
Detecting Mobile Application Spoofing Attacks by
Leveraging User Visual Similarity Perception

Luka Malisa
Institute of Information Security

ETH Zurich
malisal@inf.ethz.ch

Kari Kostiainen
Institute of Information Security

ETH Zurich
kari.kostiainen@inf.ethz.ch

Srdjan Capkun
Institute of Information Security

ETH Zurich
capkuns@inf.ethz.ch

Abstract—Mobile application spoofing is an attack where a
malicious mobile application mimics the visual appearance of
another one. A common example of mobile application spoofing
is a phishing attack where the adversary tricks the user into
revealing her password to a malicious application that resembles
the legitimate one. In this paper, we propose a novel spoofing
detection approach, tailored to the protection of mobile app
login screens, using screenshot extraction and visual similarity
comparison. We use deception rate as a novel similarity metric
for measuring how likely the user is to consider a potential
spoofing app as one of the protected applications. We conducted
a large-scale online study where participants evaluated spoofing
samples of popular mobile app login screens, and used the
study results to implement and train a detection system that
accurately estimates deception rate. Our collaborative detection
model provides efficient detection with low overhead.

I. INTRODUCTION

Mobile application spoofing is an attack where a malicious
mobile application mimics the visual appearance of another
one. The goal of the adversary is to trick the user into believing
that she is interacting with a genuine application while she
interacts with one controlled by the adversary. If such an
attack is successful, the integrity of what the user sees as well
as the confidentiality of what she inputs into the system can
be violated by the adversary. This includes login credentials,
personal details that users typically provide to applications, as
well as the decisions that they make based on the information
provided by the applications.

A common example of mobile application spoofing is
a phishing attack where the adversary tricks the user into
revealing her password, or similar login credentials, to a mali-
cious application that resembles the legitimate app. Several
mobile application phishing attacks have been seen in the
wild [20, 32, 37]. For example, a recent mobile banking
spoofing application infected 350,000 Android devices and
caused significant financial losses [14]. More sophisticated
attack vectors are described in recent research [4, 7, 13, 36].

The problem of spoofing has been studied extensively in
the context of phishing websites [1, 2, 11, 16, 17]. Web
applications run in browsers that provide visual cues, such
as URL bars, SSL lock icons and security skins [10], that
can help the user to authenticate the currently displayed web-
site. Similar application identification cues are not available
on modern mobile platforms, where a running application

commonly controls the whole visible screen. The user can
see a familiar user interface, but the interface could be drawn
by a malicious spoofing application — the user is unable to
authenticate the contents of the screen.

Security indicators for smartphone platforms have been pro-
posed [12, 30], but their effectiveness relies on user alertness
and they typically require either hardware modifications to the
phone or a part of the screen to be made unavailable to the
apps. Application-specific personalized indicators [36] require
no platform changes, but increase the application setup effort.
Furthermore, static code analysis has been proposed to detect
API call sequences that enable spoofing attacks [4]. However,
code analysis is limited to known attack vectors and many
spoofing attacks do not require any specific API calls, as they
only draw on the screen.

We propose a novel spoofing detection approach that is
tailored to the protection of mobile app login screens using
visual similarity. Our system periodically grabs screenshots on
the user’s device and extracts from them visual features, with
respect to reference values — the login screens of legitimate
apps (running on the same device) that our system protects.
If a screenshot demonstrates high similarity to one of the
reference values, we label the currently running app potentially
malicious, and report it to the platform provider or warn the
user. As our system examines screenshots, it is agnostic to the
spoofing screen implementation, in contrast to approaches that
examine screen similarity through code analysis.

In order to label spoofing apps accurately, our system needs
to understand what kind of attacks are successful in reality, i.e.,
how much and what kind of visual similarity the two compared
applications should have, so that the user would mistake the
spoofing app as the legitimate one and fall for the attack.
We capture this notion as a novel similarity metric called
deception rate. For example, when deception rate is 20%, one
fifth of the users are estimated to consider the spoofing app
genuine and enter their login credentials into it. Deception
rate is a conceptually different similarity metric from the
ones previously proposed for similarity analysis of phishing
websites. These works extract structural [3, 18, 26, 38, 39]
as well as visual [8, 15, 22] similarity features and combine
them into a similarity score that alone is not expressive, but
enables comparison to known attack samples [18, 23]. While
the previously proposed metrics essentially tell how similar



the spoofing app is to one of the known attacks, our metric
determines how likely the attack is to succeed. Deception rate
can be seen as a risk measure and we consider it a powerful
new way to address spoofing attacks, especially in cases where
a large dataset of known attacks is not available.

Our system requires a good understanding of how users
remember mobile app user interfaces and how they react to
perceived changes within them. Change perception has been
studied extensively in general [24, 25, 31], but not in the
context of mobile applications. We therefore conducted a
large-scale online study on mobile app similarity perception.
We used a crowd sourcing platform to carry out a series of
online surveys where approximately 5,400 study participants
evaluated more than 34,000 spoofing screenshot samples.
These samples included modified versions of Facebook, Skype
and Twitter login screens where we changed visual features
such as the color or the logo.

We found that, while some users were alarmed by the login
screen modifications, others attributed the changes to either a
program bug or a new feature. For most of the experimented
visual modifications we noticed a systematic user behavior: the
more a visual property is changed, the less likely the users are
to consider the app genuine.

We used the results of our user study to train our system
using common supervised learning techniques. We also devel-
oped novel visual feature extraction and matching techniques.
Our system shows robust screenshot processing and good
deception rate accuracy (6–13% error margin), i.e., our system
can precisely determine when an application is so similar to
one of the protected login screens that the user is in risk of
falling for spoofing. No previous visual similarity comparison
scheme gives the same security property.

Additionally, we describe a novel collaborative detection
model where multiple devices take part in screenshot extrac-
tion. We show that runtime detection is effective with very
little system overhead (e.g., 1%). Our results can also be useful
to other spoofing detection systems, as they give insight into
how users perceive visual change.

Contributions. To summarize, we make the following con-
tributions:

• We propose a novel approach for detecting mobile ap-
plication spoofing attacks using visual similarity and
introduce deception rate as a novel similarity metric.

• We conducted a large-scale user study on perception of
visual modifications in mobile application login screens.

• Leveraging our study results, we implemented and trained
a runtime spoofing detection system for Android.

• We developed novel and robust visual feature extraction
techniques.

The rest of this paper is organized as follows. In Section II
we explain the problem of mobile application spoofing. Sec-
tion III introduces our approach and Section IV describes our
user study. In Section V we describe the spoofing detection
system. We evaluate its accuracy and performance in Sec-
tion VI and analyze it in Section VII. Section VIII reviews
related work, and we conclude in Section IX.

II. PROBLEM STATEMENT

In mobile application spoofing, the goal of the adversary is
to either violate the integrity of the information displayed to
the user or the confidentiality of the user input. Application
phishing is an example of a spoofing attack where the goal of
the adversary is to steal confidential user data. The adversary
tricks the user into disclosing her login credentials to a
malicious app with a login screen resembling the legitimate
one. A malicious stock market application that is similar to
the legitimate one, but shows fake stock market values, is an
example of an attack where the adversary violates the integrity
of the visual information displayed to the user. In doing so,
the adversary affects the user’s future stock market decisions.
In what follows, we review different ways of implementing
application spoofing attacks.

The simplest way to implement a spoofing attack is a
repackaged or otherwise cloned application. To the user, the
application appears identical to the target application, except
for subtle visual cues such as a different developer name.
Application repackaging has become a prevalent problem in
the Android ecosystem, and the majority of Android malware
is distributed using repackaging [6, 40].

In a more sophisticated variant of mobile application spoof-
ing, the malicious app masquerades as a legitimate application,
such as a game. The user starts the game and the malicious
application continues running in the background from where it
monitors the system state, such as the list of currently running
applications. When the user starts the target application, the
malicious application activates itself on the foreground and
shows a spoofing screen that is similar, or exactly the same,
to the one of the target app. On Android, background activation
is possible with commonly used permissions and system
APIs [4, 13]. Background attacks are difficult to notice for the
user. While API call sequences that enable background attacks
can be detected using code analysis [4], automated detection
is complicated by the fact that the same APIs are frequently
used by benign apps.

A malicious application can also present a button to share
information via another app. Instead of forwarding the user to
the suggested target app, the button triggers a spoofing screen
within the same, malicious application [13]. Fake forwarding
requires no specific permissions or API calls which makes
such attack vectors difficult to discover using code analysis.
Further spoofing attack vectors are discussed in [4].

Mobile application spoofing attacks are a recent mobile mal-
ware type and a large corpus of known spoofing apps is not yet
available. However, serious attacks have already taken place.
The Svpeng malware infected 350,000 Android devices and
caused financial loss worth of nearly one million USD [14].
The malware presents a spoofed credit card entry dialog when
the user starts the Google Play application and monitors startup
of targeted mobile banking applications to mount spoofing
attacks on their login screens. As spoofing detection using
traditional code analysis techniques has inherent limitations
and many spoofing attacks are virtually impossible for the



Fig. 1: Spoofing app example. (a) Shows the legitimate Netflix
app and (b) the Android.Fakeneflic malware [33]. The spoofed
user interface includes subtle visual modifications.

users to notice, the exact extent of the problem remains largely
unknown. Due to the already seen serious attacks, we believe it
is useful to seek novel ways to address the problem of mobile
application spoofing.

The problem of mobile application spoofing has many simi-
larities to the one of web phishing. The majority of the existing
web phishing detection schemes [3, 18, 26, 38, 39] train a
detection system using a large dataset of known phishing
websites. As a similar dataset is not available for mobile apps,
these approaches are not directly applicable to mobile app
spoofing detection. We also argue that the specific nature of
mobile applications benefits from a customized approach. In
the next section, we introduce a novel detection approach that
is tailored to mobile app login screens and draws from user
perception. The focus of this work is on mobile app spoofing
and web phishing is explicitly out of scope.

III. OUR APPROACH

In this section, we first describe the rationale behind our
approach and introduce deception rate as a similarity metric.
We then describe how this approach is instantiated into a case
study on login screen spoofing detection. Finally, we describe
our attacker model.

A. Visual Similarity and Deception Rate

The problem of application spoofing can be approached in
multiple ways. First, code analysis has been proposed to detect
API call sequences that enable spoofing attacks [4]. However,
code analysis is limited to known attack vectors and cannot
address spoofing attacks that do not require specific API calls
(e.g., fake forwarding). A second approach is to analyze the
application code or website DOM trees to identify applications
with structural user interface similarity [3, 18, 26, 38, 39]. A
limitation of this approach is that the adversary can complicate
code analysis, e.g., by constructing the user interface pixel
by pixel. Third, the mobile platform can be enhanced with
security indicators [12, 30]. However, indicator verification
imposes a cognitive load on the user and their deployment

Fig. 2: Approach overview. The spoofing detection system
takes as inputs screenshots of a reference app and an examined
app. Based on these screenshots and knowledge on mobile
application user perception, the system estimates deception
rate for the examined app.

typically requires either part of the screen to be made un-
available to the applications or hardware modifications to the
device. Application-specific personalized indicators [36] can
be deployed without platform changes, but their configuration
increases user effort during application setup.

In this paper, we focus on a different approach and study the
detection of spoofing attacks based on their visual similarity.
Previously, visual similarity analysis has been proposed for
detection of phishing websites [15, 35, 38]. Designing an
effective spoofing detection system based on visual similarity
analysis is not an easy task, and we illustrate the challenges
by providing two straw-man solutions.

The first straw-man solution is to look for mobile apps
that have exactly the same visual appearance. To avoid such
detection, the adversary can create a slightly modified version
of the spoofing screen. For example, small changes in the
login screen element positions are hard to notice and are
unlikely to retain the user from entering her login creden-
tials. Consequently, this approach would fail to catch many
spoofing attacks. Such visually modified attacks are a realistic
threat and examples have been observed in the wild. The
Android.Fakeneflic malware [33], discovered on Google’s An-
droid market, impersonated the legitimate Netflix application
by creating a user interface, including the login screen, that
visually differed from the legitimate one (Figure 1). Such
attacks would not be detected by a simple comparison scheme
that looks for an exact visual match.

The second straw-man solution is to flag all applications
that have some visual similarity to a reference application,
with regards to a well-known similarity metric (e.g., pixel
difference). However, the chosen metric may not capture the
visual properties that users consider relevant. As our user-study
shows, many visually different screens are perceived by users
as similar. Therefore, finding an accurate similarity threshold
can be challenging, especially without a large corpus of known



attacks and their success rates. For accurate mobile application
spoofing detection, more sophisticated techniques are needed.

In this paper we take a different approach and design
a spoofing detection system that estimates how many users
would fall for a spoofing attack. We use deception rate as
a novel similarity metric that represents the estimated attack
success rate. Given two screenshots, one of the examined app
and one of the protected reference app, our system (Figure 2)
estimates the percentage of users that would mistakenly iden-
tify the examined app as the reference app (deception rate).
This estimation is done by leveraging results from a study
on how users perceive visual similarity on mobile app user
interfaces. The deception rate can be seen as a risk measure
that allows our system to determine if the examined application
should be flagged as a potential spoofing app. An example
policy is to flag any application where the deception rate
exceeds a threshold.

Deception rate is a conceptually different similarity metric
from the ones previously proposed for similarity analysis
of phishing websites. These works extract structural [3, 18,
26, 38, 39] as well as visual [8, 15, 22] similarity features
and combine them into a similarity score that alone is not
expressive, but enables comparison to known attack samples
[18, 23]. The extracted features can also be fed into a system
that is trained using known malicious sites [15, 35, 38].
Such similarity metrics are interpreted with respect to known
attacks, and may not be effective in detecting spoofing attacks
with an appearance different from the ones previously seen.

Deception rate has different semantics, as it captures the
perceived similarity of spoofing screens. For example, a mo-
bile app login screen where elements have been reordered may
have different visual features but, as our user study shows, is
perceived similarly by many users. Deception rate estimates
how many people would mistakenly identify the spoofing
app as the genuine one (risk measure), and contrary to the
previous similarity metrics, this metric is applicable also in
scenarios where a large dataset of known spoofing samples are
not available. Realization of such a system requires a good
understanding of what type of mobile application interfaces
users perceive as similar and what type of visual modifications
users are likely to notice. This motivates our user study, the
results of which we describe in Section IV.

B. Case Study: Login Screen Spoofing

In this work, we focus on spoofing attacks against mobile
application login screens, as they are the most security-
sensitive ones in many applications. We examined the login
screens of 230 different apps and found that they all follow a
similar structure. The login screen is a composition of three
main elements: (1) the logo, (2) the username and password
input fields, and (3) the login button. Furthermore, the login
screen can have additional, visually less salient elements, such
as a link to request a forgotten password or register a new
account. In some mobile applications, the login screen is the
first (initial) screen the user sees. Other apps distribute these
elements across two screens: the first screen contains the logo,

Fig. 3: Model for mobile application login screens. The login
screen has three main elements: logo, username and password
input fields, and login button. The login functionality is either
(a) standalone or (b) distributed.

or a similar visual identifier, as well as a button that leads to
the login screen, where the rest of the main elements reside.

The common structure of mobile app login screens enables
us to model them, and their simple and clean designs provide
a good opportunity to experiment on user perception. Mobile
app login screens have fewer modification dimensions to
explore, as compared to more complex user interfaces, such
as websites. Throughout this work we use the login screen
model illustrated in Figure 3 that captures both standalone and
distributed logins screens. Out of the 230 apps we examined,
136 had a standalone login screen, while 94 had a distributed
one. All apps conformed to our model. We experiment on
user perception with respect to this model, as the adversary
has an incentive to create spoofing screens that resemble the
legitimate login screen. Our study confirms this assumption.

C. Attacker Model

We assume a strong attacker capable of creating arbitrary
spoofed login screens, including login screens that deviate
from our model (see Section VII-C). We distinguish between
two spoofing attack scenarios regarding user expectations and
goals. In all the spoofing attacks listed in Section II, the user’s
intent is to access the targeted application. This implies that
the user expects to see a familiar user interface and has an
incentive to log in. The adversary could also present a spoofing
screen unexpectedly, when the user is not accessing the target
application. In such cases, the user has no intent, nor similar
incentive, to log in. We focus on the first category, as we
consider such attacks more severe and more likely to succeed.

We assume an attacker that controls a malicious spoofing
app running on the user smartphone. Besides the spoofing



Fig. 4: Examples of Facebook login screen spoofing samples. The original login screen is shown on the left. We show an
example of each type of visual modification we performed: color, general modifications, and logo modifications.

screen, the attacker-controlled app appears to the user as
entirely benign (e.g., a game). The attacker can construct the
spoofing screen statically (e.g., using Android XML manifest
files) or dynamically (e.g., by creating widgets at runtime).
In both cases, the operating system is aware of the created
element tree, a structure similar to DOM trees in websites.
The attacker has also the choice of drawing the screen pixel
by pixel, in which case the operating system sees only one
element, a displayed picture. The attacker can also exploit
the properties of human image perception. For example, the
attacker can display half of the spoofed screen in one frame,
and the other half in the subsequent frame. The human eye
would average the input signal and perceive the complete
spoofing screen.

IV. CHANGE PERCEPTION USER STUDY

Visual perception has been studied extensively in general,
and prior studies have demonstrated that users are surprisingly
poor at noticing changes in images that are shown in a
consecutive order (change blindness) [25, 31]. While such
studies give us an intuition on how users might notice, or fail
to notice, different login screen modifications, the results are
too generic to be directly applied to the spoofing detection
system outlined above. To the best of our knowledge, no
previous studies on user perception of visual changes in mobile
application user interfaces exist.

We conducted a large-scale online study on the similarity
perception of mobile app login screens, and the purpose of
this study was three-fold. We wanted to (1) understand the
effect of different types of visual login screen modifications,
(2) gather training data for the spoofing detection system, and
(3) gain insights that could aid us in the design of our system.
The study was performed as online surveys on the crowd
sourcing platform CrowdFlower. The platform allows creation
of online jobs that human participants perform in return of
a small payment. In each survey, the participants evaluated a
single screenshot of a mobile app login screen by answering
questions (see Section IV-C).

We first performed an initial study, where we experimented
with visual modifications on the Android Facebook applica-
tion. We chose Facebook, as it is a widely used and well-

remembered application. After that, we carried out follow-
up studies where we tested similar visual modifications on
Skype and Twitter apps, as well as combinations of visual
changes. Below, we describe the Facebook study in detail and
summarize the results of the follow-up studies. We did not
collect any private information about our study participants.
The ethical board of our institution reviewed and approved
our user study.

A. Sample Generation

A sample is a screenshot image presented to a study par-
ticipant for evaluation. We created eight datasets of Facebook
login screens samples, and in each dataset we modified a single
visual property. The purpose of these datasets was to evaluate
how users perceive different types of visual changes as well
as to provide training data for the spoofing detection system
(Section V). Here, we describe each performed modification:

• Color modification. We modified the hue of the appli-
cation login screen. The hue change affects the color of
all elements on the login screen and the dataset contained
samples representing uniform hue changes over the entire
hue range.

• General modifications. We performed three general mod-
ifications on the login screen elements. (1) We reordered
the elements, and Figure 4 (Element Reorder) shows an
example where the logo and the login button exchanged
places. (2) We scaled down the size of the elements.
We did not increase the size of the elements, as the
username and the password fields are typically full width
of the screen. (3) We removed any extra elements from
the login screen. Figure 4 (Element Removal) depicts a
sample where the links to request a forgotten password
and register a new account have been removed.

• Logo modifications. We performed four modifications on
the logo. (1) We cropped the logo to different sizes, taking
the rightmost part of the logo out. (2) We added noise of
different intensity, (3) rotated the logo both clockwise and
counterclockwise, and (4) performed projective transfor-
mations on the logo.

We created such synthetic spoofing samples as no extensive
mobile spoofing app dataset is available. While the chosen



−80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80

Hue Change

0.2

0.4

0.6

0.8

1.0
P
o
si
ti
v
e
A
n
sw

e
rs

(%
)

Would login

As remembered

Fig. 5: Color modification results. We illustrate the percentages of users that perceived a Facebook login screen sample with
modified color as genuine (as-remembered rate) and would login to the application if such a screen is shown (login rate).
Color has a significant effect on both rates.

modifications cover known spoofing attacks (e.g., the An-
droid.Fakeneflic malware shown in Figure 1), the goal of our
work is not to optimize the system for the detection of known
attacks, but rather to implement a system that is able to detect
also previously unseen spoofing screens. The sample set could
be extended in many ways (e.g., replace logo with text). We
note that the list of possible visual modifications is practically
endless and a single user study cannot cover all of them.

B. Participant Recruitment

We recruited test participants by publishing survey jobs on
the crowd sourcing platform. An example survey had a title
“Android Application Familiarity” and the description of the
survey was “How familiar are you with the Facebook Android
application?”. We specified in the survey description that the
participant should be an active user of the tested application
and defined a reward of 10 cents (USD) for each completed
survey. We recruited 100 study participants for each sample,
accepted participants globally, and required the participants to
be at least 18 years old. The study participants were allowed
to evaluate multiple samples from different datasets, but only
one sample from each dataset. For example, a study participant
could complete two surveys: one where we evaluated color
modification samples and another regarding logo crop, but the
same participant could not complete multiple surveys on color
modification. In total 2,910 unique participants evaluated 5,900
Facebook samples. Table I provides the study statistics.

C. Study Tasks

Each survey included 12 to 16 questions. We asked prelimi-
nary questions on participant demographics, tested application
usage frequency, and a control question with a known correct
answer. We showed the study participant a sample login screen
screenshot and asked the participant to evaluate it using the

Unique study participants 2,910
Participants that completed multiple surveys 1,691
Screenshot samples 59
Total evaluations 5,900
Accepted evaluations after filtering 5,376
Average number of accepted evaluations per sample 91

TABLE I: Statistics of the Facebook user study.

Age
18-29 55.12%
30-39 29%
40-49 11.82%
50-59 3.33%
60 or above 0.72%

Gender
Male 72.54%
Female 27.45%
Education
Primary school 2.06%
High school 34.57%
Bachelor 63.36%

TABLE II: Demographics of the Facebook user study.

following questions: “Is this screen (smart phone screenshot)
the Facebook login screen as you remember it?” and “If you
would see this screen, would you login with your real Face-
book password?”. We provided Yes and No reply alternatives
on both questions. Using the percentage of Yes answers, we
compute as-remembered rate and login rate for each evaluated
sample. We also asked the participants to comment on their
reason to log in or retain from logging in. A listing of all
survey questions is available online: http://goo.gl/1ZR6Ka

D. Results

We discarded survey responses where the study participants
did not indicate active usage of the Facebook app or gave
an incorrect reply to the control question. After filtering, we
had 5,376 completed surveys and, on the average, 91 user
evaluations per screenshot sample (see Table I). Table II shows
the demographics of our study participants.



logo
uname
pwd
login

login

uname
pwd
logo

logo
login

uname
pwd

uname
pwd

logo

login

login

logo

uname
pwd

uname
pwd

login

logo

Element Reordering

0.2

0.4

0.6

0.8

1.0
P
o
si
ti
v
e
A
n
sw

e
rs

(%
)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Scaling Factor (%)

Original Removed

Extra Elements

Would login

As remembered

Fig. 6: General modifications results. Percentages of users that perceived a Facebook login screen sample with general
modifications as genuine and would login. Element reordering modification had a small but statistically significant effect,
scaling caused a significant effect, and extra element removal showed no effect.

0 0.2 0.4 0.6 0.8 1

Crop (%)

0.2

0.4

0.6

0.8

1.0

P
o
si
ti
v
e
A
n
sw

e
rs

(%
)

0 2 4 6 8

Noise (σ)

-10 -5 0 5 10

Rotation (Degrees)

0 0.2 0.4 0.6 0.8 0.99

Projective Transf. (%)

Would login

As remembered

Fig. 7: Logo modifications results. Percentages of users that perceived a Facebook login screen sample with logo modifications
as genuine and would login to the application. All logo modifications caused a significant effect.

Color modification. The color modification results are
illustrated in Figure 5. We plot the observed login rate in
green and the as-remembered rate in blue for each evaluated
sample. The red bars indicate bootstrapped 95% confidence
intervals. We performed a chi-square test of independence
with a significance level of p = 0.05 to examine the relation
between the login responses and the sample color. The relation
between these variables was significant (χ2(16, N = 1551) =
194.44), p < 0.001) and the study participants were less likely
to log in to screens with high hue change. When the hue
change is maximal, approximately 40% of the participants
indicated that they would still log in. For several samples we
noticed slightly higher login rate compared to as-remembered
rate. This may imply that some users were willing to log
in to an application, although it looked different from their
recollection. We investigated reasons for this behavior from
the survey questions and several participants replied that
they noticed the color change, but considered the application
genuine nonetheless. One participant commented: “Probably
Facebook decided to change their color.” However, our study
was not designed to prove or reject such hypothesis.

General modifications. The general element modification
results are shown in Figure 6. Both element reordering
(χ2(5, N = 546) = 15.84, p = 0.007) and scaling (χ2(9, N =
916) = 245.56, p < 0.001) had an effect on the observed

login rates. Samples with scaling 50% or less showed login
rates close to the original, but participants were less likely to
login to screens with high scaling. This could be due to users’
habituation of seeing scaled user interfaces across different
mobile device form factors (e.g., smartphone user interfaces
scaled for tablets). One participant commented his reason to
login: “looks the same, just a little small.” When the elements
were scaled more than 50%, the login rates decreased fast. At
this point the elements became unreadably small. Removal of
extra elements (forgotten password or new account link) had
no effect on the login rate (χ2(1, N = 180) = 0.0, p = 1.0).

Logo modifications. The logo modification results are
shown in Figure 7. The relation between the login rate and the
amount of crop was significant (χ2(5, N = 540) = 83.75, p <
0.001). Interestingly, we noticed that the lowest login rate was
observed for the 40% crop sample. This implies that the users
may find the login screen more trustworthy when the logo is
fully missing compared to seeing a partial logo, but our study
was not designed to prove such hypothesis.

The amount of noise in the logo had an effect on login
rates (χ2(4, N = 460) = 75.30, p < 0.001), as users were
less likely to log in to screens with noise. Approximately
half of the study participants answered that they would login
even if the logo was unreadable due to noise. This result
may imply habituation to software errors and one of the



participants commented the noisy logo: “I would think it is a
problem from my phone resolution, not Facebook.” Participants
were less likely to log in to screens with a rotated logo
(χ2(4, N = 462) = 57.25, p < 0.001) or a projected logo
(χ2(5, N = 542) = 102.45, p < 0.001).

Conclusions. The experimented eight visual modifications
were perceived differently. While some modifications caused
a predominantly systematic pattern (e.g., color), in others
we did not notice a clear relation between the amount of
the modification and the observed login rate (e.g., crop).
One modification (extra element removal) caused no effect.
We conclude that the spoofing detection system should be
trained with samples that capture various types of visual
modifications. Approaches where all types of visual changes
are treated the same are unlikely to be effective.

E. Follow-up Studies and Study Method

We performed similar studies for Skype and Twitter apps,
but due to space limitations we do not report the details. Skype
has a standalone login screen and, as a general observation,
we note that Skype results were comparable to those of
Facebook. Twitter app has a distributed login screen and we
noticed different patterns than in the previous two studies.
Additionally, we evaluated combinations of two and three
visual modifications on these apps. In total we collected 34,240
user evaluations from 5,438 unique study participants, and we
used the collected data to train our detection system.

In our study, we measured login rates by asking study
participants questions. We chose this approach to allow large-
scale data collection for thousands of login screen evaluations,
from globally-distributed participants. A common approach
in spoofing (e.g., phishing) studies is to observe participants
during a login operation. Scaling this method for such a
large number of evaluations is challenging, as it requires
either installation of malware-like apps on a large number
of phones (ethical considerations) or a large app provider
changing the user interface of their application for the study
(possible negative user experience). Participants in our study
were allowed to evaluate multiple samples from different
datasets which may have influenced the results of our study.

V. SPOOFING DETECTION SYSTEM

Through our user study we gained insight into what kind of
visual modifications users notice, and more importantly, fail to
notice. In this section we design a spoofing detection system
that leverages this knowledge. We instantiate the system for
Android devices, while many parts of the system are applicable
to other mobile platforms as well.

A. System Overview

Our system is designed to protect reference applications,
i.e., legitimate apps with login functionality. The goal of our
system is to, given a screenshot, estimate how many users
would mistake it for one of the known reference applications.
The detection system (Figure 8) consists of two parts: a

Fig. 8: Detection system overview. The system pre-processes
legitimate apps offline (e.g., at the marketplace) to obtain
reference values, and trains an estimator. On the user’s device,
the system periodically extracts screenshots and estimates their
deception rate.

training and pre-processing component that runs on the mar-
ketplace and a runtime detection system on users’ phones. On
the marketplace, each reference app’s login screen is detected,
pre-processed, and a deception rate estimator is trained using
the user perception data from our user study. The analyzed
login screens serve as the reference values for the on-device
detection.

On the device, the system periodically extracts a screenshot
of the currently active application. We analyze screenshot ex-
traction rates needed for efficient, as well as effective detection
in Section VII. Each extracted screenshot is analyzed using the
estimator with respect to the reference values of the protected
apps. Both the trained estimator and the reference values are
downloaded from the marketplace (e.g., upon installing an
app). The system outputs a deception rate for each analyzed
screenshot, with respect to each protected app. The deception
rates can be used to inform the marketplace or warn the user.

Which apps should be protected (i.e., labeled as reference
apps), can be determined in multiple ways: the user can choose
the apps that require protection, the system can automatically
select the most common spoofing targets (e.g., Facebook,
Skype, Twitter), or all installed apps with login functionality
can be protected. In this paper, we focus on the approach
where protected apps are chosen by the user. A complete view
of the system is illustrated in Figure 9, and we proceed by
describing each part of the system in detail.

B. Reference Application Analysis

The system protects reference apps from spoofing. To
analyze an extracted screenshot with respect to a reference
value, we first obtain the reference application login screen
and identify its main elements (reference elements) according
to our login screen model (Figure 3). We assume reference
application developers that have no incentive to obfuscate their
login screen implementations. On the contrary, developers can
be encouraged to mark the part of the user interface (activity)
that contains the login screen that should be protected. This
analysis is a one-time operation performed, e.g., at the mar-



Fig. 9: Detection system details. The system consist of four main components: reference app analysis, screenshot analysis,
estimator training and deception rate estimation.

ketplace on every app update, and its results distributed to the
mobile devices.

On Android applications, windows and their contained
elements are represented as activities. To find the activity that
represents the login screen, we developed a tool that hooks
activity and user interface element creation events. When the
reference application is started, the tool hooks the creation of
the first activity and searches the element tree of the activity for
a password input field. We identify the first encountered text
box with the TYPE_TEXT_VARIATION_PASSWORD flag set
as the password field. If the tool finds a password input field
on the first screen, it considers it a standalone login screen.
The tool extracts the rest of the login screen elements by
further examining the element tree. If the name of the element
object class contains the word “button”, or if the element
inherits from the Button Android class, the tool considers
it as the login button. We identify the username field as the
element with TextView type and consider the largest image
(ImageView, ImageButton) as the logo.

If the first screen does not contain a password field, the
tool considers it the initial screen in our model, extracts the
logo as above, and examines all activities that can be created
from the first screen. The tool identifies buttons, triggers each
of them, and hooks any new created activity. For each new
activity, the tool searches for a password field, and if not
found, moves on to the next activity. Once a password field
is found, the tool considers the examined activity as the login
screen and identifies the username and login button elements
as above. The tool gathers the identified elements into a tree
structure and, for each element, stores its type, location, size,
and content (screen capture over the element area).

C. Screenshot Analysis

The goal of the screenshot analysis is to, given the screen-
shot of the examined application as well as the reference ele-

ments, produce suitable features for deception rate estimation
and estimator training. The screenshot analysis includes three
operations: decomposition, element matching, and feature ex-
traction, as shown in Figure 9.

Decomposition. Screenshot decomposition is illustrated in
Figure 10. First, we perform common edge detection and then
dilate all detected edges to fill small areas such as text. We
perform a closure operation on the dilated elements to merge
closely situated elements, such as individual letters in a block
of text, and use a morphological gradient to determine the
borders of salient elements as well as to ensure that elements
that share a border get detected as two separate elements.
We run a connected components algorithm to identify the
regions. We filter regions smaller than a threshold and we place
a bounding box around each detected area and we convert
the elements into an element hierarchy tree. An element is
considered a child of a parent when its bounding box is fully
contained within the one of the parent. For each element, we
store its location, size, and a screenshot of its area.

Element matching. The next step is to match the detected
elements to the reference elements, as illustrated in Figure 11.
To identify which element is the closest match to the reference
logo, we use a known image feature extractor. While SIFT
extractors [19] have been successfully applied for detection of
logos in natural images [28], we found SIFT to be ill-suited for
mobile application logos, especially in cases where only partial
(cropped) logos were present. The shapes of mobile app logos
are typically smooth, compared to the ones seen in natural
images, and have small dimensions. Consequently, SIFT was
unable to identify enough keypoints for accurate detection. We
found that the ORB feature extractor [27] performed better in
our context.

Matching the reference application logo to an element
in the examined screenshot works as follows. We compute
ORB keypoints over the reference logo as well as the whole



Fig. 10: Decomposition process. The processing steps in the middle includes common image analysis techniques. The final
step is a connected components algorithm and filtering of smaller regions. For visual clarity, we inverted the colors in the
processing steps.

examined screenshot and we match the two sets. The element
that matches with the most keypoints, and exceeds a minimum
point density threshold, is declared as the logo. We observe
that ORB matching gives good results on all of our spoofing
samples, except the ones with significant noise. Finding an
image feature extractor that is resistant to noise in this setting
is part of our future work.

For the remaining elements, keypoint extraction is generally
not effective, as the login screen elements typically have
few keypoints due to their simplicity. For every element
of the examined screenshot, we perform template matching
to every reference element (username field, password field,
login button), on different scaling levels. The closest match
determines the type of the element. After these steps, we have
a mapping between the examined application elements and the
reference elements (Figure 11).

Feature extraction. Once the elements are matched, we
extract visual features from them. We extract two common
features (color and element scaling) and more detailed logo
features, as users showed sensitivity to logo changes. The
extracted features are relative, rather than absolute, as their
values are computed with respect to the reference elements or
entire reference screen. We explain our features below:

1) Hue. The difference between the average hue value of
the examined screenshot and the reference screen.

2) Element Scaling. The ratio of minimum-area bounding
boxes between all reference and examined elements,
except the logo.

3) Logo Rotation. The difference between the angles of
minimum-area bounding boxes of the examined and
reference logo.

4) Logo Scaling. We perform template matching between
the examined and reference logos at different scales and
express the feature as the scale that produces the best
match. We undo possible logo rotation before template
matching.

5) Logo Crop. We calculate the amount of logo crop as the
ratio of logo bounding box areas. We compensate for
the possible area reduction of scaling by reversing the
resize operation.

6) Logo Degradation. As precise extraction of logo noise
and projection is difficult, we approximate similar vi-
sual changes with a more generic feature that we call
logo degradation. Template matching algorithms return
the position and the minimum value of the employed
similarity metric and we use the minimum value as the
logo degradation feature. We undo possible scaling and
rotation before template matching.

In cases where no logo was identified in the matching phase,
all logo features are set to null (except logo crop which is set
to 100%). Our analysis is designed to extract features from
screenshots that follow our login screen model, and many of
our features (color change, scaling) can be also observed in
known spoofing apps (Android.Fakeneflic).

D. Estimator Training and Deception Rate Estimation

The detection system is trained using the available user
perception data and, for our implementation, we train the
system using the results of the user study. We extract features
from every sample of the study and augment the resulting
feature vectors with the observed login rate. In feature ex-
traction, as the reference value we use the unmodified login
screen of the app that the sample represents. As deception rate
(i.e., the percentage of users that would confuse the examined
screenshot with the reference application) is a continuous
variable, we estimate it using a regression model. Training can
be performed offline for each reference application separately.

Deception rate estimation is performed on the device at de-
tection system runtime. As illustrated in Figure 9, the extracted
screenshot is first analyzed. The decomposition phase of the
analysis is performed once, and the rest of the analysis steps
are repeated for each reference app. The extracted features are
used to run the trained estimator. The result of the estimation



Fig. 11: Summary of the screenshot analysis. (1) The starting point is a mobile application login screenshot. (2) We decompose
the screenshot to a tree hierarchy. (3) We match the detected elements to reference elements. (4) We extract features from the
detected elements with respect to the reference elements.

operation is a set of deception rates, one for each protected
app. If any of the deception rates exceeds a threshold value,
one or more possible spoofing apps have been found and the
identities of them can be communicated to the application
marketplace or the user can be warned.

E. Implementation

We implemented the reference application analysis tool as a
modified Android emulator environment. Similar analysis can
be implemented by instrumenting the reference application,
but we modified the runtime environment to make the analysis
more robust, and to support analysis of native applications.
We implemented the remaining offline tools as various Python
scripts using the OpenCV [5] library for image processing and
scikit-learn for estimator training.

The on-device detection system can be implemented in
multiple ways, including a modification to the Android runtime
or as a standalone application. For ease of deployment, we
implemented the on-device components as a regular Android
(Java) application using the OpenCV library.

VI. EVALUATION

In this section, we evaluate the accuracy, robustness, and
performance of our system.

A. Reference Application Analysis Accuracy

We evaluated the accuracy of our reference app analysis
tool (Section V-B) on 1,270 apps, downloaded randomly from
Google Play and other marketplaces. The tool reported 572
potential login screens. We manually verified all of them
and found 230 login, 153 user registration, and 77 password
change screens. The remaining 120 screens contained no login
related functionality, and those we classify as false positives.

We manually verified 50 random apps from the set of 698
apps our tool reported as not having a potential login screen.
We found 3 false negatives due to an implementation bug that
was since fixed. We conclude that the tool can effectively find

all login screens that require protection. The tool provides an
over approximation, but a small number or false positives does
not hamper security, as they only introduce additional refer-
ence values for similarity comparison. Moreover, developers
have an incentive to help the reference login screen detection
and they can explicitly mark which activity constitutes the
login screen for even more accurate detection.

B. Decomposition Accuracy
To evaluate the accuracy of our screenshot decomposition

algorithm, we decomposed the screenshots of the 230 login
screens. We manually verified the results and found that we
detected all login screen elements correctly on 175 screens.
We found 29 screens that correctly decomposed all but one
element, and 9 screens with correct decompositions for all but
two elements. Our algorithm failed to decompose 18 screens.

Certain types of login screens are challenging for our
approach. For example, the login screen of the Tumblr appli-
cation contained a blurred natural image in the background,
and our algorithm detected many erroneous elements (see
Figure 12). Our current implementation is optimized for clean
login screens, as those are the pre-dominant login screen types.
The majority (92%) of analyzed screenshots were visually
simple and decomposed. We discuss noisy spoofing screens
as a possible detection avoidance technique in Section VII-C.

C. Deception Rate Estimation Accuracy
To evaluate the deception rate estimation accuracy, we

trained our detection system using the results of our user
study. Our total training data consists of 316 user-evaluated
samples of visual modifications and each sample was evaluated
either by 100 (single modification) or 50 (two and three
modifications) unique study participants. From the training
data, we omitted samples that express visual modifications that
our current implementation is unable to extract (e.g., noise).

We experimented with several regression models of different
complexities and trained two linear models (Lasso and linear



Fig. 12: Decomposition examples. The login screen decomposition algorithm works well in practice. We outline in red the
borders of detected elements, while the red diamond represent element centroids. Some login screens (tumblr, last screenshot)
are visually complex and are inherently hard for our approach to analyze.

B
1
Li
ne
ar

B
2
C
on
st
an
t

B
3
Li
ne
ar

B
4
R
an
do
m

La
ss
o

Li
ne
ar

R
eg
re
ss
io
n

D
ec
isi
on

Tr
ee

G
ra
di
en
t
B
oo
st
in
g

R
an
do
m

Fo
re
st

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
o
o
t
M

e
a
n

S
q
u
a
re

E
rr
o
r

10-fold CV

Leave-one-out CV

Fig. 13: Deception rate accuracy. Evaluation of five regression
and four baseline models (B1–B4) trained on the combined
datasets of Facebook and Skype. The random forest regressor
performs the best.

regression), a decision tree, as well as two ensemble learning
methods (gradient boosting and random forests). To compare
our detection accuracy to straightforward approaches, we
define four baseline models out of which the latter two utilize
prior knowledge obtained from our user study:

• B1 Linear. The deception rate drops linearly with the
amount of visual modification from 1 to 0.

• B2 Constant. The deception rate is always 0.75.
• B3 Linear. The deception rate drops linearly with the

amount of visual modification from 1 to 0.2. Login rates
stayed predominantly above 20% in our study.

• B4 Random. The deception rate is a random number in
the range 0.3–0.5; the most observed range in our study.

To estimate the deception rate, we extract features from the
analyzed screenshot with respect to a reference app and we
feed the feature vector to the trained regressor. The estimator
outputs a deception rate that can be straightforwardly con-
verted into a spoofing detection decision. We performed two
types of model validation: leave-one-out and 10-fold cross-
validation. We report the results in Figure 13 and we observe
that the more complex models perform significantly better than
our baseline models. The best model was random forest, with
a root mean square (RMS) error of 6% and 9% for the leave-

one-out and 10-fold cross validations respectively (95% of the
estimated deception rates are expected to be within two RMS
errors from their true values). The low RMS values show that a
system trained on user perception data can accurately estimate
deception rates for mobile application spoofing attacks.

The detection system should estimate deception rate accu-
rately even for apps it did not encounter before. To evaluate
the estimation accuracy of attacks that target apps that were
not present in the training data, we trained a random forest
regressor using Facebook samples, and evaluated it on Skype
samples, and vice-versa. We observed an RMS error of 13% in
both cases. When samples from the spoofing target app are not
part of the training dataset, the estimation accuracy decreases
slightly. We conclude that our system is able to accurately
estimate deception rate in the tested scenarios, even if the
target application is not part of the training data. Our training
set has limited size and with more extensive training data we
expect even better accuracy.

D. Performance Evaluation

We evaluated the performance of the on-device screenshot
analysis and deception rate estimation operations. For the
offline (marketplace) components we only evaluated accuracy,
as those are fast and not time-critical operations. We measured
the performance of our implementation on three devices:
an older smartphone model (Samsung Galaxy S2) and two
more recent devices (Nexus 5 and Nexus 6). Table III shows
execution times averaged over 100 runs. Analysis with respect
to a single reference application takes from 183 ms (Nexus 5)
to 407 ms (Galaxy S2). The process scales linearly with the
number of protected apps: the decomposition of the extracted
screenshots is performed once, and the remaining analysis
steps are repeated for each reference value. Assuming five
protected applications, the complete analysis takes 667 ms on
Nexus 5.

We use application whitelisting to eliminate unnecessary
processing. The detection system extracts and analyzes screen-
shots only when an untrusted (i.e., not whitelisted) app is
active. For example, the platform provider can whitelist popu-
lar apps from trusted developers (Facebook, Twitter, What-
sapp). Below we discuss further performance improvement



Galaxy S2 Nexus 5 Nexus 6
Screenshot extraction 10± 3 ms 21± 13 ms 19± 7 ms
Decomposition 99± 19 ms 41± 10 ms 42± 8 ms
Element matching 147± 35 ms 54± 16 ms 106± 16 ms
Feature extraction 150± 34 ms 67± 12 ms 94± 13 ms
Estimator 0.5± 0.9 ms 0.1± 0.3 ms 0.4± 0.5 ms
Total 407± 69 ms 183± 28 ms 261± 26 ms

TABLE III: Performance evaluation of our implementation.

techniques that can significantly reduce the required compu-
tation time for each screenshot. In Section VII we describe
a collaborative deployment model that allows even further
computation reduction by less frequent screenshot extraction.

E. Performance Improvements

The detection system can perform a less expensive pre-
filtering operation to determine if the examined screenshot
vaguely resembles a login screen, and if so, proceed with
the full analysis. Screenshot decomposition might function
as such pre-filtering operation, where the detection system
could continue with the full screenshot analysis only if the
decomposition phase provides a number of elements, or similar
heuristic, that is close to the login screen model. Efficient pre-
filtering would avoid the expensive analysis for the majority of
the extracted screenshots, as most of them are benign and do
not resemble a login screen. The adversary should not be able
to create spoofing screens that are pre-filtered but still deceive
many users, and we leave thorough evaluation of secure pre-
filtering schemes as future work.

The on-device performance primarily depends on the size
of the analyzed screenshot. Modern smartphones have high
screen resolutions (e.g., 1080× 1920) and analyzing such
large images is expensive and does not increase system ac-
curacy. It is important to note that screenshot extraction time
depends only on the output screenshot resolution and not on
the physical screen resolution itself. For all our measurements
we extracted screenshots of size 320× 455 pixels as the
resolution provides a good ratio of element detection accuracy
and runtime performance. Our initial experiments show that
the image resolution (and with it, execution time) can be
decreased even further, and determining the optimal resolution
we leave as future work.

VII. ANALYSIS

In the previous section we evaluated the computational cost
of deception rate estimation for a single screenshot. In this
section we explain how often screenshots can be extracted on
the device, given a pre-defined amount of allocated system
resources. If a spoofing attack takes place, we analyze the
probability that at least one screenshot of the spoofing appli-
cation is captured. We also present an efficient collaborative
detection model that enables significantly fewer screenshot
analysis operations per device.

A. Detection Probability on a Single Device

In Figure 14, we illustrate the intuition of our analysis. The
system has two controllable parameters: the share of system

Fig. 14: Analysis intuition. System parameters, user behavior
assumptions, and a user-chosen number of protected apps
define the screenshot rate, the detection probability for a
single spoofing attack, and the number of devices required
for effective collaborative detection.

s Share of allocated system resources
System Presets td Decomposition time (device perf.)

ta Analysis time (device perf.)
Observed tl Time spent on login screen
User Habits u Share of time spent on unknown apps
User Chosen na Number of protected applications

r Screenshot rate
Detection ps Detection probability, single spoofing
Properties p Detection probability, collaborative system

n Number of devices with spoofing app

TABLE IV: Summary of analysis terminology.

resources s that are allocated for spoofing detection and the
number of reference apps na the system protects. Together
with device performance and the observed user habits (the
share of time spent on unknown apps u), these two parameters
define the screenshot rate r which in turn determines the
detection probability for a single spoofing attempt ps, as well
as the number of devices n needed for efficient collaborative
detection. In what follows, we introduce the rest of the
terms gradually and, for ease of reference, summarize our
terminology in Table IV.

In a typical deployment, the share of system resources allo-
cated for the detection system would be chosen by the platform
provider. For our analysis, we use s = 1%, as we assume
that one percent overhead does not hinder user experience nor
overly drain the battery. The number of protected applications
is chosen by the user. We assume that in most cases the user
would choose to protect a small number of important services
(e.g., banking, e-mail, Facebook, Skype, Twitter) and use the
value na = 5 for our analysis.

For analysis simplicity, we assume that the user spends
a constant time tl on the spoofed login screen. In a recent
study [21], users spent 4–28 seconds on the login screen, so
tl = 5 seconds is a safe assumption. We also assume that the
user spends a constant share u of her time on unknown (non-
whitelisted) apps. According to [9], smartphone users spend
88% of their time on five of their favorite apps, so setting
u = 0.25 is a safe assumption. The detection system can
monitor the runtime usage of unknown apps and adjust a user-
specific u accordingly.



For device performance, we use the values from our im-
plementation evaluation on Nexus 5: the screenshot extraction
and decomposition time td is approximately 60 ms, while the
remaining screenshot analysis time ta that needs to be repeated
for each reference app is approximately 120 ms. Using such
device performance, system parameters and analysis assump-
tions, we can compute the screenshot rate r as follows:

r =
u

s
(td + nata) ≈ 16.5 s

That is, given 1% of allocated system resources, a screen-
shot can be analyzed on the average once per 16.5 seconds
when an unknown app is active.

The detection probability for a single spoofed login screen
ps is the probability that, when a spoofed login screen is shown
to the user for tl = 5 seconds, the detection system captures,
and analyzes, at least one screenshot during that time. To
avoid simple detection evasion where the malware never shows
spoofed screens at pre-determined screenshot extraction times,
we assume that screenshots are taken at random points in time,
according to the chosen screenshot rate. Given the randomized
screenshot extraction model, we model ps as a random number
from the Poisson distribution P (x;µ), where x is the number
of successes in a given time period (zero successes means that
no screenshots are taken in the time period) an µ is the mean of
successes in the same time period. The number of screenshots
taken on the average can be calculated as tl/r (e.g., 5/16.5 in
our example scenario). The detection probability ps becomes:

ps = 1− P (0, tl
r
) ≈ 0.26

We observe that the probability of detecting a single spoofed
login operation is low. Moreover, the adversary does not
have an incentive to repeat a successful attack on the same
device. Once the users login credentials have been stolen, the
malicious app can, e.g., remove itself. For these reasons we
focus on a more effective collaborative deployment model that
leverages the many eyes principle.

B. Collaborative Detection

An instance of the detection system can be running on
a large number of devices (e.g., all devices from the same
platform provider), where each device takes screenshots at
random points in time, according to the chosen screenshot
rate. When one of the devices finds a potential spoofing
login screen, the identity of the application is reported to
the platform provider (or the app marketplace) which can
examine the application and remove it from all of the devices,
if confirmed malicious. For analysis simplicity, we assume that
all participating devices have similar performance and use the
same, previously chosen system parameters, but deployments
where devices are configured differently are, of course, pos-
sible. The detection probability p of the collaborative system,
i.e., the probability that at least one device will detect the
spoofing attack, is defined as:

p = 1− (1− ps)n

System Resources (s) Number of Devices (n)
na = 1 na = 5 na = 10

0.5% 9 31 59
1.0% 5 16 30
2.0% 3 8 15

TABLE V: The number of devices n needed in collaborative
detection depends on the allocated system resources s and
the number of protected apps na. We illustrate the number of
devices required for detection probability p = 0.99 in example
scenarios.

0 2 4 6 8 10 12 14

Number of Infected Devices

0.00

0.25

0.50

0.75

1.00

D
e
te
c
ti
o
n

P
ro

b
a
b
il
it
y

0.5% Resources

1% Resources

2% Resources

Fig. 15: The detection probability p as a function of in-
fected devices n. We consider allocated system resources
s = {0.5, 1, 2}% and assume na = 5. Detection is practical
even with very low number of infected devices.

where n is the number of devices infected with the spoofing
app. Assuming our example parameters, to reach detection
probability p = 0.99, we need the malicious application to be
installed and active on only 16 devices:

n = dlog1−ps(1− p)e = 16

Spoofing apps that infected thousands of devices have been
reported [14], so we consider this a very low number for
common wide-spread attacks that target globally used apps,
such as Facebook, Skype or Google. In Table V, we provide
example values for the number of infected devices required
to reach detection probability p = 0.99 given different values
of our system parameters s and na. Detection on a single
spoofing attempt is hard to guarantee, but if the spoofing app
is active even in a small number of devices (e.g., 10) it can
be detected with high probability using only a small share of
system resources in participating devices. Figure 15 illustrates
the detection probability p as a function of infected devices n,
and we observe that detection is practical even with very few
infected devices.

The goal of the collaborative detection system is to keep
a constant, high detection probability at all times. This can
be achieved with fewer devices sampling more often or more
devices sampling less often. For example, the screenshot rate
can be controlled based on the popularity (global install count)
of the currently running, unknown app. The marketplace can
send periodic updates on the popularity of each application
installed on the device. If an app is present on many devices
(e.g., 50 or more), the detection system can safely reduce the
screenshot rate to save system resources without sacrificing
detection probability. If an application is installed in only a



small number of devices (e.g., less than 10), the system can
increase the screenshot rate for better detection probability.
Such adjustments can be done so that, in total, no more than
the pre-allocated amount of system resources are spent for
spoofing detection. Our analysis has shown that collaborative
detection provides an efficient way to detect spoofing attacks
in the majority of practical spoofing scenarios.

C. Detection Avoidance

The adversary can try to avoid runtime detection by lever-
aging the human perception property of averaging images that
change frequently. For example, the adversary could quickly
and repeatedly alternate between showing the first and second
halves of the spoofing screen. The user would perceive the
complete login screen, but any acquired screenshot would
cover only half of the spoofing screen. Such attacks can be
addressed by extracting screenshots frequently (screenshot ex-
traction is fast) and averaging them out, prior to analysis. Such
an acquisition method would mimic the human perception.

While the adversary has an incentive to create spoofing
screens that resemble the original login screen, the adversary
is not limited to these modifications. To test how well our
system is able to estimate deception rate for previously unseen
visual modifications and spoofing samples that differ from the
login screen model, further tests are needed. This limitation
is analogous to the previously proposed similarity detection
schemes that compare website similarity to known phishing
samples — the training data cannot cover all phishing sites.

Our current implementation has difficulties in decomposing
screenshots with background noise, and consequently the
adversary could try to avoid detection by constructing noisy
spoofing screens. Developers could be encouraged to create
clean login screen layouts for improved spoofing protection.
While we did not experiment with noisy backgrounds, our
study shows that typically the more the adversary deviates
from the legitimate screen, the less likely the attack is to
succeeded.

VIII. RELATED WORK

Spoofing detection systems. Bianchi et al. [4] propose a
static analysis tool for mobile app spoofing detection that
identifies API calls that enable spoofing attacks. The tool
detects apps that query device state (e.g., running tasks) and
after that perform UI related operations (e.g., create a new
activity). Code analysis can be very effective in detecting
attacks that leverage known attack vectors. Our approach is
more agnostic to the attack implementation technique, but has
a narrower focus: protection of login screens. We consider our
work complementary to mobile app spoofing detection using
code analysis.

Many web phishing detection systems analyze a website
DOM tree and compare its elements and structure to the
reference site [3, 18, 26, 38, 39]. While similar code analysis
is possible for mobile applications, we assume an adversary
that constructs spoofing applications in arbitrary ways (e.g.,
per pixel), and thus complicates structural code analysis. Our

screenshot analysis techniques can help such approaches to
infer user interface structure under strong adversarial models.

Another proposed approach is to consider the visual presen-
tation of a spoofing application (or a website), and compare its
similarity to a reference value [8, 15, 22]. The main difference
between these schemes and our work is that they derive a
similarity score for a website and compare it to the ones of
known malicious sites. Our similarity metric determines how
many users would confuse the application for another one.
Unlike these previous works, we also extract visual features
for the similarity analysis by decomposing the user interface
from its visual presentation. The results of our user study could
be used to determine appropriate visual similarity metrics in
the above discussed approaches.

Spoofing detection by users. Two types of techniques have
been proposed to help the user to detect spoofing attacks. First,
similar to web browsers, the mobile OS can be enhanced with
security indicators. For example, the OS can show the name, or
comparable identifier, of the running application in a dedicated
part of the screen, such as on the status bar [4, 13, 30]. Such
schemes require that parts of the mobile device screen are
made unavailable to applications or need hardware changes
to the mobile device. Second, a mobile application can allow
the user to configure a personalized security indicator (e.g., a
personal image) that is shown by the application during each
login [21]. Such application-specific security indicators require
no platform changes, but increase application setup user effort.

User perception of spoofing attacks has been studied exten-
sively in the context of web phishing. Several studies show
that many users ignore the absence of security indicators,
such as SSL locks or personalized images [11, 29, 34]. A
recent study shows that personalized security indicators can be
more effective on mobile apps [21]. We are the first to study
how likely the users are to notice spoofing attacks, where the
malicious application resembles, but is not a perfect copy of,
the legitimate application.

IX. CONCLUSION

We have proposed a novel mobile app spoofing detection
system that in collaborative fashion extracts screenshots pe-
riodically and analyzes their visual similarity with respect to
protected login screens. We express the similarity in terms of
a new metric called deception rate that represents the fraction
of users that would confuse the examined screen for one of the
protected login screens. We conducted an extensive online user
study and trained our detection system using its results. Our
system estimates deception rate with good accuracy (6-13%
error margins) and very low overhead (only 1%). Essentially,
our system tells how likely the user is to fall for a potential
attack. We consider this a powerful and interesting security
property that no previous similarity comparison scheme pro-
vides. In addition to supporting a spoofing detection system,
the results of our user study, on their own, provide an insight
into the perception and attentiveness of users during the login
process.



REFERENCES

[1] Google safe browsing. http://
googleonlinesecurity.blogspot.com/2012/06/
safe-browsing-protecting-web-users-for.html.

[2] Spoofguard. http://crypto.stanford.edu/SpoofGuard/.
[3] S. Afroz and R. Greenstadt. Phishzoo: Detecting phishing

websites by looking at them. In Fifth IEEE International
Conference on Semantic Computing (ICSC), 2011.

[4] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that? decep-
tion and countermeasures in the android user interface.
In Symposium on Security and Privacy (SP), 2015.

[5] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[6] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,

W. Zou, and P. Liu. Finding unknown malice in 10
seconds: Mass vetting for new threats at the google-play
scale. In USENIX Security, volume 15, 2015.

[7] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your
app without actually seeing it: Ui state inference and
novel android attacks. In USENIX Security Symposium,
2014.

[8] T.-C. Chen, S. Dick, and J. Miller. Detecting visually
similar web pages: Application to phishing detection.
ACM Trans. Internet Technol., 10(2):1–38, 2010.

[9] comScore. The 2015 u.s. mobile app report, 2015.
[10] R. Dhamija and J. D. Tygar. The battle against phish-

ing: Dynamic security skins. In Symposium on Usable
Privacy and Security (SOUPS), 2005.

[11] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In Conference on Human Factors in Computing
Systems (CHI), 2006.

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner.
A survey of mobile malware in the wild. In Workshop on
Security and Privacy in Smartphones and Mobile Devices
(SPSM), 2011.

[13] A. P. Felt and D. Wagner. Phishing on mobile devices. In
Web 2.0 Security and Privacy Workshop (W2SP), 2011.

[14] Forbes. Alleged ’Nazi’ Android FBI Ransomware Mas-
termind Arrested In Russia, April 2015. http://goo.gl/
c91izV.

[15] A. Fu, L. Wenyin, and X. Deng. Detecting phishing
web pages with visual similarity assessment based on
earth mover’s distance (EMD). IEEE Transactions on
Dependable and Secure Computing, 3(4):301–311, 2006.

[16] J. Hong. The state of phishing attacks. Communications
of the ACM, 55(1), 2012.

[17] International Secure Systems Lab. Antiphish, last access
2015. http://www.iseclab.org/projects/antiphish/.

[18] W. Liu, X. Deng, G. Huang, and A. Fu. An antiphishing
strategy based on visual similarity assessment. IEEE
Internet Computing, 10(2), March 2006.

[19] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2), 2004.

[20] MacRumors. Masque attack vulnerability allows ma-
licious third-party iOS apps to masquerade as legit-
imate apps. http://www.macrumors.com/2014/11/10/
masque-attack-ios-vulnerability/.

[21] C. Marforio, R. Jayaram Masti, C. Soriente, K. Kosti-
ainen, and S. Capkun. Personalized Security Indicators
to Detect Application Phishing Attacks in Mobile Plat-
forms. ArXiv e-prints, Feb. 2015.

[22] M.-E. Maurer and D. Herzner. Using visual website
similarity for phishing detection and reporting. In
Extended Abstracts on Human Factors in Computing
Systems (CHI), 2012.

[23] E. Medvet, E. Kirda, and C. Kruegel. Visual-similarity-
based phishing detection. In International Conference
on Security and Privacy in Communication Networks
(SecureComm), 2008.

[24] W. Metzger. Laws of Seeing. The MIT Press, 2009.
[25] R. A. Rensink. Change detection. Annual review of

psychology, 53(1), 2002.
[26] A. P. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi. A

layout-similarity-based approach for detecting phishing
pages. In Conference on Security and Privacy in Com-
munications Networks (SecureComm), 2007.

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb:
An efficient alternative to sift or surf. In International
Conference on Computer Vision (ICCV), 2011.

[28] H. Sahbi, L. Ballan, G. Serra, and A. Del Bimbo.
Context-dependent logo matching and recognition. Image
Processing, IEEE Transactions on, 22(3), March 2013.

[29] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer.
The emperor’s new security indicators. In IEEE Sympo-
sium on Security and Privacy (SP), 2007.

[30] M. Selhorst, C. Stuble, F. Feldmann, and U. Gnaida.
Towards a trusted mobile desktop. In International Con-
ference on Trust and Trustworthy Computing (TRUST),
2010.

[31] D. J. Simons and R. A. Rensink. Change blindness: past,
present, and future. TRENDS in Cognitive Sciences, 9(1),
2005.

[32] Spider Labs. Focus stealing vulnerability in
android. http://blog.spiderlabs.com/2011/08/
twsl2011-008-focus-stealing-vulnerability-in-android.
html.

[33] Symantec. Will Your Next TV Manual Ask You to Run
a Scan Instead of Adjusting the Antenna?, April 2015.
http://goo.gl/xh58UN.

[34] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In Conference
on Human Factors in Computing Systems (CHI), 2006.

[35] G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+:
A feature-rich machine learning framework for detecting
phishing web sites. ACM Transactions on Information
and System Security (TISSEC), 14(2):21, 2011.

[36] Z. Xu and S. Zhu. Abusing notification services on
smartphones for phishing and spamming. In USENIX
Workshop on Offensive Technologies (WOOT), 2012.



[37] J. Zhai and J. Su. The service you
can’t refuse: A secluded hijackrat. https:
//www.fireeye.com/blog/threat-research/2014/07/
the-service-you-cant-refuse-a-secluded-hijackrat.html.

[38] H. Zhang, G. Liu, T. Chow, and W. Liu. Textual and
visual content-based anti-phishing: A bayesian approach.
IEEE Transactions on Neural Networks, 22(10), Oct
2011.

[39] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: A
content-based approach to detecting phishing web sites.
In International Conference on World Wide Web (WWW),
2007.

[40] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party an-
droid marketplaces. In Conference on Data and Appli-
cation Security and Privacy (CODASPY), 2012.


