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Abstract

We investigate new constructions of n-circular counterexamples with a focus on the case of n = 2. We
have a particular interest in what qualities a cryptosystem must have to be able to separate such circular
security from IND-CPA or IND-CCA security. To start, we ask whether there is something special about
the asymmetry in bilinear groups that is inherent in the works of [1] and [16] or whether it is actually the
bilinearity that matters. As a further question, we explore whether such counterexamples are derivable
from other assumptions such as the Learning with Errors (LWE) problem. If it were difficult to find
such counterexamples, this might bolster our confidence in using 2-circular encryption as a method of
bootstrapping Fully Homomorphic Encryption systems that are based on lattice assumptions.

The results of this paper broadly expand the class of assumptions under which we can build 2-
circular counterexamples. We first show for any constant k ≥ 2 how to build counterexamples from
a bilinear group under the decision k-linear assumption. Recall that the decision k-linear assumption
becomes progressively weaker as k becomes larger. This means that we can instantiate counterexamples
from symmetric bilinear groups and shows that asymmetric groups do not have any inherently special
property needed for this problem. We then show how to create 2-circular counterexamples from the
Learning with Errors problem. This extends the reach of these systems beyond bilinear groups and
obfuscation.

1 Introduction

The notion of key dependent message security [10] moves beyond our classical notion of encryption secu-
rity [20]. It demands a system remain secure even if an attacker gains access to ciphertexts that encrypt mes-
sages that are, or depend on, the very private keys of the system it is trying to attack. As a concrete example,
consider a special case of key-dependent security called n-circular security. Here an encryption scheme is said
to be n-circular secure, if an adversary is unable to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1)
from corresponding zero encryptions.

While the notion of key dependent or circular security might first appear to be just a technical exercise,
this very problem arises in multiple contexts. Camenisch and Lysyanskaya [15] applied circular secure
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encryption to build an anonymous credentials scheme with certain properties. Other works used circular
security in formal methods to prove the soundness of symbolic protocols [2, 24]. Perhaps the most compelling
example comes from Gentry [18], who showed that a fully homomorphic scheme for limited depth can be
“bootstrapped” to work for arbitrary depth circuits if the original system is sufficient to compute its own
decryption circuit and is 1-circular secure.

The first positive examples of key-dependent message security were given in the random oracle model
by Black et al. [10] and Camenisch and Lysyanskaya [15]. It was a significant time later when Boneh,
Hamburg, Halevi and Ostrovsky [12] gave an elegant construction of an n-circular secure encryption in
the standard model under the decision Diffie-Hellman assumption. Subsequently, a sequence of further
works [7, 13, 8, 14, 6, ?] gave standard model constructions of key dependent security for functions that
could be arbitrary circuits on the private key(s).

All the above constructions and proofs were based on encryption schemes with specific properties. A
natural question is whether key-dependent message security is implied by IND-CPA (or IND-CCA) security.
If this were true, we would get it for free, without needing such specific properties of the encryption scheme.

A cursory examination of the problem shows that in the broadest sense the answer is no. One can derive
a simple counterexample for 1-circular security (i.e., a system that encrypts its own private key) by slightly
modifying a public key encryption system. To do so, simply augment a standard private key K with a
randomly chosen K ′ ∈ {0, 1}λ and append y = f(K ′) to the public key where f is a one way function. When
encrypting a message m = (m1,m2) the system will give out the message in the clear if f(m2) = y) and
encrypt normally otherwise. Clearly, an encryption of the private key will be detectable. Yet, if the function
f is one way and the original system is IND-CPA secure, the resulting system will still be IND-CPA secure.

While it can be trivially shown (by the argument above) that IND-CPA security does not imply 1-circular
security, the case for n ≥ 2 becomes significantly more challenging. Intuitively, when multiple public keys
are thrown into the mix, we need a system that is powerful enough to allow for different ciphertexts to “talk”
to each other in a manner that allows for cycle detection, but does not compromise IND-CPA security. So
far there have been two approaches to this. For the case of n = 2, Acar et al. [1] and Cash, Green and
Hohenberger [16] showed how to construct a counterexample from a certain class of asymmetric bilinear
groups.1 Here there must exist a bilinear map e : G1×G2 → GT where the decision Diffie-Hellman problem
is believed to remain hard respectively within G1 and within G2 (this is called the SXDH assumption). A
second approach by Koppula, Ramchen and Waters [23] showed a counterexample under the assumption
of indistinguishability obfuscation for poly-sized circuits. Independently and concurrently, Marcedone and
Orlandi [25] showed this under the stronger assumption of virtual black box obfuscation.

Our Goals and Results In this work, we investigate new constructions of n-circular counterexamples
with a focus on the case of n = 2. We have a particular interest in what qualities a cryptosystem must have
to be able to separate circular security from IND-CPA and IND-CCA security.

To start, we ask whether there is something special about the asymmetry in bilinear groups that is
inherent in the works of [1, 16, 32] or whether it is actually more the bilinearity that matters. As a further
question, we explore how to derive such counterexamples from other assumptions such as the Learning with
Errors (LWE) problem. If it were difficult to find such counterexamples, this might bolster are confidence
in using 2-circular encryption as a method of bootstrapping [18] fully homomorphic encryption systems that
are based on lattice assumptions.

The results of this paper broadly expand the class of assumptions from which we can build 2-circular
counterexamples. We first show for any constant k ≥ 2 how to build 2-circular counterexamples from a
bilinear group under the decision k-linear assumption. Recall that the decision k-linear assumption becomes
progressively weaker as k becomes larger. This means that we can instantiate counterexamples from symmet-
ric bilinear groups and shows that asymmetric groups do not have any inherently special property needed for
this problem. We then show how to create 2-circular counterexamples from the Learning with Error (LWE)

1In a similar vein, Rothblum [32] presented an elegant counterexample for bit-encryption under a generalization of the SXDH
assumption applied to multilinear groups.
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problem. This extends the reach of these systems beyond bilinear groups and obfuscation, giving us a much
broader understanding of circular security and its challenges.

Our Approach We begin by introducing a new abstraction called an n-Cycle Tester that will simplify
the process of finding and describing counterexamples by focusing on the core problem. A cycle tester
consists of four algorithms (Setup,KeyGen,Enc,Test). The algorithms of Setup,KeyGen,Enc behave as in a
normal encryption scheme with a common trusted setup algorithm, while the Test algorithm will take in
an n-tuple of public keys and ciphertexts and detect (with some non-negligible probability) the presence
of a cycle. Notably absent is the inclusion of a decryption algorithm. Thus, a tester does not require that
ciphertexts be decryptable in the traditional sense — it only matters that the Test algorithm work with some
non-negligible probability. We found that relieving the responsibility of providing a system with decryption
simplifies our constructions and allows us to focus on the main ideas. The security property required is
IND-CPA security (recall that the basic IND-CPA game does not involve a decryption algorithm).

Of course, to obtain a full-fledged counterexample of an encryption system we actually do need to provide
an encryption system that decrypts. We show how to generically derive such a counterexample for n-circular
encryption by combining a standard IND-CPA secure cryptosystem (of sufficient message length) with a
n-cycle tester. The idea is fairly straightforward. The setup algorithm of the counterexample will run
the respective setup algorithms of the encryption and cycle tester schemes. The public key is the pair of
these public keys and the secret key is the pair of secret keys. To encrypt a message m = (m1,m2), first
encrypt m = (m1,m2) under the regular encryption system, then encrypt just m2 under the cycle tester.
We can now see that: (1) the cycle tester will allow for any key cycle to be detected and (2) the standard
encryption scheme can be used for decryption. A simple hybrid argument shows that the IND-CPA security
of the standard encryption scheme and cycle tester imply IND-CPA security of the derived counterexample
system.

We also show that it is possible to extend this transformation idea to chosen ciphertext security, where
we can combine any IND-CCA secure encryption system (of appropriate message length) with the same
IND-CPA secure cycle tester to get an encryption system that is IND-CCA secure, but where encryption of
key cycles can be detected.

Again, the usefulness of this framework is its modularity. We show these basic transformations once in
Section 4, and then for each construction we only need to focus on the basic cycle tester abstraction.

A Cycle Tester from Asymmetric Bilinear Groups As a baseline for our exploration (see auxiliary
Section 5 for further details), we first create a 2-cycle tester from asymmetric groups using the SXDH
assumption. Our construction is extracted from Cash et al. [16] (also similar to [1, 32]), but simpler in that
we only aim for the tester abstraction.

In our construction, the Setup algorithm creates an asymmetric pairing description PP = (p,G1,G2,GT , e)
of prime order p. It also produces generators g ∈ G1 and h ∈ G2. The message space will be Z∗p.

A key can be of one of two types. The cycle detection algorithm Test will work on any cycle of keys of
two different types. The key generation algorithm KeyGen will first flip a coin β ∈ {0, 1} to determine its
type. It then picks a random key s ∈ Z∗p. If β = 0, it sets its public key to be K = gs ∈ G1; otherwise, its
public key is K = hs ∈ G2.

The encryption algorithm will choose a random exponent t ∈ Zp and if the key is of type β = 0, it
produces the ciphertext as (C1 = Ktm = gstm, C2 = gt) ∈ G2

1; otherwise if β = 1, it produces the
ciphertext as (C1 = Ktm = hstm, C2 = ht) ∈ G2

2. With ciphertexts of this form, the test algorithm follows
straightforwardly. Suppose we had a pair of ciphertexts y = (C = (C1, C2), C ′ = (C ′1, C

′
2)) that encrypted

a cycle for keys of different types. The algorithm can test this by simply computing e(C1, C
′
2)

?
= e(C2, C

′
1).

Plugging in s, s′ as the respective keys, t, t′ as the encryption randomness, and m,m′ as the messages, we
see that the test computes:

e(gstm, ht
′
)

?
= e(gt, hs

′t′m′).
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This equality holds if m = s′ and m′ = s and will not hold with high probability for a message independent
of the private key.

One thing we emphasize here is that IND-CPA is clearly broken if the SXDH assumption does not hold.
Consider an encryption (C1 = Ktm = gstm, C2 = gt) ∈ G2

1 for the message m. The group elements
g, (gs)m = gsm, C2 = gt, C1 = gstm clearly form a DDH tuple. So if DDH is easy in G1, any β = 0 type
key is susceptible to attack. An analogous statement holds in G2 for any β = 1 key. This potential attack
demonstrates that the above construction relies strongly on properties of asymmetric groups. We next show
how to remove that reliance.

A Cycle Tester from the Decision k-Linear Assumption We next move to constructing a cycle tester
from the decision k-linear assumption for any constant k ≥ 2. Recall that the k-linear assumption [22, 33] is a
parameterized family of assumptions on the source elements of bilinear groups. The assumption class becomes
progressively weaker for larger values of k. Importantly, by moving to the decision k-linear assumption we
remove our dependence on asymmetric groups.2 See Section 2.1 for a review.

In our construction, the setup algorithm first generates a bilinear source group G of prime order p with
generator g. Then it chooses a random invertible (rank k) matrix A ∈ Zk×kp and computes gA, which along

with the group description forms the common public parameters. (We use the notation gM as shorthand for
the set of group elements resulting from raising g to each matrix entry in M.) The message and key spaces
are defined to be the set of rank k matrices in Zk×kp .3

Once again the key generation algorithm will flip a coin β to determine its type. Next it chooses a random
W from the set of invertible matrices in Zk×kp . If β = 0 the key is gAW; otherwise it is gWA.

The encryption algorithm takes as input a message M ∈ Zk×kp and then computes its inverse M−1.
(Recall the message space is the set of invertible matrices.) If the type bit β = 0, the algorithm chooses
a random row vector r of length k in Zp (i.e. a random matrix of dimension 1 × k). The ciphertext is

computed and output as C1 = grAW, C2 = grAM−1

. Thus, the ciphertext will consist of two row vectors
in the exponent. We observe all terms are computable from the public keys and public parameters. If the
type bit β = 1 the algorithm chooses a random column vector r of length k in Zp (i.e., a random matrix of

dimension k × 1). The ciphertext is computed and output as C1 = gWAr, C2 = gM
−1Ar.

Now suppose we have two ciphertexts y = (C = (C1, C2), C ′ = (C ′1, C
′
2)) of different types (with the

first being of β = 0). We can then test for a cycle by testing if e(C1, C
′
2)

?
= e(C ′1, C2). To see why, suppose

we had a cycle, so we have that M′−1 = W−1 and M−1 = W′−1. Then, in the exponent, it follows that:

rAWM′−1Ar′
?
= rAM−1W′Ar′

rAIAr′
?
= rAIAr′

rA2r′
?
= rA2r′.

So if there is a cycle, the test will output 1. In contrast, if the messages encrypted are independent of the
key, the test will output 0 with high probability.

Finally, we can give a simple proof of IND-CPA security from the decision k-linear assumption. More
specifically, we will use the matrix k-linear assumption, introduced by Naor and Segev [27], that was shown
to be equivalent to the decision k-linear assumption. Informally, the assumption says that it is hard to
distinguish gX and gY where X is a random matrix of rank i > k and Y is a random matrix (of the same
dimension) of rank j > k. I.e., the rank of matrices in the exponent cannot be determined as long as it is
greater than k. For our purposes, we will be interested in using the difficulty of distinguishing between rank
k and rank k + 1 matrices.

2We emphasize though that our constructions could use an asymmetric form of bilinear maps if desired, although we describe
things in terms of symmetric groups. The main point is that there is no longer a reliance on asymmetry or that DDH is hard
within each group.

3In our scheme, we actually let the message and key space be {0, 1}λ for security parameter λ and define a pseudorandom
generator from this to rank k matrices. That way the message space is defined before the common setup is executed. However,
for simplicity we will just assume here that the message and key spaces are the set of invertible k × k matrices.
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Let us examine IND-CPA security for an encryption under a type β = 0 key. (The argument for β = 1
will follow analogously.) We will devise a reduction algorithm that receives a matrix k-linear assumption
challenge gM, where M is selected as either a random rank k matrix or rank k+ 1 matrix. In the case where
it is a rank k matrix, our reduction algorithm will use it to derive the key and ciphertext values of

gA, gAW, grAW, grA.

These can be used to generate a well-formed ciphertext of a given message. However, if the reduction
algorithm receives a random matrix of rank k + 1, it will create key and ciphertext values distributed as

gA, gAW, grAW, guA.

In this case the fact that u is fresh randomness will information-theoretically hide the message from the
attacker. It then follows that any attacker with non-negligible advantage against our system must break the
matrix k-linear assumption.

In auxiliary Section A, we present a different 2-cycle tester from the Decision Linear assumption in
symmetric pairing groups. This construction can be viewed as closer to an extension of the SXDH one from
auxiliary Section 5 to symmetric groups where new variables and equations are introduced to prevent the use
of pairings to disrupt IND-CPA security. However, it does not seem to generalize to a system that is secure
using the decision k-linear assumption for k > 2 or help move toward a Learning with Errors Assumption.
At the same time, when compared to our more general construction just given for the k = 2 (decision linear
assumption) case, it achieves smaller public keys. Public keys here are two group elements as opposed to
four. Our techniques for this construction might be of future interest for other applications of transforming
constructions proved under asymmetric group assumptions to those that do not rely on them. We defer
further details of these techniques to auxiliary Section A.

A Cycle Tester from Learning with Errors Assumption While there are now many known examples
of cryptographic functionalities that can be achieved in both the bilinear and lattice settings, it is not at all
clear how to imitate the pairings-based approach above to obtain a cycle tester from the LWE assumption.
Typically, encryption schemes proven secure under LWE have ciphertexts that are large, noisy vectors in Zmq
and secret keys that are short vectors in Zm, with decryption computing a dot product and then removing
the small effect of the noise multiplied by the short key vector. It seems unlikely that we could build a cycle
tester using only this kind of structure, as the cycle effect would be obscured by the interactions of large
ciphertext vectors with the embedded noise.

Intuitively, we then expect that a cycle tester may use ciphertexts that have two parts: a noisy vector
and a short vector. The large, noisy vectors will help us prove IND-CPA security from LWE, while the
short vectors will help us perform the cycle test. Naturally, the main challenge is designing the relationship
between the noisy and short vectors such that the short vectors do not break security when there is no cycle.

The secret key for our scheme will generate a matrix B and a corresponding short trapdoor basis TB .
For IND-CPA security, it is important that B is hidden, so one should ignore the notational collision and
not think of this as corresponding to the public matrix A in an LWE challenge, but rather the columns of
B will play the role of different hidden s vectors in typical LWE notation. The public key will be formed
by choosing several random vectors c1, . . . , c` and publishing noisy versions of c1B, . . . , c`B as well as the
(non-noisy) vectors c1, . . . , c` (so these ci’s can be thought of as playing the role of the public matrix A in
an LWE challenge).

To encrypt a message, the message will first be used to generate a matrix Z and a corresponding short
trapdoor basis TZ . The encryptor will mimic typical LWE-style encryption by forming a noisy version of
sB for some vector s, but since it does not know B, it will form s as a linear combination of c1, . . . , c` with
coefficients chosen randomly from {−1, 1}. Note that the encryptor can then compute both s (without noise)
and a noisy version of sB. The noisy version of sB becomes the noisy part of the ciphertext, and the other
part of the ciphertext is a short vector v such that Zv equals the transpose of s. Note that such a vector v
can be sampled appropriately using the trapdoor basis TZ .

5



For full details of how the cycle test works, see Section 7. The main idea is that when there is a 2-cycle,
the secret key matrix B for one ciphertext is the same as the message matrix Z for the other ciphertext and
vice versa. This leads to a common relationship between the short vector of one ciphertext and the noisy
vector of the other, while when the B,Z matrices of each are fresh and unrelated, this relationship does not
appear. One convenient feature of this scheme as compared to the bilinear schemes is that there is no need
for different types of ciphertexts. Intuitively, the pairing relationship has been replaced by a dot product
relationship between a short vector and a noisy one.

Proving IND-CPA security for this scheme can be accomplished in a few steps. First, since B is hidden
and its columns act like the hidden vector s in a typical LWE challenge and the ci’s act like rows of the public
matrix A, we can argue that LWE implies the noisy public versions of ciB can be replaced by uniformly
random vectors, independent of the ci’s and B. Next, using a convenient variant of the left over hash
lemma from [3], we argue that the random coefficients in {−1, 1} that form s from the ci’s and the noisy
ciphertext vector from the public noisy vectors supply sufficient entropy to replace both of these with fresh
uniformly random vectors as well. We are then left with an encryption that samples a uniformly random
s (now independent of the noisy part of the ciphertext) and samples the short part of the ciphertext as a
short vector v such that Zv is the transpose of s. Here we can argue that the distribution of such a v is
statistically close to a distribution that is independent of Z: this follows from a result in [19] that ensures us
that the image of a short, Gaussian distributed vector v under multiplication by Z is uniformly distributed
in Znq . Thus, by employing LWE followed by a sequence of statistical arguments, we can arrive at a point
where the ciphertext is independent of the message, and this implies IND-CPA security.

Other Related Work Haitner and Holenstein [21] show black box impossibility results for proving key-
dependent message security from different cryptographic assumptions. Their goal deviates from ours in two
important ways. First, their work focuses on impossibility results for ciphertext encrypting functions of
its own private keys, whereas we are concerned with the circular case where there is a cycle over multiple
private keys. Second, we are interested in concrete counterexamples. In particular, it may be possible that
IND-CPA security implies certain key-dependent security properties even if there does not exist any black
box reduction. In contrast our counterexamples will show that this is impossible if certain specific number
theoretic assumptions hold.

2 Preliminaries

2.1 Pairings

Let G1, G2 and GT be groups of order p. A map e : G1 × G2 → GT is an admissible pairing (also called a
bilinear map) if it satisfies the following three properties:

1. Bilinearity: for all g ∈ G1, h ∈ G2, and a, b ∈ Zp, it holds that e(ga, hb) = e(gb, ha) = e(g, h)ab.
2. Non-degeneracy: if g and h are generators of G1 and G2, resp., then e(g, h) is a generator of GT .
3. Efficiency: there exists an efficient method that given any g ∈ G1 and h ∈ G2, computes e(g, h).

A pairing generator G is an algorithm that on input a security parameter 1λ, outputs the parameters for
a pairing group (p, g, h,G1,G2,GT , e) such that p is an integer in Θ(2λ), G1, G2 and GT are groups of order
p where g generates G1, h generates G2 and e : G1 ×G2 → GT is an admissible pairing.

The above pairing is called an asymmetric or Type-III pairing. This type of pairing is generally preferred
in implementations for its efficiency. However, many works use symmetric or Type-I pairings, where there
is an efficient isomorphism ψ : G1 → G2 (and vice versa) such that a symmetric map is defined as e :
G1×ψ(G1)→ GT . In this setting, we generally treat G = G1 = G2 for simplicity and write e : G×G→ GT .
As we discuss shortly, Type-I pairings may allow for weaker complexity assumptions.

Decisional Diffie-Hellman Assumption (DDH) Let G be a group of prime order p ∈ Θ(2λ). For all
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p.p.t. adversaries A, the following probability is 1/2 plus an amount negligible in λ:

Pr[g ← G; a, b← Z∗p;T0 = gab;T1 ← G; d← {0, 1}; d′ ← A(g, ga, gb, Td) : d = d′].

Strong External Diffie-Hellman Assumption (SXDH): Let e : G1×G2 → GT be bilinear groups. The
SXDH assumption states that the Decisional Diffie-Hellman (DDH) problem is hard in both G1 and in G2.
This implies that there does not exist an efficiently computable isomorphism between these two groups, so
SXDH is only possible in the asymmetric or Type-III setting.

Decision Linear and the k-LIN Family (k-LIN) We now present a family of assumptions called the k-
LIN assumptions (where k = 1 is the standard DDH assumption and k = 2 is called Decision Linear [11]) [22,
9]. Let G be a group of prime order p ∈ Θ(2λ). For all p.p.t. adversariesA and k ≥ 1, the following probability
is 1/2 plus an amount negligible in λ:

Pr[g, g1, . . . , gk ← G; r1, . . . , rk ← Zp;T0 = g(r1+···+rk);T1 ← G; d← {0, 1};
d′ ← A(g, g1, . . . , gk, g

r1
1 , . . . , g

rk
k , Td) : d = d′].

In the generic group model, these k-LIN assumptions become progressively weaker for increasing k.
In our proof of security in Section 6 we will use a theorem due to Naor and Segev [27] that shows that

under the decision k-linear assumption no attacker can distinguish between a random rank i matrix and a
random rank j matrix (in the exponent and of the same dimensions) for i, j ≥ k.

2.2 Lattices and LWE

We let q, n, and m denote positive integers. Given a matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice
{x ∈ Zm : Ax = 0 mod q}. For u ∈ Znq , we let Λuq (A) denote the set {x ∈ Zm : Ax = u mod q}.

For a matrix A ∈ Zn×m, we let ||A|| denote the `2 length of the longest column of A, and we let ||A||GS
denote ||Ã||, where Ã is the Gram-Schmidt orthogonalization of the columns of A. We let At denote the
transpose of the matrix A.

Learning with Errors (LWE) Given integers n,m, a prime q, and a noise distribution χ over Z, the
(n,m, q, χ)-LWE problem is to distinguish the distributions (A,Ats + e) and (A, u), where A is chosen
uniformly from Zn×mq , s is chosen uniformly from Znq , e is chosen from χm, and u is chosen uniformly from
Zmq .

Under a quantum reduction, Regev [31] showed that for certain noise distributions, the LWE problem
is as hard as the worst-case SIVP and GapSVP. Peikert [29] gave a reduction in the classical setting. Our
construction will admit a range of parameters where solving the LWE problem is as hard as approximating
the worst-case GapSVP to polynomial (in n) factors, which is believed to be computationally hard.

Trapdoor Generation We will rely on the polynomial time algorithm TrapGen(1n, 1m, q) (developed
in [4, 5, 26]). This is a randomized algorithm that when given m = Θ(n log q), outputs a full rank matrix
A ∈ Zn×mq and an accompanying basis TA ∈ Zm×m for Λ⊥q (A) such that the distribution of A is negligibly

close (in n) to uniform over Zn×mq and ||TA||GS = O(
√
n log q) with all but negligible probability (as a

function of n).

Discrete Gaussian Distributions We employ the discrete Gaussian distribution Dσ(Γuq (A)) on Γuq (A),
parameterized by σ > 0 (as defined e.g. in [31]). The salient fact we will use about this distribution is that
for a random matrix A ∈ Zn×mq and σ = Ω̃(

√
n), a vector sampled from Dσ(Λuq (A)) has `2 norm less than

σ
√
m with probability at least 1 minus a quantity that is negligible in m.
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We will rely on a polynomial time algorithm SampleD(A, TA, u, σ) [19]. This is a randomized algorithm
that when σ = ||TA||GS · ω(

√
logm), produces a random vector x from a distribution that is statistically

close to Dσ(Λuq (A)).
We also employ the following result from [19] (appears as Corollary 5.4 in that work):

Lemma 2.1 Let n and q be positive integers with q prime, and let m ≥ 2n log q. Then for all but a 2q−n

fraction of all A ∈ Zn×mq and for any σ ≥ ω(
√

logm), the distribution of the syndrome u = Ae mod q is
statistically close to uniform over Znq , where e is distributed according to DZm,σ.

Randomness Extraction We will use the leftover hash lemma (see [3] e.g. for an even stronger state-
ment):

Lemma 2.2 Suppose that ` > (j + 1) log q + ω(log j) and q > 2 is prime (for integers q, j, `). Let R be an
` × 1 vector chosen uniformly in {1,−1}` mod q. Let A and B be matrices chosen uniformly in Zj×`q and

Zj×1
q respectively. Then, the distribution (A,AR) is statistically close to the distribution (A,B).

3 Security Definitions

In this work, we will focus on public key encryption schemes that admit a global setup algorithm.

Definition 3.1 (Public Key Encryption) A public key encryption scheme Π = (Setup,KeyGen,Enc,Dec)
for a message space M and secret key space S4 is a tuple of algorithms specified as follows:

• Setup(1λ) → PP. The Setup algorithm takes as input the security parameter λ and outputs common
public parameters PP.

• KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the public parameters PP and
outputs a public pk and secret key sk ∈ S.

• Enc(pk ,m ∈M)→ C. The Encryption algorithm takes as input a public key pk and a message m ∈M
and outputs a ciphertext C.

• Dec(sk , C) → m. The Decryption algorithm takes as input a secret key sk and a ciphertext C and
outputs either an error message ⊥ or a value m ∈M .

By negl(k) we denote some negligible function, i.e., one such that, for all c > 0 and all sufficiently large
k, negl(k) < 1/kc. We abbreviate probabilistic polynomial time as PPT.

Perfect Correctness. An encryption scheme Π = (Setup,KeyGen,Enc,Dec) for message space M is
said to be perfectly correct if for all λ ∈ N, m ∈ M , and (pk , sk) ∈ KeyGen(Setup(1λ)), it holds that
Dec(sk ,Enc(pk ,m)) = m.

Security. We recall the notion of indistinguishability of encryptions under a chosen-plaintext attack [20].

Definition 3.2 (IND-CPA Security) Let Π = (Setup,KeyGen,Enc,Dec) be a public-key encryption scheme.
For scheme Π, adversary A, and λ ∈ N, let the random variable IND-CPA(Π,A, λ) be defined by the prob-
abilistic algorithm described on the left side of Figure 1. We denote the IND-CPA advantage of A by
AdvcpaΠ,A(λ) = 2 · Pr[IND-CPA(Π,A, λ) = 1] − 1. We say that Π is IND-CPA secure if AdvcpaΠ,A(λ) is neg-
ligible for all PPT A.

We also consider the indistinguishability of encryptions under a chosen-ciphertext attack [28, 30, 17].

4Technically, the output of the Setup algorithm may be required to establish the message and secret key spaces. For instance,
the setup algorithm may output a prime p and the message space might be set as Z∗p. For simplicity, we provide a name for
these sets at the scheme level, even though the elements in these sets may not be defined until after Setup.
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IND-CPA(Π,A, λ)

b
r← {0, 1}

PP← Setup(1λ)
(pk , sk)← KeyGen(PP)
(m0,m1)← A(pk)
y ← Enc(pk ,mb)

b̂← A(y)

Output (b̂
?
= b)

IND-CIRC-CPAn(Π,A, λ)

b
r← {0, 1}

PP← Setup(1λ)
For i = 1 to n:

(pk i, sk i)← KeyGen(PP)
If b = 1 then

y← EncCycle(pk, sk)
Else

y← EncZero(pk, sk)

b̂← A(pk,y)

Output (b̂
?
= b)

EncCycle(pk, sk)

For i = 1 to n
yi ← Enc(pk i, sk (imod n)+1)

Output y

EncZero(pk, sk)

For i = 1 to n

yi ← Enc(pk i, 0
|sk(imod n)+1|)

Output y

Figure 1: Experiments for Definitions 3.2 and 3.4, each for a message space M , and we assume that
m0,m1, sk i ∈M . We write pk, sk, and y for (pk1, . . . , pkn), (sk1, . . . , skn) and (y1, . . . , yn) respectively.

Definition 3.3 (IND-CCA Security) Let Π = (Setup,KeyGen,Enc,Dec) be a public-key encryption scheme.
Let the random variable IND-CCA(Π,A, λ) be defined by an algorithm identical to IND-CPA(Π,A, λ) above,
except that A has access to an oracle Dec(sk , ·) that returns the output of the decryption algorithm and
A cannot query this oracle on input y. We denote the IND-CCA advantage of A by AdvccaΠ,A(λ) = 2 ·
Pr[IND-CCA(Π,A, λ) = 1]− 1. We say that Π is IND-CCA secure if AdvccaΠ,A(λ) is negligible for all PPT A.

3.1 Circular Security

We next define circular security of public-key encryption. This definition is derived from the Key-Dependent
Message (KDM) security notion of Black et al. [10]. We follow prior counterexample definitions [1, 16] which
restrict the adversary’s power (e.g., cannot ask for any affine function of the secret keys). The adversary is
asked to distinguish between an encryption cycle or encryptions of zero as in [12, 16]. The bit string zero is
not actually in the message spaces we consider, but this value can be encoded to be in the space; equivalently,
one can follow the approach of Acar et al. [1] which instead of zero, encrypts a fresh random message.

Definition 3.4 (IND-CIRC-CPAn) Let Π = (Setup,KeyGen,Enc,Dec) be a public-key encryption scheme.
For integer n > 0, scheme Π, adversary A and λ ∈ N, let the random variable IND-CIRC-CPAn(Π,A, λ) be
defined by the probabilistic algorithm in the middle of Figure 1. We denote the IND-CIRC-CPAn advantage
of A by

Advn-circ-cpaΠ,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpaΠ,A (λ) is negligible for all PPT A.

Discussion. Cash et al. [16] made a distinction between whether an adversary could distinguish an en-
cryption cycle from encryptions of zero (as in the standard game above), or whether an adversary could
actually recover the secret keys (and provided the latter type of counterexample). Recently, Koppula et
al. [23] showed that if there exists (an IND-CPA secure) scheme with a PPT adversary that can distin-
guish an encryption cycle (in the standard game), then it can be transformed into another scheme with a
corresponding adversary that can extract the secret keys from the cycle. Thus, in this work, we can focus
exclusively on the standard definition.
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4 A Framework for Generating Circular Counterexamples

We now present a general framework for creating circular security counterexamples, which we will instantiate
under a variety of different assumptions in the subsequent sections. At the center of our framework is an
abstraction called a “cycle tester”. Like an encryption scheme, a cycle tester must be able to encode a
message in an IND-CPA secure manner. However, unlike an encryption scheme, the cycle tester need not
support a decryption operation, instead it must support a testing operation which can detect the presence
of an encryption cycle.

After formalizing this abstraction, we provide two results that use it. First, we show how our tester
can be combined with any IND-CPA encryption scheme (of appropriate message length) to provide a full
blown counterexample. Second, we extend this idea to show how to combine any tester with any IND-CCA
encryption scheme to get an IND-CCA counterexample.

In addition to letting us focus on a narrower primitive for our counterexample, this separation avoids
duplication of work and minimizes assumptions. In particular, we can design a single tester and then
both the IND-CPA and IND-CCA counterexamples follow. Most prior works did not address IND-CCA
counterexamples. While Cash et al. [16] did, their IND-CCA counterexample required the use of NIZKs,
which is a stronger assumption than simply assuming the existence of IND-CCA encryption schemes as we
do here. Our abstraction and transformation essentially show that designing IND-CCA counterexamples is
no harder than designing IND-CPA ones.

We remark that Koppula et al. [23] have a IND-CPA counterexample with structure similar to our general
transformation, however, no generic or IND-CCA theorems are proven.

Definition 4.1 (n-Cycle Tester) A cycle tester Γ = (Setup,KeyGen,Enc,Test) for message space M and
secret key space S is a tuple of algorithms specified as follows:

• Setup(1λ) → PP. The Setup algorithm takes as input the security parameter λ and outputs common
public parameters PP.

• KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the public parameters PP and
outputs a public key pk and secret key sk ∈ S.

• Enc(pk ,m ∈M)→ C. The Encryption algorithm takes as input a public key pk and a message m ∈M
and outputs a ciphertext C.

• Test(pk,y) → {0, 1}. On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), the Testing algorithm
outputs a bit in {0, 1}.

It also must possess the following properties. Let Π = (Setup,KeyGen,Enc, ·) be an encryption scheme formed
from the first three algorithms of the tester with an empty decryption algorithm. Then, it must hold that:

1. (IND-CPA security) Π is IND-CPA secure according to Definition 3.2.

2. (Testing Correctness) the Testing algorithm’s advantage in distinguishing encryption cycles, denoted

Advn-circ-cpaΠ,Test (λ) from Definition 3.4, is non-negligible.

We now prove two theorems.

Theorem 4.2 (CPA Counterexample from Cycle Testers) If there exists an IND-CPA-secure encryp-
tion scheme Π for message space M = (M1×M2) and secret key space S1 ⊆M1 and an n-cycle tester Γ for
message space M2 and secret key space S2 ⊆ M2, then there exists an IND-CPA-secure encryption scheme
Π′ for message space M = (M1 ×M2) and secret key space S = (S1 × S2) that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2, Test2). We construct an
IND-CPA Π′ = (Setup,KeyGen,Enc,Dec), together with its IND-CIRC-CPA2 test algorithm Test, as follows.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output PP = (PP1,PP2).
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KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1)← KeyGen1(PP1) and (pk2, sk2)← KeyGen2(PP2).
Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk ,m): On input pk = (pk1, pk2) and m = (m1,m2) ∈ M , run c1 ← Enc1(pk1, (m1,m2)) and c2 ←
Enc2(pk2,m2). Output C = (c1, c2).

Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), output Dec1(sk1, c1).

Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i = (ai, bi) and Ci = (ci, di) and
output the bit Test2((b1, . . . , bn), (d1, . . . , dn)).

The correctness of Test follows directly from that of Test2. If (pk,y) contains an encryption cycle (or
encryptions of zero, respectively), then so will ((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of the cycle
tester, the test will distinguish between these cases with non-negligible advantage.

It remains to argue that Π′ is an IND-CPA secure encryption scheme. This follows by a simple hybrid
argument based on the fact that an encryption in Π′ is a pair of encryptions from two different IND-CPA-
secure schemes, Γ and Π. We omit this proof as it is a simplified version of the IND-CCA proof that we
provide next.

2

Theorem 4.3 (CCA Counterexample from Cycle Testers) Let k, ` be security parameters and p(·) be
a polynomial. If there exists an IND-CCA-secure encryption scheme Π (with k-bit secret keys and (p(`)+2k)-
bit messages) and an n-cycle tester Γ (with k-bit secret keys, k-bit messages, and p(`)-bit ciphertexts), then
there exists an IND-CCA-secure encryption scheme Π′ for 2k-bit messages that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2, Test2) with the length con-
straints above. We construct an IND-CCA Π′ = (Setup,KeyGen,Enc,Dec), together with its IND-CIRC-
CPA2 test algorithm Test, as follows. We can no longer simply append the cycle-tester encryption to the
regular encryption, because changes to the cycle-testing portion might be leveraged to obtain a decryption
of a portion of the challenge ciphertext. Instead, we encrypt this cycle-testing portion using the regular
CCA-secure scheme.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output PP = (PP1,PP2).

KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1)← KeyGen1(PP1) and (pk2, sk2)← KeyGen2(PP2).
Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk , (ma,mb)): On input pk = (pk1, pk2) and message (ma,mb) ∈ {0, 1}k×{0, 1}k, run c2 ← Enc2(pk2,mb)
and c1 ← Enc1(pk1, (ma,mb, c2)). Output C = (c1, c2).

Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), run Dec1(sk1, c1). If it does not return a message of
the form (ma,mb,mc) ∈ {0, 1}k×{0, 1}k×{0, 1}p(λ) or if mc 6= c2, then output ⊥ (invalid ciphertext).
Otherwise, output the message (ma,mb) ∈ {0, 1}k × {0, 1}k.

Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i = (ai, bi) and Ci = (ci, di) and
output the bit Test2((b1, . . . , bn), (d1, . . . , dn)). Same as before.

As before, the correctness of Test follows directly from that of Test2. If (pk,y) contains an encryption
cycle (or encryptions of zero, respectively), then so will ((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of
the cycle tester, the test will distinguish between these cases with non-negligible advantage.
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4.1 Proving IND-CCA Security via a Sequence of Games

It remains to argue that Π′ is an IND-CCA secure encryption scheme. This proof is significantly more
involved than the IND-CPA case. We prove this using a sequence of games from an encryption of a message
M0 to an encryption of M1 (where these messages come from the IND-CCA game). The public and secret
keys are always distributed as in the real scheme, but the structure of the challenge ciphertext changes
in each hybrid. We underline these changes for the reader. Let the challenge messages be described as
M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b). Then the hybrids are as follows:

Game 1 This corresponds to the original security game IND-CCA(Π′,A, λ) in which the challenger interacts
with adversary A, except that the challenge ciphertext is always an encryption of message M0.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).

2. On decryption query Ci from A, output Dec(sk , Ci).

3. Provide the challenge ciphertext as C∗ = (c∗1, c
∗
2), where c∗1 = Enc1(pk1, (m0,a, m0,b, c

∗
2)) and c∗2 =

Enc2(pk2,m0,b). This is a valid encryption of M0.

4. On decryption query Ci 6= C∗ from A, output Dec(sk , Ci).

Game 2 This is the same as Game 1, except that we change how the second decryption queries to reject
all requests where the first portion of the query matches the first portion of the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).

2. On decryption query Ci from A, output Dec(sk , Ci).

3. Provide the challenge ciphertext as C∗ = (c∗1, c
∗
2), where c∗1 = Enc1(pk1, (m0,a, m0,b, c

∗
2)) and c∗2 =

Enc2(pk2,m0,b). This is a valid encryption of M0.

4. On decryption query Ci = (ci,1, ci,2) 6= C∗ from A, if ci,1 = c∗1 output ⊥, otherwise output Dec(sk , Ci).

Game 3 This is the same as Game 2, except that we now encrypt M1 in the cycle tester portion and
continue to encrypt M0 in the regular encryption portion. We continue to reject all decryption queries where
the regular encryption portion matches the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).

2. On decryption query Ci from A, output Dec(sk , Ci).

3. Provide the challenge ciphertext as C∗ = (c∗1, c
∗
2), where c∗1 = Enc1(pk1, (m0,a, m0,b, c

∗
2)) and c∗2 = Enc2(pk2,m1,b).

4. On decryption query Ci = (ci,1, ci,2) 6= C∗ from A, if ci,1 = c∗1 output ⊥, otherwise output Dec(sk , Ci).

Game 4 This is the same as Game 3, except that now the entire challenge ciphertext is an encryption of
M1. As before, we continue to reject all decryption queries where the regular encryption portion matches
the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).

2. On decryption query Ci from A, output Dec(sk , Ci).

3. Provide the challenge ciphertext as C∗ = (c∗1, c
∗
2), where c∗1 = Enc1(pk1, (m1,a, m1,b, c

∗
2)) and c∗2 =

Enc2(pk2,m1,b).

4. On decryption query Ci = (ci,1, ci,2) 6= C∗ from A, if ci,1 = c∗1 output ⊥, otherwise output Dec(sk , Ci).
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Game 5 This is the same as Game 4, except now all decryption queries are answered as normal. The
challenge ciphertext always contains an encryption of M1.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).

2. On decryption query Ci from A, output Dec(sk , Ci).

3. Provide the challenge ciphertext as C∗ = (c∗1, c
∗
2), where c∗1 = Enc1(pk1, (m1,a, m1,b, c

∗
2)) and c∗2 =

Enc2(pk2,m1,b).

4. On decryption query Ci 6= C∗ from A, output Dec(sk , Ci).

4.2 Adversary’s Probability of Outputting 1 in these Games

Let ProbiA denote the probability that adversary A outputs a 1 in Game i. We will now show, by a series of
steps, that for any adversary A the difference in its probability of outputting 1 between Game 1 (encryption
of M0) and Game 5 (encryption of M1) is negligible. Thus, it cannot distinguish between these two games.

Claim 4.4 For any adversary A, Prob2
A = Prob1

A.

Proof. These games are identical except that in Game 1 all decryption queries Ci = C∗ are rejected whereas
in Game 2 all decryption queries Ci = (ci,1, ci,2) such that ci,1 = c∗1 for C∗ = (c∗1, c

∗
2) are rejected. This

results, however, in identical behavior on the decryption queries. Whenever ci,1 6= c∗1, both games answer
the queries normally. Whenever Ci = C∗, neither game answers this illegal challenge query. On ci,1 = c∗1 but
ci,2 6= c∗2, Game 2 will output ⊥. However, Game 1’s response is also to reject this query with the message
⊥ for being a non-valid ciphertext, since the decryption of c∗1 results in an intermediate tuple of the form
(m0,a,m0,b, c

∗
2) and the decryption algorithm checks that c∗2 = ci,2, which won’t be true in this case. Thus,

the adversary gets identical responses to its decryption queries (and everything else) in both games. Since
the games are identical, from the adversary’s viewpoint, it will output 1 with the same probability. 2

Claim 4.5 If Γ is an IND-CPA-secure n-cycle tester with security parameter λ, then for any adversary A,
Prob3

A − Prob2
A ≤ negl(λ).

Proof. We show that an attacker’s probability of outputting 1 cannot be non-negligibly different in Games
2 and 3, because that would imply an attack on the IND-CPA security of the cycle tester. More formally,
suppose there exists an adversary A such that Prob3

A − Prob2
A = ε. Then we can construct an adversary B

that uses A to show that Γ is not an IND-CPA-secure n-cycle tester. B works as follows:

1. B runs Setup1(1λ)→ PP1 and KeyGen1(PP1)→ (pk1, sk1).

2. B obtains the public key pk2 from the IND-CPA encryption challenger.

3. B sends pk = (pk1, pk2) to A.

4. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).

5. B sends (m0,b,m1,b) to the cycle tester encryption challenger and obtains the challenge c∗2.

6. B forms the challenge ciphertext by computing c∗1 = Enc1(pk1, (m0,a,m0,b, c
∗
2)) and sending C∗ =

(c∗1, c
∗
2) to A.

7. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.
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In the above, B perfectly simulates Game 2 for adversary A if the challenge ciphertext c∗2 contains an
encryption of m0,b and, in the other case, B perfectly simulates Game 3 for adversary A when the challenge
ciphertext c∗2 contains an encryption of m1,b. Moreover, B succeeds if and only if A succeeds. Thus, if
Prob3

A − Prob2
A = ε, then we have Pr[B is correct] = 1

2 Pr[B is correct | IND-CPA challenger chose 0] +
1
2 Pr[B is correct | IND-CPA challenger chose 1] = 1

2 Pr[A is correct | Game 2] + 1
2 Pr[A is correct | Game

3] = 1
2 (1− Prob2

A) + 1
2 (Prob3

A) = 1
2 (1− Prob2

A) + 1
2 (Prob2

A + ε) = 1
2 + ε

2 . Since we assumed the cycle tester
was IND-CPA secure, it must hold that ε ≤ negl(λ). 2

Claim 4.6 If Π is an IND-CCA-secure encryption scheme with security parameter λ, then for any adversary
A, Prob4

A − Prob3
A ≤ negl(λ).

Proof. Suppose there exists an adversary A such that Prob4
A − Prob3

A = ε. Then we can construct an
adversary B that uses A to show that Π is not an IND-CCA-secure encryption scheme. B works as follows:

1. B obtains the public key pk1 from the IND-CCA encryption challenger.

2. B runs Setup2(1λ)→ PP2 and KeyGen2(PP2)→ (pk2, sk2).

3. B sends pk = (pk1, pk2) to A.

4. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) from A, B sends ci,1 to its IND-CCA
encryption challenger to obtain a message M . B returns M to A.

5. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).

6. B computes c∗2 = Enc2(pk2,m1,b) and sends M ′0 = (M0, c
∗
2) and M ′1 = (M1, c

∗
2) to the IND-CCA

challenger and obtains the challenge c∗1.

7. B sends the challenge ciphertext C∗ = (c∗1, c
∗
2) to A.

8. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) where ci,1 6= c∗1 from A, B sends ci,1 to
its IND-CCA encryption challenger to obtain a message M . B returns M to A

9. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.

In the above, B perfectly simulates Game 3 for adversary A if the challenge ciphertext c∗1 contains an
encryption of M ′0 and, in the other case, B perfectly simulates Game 4 for adversary A when the challenge
ciphertext c∗1 contains an encryption of M ′1. Moreover, B succeeds if and only if A succeeds. Thus, if
Prob4

A − Prob3
A = ε, then B’s probability of success in the IND-CCA security game is Pr[B is correct] =

1
2 Pr[B is correct | IND-CCA challenger chose 0] + 1

2 Pr[B is correct | IND-CCA challenger chose 1] = 1
2 Pr[A

is correct | Game 3] + 1
2 Pr[A is correct | Game 4] = 1

2 (1−Prob3
A)+ 1

2 (Prob4
A) = 1

2 (1−Prob3
A)+ 1

2 (Prob3
A+ε)

= 1
2 + ε

2 . Since we assumed that Π was IND-CCA secure, it must hold that ε ≤ negl(λ). 2

Claim 4.7 For any adversary A, Prob5
A = Prob4

A.

Proof. These games are identical except that in Game 4 all decryption queries Ci = (ci,1, ci,2) such that
ci,1 = c∗1 for C∗ = (c∗1, c

∗
2) are rejected in Game 5 whereas all decryption queries Ci = C∗ are rejected.

This results, however, in identical behavior on the decryption queries. This case is the mirror image of the
argument in the proof of Claim 4.4. 2

Conclusion of the Proof of Theorem 4.3 Given the above claims, we can conclude that if Γ is an IND-
CPA-secure n-cycle tester and Π is an IND-CCA-secure encryption scheme (with the appropriate length
constraints), then for any adversary A, it holds that Prob5

A − Prob1
A is negligible, implying that Π′ is an

IND-CCA-secure encryption scheme.
2
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5 Warm up: 2-Cycle Tester from the SXDH Assumption

We start with a simple 2-cycle tester set in Type-III pairing groups where the SXDH assumption holds. This
is derived from a prior SXDH-based counterexample of Cash, Green and Hohenberger [16] and is also similar
to the example of Acar et al. [1].

Our construction is described below. In it we slightly abuse notation and let our message space Z∗p be

defined by our Setup algorithm. In Section 6 we show how to remedy this by having a message space be {0, 1}λ
(that only depends on the security parameter λ) and having the Setup algorithm define a pseudorandom
generator which maps from {0, 1}λ to the algebraic message space needed for the construction.

Setup(1λ) → PP. Recall we assume a setting where all parties implicitly use shared public parameters.
Run G(1λ) to generate a Type-III pairing description PP = (p, g, h,G1,G2,GT , e), such that p is a prime in
Θ(2λ), G1, G2 and GT are groups of order p where g generates G1, h generates G2 and e : G1 × G2 → GT
is an admissible pairing. The message space is Z∗p.

KeyGen(PP)→ (pk , sk). Flip a coin β ∈ {0, 1} and choose random s ∈ Z∗p. Set the public key as:

pk =

{
(0, gs) ∈ {0, 1} ×G1 if β = 0;

(1, hs) ∈ {0, 1} ×G2 if β = 1.

The secret key sk is s, making the secret key space Z∗p (which is the same as the message space).

Enc(pk ,m ∈ Z∗p)→ C. To encrypt, parse pk = (β,K) and choose a random t ∈ Z∗p. Generate the ciphertext
C = (C1, C2) as:

C =

{
(C1 = Ktm = gstm, C2 = gt) ∈ G2

1 if β = 0;

(C1 = Ktm = hstm, C2 = ht) ∈ G2
2 if β = 1.

Test(pk,y) → {0, 1}. Since we are testing for 2-cycles, parse pk = (pk = (β,K), pk ′ = (β′,K ′)) and
y = (C = (C1, C2), C ′ = (C ′1, C

′
2)). If β = β′, output a random bit. Otherwise, assume without loss of

generality that β = 0 and β′ = 1. Then the test algorithm checks if

e(C1, C
′
2)

?
= e(C2, C

′
1).

If this check holds, then output 1 (guess cycle); otherwise output 0 (guess zeros).

Analysis of Test Algorithm In the IND-CIRC-CPA2 game, two public keys pk = (β,K), pk ′ = (β′,K)
are freshly generated by the KeyGen algorithm based on a shared common parameters freshly generated by
the Setup algorithm. Since β and β′ are independently chosen bits, the probability that β = β′ is 1/2. In
this case, the Test algorithm will output a random bit (i.e., a random guess) and thus will be successful
exactly 1/2 the time.

Otherwise, we assume without loss of generality that β = 0 and β′ = 1 (if not, swap the two key/ciphertext
pairs). In this game, the challenge ciphertexts (C,C ′) are formed using the Enc algorithm. By plugging these
values into the Test equation above, we have:

e(gstm, ht
′
) = e(gt, hs

′t′m′)

e(g, h)stmt
′

= e(g, h)s
′t′m′t

e(g, h)sm = e(g, h)s
′m′

Recall that t, t′ ∈ Z∗p, so we can divide them out of the exponent. From the last equation, it is clear that if

there is a cycle (meaning m = s′ and m′ = s), then both sides equal e(g, h)ss
′

and the equation holds. If we
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have an encryption of zero (recall this is encoded as some element z ∈ Z∗p, so z 6= 0), then the left-hand-side

is e(g, h)sz and the right-hand-side is e(g, h)s
′z, which will only be equal if s = s′. Since these secret keys

were randomly chosen from Z∗p, the chance they are the same is 1/(p − 1), which is negligible in λ. Thus,
the success of the Test algorithm is (1/2)(1/2) + (1/2)((1/2) 1 + (1/2) (1-1/(p-1)) = 3/4 - negl(λ), which is
more than sufficient probability to win the IND-CIRC-CPA2 game.

IND-CPA Security of the Tester

Theorem 5.1 The above encryption scheme Π = (Setup,KeyGen,Enc, ·) (where the decryption algorithm is
ignored) is IND-CPA-secure under the SXDH Assumption in G1,G2.

Proof. Suppose that there exists a PPT adversary A that has a non-negligible advantage ε in the IND-CPA
security game. We can then construct a PPT algorithm B that solves the SXDH problem with advantage
1
2 + ε

2 . B works as follows:

1. Select a random bit β ∈ {0, 1}. If β = 0, we will obtain a DDH instance (g, ga, gb, Td) ∈ G4
1. If β = 1,

we will obtain the same instance in G2. We proceed assuming β = 0; the case of β = 1 is analogous.
2. Set the public key pk as

pk = (β,K = gs = ga)

(implicitly setting s = a) and output it to A. Note that B does not know the secret key.
3. Run A(pk) to produce a tuple (m0,m1).
4. Select a random bit γ ∈ {0, 1}.
5. Set the challenge ciphertext as C∗ = (C1 = T

mγ
d , C2 = gb) ∈ G2

1.
6. Run A(C∗) to get a bit γ′. If γ = γ′, then output 0 (guess a DDH instance). Otherwise, output 1

(guess Td was random).

If Td = gab, then C1 = T
mγ
d = gabmγ = gstmγ and the ciphertext is well-formed according to the original

encryption algorithm. B wins with probability 1
2 + ε in this case, since A does. Otherwise, C1 is a random

group element, which means that A guesses correctly with probability 1
2 . In this case, B wins with probability

1
2 as well. B then has an overall success probability of 1

2

(
1
2 + ε

)
+ 1

2 ·
1
2 = 1

2 + ε
2 , which gives a non-negligible

advantage of ε
2 .

2

6 A 2-Cycle Tester from the k-DLIN Assumption

We now present a 2-cycle tester from the decision k-Linear assumption in pairing groups for any constant k
(where this assumption is believed to hold for k ≥ 2 in this bilinear setting and the assumption grows weaker
as k increases). We will use a message space of {0, 1}λ. In our exposition we will use boldface to denote a
matrix such as M. We also use gM as shorthand to denote the group elements corresponding to the raising
g to each individual element of M.

Setup(1λ) → PP. The setup algorithm first runs G(1λ) to generate a (Type-1) group G of prime order p
with generator g. Next it defines a pseudorandom generator PRG : {0, 1}λ → Zk×kp , which maps strings

from {0, 1}λ to invertible k × k matrices over Zp. Finally, it chooses a random invertible matrix A ∈ Zk×kp

and computes gA. The public parameters, PP consist of the group description G, the description of PRG
and gA.
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KeyGen(PP) → (pk , sk). The key generation algorithm first chooses random w ∈ {0, 1}λ. The secret key
sk = w. Next, it computes PRG(w) → W ∈ Zk×kp and chooses a bit β ∈ {0, 1}. Finally, in addition to
implicitly including PP, it defines the public key as

pk =

{
(0,K = gAW) ∈ {0, 1} ×Gk×k if β = 0;

(1,K = gWA) ∈ {0, 1} ×Gk×k if β = 1.

Enc(pk = (β,K),m ∈ {0, 1}λ)→ ct. The encryption algorithm first computes computes PRG(m)→M ∈
Zk×kp and then computes M−1. Note that since PRG maps to invertible matrices, M will have an inverse.

If the type bit β = 0 the key K = gAW for some W. The algorithm chooses r as a random row vector
of length k in Zp (i.e. a random matrix of dimension 1× k). The ciphertext is computed and output as

C1 = grAW, C2 = grAM−1

.

Thus, the ciphertext will consist of two row vectors in the exponent. We observe all terms are computable
from the public keys and public parameters.

If the type bit β = 1 the key K = gWA for some W. The algorithm chooses r as a random column vector
of length k in Zp (i.e. a random matrix of dimension k × 1). The ciphertext ct is computed and output as

C1 = gWAr, C2 = gM
−1Ar.

Test(pk,y)→ {0, 1}. Since we are testing for 2-cycles, parse y = (C = (C1, C2),
C ′ = (C ′1, C

′
2)). If the key types are identical i.e. β = β′ then just output a random bit as a guess.

Otherwise, presume that β = 0, β′ = 1 (if it is the other way around just flip the order). Then compute

e(C1, C
′
2)

?
= e(C ′1, C2) and output the result. Note here we overload notation so that the pairing operator e

is over a matrix of group elements and means matrix multiplication in the exponent. (Or in this case a dot
product in the exponent.)

Analysis of Test Algorithm We analyze the correctness of the test algorithm. Let’s consider two secret
keys w,w′ where PRG(w) = W and PRG(w′) = W′. Again, presume that β = 0, β′ = 1. The corresponding
public keys will be pk = gAW and pk = gW

′A. Now consider an encryption of m under pk and m′ under
pk ′ where PRG(m) = M and PRG(M ′) = M′. Let r and r′ be the respective randomness used for each
encryption.

The test equations outputs 1 iff e(C1, C
′
2)

?
= e(C ′1, C2) this is equivalent to testing

rAWM′−1Ar′
?
= rAM−1W′Ar′. (1)

Let’s first consider the case where we have an encryption of a cycle. This means that m′ = w and m = w′

so we have that M′−1 = W−1 and M−1 = W′−1. Substituting these in we see that

rAWM′−1Ar′
?
= rAM−1W′Ar′

rAIAr′
?
= rAIAr′

rA2r′
?
= rA2r′.

Thus, on a cycle the test will output 1.
We now turn to the case of showing that an encryption of 0’s will output 0 (when the keys have different

β types) with all but negligible probability.
First, we first let Z = PRG(0λ)−1 which is the matrix used to encrypt the all 0’s string. Second, we

consider the probability of the tester outputting 1, when W and W′ are chosen uniformly at random (and
independently from Z) from the set of full rank matrices, as opposed to being the output of a pseudorandom
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generator. If there, was more than a negligible difference of the test in outputting 1 in these two cases, it
would lead to an attack on the security of the pseudorandom generator.

We can now observe that the matrices X = AWZA and X′ = AZW′A are distributed independently
and uniformly random from full rank matrices. Note we substituted Z for both M′−1 and M−1 in Equation 1.
Then u = rX and u′ = rX′ are independently distributed as uniformly at random row vectors of length k.
Finally, it follows that the probability that

ur′
?
= u′r′

is negligible in the security parameter. Thus, with probability negligibly close to 1 the test algorithm will
output 0 when given an encryption of all 0’s.

IND-CPA Security of the Tester

Theorem 6.1 The above encryption scheme Π = (KeyGen,Enc,Test) (where the decryption algorithm is
ignored) is IND-CPA-secure under the k-Linear Assumption in G.

Proof.
We prove security for the β = 0 case. The β = 1 case will follow analogously. We first define a sequence

of games.

Game 1 This game is the IND-CPA security game for our construction

1. The challenger runs Setup(1λ)→ PP = (G,PRG, gA).

2. Recall, we consider a β = 0 key. The challenger runs PRG(w) → W ∈ Zk×kp . Let V = AW. The

key is computed as K = gV. The challenger gives the parameters, PP and key pk∗ = (0,K) to the
attacker.

3. A The attacker submits two messages m0,m1 to the challenger.

4. The challenger flips a coin b ∈ {0, 1}. Let Mb = PRG(mb) ∈ Zk×kp . The challenger chooses r as a
random row vector of length k in Zp. The challenge ciphertext is computed and output as

C∗1 = grV, C∗2 = grAM−1
b .

5. The attacker receives the challenge ciphertext. It then outputs a guess b′ and wins if b′ = b.

Game 2

2. Choose V as a random matrix of rank k in Zk×kp . The key is computed as K = gV. The challenger
gives the parameters, PP and key pk∗ = (0,K) to the attacker.

Game 3

4. The challenger flips a coin b ∈ {0, 1}. Let Mb = PRG(mb) ∈ Zk×kp . The challenger chooses r,u as a

random row vectors of length k in Zp. The challenge ciphertext is computed and output as C∗1 = grV,

C∗2 = guAM−1
b .

Claim 6.2 If the pseudorandom generator PRG is secure, then any PPT attacker will have at most a
negligible difference in advantage between Game 1 and Game 2.
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Proof. Suppose there exists an attacker A. We build a reduction algorithm B. B will first run Game 1
with the exception that it will received W ∈ Zk×kp from the pseudorandom generator challenger. It then
computes V = AW and the key as. It then runs the rest of the experiment as in Game 1. If the attacker is
successful in guessing the challenge bit b, B outputs 1 to indicate pseudorandom; else it outputs 0 to indicate
random.

When W is output from the PRG the reduction exports the view of Game 1 to A, thus the probability
of B outputting 1 will be the probability A wins in Game 1. If W is selected as a random matrix of rank k
in Zk×kp , then the reduction exports the view of Game 2. This follows since the multiplication of a random
full rank matrix by another full rank matrix is distributed the same as a random full rank matrix V. Thus
the probability of B outputting 1 (in this case) will be the probability A wins in Game 2. Therefore if any
PPT algorithm A has a non-neglgibile difference in advantage between Game 1 and Game 2, there will
exist a PPT attack algorithm B.

2

Claim 6.3 If the decision k-linear assumption holds PRG, then any PPT attacker will have at most a
negligible difference in advantage between Game 2 and Game 3.

Proof.
We prove this theorem relying on an instance of the decision matrix linear assumption introduced by

Naor and Segev [27]. In our particular instance the challenger with give out a dimension (k+ 1)× 2k matrix
gT where T is either chosen as a random rank k matrix or a random rank k + 1 matrix.

Our reduction algorithm will receive the group description G and the challenge gT. If T was chosen as a
random rank k matrix it is statistically close to a matrix where the the top k rows are two k× k matrices V
and A concatenated together. While the bottom row of T consists of a linear combination of the previous k
rows of T and can be written as rT = rV|rA for random length k row vector r. Whereas if T was chosen
as a random rank k + 1 matrix then the last row would be (statistically close) to a random row vector of
length 2k and could be written as rV|uAfor random length k row vectors r and u.

Our reduction algorithm B receives the challenge gT and proceeds to run the security game. It uses the
top k rows of the matrix to simulate giving out the parameters gA and K = gV as described above. Then
it uses the left half of the bottom row of the matrix to output C∗1 = grV and the right half of the bottom

row to output C∗2 = grAM−1
b or C∗2 = guAM−1

b (depending on what the challenge was). We see that if the
challenge was a rank k matrix, then we are in Game 2. If the challenge was a rank k + 1 matrix, then B
exports Game 3. Therefore any attacker than had a non-negligible difference of advantage between these
games would break the decision matrix k linear assumption with non-negligible advantage. Since Naor and
Segev showed this to be equivalent to the decision k-linear assumption our claim holds.

2

Claim 6.4 The advantage of any attacker in Game 3 is 0.

Proof. Since A and M−1
b are full rank k the matrix AM−1

b is also of rank k. Since the row vector u is chosen
randomly and does not appear elsewhere the row vector uAM−1

b has the same distribution as a uniformly
chosen row vector ũ. In particular, the distribution is independent of the bit b and thus the ciphertext is
independent of b.

2

Our theorem follows from the fact that any PPT algorithm will have 0 advantage in the last game and
its advantage in the first game must be negligibly close to this.

2
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7 A 2-Cycle Tester from Learning with Errors

We now present a 2-Cycle Tester whose IND-CPA security follows from the Learning with Errors Assumption.
We note that our construction is similar to multi-bit Regev encryption.

7.1 Construction

Setup(1n) → PP. The setup algorithm chooses m, q, `, σ, r, α. These parameters are chosen to satisfy the
following constraints: m ≥ 2n log q, σ ≥ Lω(

√
logm), q ≥ 5σ(m+ 1), ` > (n+m+ 1) log q + ω(log(n+m)),

r := σ`, α ≤ 1/(r
√
m+ 1 · ω(

√
log n)), and q > 2 is prime. Here, L is defined as follows. We let z denote

the number of uniform random bits employed by TrapGen to generate a matrix B in Zn×mq along with a
trapdoor basis TB . L is a bound such that ||TB ||GS ≤ L with overwhelming probability. (We note that this
range of parameters allows us to set α so that n/α is polynomial, and LWE is believed to be hard in this
parameter regime.) The public parameters are PP = (m, q, `, σ, r, α, z).

KeyGen(PP)→ (pk , sk). The key generation algorithm chooses a uniformly random secret key sk in {0, 1}z
and runs TrapGen(sk) to produce a matrix B ∈ Zn×mq and a corresponding trapdoor basis TB . It then
chooses independent and uniformly random vectors c1, . . . , c` ∈ Znq and noise vectors γ1, . . . , γ` from χm,
where χ is distributed as bqΨαc mod q, where Ψα is a distribution on T of a normal variable with mean 0
and standard deviation α/

√
2π reduced modulo 1. (We think of these vectors as row vectors.) In addition

to implicitly including the PP, it sets

pk = {c1, . . . , c`, y1 := c1B + γ1, . . . , y` := c`B + γ`}.

Enc(pk ,m ∈ {0, 1}z)→ ct. The encryption algorithm runs TrapGen(m) to produce a matrix Z ∈ Zn×mq and

a corresponding trapdoor basis TZ . It chooses random signs r1, . . . , r` ∈ {−1, 1} and computes s :=
∑`
i=1 rici.

It then uses TZ to sample a short (column) vector v such that Zv = st, by calling the algorithm SampleD.
It computes

C =
∑̀
i=1

riyi,

and sets the ciphertext as ct = (C, v).

Test((pk0, pk1), ((C0, v0), (C1, v1))) → {0, 1}. The cycle test algorithm compares C0v1 to C1v0 and checks
if there are close modulo q (if their distance is ≤ 2q/5). If so, it outputs 1. If not, it outputs 0.

Analysis of Test Algorithm We let B0, Z0, s0 be the B, Z and s values corresponding to ciphertext
(C0, v0) and B1, Z1, s1 be the analogous values for (C1, v1). When there is a cycle, we then have Z0 = B1

and Z1 = B0. We then have B0v1 = st1 and B1v0 = st0. Noting that C0 = s0B0 + ψ0 for some small vector
ψ0, we see that

C0v1 = s0B0v1 + ψ0v1 = s0s
t
1 + ψ0v1.

Similarly, C1 = s1B1 + ψ1 for some small vector ψ1, so we have that

C1v0 = s1B1v0 + ψ1v0 = s1s
t
0 + ψ1v0.

We consider the size of ψ0v1−ψ1v0 modulo q. First, |ψ0v1| is at most ` times the maximal size of |γjv1|.
Using the same analysis as in the proof of Lemma 8.2 of [19], each of these is ≤ q

5` with high probability.

Thus, |ψ0v1 − ψ1v0| ≤ 2q
5 with high probability.

Since all of v0, v1, ψ0, ψ1 are short, this will cause these values to be close modulo q, so the cycle test will
output 1 with high probability.

When there is no cycle, the matrices B0 and B1 are (statistically close) to independent, uniformly random
matrices. Thus the probability that s0B0v1 and s1B1v0 will be within 2

5q modulo q is negligibly close to 2
5 .

Thus the cycle test wins the distinguishing game with probability negligibly close to 1
2 + 1

2 ·
3
5 = 4

5 .
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7.2 IND-CPA Security of the Tester

To prove that this construction satisfies IND-CPA, we define a sequence of security games.

Game0 This is the regular IND-CPA security game for our construction:

1. The challenger runs Setup(1n)→ PP = (m, q, `, σ, r, α, z).

2. The challenger chooses a uniformly random secret key sk in {0, 1}z and runs TrapGen(sk) to produce a
matrix B ∈ Zn×mq and a corresponding trapdoor basis TB . It then chooses independent and uniformly
random vectors c1, . . . , c` ∈ Znq and noise vectors γ1, . . . , γ` from χm. It sets

pk = {c1, . . . , c`, y1 := c1B + γ1, . . . , y` := c`B + γ`}.

The challenger gives the parameters PP and key pk to the attacker.

3. A The attacker submits two messages m0,m1 to the challenger.

4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a matrix Z ∈ Zn×mq and a
corresponding trapdoor basis TZ . It chooses random signs r1, . . . , r` ∈ {−1, 1} and computes s :=∑`
i=1 rici. It then uses TZ to sample a short (column) vector v such that Zv = st, by calling the

algorithm SampleD. It computes

C =
∑̀
i=1

riyi,

and sets the ciphertext as (C, v).

5. The attacker receives the challenge ciphertext. It then outputs a guess b′ and wins if b′ = b.

Game1

2. The challenger chooses a uniformly random secret key sk in {0, 1}z and runs TrapGen(sk) to pro-
duce a matrix B ∈ Zn×mq and a corresponding trapdoor basis TB . It then chooses independent and
uniformly random vectors c1, . . . , c` ∈ Znq and uniformly random vectors y1, . . . , y` ∈ Zmq . It sets
pk = {c1, . . . , c`, y1, . . . , y`}.

Game2

4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a matrix Z ∈ Zn×mq and a
corresponding trapdoor basis TZ . It chooses s randomly in Znq . It then uses TZ to sample a short
(column) vector v such that Zv = st, by calling the algorithm SampleD. It chooses C randomly from
Zmq and sets the ciphertext as (C, v).

Game3

4. The challenger samples the vector v from DZm,σ. It chooses C randomly from Zmq and sets the ciphertext
as (C, v).

At this point, the distribution of the ciphertext is independent of the message, and it is clear that no
PPT adversary can obtain a non-zero advantage.

Lemma 7.1 Under the LWE assumption for the noise distribution χ, no PPT attacker can obtain a non-
negligible difference in advantage between Game0 and Game1.
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Proof. We can collect the column vectors ct1, . . . , c
t
` into a n × ` matrix we call D. We can collect the row

vectors y1, . . . , ym into a `×m matrix we call Y and the row vectors γ1, . . . , γ` into a `×m matrix we call
Γ. We can then write the public key as D,DtB + Γ. Since B is never published, each column of B is a
fresh, uniform vector in Znq , and therefore each column of DtB+ Γ is distributed as an LWE sample with D
playing the role of the n×m matrix A and the column of B playing the role of the random vector s. By a
hybrid argument over the columns, we can thus rely on LWE to change each yi to be uniformly distributed
in Zmq . 2

Lemma 7.2 No PPT attacker can obtain a non-negligible difference in advantage between Game1 and
Game2.

Proof. For this, we will argue that the distributions of s, C in Game1 and Game2 are statistically close.
This is a direct application of lemma 2.2 with j set to be n+m. To see this, we consider the random signs
r1, . . . , r` ∈ {−1, 1} as a column vector R of length `. We then consider the (vertical) concatenation of st

and Ct into a n + m length column vector. In Game1, this is produced as MR, where M is a (n + m) × `
matrix formed by vertically concatenating D and Y t as defined in the proof of the previous lemma. Since
the matrices D,Y are now uniformly chosen, replacing MR by a uniformly random (n+m)× 1 matrix (as
in Game2) is a statistically close distribution by Lemma 2.2. 2

Lemma 7.3 No PPT attacker can obtain a non-negligible difference in advantage between Game2 and
Game3.

Proof. We will argue that the distributions of v in Game2 and Game3 are statistically close. We first observe
that in Game2, v is chosen so that Zv = st for a uniformly random s that is now independent of the rest
of the ciphertext. The distribution of v here produced by SampleD is statistically close to DΛsq(Z),σ. Now

by Lemma 2.1, if we consider the distribution DZm,σ, the probability mass on the preimages of st under the
mapping Zv = st is (up to a negligible statistical distance) the same for each s. Thus, the distribution of v
in both Game2 and in Game3 is statistically close to DZm,σ.

2
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A A 2-Cycle Tester from Decision Linear

We now present a 2-cycle tester from the Decision Linear assumption in symmetric pairing groups. This
construction can be viewed as an extension of the SXDH one from Section 5 to symmetric groups where new
variables and equations are introduced to prevent the use of pairings to disrupt IND-CPA security. However,
it does not seem to generalize to a system that is secure using the decision k-linear assumption for k > 2 or
help move toward a Learning with Errors Assumption.

At the same time when compared to our more general construction for the k = 2 (decision linear assump-
tion) case, it achieves smaller public keys. Public keys are here are two group elements as opposed to four.
We also believe that the techniques applied here might find use elsewhere in converting from constructions
that rely on SXDH to those that do not.

Like in Section 5 we slightly abuse notation and let our message space Z∗p be defined by our Setup
algorithm. Our construction is below.

Setup(1λ)→ PP. Recall that we assume a setting where all parties implicitly use shared public parameters.
Run G(1λ) to generate a Type-I pairing description PP = (p, g,G,GT , e), such that p is prime in Θ(2λ), G
is a group of order p where g generates G, and e : G × G → GT is an admissible pairing. Choose random
a, b ∈ Z∗p. Publish

CRS = g, ga, gb, gab

The message space is Z∗p.

KeyGen(PP) → (pk , sk). Flip a coin β ∈ {0, 1} and choose random s ∈ Z∗p. In addition to implicitly
including PP, set the public key as:

pk =

{
(0,K1 = gas,K2 = gs) ∈ {0, 1} ×G2 if β = 0;

(1,K1 = gbs,K2 = gs) ∈ {0, 1} ×G2 if β = 1.

The secret key is sk = s, making the secret key space Z∗p (which is the same as the message space).

Enc(pk ,m ∈ Z∗p) → C. To encrypt, parse pk = (β,K1,K2) and choose random t, r ∈ Z∗p. Generate the
ciphertext C = (C1, C2, C3, C4) ∈ G4 as:

C =

{
(C1 = Ktm

1 = gastm, C2 = (ga)t+r, C3 = (gab)r, C4 = Ktm
2 = gstm) if β = 0;

(C1 = Ktm
1 = gbstm, C2 = (gb)t+r, C3 = (gab)r, C4 = Ktm

2 = gstm) if β = 1.

Test(pk,y) → {0, 1}. Since we are testing for 2-cycles, parse pk = (pk = (β,K1,K2), pk ′ = (β′,K ′1,K
′
2))

and y = (C = (C1, C2, C3, C4), C ′ = (C ′1, C
′
2, C

′
3, C ′4)). If β = β′, output a random bit. Otherwise, assume

without loss of generality that β = 0 and β′ = 1. Then the test algorithm checks if

e(C1, C
′
2)

e(C4, C ′3)

?
=
e(C ′1, C2)

e(C ′4, C3)

If this check holds, then output 1 (guess cycle); otherwise output 0 (guess zeros).

Relation to SXDH example. To relate this construction to the one in Section 5, note that one can
reverse derive the asymmetric version from this symmetric one by letting r = 0, letting a = b = 1 and then
placing variables into the group G1 or G2 depending on their input position in the pairings.
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Analysis of Test Algorithm In the IND-CIRC-CPA2 game, two public keys pk = (β,K1,K2), pk ′ =
(β′,K ′1,K

′
2) are freshly generated by the KeyGen algorithm according to common parameters output by the

Setup algorithm. Since β and β′ are independently chosen bits, the probability that β = β′ is 1/2. In this
case, the Test algorithm will output a random bit (i.e., a random guess) and thus will be successful exactly
1/2 the time.

Otherwise, we assume without loss of generality that β = 0 and β′ = 1 (if not, swap the two key/ciphertext
pairs). In this game, the challenge ciphertexts (C,C ′) are formed using the Enc algorithm. By plugging these
values into the Test equation above, we have:

e(gastm, gb(t
′+r′))

e(gstm, gabr′)
=

e(gbs
′t′m′ , ga(t+r))

e(gs′t′m′ , gabr)

e(g, g)abstm(t′+r′)

e(g, g)abstmr′
=

e(g, g)abs
′t′m′(t+r)

e(g, g)abs′t′m′r

e(g, g)abstm(t′+r′)−abstmr′ = e(g, g)abs
′t′m′(t+r)−abs′t′m′r

e(g, g)abstmt
′

= e(g, g)abs
′t′m′t

e(g, g)sm = e(g, g)s
′m′

From the last equation, it is clear that if there is a cycle (m = s′ and m′ = s), then both sides equal e(g, g)ss
′

and the equation holds. If we have an encryption of zero (recall this is encoded as some element z ∈ Z∗p, so

z 6= 0), then the left-hand-side is e(g, g)sz and the right-hand-side is e(g, g)s
′z, which will only be equal if

s = s′. Since these secret keys were randomly chosen from Z∗p, the chance they are the same is 1/(p − 1),
which is negligible in λ. Thus, the success of the Test algorithm is (1/2)(1/2) + (1/2)((1/2) 1 + (1/2)
(1-1/(p-1)) = 3/4 - negl(λ), which easily wins the IND-CIRC-CPA2 game.

IND-CPA Security of the Tester

Theorem A.1 The above encryption scheme Π = (Setup,KeyGen,Enc, ·) (where the decryption algorithm is
ignored) is IND-CPA-secure under the Decision Linear Assumption in G.

Proof. Suppose that there exists an algorithm A that has a non-negligible advantage ε in the IND-CPA
security game. We can then construct an algorithm B that solves the decision linear problem with advantage
1
2 + ε

2 . B works as follows:

1. Select a random bit β ∈ {0, 1}. We proceed assuming β = 0; the case of β = 1 is analogous.
2. Obtain a decision linear instance (g, g1, g2, g

r1
1 , g

r2
2 , Td).

3. Choose a random a ∈ Z∗p and publish

CRS = (g, ga, gb = g2, g
ab = ga2 ).

4. Set the public key pk as
pk = (0,K1 = gas = ga1 ,K2 = gs = g1)

and output it to A. Note that B does not know the secret key.
5. Run A(pk) to produce a tuple (m0,m1).
6. Select a random bit γ ∈ {0, 1}.
7. Set the challenge ciphertext as

C1 = K
tmγ
1 = (gr11 )amγ , C2 = T ad , C3 = (gab)r = (gr22 )a, C4 = K

tmγ
2 = (gr11 )mγ .

(implicitly setting t = r1 and r = r2) and output it to A.
8. Run A(C) to get a bit γ′. If γ = γ′, then output 0 (guess a DLIN instance). Otherwise, output 1

(guess Td was random).
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If Td = gr1+r2 , then C2 = T ad = (gr1+r2)a = (ga)t+r and the ciphertext is well-formed according to the
original encryption algorithm. B wins with probability 1

2 + ε in this case. Otherwise, C2 is a random group
element, which means that A guesses correctly with probability 1

2 . In this case, B wins with probability 1
2

as well. B then has an overall advantage of 1
2

(
1
2 + ε

)
+ 1

2 ·
1
2 = 1

2 + ε
2 , which is non-negligible.

2
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