
A Brief Comparison of Simon and Simeck

Stefan Kölbl, Arnab Roy
{stek,arroy}@dtu.dk

DTU Compute, Technical University of Denmark, Denmark

Abstract. Simeck is a new lightweight block cipher design based on
combining the Simon and Speck block cipher. While the design allows a
smaller and more efficient hardware implementation, its security margins
are not well understood. The lack of design rationals of its predecessors
further leaves some uncertainty on the security of Simeck.
In this work we give a short analysis of the impact of the design changes
by comparing the lower bounds for differential and linear characteristics
with Simon. We also give a comparison of the effort of finding those
bounds, which surprisingly is significant less for Simeck while covering a
larger number of rounds.
Furthermore, we provide new differentials for Simeck which can cover
more rounds compared to previous results on Simon. Based on this we
mount key recovery attacks on 19/26/33 rounds of Simeck32/48/64,
which also give insights on the reduced key guessing effort due to the
different set of rotation constants.

Keywords: SIMON, SIMECK, differential cryptanalysis, block cipher

1 Introduction

Simeck is a family of lightweight block ciphers proposed in CHES’15 by Yang,
Zhu, Suder, Aagaard and Gongbased [7]. The design combines the Simon and
Speck block ciphers proposed in [1], which leads to a more compact and efficient
implementation in hardware. An alteration made by designers of Simeck is the
use of a different set of rotation constants. The designers of Simon and Speck do
not provide rationales for the original choices apart from implementation aspects.
These modifications are likely to have an impact on the security margins, which
are often smaller for lightweight designs which can be delicate issue.

In this paper we give a first analysis on the impact of these design changes
by comparing the bounds for differential and linear characteristics with the
corresponding variants of Simon. An unexpected advantage for Simeck is, that
it takes significant less time to find those while also covering more rounds (see
Table 1).

Furthermore, we provide new differentials which cover 4 resp. 5 rounds for
Simeck48 and Simeck64 with a slightly higher probability compared to previous
results on Simon. This is followed by key-recovery attacks for reduced round
versions of Simeck, covering more rounds (see Table 4).

Table 1. A comparison between the number of rounds for which lower bounds on the
probability of differential and linear characteristics exist, the probability of differentials
utilized in attacks and the best differential attacks on Simon and Simeck. Results
contributed by this work are marked in bold.

Cipher Rounds Lower Bounds Differentials Key Recovery
differential linear rounds prob.

Simon32/64 32 32 32 13 2−28.79 [2] 21 [6]
Simeck32/64 32 32 32 13 2−27.28 191

Simon48/96 36 19 20 16 2−44.65 [5] 24 [6]
Simeck48/96 36 36 36 20 2−43.65 26

Simon64/128 44 15 [4] 17 21 2−60.21 [5] 29 [6]
Simeck64/128 44 40 41 26 2−60.02 33

2 The Simeck Block Cipher

Simeck is a family of block ciphers with n-bit word size, where n = 16, 24, 32.
Each variant has a block size of 2n and key size of 4n giving the three variants
of Simeck: Simeck32/64, Simeck48/96 and Simeck64/128. As for each block
size there is only one key size we will omit the key size usually.

S5

S1

ki

Fig. 1. The round function of Simeck.

The block cipher is based on the Feistel construction and the round function
f is the same as in Simon apart from using (5, 0, 1) for the rotation constants (as
depicted in Figure 1). The key-schedule on the other hand is similar to Speck,
reusing the round function to update the keys. The key K is split into four words

1 The dynamic key guessing approach allows to cover two additional rounds at the
beginning for Simon32.

(t2, t1, t0, k0) and the round keys k0, . . . , kr−1 are given by:

ki+1 = ti

ti+3 = ki ⊕ f(ti)⊕ C
(1)

3 Properties of the Round Function

In [4] the differential and linear properties of Simon were studied, including
variants using a different set of rotation constants. Following up on this work, we
can use the same methods to analyze the round function of Simeck. This allows
us to find lower bounds for the probability of a differential characteristic resp.
square correlation of a linear characteristic for a given number of rounds.

We carried out experiments for the parameter set of Simeck using Cryp-
toSMT2 to find the optimal differential and linear characteristics for Simeck32,
Simeck48 and Simeck64 and compare it with the results on Simon. The results
of this experiment are given in Figure 2. The bounds on the square correlation
for linear characteristics are given in the Appendix.

2−20

2−40

2−60

2−80

2−100

10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

of
be

st
ch

ar
ac

te
ri

st
ic

Number of Rounds

Simeck32
Simon32

Simeck48
Simon48

Simeck64
Simon64

Fig. 2. Lower bounds on the probability of the best differential characteristics for
variants of Simon and Simeck. For the different variants of Simeck the bounds are the
same.

2 CryptoSMT https://github.com/kste/cryptosmt Version: 70794d83

In our experiments we noticed that the different set of rotation constants
plays a huge role in the running time of the SMT solver. For instance finding
the bounds in Figure 2 took 51 hours for Simon32 and 10 hours for Simeck323.
Especially for larger block sizes it allows us to provide bounds for a significant
larger number of rounds including full Simeck48. For Simon64 computing the
bounds up to 15 rounds takes around 19 hours, while the same process only takes
around 30 minutes for Simeck64. We computed the bounds for Simeck64 up to
round 40 in around 53 hours.

4 Differentials for SIMECK

As noted in previous works Simon shows a strong differential resp. linear hull
effect, which invalidates an often made assumption that the probability of the
best characteristic can be used to estimate the probability of the best differential.
Therefore bounds on differential and linear characteristics have to be treated
with caution. The choice of constants for Simon-like round functions also plays a
role in this as shown in [4].

For obtaining good differentials first we find the best characteristic for a given
number of rounds of Simeck using CryptoSMT [3] and then find a large set
of characteristics with the same input/output difference. The results of these
experiments are summarized in Table 2. The differential for Simeck32 is not
based on the best characteristic, as it would have drawbacks in the key recovery
attack. However, the probability of this differential is even higher compared to
differentials based on the best characteristic, as there are 8 characteristic with a
probability of 2−36 contributing to the differential.

If we compare those with previous results on Simon we can cover more rounds.
The best previous differential attack by Wang, Wang, Jia and Zhao [6] utilizes
a 13-round differential for Simon32, a 16-round differential for Simon48 and a
21-round differential for Simon64. We show that almost with the same or slightly
better probability (Table 1) differentials can be found for a higher number of
rounds for both Simeck48 and Simeck64.

While we let our experiments run for a few days, the probability only improves
marginal after a short time. For instance, for Simeck32 and Simeck48 the
estimates after three minutes are only 2−2 lower than the final results and after
two hours the improvements are very small. Some additional details on the
differential utilized in the key-recovery attack on Simeck48 can be found in the
Appendix 5, including the exact running times.

4.1 Choosing a good differential for attacks

For an attack we want a differential with a high probability, but also the form
of the input/output difference can have an influence on the resulting attack
complexity. Ideally we want differentials with a spare input/output difference
3 Using Boolector 2.0.1. running on an Intel Xeon X5650 2.66GHz 48GB RAM (1 core).

Table 2. Overview of the differentials we found for Simeck which can likely be used
to mount attacks. The probability is given by summing up all characteristics up to
probability 2max taking a time t.

Cipher Rounds ∆in ∆out log2(p) max t

Simeck32 13 (8000, 4011) (4000, 0) −27.28 −49 17h
Simeck48 20 (20000, 450000) (30000, 10000) −43.65 −98 135h
Simeck48 20 (400000, e00000) (400000, 200000) −43.65 −74 93h
Simeck48 21 (20000, 470000) (50000, 20000) −45.65 −100 130h
Simeck64 25 (2, 40000007) (40000045, 2) −56.78 −90 110h
Simeck64 26 (0, 4400000) (8800000, 400000) −60.02 −121 120h

resp. of the form (x, 0)→ (0, x). When expanding such a differential it leads to a
truncated differential with fewer unknown bits. However, for 20-round Simeck48
the best characteristics with this pattern only has a probability of 2−62 and for
(x, x) → (0, x) it is 2−54. The corresponding differentials are not usable for an
attack in this case. Therefore, we do not use these restrictions and use the 20-
round characteristics with highest probability. For Simeck48 there are 768 such
characteristics with a probability of 2−50 (32 rotation invariant) and we choose
the one where the input/output difference is most sparse. The corresponding
truncated differential obtained by extending in both rounds is given in Table 3.

Table 3. Truncated differential obtained by extending (400000, e00000) 20−→
(400000, 200000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−5 ***0***0**************** ************************ 22 24
−4 ***000000***0*********** ***0***0**************** 17 22
−3 ***00000000000***0****1* ***000000***0*********** 11 17
−2 ***0000000000000000***01 ***00000000000***0****1* 6 11
−1 111000000000000000000000 ***0000000000000000***01 0 6
0 010000000000000000000000 111000000000000000000000 0 0

20 010000000000000000000000 001000000000000000000000 0 0
21 1*100000000000000000*000 010000000000000000000000 2 0
22 ***000000000000*000***01 1*100000000000000000*000 7 2
23 ***0000000*000***0****1* ***000000000000*000***01 12 7
24 ***00*000***0*********** ***0000000*000***0****1* 18 12
25 ***0***0**************** ***00*000***0*********** 22 18
26 ************************ ***0***0**************** 24 22

5 Recovering the Key

In this section we describe the key recovery attack on Simeck48 based on the
differential given in Table 2. The input difference to round r is denoted as ∆r

and kr denotes the round key for round r. The difference in the left resp. right
part of the state we denote as ∆Lr and ∆Rr.

5.1 Attack on 26-round Simeck48

Our attack on 26-round Simeck48 uses four 20-round differentials in a similar
way as in [2]. Let Di denote the differentials

D1 : (400000, e00000)→ (400000, 200000)

D2 : (800000, c00001)→ (800000, 400000)

D3 : (000004, 00000e)→ (000004, 000002)

D4 : (000008, 00001c)→ (000008, 000004)

each having probability ≈ 2−44. We add 4 rounds at the end by looking at the
truncated differential and 2 rounds on top (see Table 3). The truncated difference
at round 0 for each differential is given by

000000000000000001, ***00000000000***0****1*

0000000000000000*01*, **00000000000***0****1**

000000000000000***01***0, 0000000000***0****1****0

00000000000000***01***00, 000000000***0****1****00 .

By identifying the unknown and known bit positions in these differentials we
can construct a set of 231 plaintext pairs where the bit positions corresponding
to the aligned 0s in the truncated differentials are fixed to an arbitrary value for
all plaintexts. By guessing 6 round key bits we can also identify the 231 pairs
satisfying the difference (∆L2, ∆R2) after the first two round encryption. Hence
we can get 4 sets of 231 pairs of plaintexts where the difference is satisfied after
the first two rounds of encryption. By varying the fixed bit positions we can get
4 sets of 246 pairs of plaintexts, each satisfying the difference after two rounds
for each key guess.

Filtering the pairs First we encrypt the 246 plaintext pairs. Then we unroll
the last round and use the truncated differential to verify if the pair is still valid.
This is possible due to the last key addition not having any influence on the
difference (∆L25, ∆R25). As there are 12 + 17 bits known in this round we will
have 246−29 = 217 plaintext pairs left.

∆L25 ∆R25

S5

S1

k25

∆L26 ∆R26

∆L25 ***0000000*000***0****1* 12
∆R25 ***000000000000*000***01 17

For each pair (∆L′,∆R′) obtained:

1. Compute ∆R′25 = f(∆R′26)⊕∆L26
4.

2. Check if ∆L′25 = ∆L25 and
∆R′25 = ∆R25.

Fig. 3. Filtering for the correct pairs which we use in the key guessing part.

Key guessing In the key guessing phase we guess the necessary round key bits
(or linear combination of round key bits) to verify the difference at the beginning
of round 22, i.e. ∆22. For each differential we counted that a total of 25 round
key bits and linear combinations of round key bits are necessary to be guessed
during this process. We describe this process for one round in Figure 4.

An interesting difference to Simon in the key guessing part is that the required
number of key guesses is much lower, as many bits required to guess coincide
when partially recovering the state which can reduce the overall complexity. This
is always the case if one of the rotation constants is zero, but similar effects can
occur with other choices as well.

For the key guessing part, we keep an array of 225 counters and increment a
counter when it is correctly verified with the difference after partial decryption of
the ciphertext pairs. For each differential we can verify the remaining 19(= 48−29)
bits with the key guessing process. For the 225 counters we expect to have
(217 × 225)/219 = 223 increments. The probability of a counter being incremented
is 223/225 = 2−2. Since 4 correct pairs are expected to be among the filtered
pairs, the expected number of counters having 4 increments is (1

4)4 × 223 = 215.
We observe that there are 14 common key guesses between the differentials

D1 and D2. Hence combining the corresponding counters T1 and T2 we can get
215 × 215/214 = 214 candidates for 36 bits. Continuing in the same way with D3
we get 215 × 214/215 = 214 candidates for 46 bits and finally with D4 we obtain
215 × 214/222 = 27 candidates for 49 bits. For the remaining 47 bits we perform
an exhaustive search. Hence the total number of key guesses are 247+7 = 254.

The complexity for the partial decryption is 217 × 225 × 4
26 ≈ 240. Hence the

complexity of the key recovery attack is 254.
Since the key recovery is performed for each of the 4 differentials and for each

26 round key guesses the overall complexity of the attack is 254 × 28 = 262.

4 The key has no influence on the input to the non-linear function in the last round.

5.2 Key Recovery forSimeck32

For Simeck32 we also use 4 differentials

D1 : (8000, 4011)→ (4000, 0000)

D2 : (0001, 8022)→ (8000, 0000)

D3 : (0008, 0114)→ (0004, 0000)

D4 : (0010, 0228)→ (0008, 0000)

each having probability ≈ 2−28 (for the truncated differences see Table 6). We
add two rounds at the top of the 13-round differential and identify a set of 230

pairs of plaintexts each satisfying the specific difference (∆L2, ∆R2) after the
first two round encryption. Identifying a set of plaintext pairs requires to guess 6
key bits.

Filtering We can filter some wrong pairs by unrolling the last round and
verifying the truncated difference (with 18 known bits) at the beginning of the
last round. This will leave us with 230−18 = 212 pairs.

Key guessing We counted that 18 round key bits and linear combination of
round-key bits are necessary to guess for verifying the difference at the end
of round 14. We use the same method as described for Simeck48 during this
phase. Out of the filtered pairs we expect to get 4 correct pairs (those follow the
13-round differential). Hence the number of candidates for 18 key bits (and linear
combinations) are 28. By combining all the four differentials we expect to get 1

∆L24 ∆R24

S5

S1

k24

k25

∆R25

∆z24
∆R25 ***000000000000*000***01

S5(∆R25) 0000000000*000***01***00
∆z24 ***0000000*000***0****0*
∆R24 1*100000000000000000*000

Key filtering:

1. Find bits s.t. ∆z24 = ∗ and ∆R24 6= ∗.
2. Guess corresponding bits in k25.
3. Check ∆z24 = ∆R24 ⊕ S1(R25)⊕∆L25.

Fig. 4. Outline of the process of key guessing and filtering for a single round.

key candidate for 37 bits. For the remaining 27 bits of the last four round keys
we perform exhaustive search. Hence the complexity for the key guessing is 227.

The complexity of the partial decryption (for the last 4 rounds) is 212× 218×
4

19 ≈ 228 which is the dominating part of the complexity.
Since we perform the key recovery for each differential and for each 6-bit

round key guesses of the first two rounds the overall complexity of the attack is
228+8 = 236.

5.3 Key Recovery for Simeck64

We use the following 4 differentials for Simeck64

D1 : (0, 04400000)→ (08800000, 00400000)

D2 : (0, 44000000)→ (88000000, 04000000)

D3 : (0, 40000004)→ (80000008, 40000000)

D4 : (0, 00000044)→ (00000088, 00000004)

each having probability ≈ 2−60 (for the truncated differences see Table 7). We
add two rounds at the top of the 26 round differential and identify a set of 262

pairs of plaintexts by guessing 4 round key bits from the first two rounds.

Filtering wrong pairs We add 5 round truncated difference at the end of the
26 round differential. The last round may be unrolled to verify the difference
at the beginning of the last round. This helps to filter some wrong pairs using
the known bits of the truncated difference and after filtering we are left with
262−30 = 232 pairs of plaintext out of which we expect 22 correct pairs (those
followed 26 round differential).

Key guessing In this phase we guess the necessary key bits (or linear combina-
tion of key bits) from last four rounds to verify the difference at the beginning
of round 28. We counted that 56 key bits are necessary to guess for verifying
(∆L28, ∆R28). Out of the filtered pairs we expect to get 4 correct pairs (those
follow the 26-round differential). Hence the number of candidates for 56 key bits
are 236. By combining all the four differentials we expect to get 2144−122 = 222

key candidates for 102 bits. For the remaining 26 bits of the last four round
keys we perform exhaustive search. Hence the complexity for the key guessing is
226+22 = 248.

The complexity of the partial decryption (for last 4 rounds) is 232×256× 5
33 ≈

286 which is the dominating part of the complexity.
Since we perform the key recovery for each differential and for each 6-bit

round key guesses of the first two rounds the overall complexity of the attack is
286+10 = 296.

Table 4. Comparison of the attacks on Simeck.

Cipher Rounds Time Data Memory Type

Simeck32/64 20/32 262.6 232 256 Imp. Differential [7]
Simeck32/64 19/32 236 231 231 Differential

Simeck48/96 24/32 294.7 248 274 Imp. Differential [7]
Simeck48/96 26/36 262 247 247 Differential

Simeck64/128 25/32 2126.6 264 279 Imp. Differential [7]
Simeck64/128 33/44 296 263 263 Differential

6 Conclusion and Future Work

We gave a brief overview of the Simeck and Simon block cipher and their
resistance against differential and linear cryptanalysis. From our comparison we
can see that statistical attacks can cover a significant larger number of rounds
for Simeck48 and Simeck64.

This also shows that the impact of small design changes in Simon-like block
ciphers can be hard to estimate and requires a dedicated analysis, as the under-
lying design strategy is still not well understood. Especially for variants with
a larger block size it is difficult to find lower bounds or estimate the effect of
differentials.

In this sense Simeck has an unexpected advantage over Simon and Speck,
as the analysis is simpler and requires less time with our approach. This is a
property that is especially important in the light of not having cryptanalytic
design documentation, nor design rationales for the constants regarding security
available by the designers of Simon and Speck.

Our key recovery attacks still have a significant margin compared to generic
attacks (see Table 4) in regard to time complexity, therefore it is likely they
can be improved. For instance, if the dynamic key guessing approach [6] can be
applied to Simeck with the same efficiency, this would likely extend our attacks
by two more rounds.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive,
Report 2013/404 (2013), http://eprint.iacr.org/

2. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) Fast Software Encryption, FSE 2014.
Lecture Notes in Computer Science, vol. 8540, pp. 546–570. Springer (2015)

3. Kölbl, S.: CryptoSMT: An easy to use tool for cryptanalysis of symmetric primitives
(2015), https://github.com/kste/cryptosmt

4. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: Advances in Cryptology - CRYPTO 2015. Lecture Notes in Computer Science,
Springer, to appear.

5. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014. Lecture Notes in
Computer Science, vol. 8873, pp. 158–178. Springer (2014)

6. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential attacks on reduced simon versions
with dynamic key-guessing techniques. Cryptology ePrint Archive, Report 2014/448
(2014), http://eprint.iacr.org/

7. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of
lightweight block ciphers. In: Cryptographic Hardware and Embedded Systems -
CHES 2015. Springer (2015), to appear.

A Bounds for Linear Characteristics

2−20

2−40

2−60

2−80

2−100

10 15 20 25 30 35 40

Sq
ua

re
co

rr
el

at
io

n
of

be
st

ch
ar

ac
te

ri
st

ic

Number of Rounds

Simeck32
Simon32

Simeck48
Simon48

Simeck64
Simon64

Fig. 5. Bounds for the best linear characteristics for variants of Simon and Simeck.
For the different variants of Simeck the bounds are the same.

Table 5. Number of characteristics and time to find them for the Simeck48 differential
(400000, e00000) f20

−−→ (400000, 200000).

Pr(Char) #Char. Pr(Differential) t

−50 1 −50.0 3.72s
−51 0 −50.0 6.9s
−52 12 −48.0 19.78s
−53 6 −47.7520724866 31.77s
−54 80 −46.7145977811 42.62s
−55 68 −46.4301443917 55.68s
−56 413 −45.804012702 77.58s
−57 484 −45.5334136623 104.69s
−58 1791 −45.1367816524 180.02s
−59 2702 −44.8963843436 265.5s
−60 7225 −44.6271009401 528.39s
−61 12496 −44.4289288164 1068.95s
−62 28597 −44.2312406041 2603.59s
−63 52104 −44.0720542548 6146.77s
−64 111379 −43.9193398907 19276.9s
−65 207544 −43.7902765446 41938.08s
−66 238939 −43.7209043818 70720.98s
−67 228530 −43.6888725691 96657.81s
−68 229018 −43.6730860168 123706.38s
−69 276314 −43.6636455186 160688.8s
−70 271192 −43.6590352669 197354.41s
−71 269239 −43.6567522016 232641.34s
−72 267563 −43.6556191172 271083.28s
−73 266716 −43.6550547005 308072.68s
−74 227971 −43.6548135551 336027.17s

Table 6. Truncated differential for Simeck32 obtained by extending (8000, 4011) f13
−−→

(4000, 0) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−4 ***0************ **************** 15 16
−3 **000***0****1** ***0************ 11 15
−2 0*0000*000***01* **000***0****1** 6 11
−1 0100000000010001 0*0000*000***01* 0 6
0 1000000000000000 0100000000010001 0 0

13 0100000000000000 0000000000000000 0 0
14 1*0000000000*000 0100000000000000 2 0
15 **00000*000**001 1*0000000000*000 5 2
16 ***000**00***01* **00000*000**001 9 5
17 ***00***0******* ***000**00***01* 13 9
18 ***0************ ***00***0******* 15 13
19 **************** ***0************ 16 15

Table 7. Truncated differential for Simeck64 obtained by extending (0, 4400000) f26
−−→

(8800000, 400000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−7 **0***************************** ******************************** 31 32
−6 **00***0************************ **0***************************** 29 31
−5 **0000000***0******************* **00***0************************ 24 29
−4 **000000000000***0************** **0000000***0******************* 19 24
−3 **00000000000000000***0********* **000000000000***0************** 14 19
−2 1*0000000000000000000000***0**** **00000000000000000***0********* 8 14
−1 01000000000000000000000000000111 1*0000000000000000000000***0**** 0 8
0 00000000000000000000000000000010 01000000000000000000000000000111 0 0

26 00001000100000000000000000000000 00000000010000000000000000000000 0 0
27 000**001*1000000000000000000000* 00001000100000000000000000000000 4 0
28 00***01***0000000000000000*000** 000**001*1000000000000000000000* 9 4
29 0****1****00000000000*000**00*** 00***01***0000000000000000*000** 14 9
30 **********000000*000**00***0**** 0****1****00000000000*000**00*** 20 14
31 **********0*000**00***0********* **********000000*000**00***0**** 25 20
32 ************00***0************** **********0*000**00***0********* 29 25
33 ************0******************* ************00***0************** 31 29
34 ******************************** ************0******************* 32 31

