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Abstract. Cryptographic accumulators are a tool for compact set rep-
resentation and secure set membership proofs. When an element is added
to a set by means of an accumulator, a membership witness is generated.
This witness can later be used to prove the membership of the element.
Typically, the membership witness has to be synchronized with the ac-
cumulator value, and to be updated every time another element is added
to the accumulator. In this work we propose an accumulator that, unlike
any prior scheme, does not require strict synchronization.

In our construction a membership witness needs to be updated only a
logarithmic number times in the number of subsequent element addi-
tions. Thus, an out-of-date witness can be easily made current. Vice
versa, a verifier with an out-of-date accumulator value can still verify
a current membership witness. These properties make our accumulator
construction uniquely suited for use in distributed applications, such as
blockchain-based public key infrastructures.

Keywords: cryptographic accumulators

1 Introduction

Cryptographic accumulators, first introduced by Benaloh and DeMare [BdM94],
are compact binding (but not necessarily hiding) set commitments. Given an
accumulator, an element, and a membership witness (or proof ), the element’s
presence in the accumulated set can be verified. Membership witnesses are gen-
erated upon the addition of the element in question to the accumulator, and
are typically updated with every subsequent addition. Membership witnesses for
elements not in the accumulator are computationally hard to find.

A trivial accumulator construction simply uses digital signatures. That is,
when an element is added to the accumulator, it is signed by some trusted central
authority, and that signature then functions as the witness for that element.
However, this solution is very limited, since it requires trust in a central authority
(in other words, it is not strong as defined in Section 2).

There are many applications of cryptographic accumulators. These can mostly
be divided into localized applications, where a single entity is responsible for
proving the membership of all the elements, and distributed applications, where
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many entities participate and each entity has interest in (or responsibility for)
some small number of elements. In this paper, we focus on distributed applica-
tions, which were the original motivation for accumulators [BdM94].

Our Contribution One significant problem with accumulators in the context
of distributed applications is that all existing constructions require that mem-
bership witnesses be updated every time a new element is added into the ac-
cumulator. If elements are added to the accumulator at a high rate, having to
perform work linear in the number of new elements in order to retain the ability
to prove membership can be prohibitively expensive.

In this work, we introduce a new strong accumulator construction which re-
quires only a logarithmic amount of work (in the number of subsequent element
additions) in order to keep a witness up to date. In our accumulator construc-
tion, it is also the case that an up-to-date witness can be verified even against an
outdated accumulator, enabling verification by parties who are offline and with-
out access to the most recent accumulator. Our construction is made even more
well suited for distributed applications by the fact that, unlike the accumulator
construction in [CHKO08], it does not require any additional storage in order to
perform accumulator updates. Section 3 describes our construction in detail.

Applications The original distributed applications proposed by Benaloh and
DeMare [BdM94] involved a canonical common state, but did not specify how to
maintain it. Public append-only bulletin boards, such as the ones implemented
by bitcoin and its alternatives (altcoins, such as namecoin [Namrg]), provide a
place for this common state. Bitcoin and altcoins implement this public bulletin
board by means of block chains; in bitcoin they are used primarily as transaction
ledgers, while altcoins extend their use to public storage of arbitrary data.

Altcoins such as namecoin can be used for storing identity information in
a publicly accessible way. For instance, they can be used to store (IP address,
domain) pairs, enabling DNS authentication [Sle13]. They can also be used to
store (identity id, public key pk) pairs, providing a distributed alternative to
certificate authorities for public key infrastructure (PKI) [YFV14].

Elaborating on the PKI example, when a user Bob registers a public key
pkBob, he adds the pair (“Bob”, pkBob) to the bulletin board. When Alice needs
to verify Bob’s public key, she could look through the bulletin board to find
this pair. However, when executed naively, this procedure would require Alice to
read the entire bulletin board—i.e., a linear amount of data. Bob can save Alice
some work by sending her a pointer to the bulletin board location where (“Bob”,
pkBob) is posted; however, that would still require that Alice have access to a
linear amount of data during verification. What if Alice doesn’t have access to
the bulletin board at the time of verification at all, or wants to reduce latency
by avoiding on-line access to the bulletin board during verification?

Our accumulator construction can be used in this setting to free Alice from
the need for on-line random access to the bulletin board [YFV14] (see also
[GGM14] for a similar use of accumulators). It allows her to instead simply
download a small amount of data from the end of the bulletin board at pre-
determined (perhaps infrequent) intervals. The accumulator would contain all
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of the (id, pk) pairs on the bulletin board, with responsibility for the witnesses
distributed among the interested individuals. When Bob posts (“Bob”, pkBob) to
the bulletin board, he also adds (“Bob”, pkBob) to the accumulator, and stores
his witness wBob. He posts the updated accumulator to the bulletin board, and
since our accumulator construction is trapdoor-free and deterministic, the va-
lidity of the new accumulator can be checked by all parties simply by re-adding
(“Bob”, pkBob) to the old accumulator. Details of how such posts are monitored
and validated can be found in [YFV14].

Then, when Alice wants to verify that pkBob is indeed the public key belonging
to Bob, all she needs is wBob and a locally cached accumulator value. As long
as Bob’s bulletin board post pre-dates Alice’s locally cached accumulator value,
Alice can use that accumulator value and wBob to verify that (“Bob”, pkBob)
has been posted to the bulletin board. She does not need to refer to any of
the new bulletin board contents, because in our scheme (as opposed to other
accumulator schemes), an up-to-date witness can be used for verification even
against an outdated accumulator (as long as the addition of the element in
question pre-dates the accumulator).

Our construction also reduces the work for Bob, as compared to other ac-
cumulator constructions. In a typical accumulator construction, Bob needs to
update wBob every time a new (id, pk) pair is added to the accumulator. How-
ever, in a large-scale PKI, the number of entries on the bulletin board and the
frequency of element additions can be high. Thus, it is vital to spare Bob the
need to be continuously updating his witness. Our accumulator reduces Bob’s
burden: Bob needs to update his witness only a logarithmic number of times.
Moreover, Bob can update his witness on-demand—for instance, when he needs
to prove membership—by looking at a logarithmic number of bulletin board
entries (see Section 3.2 for details).3

2 Definitions

As described in the introduction, informally, a cryptographic accumulator is a
compact representation of a set of elements which supports proofs of member-
ship. In this section, we provide a more thorough description of accumulators,
their algorithms and some properties which may be desired of them.

A basic accumulator construction consists of four polynomial-time algorithms
Gen, Add, MemWitUpOnAdd and VerMem, described below. Various flavors of
these algorithms have been restated in literature a number of times. They were
first introduced in Baric and Pritzmann’s [BP97] formalization of Benaloh and
DeMare’s [BdM94] seminal work on accumulators, and a more general version
was provided by Derler, Hanser and Slamanig [DHS15]. We present them slightly

3 The question of whether accumulators updates can be batched, as in our scheme,
was first posed by Fazio and Nicolosi [FN03] in the context of dynamic accumulators
(i.e., accumulators that support deletions as described in Section 2). It was answered
in the negative by Camacho [Cam09], but only in the context of deletions, and only
in the centralized case (when all witnesses are updated by the same entity).



4 Leonid Reyzin and Sophia Yakoubov

differently: we model all potential input and output parameters more explicitly,
and we categorize the algorithms by their intended executor.

For convenience, we enumerate and explain all of the input and output pa-
rameters here:

– k: the security parameter.
– sk: the accumulator manager’s secret key or trapdoor. (The corresponding

public key, if one exists, is not modeled here as it can be considered to be a
part of the accumulator itself.)

– t: a discrete time / operation counter.
– at: the accumulator at time t.
– mt: any auxiliary values which might be necessary for the maintenance of

the accumulator. These are typically held by the accumulator manager. Note
that while the accumulator itself should be constant (or at least sub-linear)
in size, m may be larger. Note also that unlike previous Merkle tree con-
structions, our construction, described in Section 3, does not require m.

– x, y: elements which might be added to the accumulator.
– wx

t : the witness that element x is in accumulator at at time t.
– upmsgt: a broadcast message sent (by the accumulator manager, if one ex-

ists) at time t immediately after the accumulator has been updated. This
message is meant to enable all entities to update the witnesses they hold for
consistency with the new accumulator. It will often contain the new accu-
mulator at, and the nature of the update itself (e.g. “x has been added and
witness wx

t has been produced”). It may also contain other information.

We separate the accumulator algorithms into (1) those performed by the
accumulator manager if one exists, (2) those performed by any entity responsible
for an element and its corresponding witness (from hereon-out referred to as
witness holder), and (3) those performed by any third party. Parameters which
are omitted in some schemes are in grey.

Algorithms performed by the accumulator manager:

– Gen(1k) → (a0,m0, sk) instantiates the accumulator a0 (representing the
empty set), the auxiliary value m0 necessary for the maintenance of the
accumulator, and the accumulator manager’s secret key sk.

– Add(at,mt, x, sk)→ (at+1,mt+1, w
x
t+1, upmsgt+1) adds the element x to the

accumulator.

Note that accumulator constructions where Gen and Add are deterministic
and do not use sk are also verifiable, meaning that an execution of Gen or Add
can be carried out by anyone, and verified by any third party in possession of
the inputs simply by re-executing the algorithm and checking that the outputs
match. In such a case, an accumulator manager is not necessary, since Gen and
Add can be executed by the (possibly untrusted) witness holders and verified as
needed.

Algorithms performed by a witness holder:
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– MemWitUpOnAdd(x,wx
t , upmsgt+1)→ wx

t+1 updates the witness for element
x after an element y is added to the accumulator. upmsgt+1 might contain
any subset of {wy

t+1, at, at+1, y}, as well as other parameters.

Algorithms performed by any third party:

– VerMem(at, x, w
x
t )→ b ∈ {0, 1} verifies the membership of x in the accumu-

lator using its witness.

Now that we have defined the basic functionality of an accumulator, we
can describe the properties an accumulator is expected to have. Informally, the
correctness property requires that for every element in the accumulator a it
should be easy to prove membership, and the soundness (also referred to as
security) property requires that for every element not in the accumulator a it
should be infeasible to prove membership.

Correctness An accumulator is correct if an up-to-date witness wx correspond-
ing to value x can always be used to verify the membership of x in an up-to-date
accumulator a.

More formally, for all security parameters k, all values x and additional sets
of values [y0, . . . , yi−1], [yi+1, . . . , yn]:

Pr


(a0,m0, sk)← Gen(1k);
(at+1,mt+1, w

yt

t+1, upmsgt+1)← Add(at,mt, yt, sk) for t ∈ [0, . . . , i− 1];
(ai+1,mi+1, w

x
i+1, upmsgi+1)← Add(ai,mi, x, sk);

(at+1,mt+1, w
yt

t+1, upmsgt+1)← Add(at,mt, yt, sk) for t ∈ [i + 1, . . . , n];
wx

t+1 ← MemWitUpOnAdd(x,wx
t , upmsgt+1) for t ∈ [i + 1, . . . , n] :

VerMem(an+1, x, w
x
n+1) = 1

 = 1

Soundness An accumulator is sound (or secure) if it is hard to fabricate a
witness w for a value x that has not been added to the accumulator.

More formally, for all security parameters k, for any probabilistic polynomial-
time adversaryA with black-box access to a Add oracle on accumulator a, it holds
that:

Pr


(a0,m0, sk)← Gen(1k);
(x,w)← AAdd(1k, a0,m0);
Add has not been called on x :
VerMem(a, x, w) = 1

 ≤ negl(k)

Where negl is a negligible function in the security parameter, x is an element
A has not called Add on, and a is the accumulator after the adversary made all
of his calls to Add.

In addition to correctness and soundness, there are a number of properties
that might be needed from an accumulator, depending on the application it is
being used for. Some of these (e.g. dynamism, universality and strength) have
been introduced over the years as interesting additional properties, while others
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(e.g. full distribution, low update frequency and old-accumulator compatibility)
are new in this paper.

Constant Size The trivial accumulator construction would have the accumu-
lator consist of a list of all elements it contains. However, this is not at all
space-efficient. Ideally, accumulators should remain small no matter how many
items are added to them. An accumulator is constant-size if its size (as well as
the size of the witnesses created for it) is independent of the number of elements
it contains.

It should be noted that there are solutions (e.g. [CHKO08], as well as the
construction presented in this work) which grow logarithmically. While these are
not constant size, they are still interesting in many applications.

Dynamism In 2002, Camenisch and Lysyanskaya [CL02] introduced the notion
of dynamic accumulators, which support deletion of elements from the accu-
mulator. Deletions can, of course, be performed simply be generating a new
accumulator and re-adding all the elements which have not been deleted. This
takes a polynomial amount of time in the number of elements, and so is, strictly
speaking, efficient. However, a dynamic accumulator should support deletions
in time which is either independent of the number of elements altogether, or is
sublinear in the number of elements. A dynamic accumulator has the following
additional algorithms:

– Del(at,mt, x, sk) → (at+1,mt+1, upmsgt+1) (executed by the accumulator
manager, if one exists) deletes the element x from the accumulator.

– MemWitUpOnDel(x,wx
t , upmsgt+1) → wx

t+1 (executed by a witness holder)
updates the witness for element x after y is deleted from the accumulator.

Unlike Fazio and Nicolosi [FN03], we present MemWitUpOnDel and MemWitUpOnAdd
as two separate algorithms, because in all of the existing accumulator construc-
tions the mechanism by which the update is performed is very different for
deletions and additions.

Universality In 2007, Li, Li and Xue [LLX07] introduced the notion of univer-
sal accumulators, which are accumulators that support non-membership proofs
as well as membership proofs. For distinction, we let w denote a membership
witnesses and u denote a non-membership witness. A universal accumulator has
the following additional algorithms:

– VerNonMem(at, x, u
x
t ) → {0, 1} (executed by any third party) verifies the

non-membership of x in the accumulator using its non-membership witness
ux
t .

– NonMemWitUpOnAdd(x, ux
t , upmsgt+1)→ ux

t+1 (executed by a witness holder)
updates the non-membership witness for element x after y is added to the
accumulator.

If the accumulator is dynamic as well as universal, it also has the following
algorithm:
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– NonMemWitUpOnDel(x, ux
t , upmsgt+1)→ ux

t+1 (executed by a witness holder)
updates the non-membership witness for element x after y is removed from
the accumulator.

A universal accumulator should additionally be undeniable (as named by
Lipmaa, [Lip12]), meaning that it should be infeasible to prove the membership
and non-membership of the same element.

Strength In 2008, Camacho, Hevia, Kiwi and Opazo [CHKO08] introduced the
notion of strong accumulators, which are accumulators that do not assume that
the accumulator manager is trusted. Strong accumulators cannot use trapdoor
information in the creation or maintenance of the accumulator; that is, the pa-
rameter sk should be absent from all accumulator algorithms. The construction
presented in this work is strong.

Full Distribution We consider an accumulator to be fully distributed if there is
no party (including the accumulator manager, if one exists) which must store an
amount of information that is linear or super-linear in the number of elements
in the accumulator. That is, the parameter m (if it exists) must be sub-linear in
size. (Note that all other parameters are already assumed to be sub-linear.)

Low Update Frequency We consider an accumulator to have a low update
frequency if the frequency with which a witness for element x needs to be updated
is sub-linear in the number of elements which are added after x.

Old Accumulator Compatibility We consider an accumulator to be old ac-
cumulator compatible if up-to-date witnesses wx

t can be verified even against an
outdated accumulator at′ where t′ < t, as long as x was added to the accumu-
lator before t′. Note that this does not compromise the soundness property of
the accumulator, because if x was not a member of the accumulator at t′, wx

t

does not verify with at′ . Old accumulator compatibility allows the verifier to be
offline and out of synch with the latest accumulator state.

3 Our New Scheme

There are several known accumulator constructions, including the RSA construc-
tion [BdM94,CL02,LLX07], the Bilinear Map construction [Ngu05,DT08,ATSM09],
and the Merkle tree construction [CHKO08]. Their properties are described
in Figure 2. None of these constructions have low update frequency or old-
accumulator compatibility. The construction given in [CHKO08], which is sim-
ilar to ours in that both are based on Merkle trees, is made more complicated
and somewhat less efficient by the fact that it is designed it to be universal.
We present a different Merkle tree construction which is fully distributed, old-
accumulator compatible and saves on update frequency, but is not universal.
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Accumulator Protocol Runtimes and Storage Requirements

Accumulator Signatures RSA Bilinear Map Merkle This Work

Add runtime 1 1 1 w/ trapdoor, log(n) log(a)
n without

Add storage 1 1 1 w/ trapdoor, n log(a)
n without

MemWitUpOnAdd runtime 0 1 1 log(n) log(a)
MemWitUpOnAdd storage 0 1 1 log(n) log(a)

NonMemWitUpOnAdd runtime − 1 1 log(n) −
NonMemWitUpOnAdd storage − 1 1 log(n) −

Del runtime − 1 1 log(n) log(a)
Del storage − 1 1 n log(a) (with

additional
inputs) 4

MemWitUpOnDel runtime − 1 1 log(n) log(a)
MemWitUpOnDel storage − 1 1 log(n) log(a)

NonMemWitUpOnDel runtime − 1 1 log(n) −
NonMemWitUpOnDel storage − 1 1 log(n) −

Accumulator Properties

Accumulator Signatures RSA Bilinear Map Merkle This Work

Accumulator size 1 1 1 1 log(a)
Witness size 1 1 1 log(n) log(a)
Dynamic? no yes yes yes yes (with

additional
inputs)

Universal? no yes yes yes no

Strong? no no5 no yes yes
Fully distributed? yes yes yes no yes

Update frequency 6 0 a + d a + d a + d log(a) + d
Old accumulator compatibile? yes no no no yes

Fig. 1. Various accumulator constructions and their protocol runtimes, storage
requirements, and properties. We let n denote the total number of elements in
the accumulator, a denote the number of elements added to the accumulator,
and d denote the number of elements deleted from the accumulator. The RSA
Construction is due to [BdM94,CL02,LLX07]. The Bilinear Map construction is
due to [Ngu05,DT08,ATSM09]. The Merkle tree construction is due to [CHKO08].
Big-O notation is omitted from this table in the interest of brevity, but it is implicit
everywhere.

3.1 Construction

Let n be the number of elements in our accumulator, and let h be a collision-
resistant hash function. (When h is applied to pairs or elements, the pair is
encoded in such a way that it can never be confused with a single element x –
e.g., a pair is prefaced with a 1, and a single element with a 0.) The accumulator

4 Refer to Section 3.3 for details.
5 Sander [San99] shows a way to make the RSA accumulator strong by choosing the

RSA modulus in such a way that its factorization is never revealed.
6 Here a and d refer to the number of elements added and deleted after the addition

of the element whose witness updates are being discussed.
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maintains a list of D = dlog(n+ 1)e elements r0, . . . , rD (as opposed to just one
Merkle tree root). The element ri is the root of a complete Merkle tree with
2i leaves if and only if the ith least significant bit of the binary expansion of
n is 1. Otherwise, ri = ⊥. A witness wx for x is the authenticating path for x
in the Merkle tree that contains x. That is, wx = ((z0, dir0), . . . , (zd, dird−1)),
where each zi is in the range of the hash function h, and each dir is either right
or left. These are the (right / left) sibling elements of all of the nodes along the
path from element x to the accumulator root of depth d. An illustration of an
accumulator a and a witness w is given in Figure 2.

h(xt+2) 

h(�,�) 

h(xt+3) h(xt+1) h(xt) h(xt+5) h(xt+4) f(xt+6) 

h(�,�) 

h(�,�) 

… 

z = h(�,�) 

Accumulator A 
h(�,�) 

Fig. 2. An illustration of our accumulator. The accumulator itself is shaded; the
unshaded elements are elements of the Merkle trees which are not actually a part of
the accumulator. The elements with dashed outlines belong to the authenticating
path for xt+2 (which itself has a bold outline). So, the witness for xt+2 would be
wxt+2 = ((h(xt+3), left), (z, right)).

Verification is done by using the authenticating path w and the element x in
question to recompute the Merkle tree root and check that it indeed matches the
accumulator element rd, where d is the length of w. In more detail, this is done by
recomputing the ancestors of the element x using the authenticating path wx as
described in Algorithm 1, where the ancestors are the nodes along the path from
x to its root, as defined by x and by elements in p. If the accumulator is up to
date, the last ancestor should correspond to the appropriate accumulator element
rd. If the accumulator is outdated but still contains x, one of the recomputed
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ancestors should still correspond to one of the accumulator elements. Verification
is described in full detail in Algorithm 5 of Appendix A.

Element addition is done by merging Merkle trees to create deeper ones.
Specifically, when the nth element x is added to a = [r0, . . . , rD], if r0 = ⊥, we
set r0 = h(x). If, however, r0 6= ⊥, we “carry” exactly as we would in a binary
counter: we create a depth-one Merkle tree root z = h(h(x), r0), set r0 = ⊥, and
try our luck with r1. If r1 = ⊥, we can set r1 = z. If r1 6= ⊥, we must continue
merging Merkle trees and “carrying” further up the chain. Element addition is
described in full detail in Algorithm 3 of Appendix A.

Membership witness updates need to be performed only when the root of the
Merkle tree containing the element in question is merged, or “carried”, during a
subsequent element addition. This occurs at most D times. Membership updates
use the update message upmsgt+1 = (y, wy

t+1) (where y is the element being
added and wy

t+1 is the witness generated for y) in order to bring the witness wx
t

for the element x up to date, as described in Algorithm 4 of Appendix A.

3.2 Infrequent Membership Witness Updates

As highlighted in Section 3.1, this accumulator scheme requires that the witness
for a given element x be updated at most D = dlog(n+1)e times, where n is the
number of elements added to the accumulator after x. One might observe that
having to check whether the witness needs updating each time a new element
addition occurs renders this point moot, since this check itself must be done a
linear number of times. However, we can get around this by giving our witness
holders the ability to “go back in time” to observe past accumulator updates. If
they can ignore updates when they occur, and go back to the relevant ones when
they need to bring their witness up to date (e.g. at when they need to show it to
a verifying third party), they can avoid looking at the irrelevant ones altogether.

“Going back in time” is possible in the public bulletin board setting of many
distributed applications. Recall the application from Section 1, in which our
accumulator is maintained as part of a public bulletin board. The bulletin board
is append-only, so it contains a history of all of the accumulator states. Along
with these states, we will include the update message, and a counter indicating
how many additions have taken place to date. Additionally, we will include
pointers to a selection of other accumulator states, so as to allow the bulletin
board user to move amongst them efficiently. The pointers from accumulator
state t would be to accumulator states t − 2i for all i such that 0 < 2i <
t (somewhat similarly to what is done in a skip-list). These pointers can be
constructed in logarithmic time: there is a logarithmic number of them, and
each of them can be found in constant time by using the previous one, since
t − 2i = t − 2i−1 − 2i−1. Note that storing these pointers is not a problem,
since we are already storing a logarithmic amount of data in the form of the
accumulator and witness.

Our witness holder can then ignore update messages altogether, performing
no checks or work at all. Instead, he updates his witness only when he needs to
produce a proof. When this happens, he checks the counter of the most recently
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posted accumulator state. The counter alone is sufficient to deduce whether his
witness needs updating. If his witness does not need updating, he has merely
performed a small additional constant amount of work for the verification at
hand. If, as happens a logarithmic number of times, his witness does need up-
dating, the pointers and counters allow him to locate in logarithmic time the (at
most logarithmic number of) bulletin board entries he needs to access in order
to bring his witness up to date, as described in Algorithm 9 of Appendix A.
Thus, the total work performed by our witness holder will remain logarithmic
in the number of future element additions.

3.3 Other Properties

This construction is trivially correct. It is sound as long as h is collision resistant.
Soundness can be proven using the classical technique for Merkle trees: if an
adversary A can find a witness for an element that has not been added to the
accumulator, then A can be used to find a collision for h.

This construction is strong, since every operation is deterministic and pub-
licly verifiable. It is also fully distributed; all storage requirements are logarithmic
in the number of elements. No auxiliary storage m (as described in Section 2) is
necessary for accumulator updates.

Limited Dynamism We can make our accumulator construction dynamic by
giving the accumulator manager auxiliary storage m consisting of the leaves of
the Merkle trees (i.e., the set of elements in the accumulator). Then, to perform
a deletion Del, the manager replaces the leaf in the tree corresponding to x with
⊥, updates the ancestors of this leaf, and broadcasts the updated ancestors of
⊥ as the update message upmsg. To perform a witness update MemWitUpOnDel
(upon receipt of upmsg), each witness holder whose value x is in the same Merkle
tree replaces one node on its path (namely, the child node of the lowest common
ancestor of the deleted value and x) with the corresponding value from upmsg.

This modification degrades the space efficiency of the manager by adding
auxiliary linear storage on top of the very short (logarithmic) accumulator, thus
compromising full distribution. (We note that this extra storage can be avoided
if the witness holder, or perhaps several other cooperating witness holders, can
provide the necessary portions of the Merkle tree to the manager when needed.
However, this would only truly work if withdrawing an element from the accumu-
lator was a voluntary act—for instance, this would not work in the application
of credential revocation.) This modification will also degrade the low update
frequency property.

To keep both full distribution and low update frequency, we can limit dele-
tions to newer elements (e.g. an element can only be deleted within a constant
number of turns of being added), since newer elements are in the small trees.
While this appears to be limiting, it should be noted that in many applications,
deletions of older elements may be avoided altogether by wrapping “time to live
stamps” or “expiration dates” into the elements themselves.
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A Algorithms

In this appendix, we give the pseudocode for all of the algorithms used in our
accumulator scheme. A Python implementation of these algorithms is available
upon request.

A.1 Accumulator Algorithms

In this section, we give the pseudocode for the basic accumulator algorithms,
such as Gen (Algorithm 2), Add (Algorithm 3), MemWitUpOnAdd (Algorithm 4)
and VerMem (Algorithm 5). Recall that h is a hash function.

A.2 Batch Witness Updates

In this section, we give the pseudocode for the algorithms which allow our wit-
ness holder to avoid reading to every update message, and instead do only a
logarithmic amount of work upon every verification in order to bring the witness
up to date. In the following algorithms, we assume the existence of a public
append-only random access bulletinboard. bulletinboard[ptr] gives the ptrth entry
of bulletinboard. However, since bulletinboard may be used for things other than
accumulator entries, the ptrth entry of bulletinboard is not guaranteed to corre-
spond to the ptrth accumulator update. Instead, we let t′ = bulletinboard[ptr].t
denote the timestep t′ such that the ptrth entry of bulletinboard corresponds to

http://okturtles.com/other/dnschain_okturtles_overview.pdf
http://okturtles.com/other/dnschain_okturtles_overview.pdf
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Algorithm 1 GetAncestors: a helper function for MemWitUpOnAdd (Algorithm
4) and VerMem (Algorithm 5).

Require: p, x
1: c = h(x)
2: p = [c]
3: for (z, dir) in p do
4: if dir = right then
5: c = h(c||z)
6: else if dir = left then
7: c = h(z||c)
8: append c to p
9: return p

Algorithm 2 Gen

Require: 1k

1: return a0 = ⊥

Algorithm 3 Add
Require: at, x
1: at+1 = at (the new accumulator starts out as a copy of the old one)
2: wx

t+1 = [] (the witness starts out as an empty list)
3: d = 0 (the depth of the witness starts out as 0)
4: z = h(x)
5: while at+1[d] 6= ⊥ do
6: if the length of at+1 < d + 2 then
7: append ⊥ to at+1

8: z = h(at+1[d]||z)
9: append (at+1[d], left) to wx

t+1

10: at+1[d] = ⊥
11: d = d + 1
12: at+1[d] = z
13: return at+1, w

x
t+1, upmsg = (x,wx

t+1)

Algorithm 4 MemWitUpOnAdd

Require: y, wy
t+1, wx

t

1: let dxt be the length of wx
t

2: let dyt+1 be the length of wy
t+1

3: if dyt+1 < dxt then
4: return wx

t (the witness has not changed)
5: else
6: dxt+1 = dyt+1

7: wx
t+1 = wx

t (the new authenticating path starts out as a copy of the old one)
8: wy

t+1 = GetAncestors(wy
t+1, y)

9: append (wy
t+1[dxt ], right) to wx

t+1

10: append wy
t+1[dxt + 1, . . . ] to wx

t+1

11: return wx
t+1
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Algorithm 5 VerMem

Require: at, x, wx

1: p = GetAncestors(wx, x)
2: if at and r have any elements in common (computable in linear time) then
3: return TRUE
4: else
5: return FALSE

the t′th accumulator update. GetPointers (Algorithm 6) and GetPointer (Algo-
rithm 7) are helper algorithms for creating the pointers and using them to move
amongst the entries of bulletinboard which are relevant to the accumulator.

Let i be the number of irrelevant entries on bulletinboard after the last rele-
vant entry, and let n be the number of elements which have been added to the
accumulator. GetPointers (Algorithm 6), which finds the pointer to include in a
new bulletin board entry, takes O(i) + O(log(n)) time. (The O(i) is present be-
cause GetPointers finds the newest accumulator bulletinboard entry by iterating
over the entries of bulletinboard backwards.) Similarly, GetPointer (Algorithm 7),
which finds a pointer to a desired bulletin board entry given another pointer at
which to start, takes O(log(n)) time.

BatchMemWitUpOnAdd (Algorithm 9), the batch witness update algorithm
itself, also takes O(log(n)) time. BatchMemWitUpOnAdd reverses the list of rel-
evant indices before finding the pointers to them for reasons of efficiency. This
way, the total number pointers followed is O(log(n)), and not O(log(n)2). The
list of relevant pointers is then reversed again, so as to perform the actual mem-
bership witness updates in order.
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Algorithm 6 GetPointers: finds all the pointers needed for a new accumulator
update bulletin board entry. If the accumulator update happens at timestep t,
the pointers should be to all accumulator updates at timesteps t− 2i for i such
that 0 < 2i < t. This is a helper function for BatchMemWitUpOnAdd (Algorithm
9).

Require: the bulletin board bulletinboard
1: ptrs = []
2: find the last occurring addition entry (lt, alt, y, w

y
lt) on bulletinboard.

3: if one does not exist then
4: return ptrs
5: let lptr be the pointer to the last entry
6: append lptr to ptrs
7: exp = 1
8: stuck = FALSE
9: while not stuck do

10: lptr = ptrs[−1] (the last element of ptrs)
11: let numPointersAtLastPointer be the number of pointers stored at

bulletinboard[lptr]
12: if numPointersAtLastPointer < exp then
13: stuck = TRUE
14: else
15: ptr = bulletinboard[lptr].ptrs[exp− 1]
16: append ptr to ptrs
17: exp = exp + 1
18: return ptrs

Algorithm 7 GetPointer: finds a pointer to the bulletin board entry cor-
responding to the t∗th accumulator update. This is a helper function for
BatchMemWitUpOnAdd (Algorithm 9).

Require: the bulletin board bulletinboard, the timestep t∗, and a pointer ptr to a
bulletin board entry corresponding to t′ ≥ t∗

1: t′ = bulletinboard[ptr].t
2: while t′ 6= t∗ do
3: difference = t′ − t∗

4: let exp be the largest exponent such that 2exp is smaller than difference
5: ptr = bulletinboard[ptr].ptrs[exp]
6: t′ = bulletinboard[ptr].t
7: return ptr
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Algorithm 8 GetUpdateTimeSteps: finds the timesteps at which a witness needs
to be updated. This is a helper function for BatchMemWitUpOnAdd (Algorithm
9).

Require: the bulletin board bulletinboard, the timestep lupt at which the last witness
update occurred, the timestep lt at which the last accumulator update occurred,
and the depth d of the witness in question

1: relevantTimeSteps = []
2: power = 2d

3: t = lupt + power
4: while t ≤ lt do
5: append t to relevantTimeSteps
6: while t mod power × 2 = 0 do
7: power = power ∗ 2
8: t = t + power
9: return relevantTimeSteps

Algorithm 9 BatchMemWitUpOnAdd

Require: the bulletin board bulletinboard, the witness wx, and the timestep lupt at
which wx was last updated

1: let d be the length of wx

2: find the last occurring addition entry (lt, alt, upmsg = (y, wy
lt)) on bulletinboard, and

let ptr be the pointer to this entry
3: relevantTimeSteps = GetUpdateTimeSteps(lupt, lt, d)
4: reverse the order of relevantTimeSteps
5: relevantPointers = []
6: for t ∈ relevantTimeSteps do
7: ptr = GetPointer(bulletinboard, t, ptr)
8: append ptr to relevantPointers
9: reverse the order of relevantPointers

10: for ptr ∈ relevantPointers do
11: get (t, at, upmsg = (y, wy

t )) using ptr from bulletinboard
12: wx = MemWitUpOnAdd(y, wy

t , w
x)

13: return wx
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