
The self-blindable U-Prove scheme by Hanzlik and
Kluczniak is forgeable

Eric Verheul1, Sietse Ringers2, and Jaap-Henk Hoepman1

1Radboud University, Nijmegen, The Netherlands
{jhh,e.verheul}@cs.ru.nl

2Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen,
The Netherlands

s.ringers@rug.nl

July 20, 2015

Abstract

In [HK14] an unlinkable version of the U-Prove attribute-based credential scheme is proposed.
Unfortunately, the new scheme is forgeable: if sufficiently many users work together then they
can construct new credentials, containing any set of attributes of their choice, without any
involvement of the issuer. In this note we show how they can achieve this and we point out
the error in the unforgeability proof.

1 Introduction
Attribute-based credential schemes [AHS11; Bic+14] provide a very secure and privacy-friendly
form of identity management. In these schemes, users are granted by an issuer a credential that
contains several attributes (generally elements of Zq := Z/qZ for some number q), and when the
user shows his credential to a verifier using a ShowCredential protocol, he can choose to reveal
some of these while keeping the other ones hidden from the verifier. Some of these schemes offer
anonymity in the form of multi-show unlinkability : that is, when a verifier runs the ShowCredential
protocol twice and both times the same attributes with the same values were disclosed to it, then
it cannot tell whether it was shown one credential twice, or two different credentials that happened
to disclose the same attributes.

A well-known and very efficient attribute-based credential scheme is U-Prove [Bra00; PZ13].
However, this scheme offers no multi-show unlinkability. In an attempt to fix this, L. Hanzlik
and K. Kluczniak proposed in [HK14] a new scheme that is based on U-Prove but uses a different
signature scheme. This signature scheme is based on the self-blindable construction from [Ver01],
and allows a credential to be blinded; i.e., modified into a new valid credential over the same
attributes. Although [HK14] does contain an argument for the unforgeability of their scheme, we
show here that this argument contains an error, and that the proposed construction is forgeable, in
the sense that if sufficiently many users collide then they can construct new credentials containing
arbitrary attributes of their choice, without involvement of the issuer.

2 The credential scheme
Hanzlik and Kluczniak [HK14] present their blindable U-Prove scheme as an extension of the
original U-Prove scheme, in the following sense: a self-blindable signature (based on [Ver01]) is
added to a U-Prove credential. When showing a credential, the user can then choose to either show

1



his credential using the original linkable U-Prove ShowCredential protocol, or using a new protocol
that uses the new self-blindable signature and should offer unlinkability. Since we are concerned
only with the forgeability of the self-blindable construction, our description of the credential scheme
will omit details that are relevant only to the original construction.

The setup is as follows. q is a prime number of length k, and e : G1 × G2 → GT is a bilinear
pairing of Type 2 (see [GPS08], [BSS05, Ch. I, X]), where q is the order of G1, G2 and GT . The
issuer’s public key is

(q, e, g0, . . . , gn, p, p
′, p0, p1),

where

• g0, . . . , gn are random generators of G1,
• p and p′ are random generators of G2,
• p0 = (p′)z,
• p1 = pf .

The tuple (f, z) ∈ Z2
q is the issuer’s secret key.

A credential consists of the tuple

((x1, . . . , xn), (h, h2, h3, h4, α, b1, b2))

where

• x1, . . . , xn ∈ Zq are the attributes,
• α, b0, b1 ∈ Zq, chosen by the user during issuing of the credential,
• h = (g0g

x1
1 · · · gxn

n )α,
• h2 = hf ,
• h3 = hb1hb22 ,
• h4 = hz3 = (hb1hb22 )z.

The validity of the credential can be checked by

e(h, p1)
?
= e(h2, p) and e(h3, p0)

?
= e(h4, p

′).

Such a credential can be blinded into a new one as follows. Take random k, ` ∈ Z∗q , and set
(h, h2, h3, h4) = (hk, hk2 , h

k`
3 , h

k`
4 ). Then

((x1, . . . , xn), (h, h2, h3, h4, k`, b1`, b2`))

is a new, valid credential over the same attributes. In [HK14] a ShowCredential protocol for these
credential is provided, in which the credentials are blinded as above. The protocol should offer
unlinkability but it is not proven that it does (and we have not checked this).

3 Forging new credentials

3.1 Constructing signatures on the elements gi

We first show that if sufficiently many users work together, then for each i they can compute a
tuple gfi , g

z
i , g

fz
i , even though f and z are private to the issuer. Using these tuples they can easily

create new valid credentials over any set of attributes of their choice. Since this will involve many
credentials, we will write the elements from the credential of user j with an extra subscript j:

((x1,j , . . . , xn,j), (hj , h2,j , h3,j , h4,j , αj , b1,j , b2,j)).

The element hj is of the form

hj = (g0g
x1,j

1 · · · gxn,j
n )αj .

2



By blinding the credential with k = α−1j , ` = 1 (i.e., we raise all group elements of the credential
to the power α−1j ; note that these numbers are known to the users), we can remove the number α
from our considerations, so we will henceforth simply write

hj = g0g
x1,j

1 · · · gxn,j
n .

Let us write g̃i = gfi . Then we can write h3,j as

h3,j = h
b1,j
j h

b2,j
2,j = g

b1,j
0 g̃

b2,j
0 g

b1,jx1,j

1 g̃
b2,jx1,j

1 · · · gb1,jxn,j
n g̃b2,jxn,j

n .

Setting x0,j = 1 and writing yi,j = b1,jxi,j and ỹi,j = b2,jxi,j , we get

h3,j = g
y0,j
0 g̃

ỹ0,j
0 g

y1,j
1 g̃

ỹ1,j
1 · · · gyn,j

n g̃ỹn,j
n , (1)

where all numbers yi,j and ỹi,j are known to the user.
We know that h4,j = hz3,j , i.e., the discrete log of h4,j with respect to h3,j is z. If we raise h3,j

to some power and we simultaneously raise h4,j to the same power, then the resulting two elements
will still have z as discrete log. The same holds if we multiply two elements h3,j and h3,j′ together.
In the remainder of this section we will take a number of powers and products of the elements h3,j ;
whenever we write such a power or product, the same power or product for h4,j is implied.

Observe that when raising h3,j to the power 1/ỹn,1 we obtain a product of the generators gi
to certain exponents, where g̃n now has exponent 1. Thus two users 1 and 2 can work together to
form the element h1/ỹn,1

3,1

/
h
1/ỹn,2

3,2 , which is of the form

h
1/ỹn,1

3,1

h
1/ỹn,2

3,2

= gv00 g̃
ṽ0
0 g

v1
1 g̃

ṽ1
1 · · · gvnn ,

with vi = yi,1/yn,1− yi,2/yn,2, and similar for ṽi. Note that the right hand side no longer contains
g̃n. If two more users do the same and obtain a similar expression, then the four users can
collectively remove gn in exactly the same fashion, resulting in an expression as above containing
only the elements g0, g̃0, . . . , gn−1, g̃n−1.

Continuing in this fashion, 22n+1 users can find an element in G1 that is just g0 raised to
some power which is known and can easily be removed. If they apply all powers and products in
parallel to the corresponding h4,j , then they also obtain gz0 . Similarly, they can obtain g̃0 = gf0 ,
and g̃z0 = gfz0 . In fact, they can do this for all elements gi, g̃i, resulting finally in expressions for
gfi , g

z
i and gfzi for all i. Using these elements, anyone can calculate a valid credential over any

set of attributes as explained below. The amount of users that need to work together to achieve
this (22n+1) is exponential in n (the amount of attributes of the system) but not in the security
parameter. Therefore, this can be done in polynomial time.

Remark 1. An alternative explanation for why this is possible is as follows. Suppose we are given
m valid credentials, with h3,j of credential j given by (1). Notice that the operations we apply to
the elements h3,j and h4,j above correspond exactly to taking linear combinations of the h3,j and
h4,j (although linear combinations are usually written additively instead of multiplicatively). So if
we consider the elements gi, g̃i occurring in h3,j as unknowns, then we can interpret equation (1)
as one equation in 2n + 2 unknowns. Thus if we have m := 2n + 2 credentials, then we obtain
2n+ 2 equations in as many unknowns.

Using linear algebra over the field Zq = GF(q), then, we can solve this system of linear equations
to the gi, g̃i, g

fz
i = g̃zi , as long as the square matrix of the coefficients,

M :=


y0,1 · · · y0,2n+2

ỹ0,1 · · · ỹ0,2n+2

...
. . .

...
yn,1 · · · yn,2n+2

ỹn,1 · · · ỹn,2n+2



3



is invertible (i.e., its determinant detM is unequal to 0). Since the numbers yi,j , ỹi,j are under our
control in a chosen-message attack, this should be easy to achieve. If we write mi,j for the j-th
entry of the i-th row of the inverse M−1 of M , we obtain

gi =

2n+2∏
j=1

h
m2i+1,j

3,j , g̃i =

2n+2∏
j=1

h
m2i+2,j

3,j , gzi =

2n+2∏
j=1

h
m2i+1,j

4,j , g̃zi =

2n+2∏
j=1

h
m2i+2,j

4,j .

This also shows that the scheme is already completely forgeable (in the sense that new credentials
with arbitrary attributes can be computed) with just 2n+ 2 collaborating users, instead of 22n+1.

3.2 Constructing a forged credential
Using the elements gi, g

f
i , g

z
i , g

fz
i constructed above, a new credential with attributes x1, . . . , xn

may be constructed as follows. Choose b1, b2 ∈R Zq randomly, and set

h = g0g
x1
1 · · · gxn

n ,

h2 = gf0 (g
f
1 )
x1 · · · (gfn)xn ,

h3 = gb10 (gf0 )
b2gb1x1

1 (gf1 )
b2x1 · · · gb1xn

n (gfn)
b2xn ,

h4 = (gz0)
b1(gfz0 )b2(gz1)

b1x1(gfz1 )b2x1 · · · (gzn)b1xn(gfzn )b2xn .

Then

h2 = hf , h3 = hb1hb22 , h4 = (hb1hb22 )z

as required.

4 The problem in the unforgeability argument
An argument for unforgeability is given in [HK14] in section 4, “Security Analysis”. The argument
is based on the appendix from [Ver01], in which it is argued that credentials of the form

h, h2 = hf , h4 = (hb1hb22 )z (2)

are unforgeable. Here, as above, f and z are the issuer’s secret key, and the numbers b1, b2 are
part of the credential (i.e., known to the user). However, the difference between Verheul’s system
is that there h is randomly chosen from G1, and in particular, no participant of the system knows
the discrete log of h with respect to any other element from G1, or any DL-representation of h
(i.e., an expression of h in terms of powers of g0, . . . , gn, such as (3)). By contrast, in Hanzlik and
Kluczniak’s U-Prove scheme the user knows numbers α, x1, . . . , xn such that

h = (g0g
x1
1 · · · gxn

n )α. (3)

where the elements g0, . . . , gn are the same for all users. In this case, the argument from [Ver01]
does not apply, so that no argument can be based on it.

In addition, we wish to point out that the argument from the appendix in [Ver01] was meant
as a sketch, and in particular, there is the following subtlety. It is argued in the appendix that if
an adversary A manages to forge credentials of the form (2), i.e.

(h, h2, h4, b1, b2) = A
(
(hj , h2,j , h4,j , b1,j , b2,j)j=1,...,m

)

4



where the output (h, h2, h4, b1, b2) is valid (i.e., satisfying (2)), then either there must exist a j and
numbers k, ` ∈ Zq such that

(h, h2, h4, b1, b2) = (hkj , h
k
2,j , h

k`
4,j , b1,j`, b2,j`)

or the adversary A can be used to solve discrete logarithms in G1. However, the argument mentions
certain “transformation factors” which are numbers like k, ` from Zq, and the algorithm sketched
by [Ver01] that uses the adversary A to compute discrete logarithms would need to know these
numbers in order to be able to work. However, it is not clear how to obtain these transformation
factors from the adversary A, or even if A is aware of them. We believe, however, that they can be
extracted from the adversary by an extension of the Known Exponent Assumption (see [Dam91],
where this assumption was introduced, and for example [BP04] and [Bit+14]).

References
[AHS11] G. Alpár, J. Hoepman, and J. Siljee. “The Identity Crisis. Security, Privacy and Usability

Issues in Identity Management”. In: CoRR abs/1101.0427 (2011). url: http://arxiv.
org/abs/1101.0427 (cit. on p. 1).

[Bic+14] P. Bichsel et al. D2.2 Architecture for Attribute-based Credential Technologies. Technical
report, final version, ABC4Trust. 2014. url: https://abc4trust.eu/download/
Deliverable_D2.2.pdf (cit. on p. 1).

[Bit+14] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E. Tromer.
“The Hunting of the SNARK”. In: IACR Cryptology ePrint Archive 2014 (2014), p. 580.
url: http://eprint.iacr.org/2014/580 (cit. on p. 5).

[BP04] M. Bellare and A. Palacio. “The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols”. English. In: Advances in Cryptology – CRYPTO 2004. Ed.
by M. Franklin. Vol. 3152. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2004, pp. 273–289 (cit. on p. 5).

[Bra00] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building in
Privacy. MIT Press, 2000 (cit. on p. 1).

[BSS05] I. F. Blake, G. Seroussi, and N. P. Smart, eds. Advances in Elliptic Curve Cryptography.
Cambridge Books Online. Cambridge University Press, 2005 (cit. on p. 2).

[Dam91] I. Damgård. “Towards Practical Public Key Systems Secure Against Chosen Ciphertext
Attacks”. In: Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings.
Ed. by J. Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Springer, 1991,
pp. 445–456 (cit. on p. 5).

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for cryptographers”. In:
Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121 (cit. on p. 2).

[HK14] L. Hanzlik and K. Kluczniak. “A Short Paper on How to Improve U-Prove Using
Self-Blindable Certificates”. In: Financial Cryptography and Data Security. Ed. by N.
Christin and R. Safavi-Naini. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2014, pp. 273–282 (cit. on pp. 1, 2, 4).

[PZ13] C. Paquin and G. Zaverucha. “U-Prove Cryptographic Specification V1.1 (Revision 3)”.
Released under the Open Specification Promise. Dec. 2013. url: http://research.
microsoft.com/apps/pubs/default.aspx?id=166969 (cit. on p. 1).

[Ver01] E. R. Verheul. “Self-Blindable Credential Certificates from the Weil Pairing”. In: Ad-
vances in Cryptology - ASIACRYPT. Ed. by C. Boyd. Vol. 2248. Lecture Notes in
Computer Science. Springer, 2001, pp. 533–551 (cit. on pp. 1, 4, 5).

5

http://arxiv.org/abs/1101.0427
http://arxiv.org/abs/1101.0427
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://abc4trust.eu/download/Deliverable_D2.2.pdf
http://eprint.iacr.org/2014/580
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-662-45472-5_17
http://dx.doi.org/10.1007/978-3-662-45472-5_17
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://research.microsoft.com/apps/pubs/default.aspx?id=166969

	Introduction
	The credential scheme
	Forging new credentials
	Constructing signatures on the elements g_i
	Constructing a forged credential

	The problem in the unforgeability argument

