure that all the honest parties have an agreement
on the final outcome, which is impossible in the asynchronous setting with t < n/2
[25,26]. Another difficulty in realizing FPREP in an asynchronous setting is that it is
possible to ensure input provision from only n − t parties to avoid endless wait. For
n = 2t+ 1 this implies that there may be only one honest input provider. This may not
be acceptable for most practical applications of MPC. To get rid of the latter difficulty,
[16] introduced the following variant of the traditional asynchronous communication
setting, which we refer as partial asynchronous setting:

• The protocols in the partial asynchronous setting have one synchronization point.
Specifically, there exists a certain well defined time-out and the assumption is that
all the messages sent by the honest parties before the deadline will reach to their
destinations within this deadline.

• Any protocol executed in the partial asynchronous setting need not always terminate
and provide output to all the honest parties. Thus the adversary may cause the
protocol to fail. However it is required that the protocol up to the synchronization
point does not release any new information to the adversary.

In the full version we examine how to make ΠPREP work in the partial asynchronous
setting. We present two solutions; the first which allows some synchronous rounds after



the synchronization point, and one which uses a non-equivocation mechanism (which
can be implemented using a trusted hardware module).
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18. I. Damgård and J. B. Nielsen. Scalable and Unconditionally Secure Multiparty Computation.
In A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages
572–590. Springer Verlag, 2007.
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