
COMPOSITIONS OF LINEAR FUNCTIONS
AND APPLICATIONS TO HASHING

VLADIMIR SHPILRAIN AND BIANCA SOSNOVSKI

ABSTRACT. Cayley hash functions are based on a simple idea of using a pair
of (semi)group elements, A and B, to hash the 0 and 1 bit, respectively, and
then to hash an arbitrary bit string in the natural way, by using multiplication
of elements in the (semi)group. In this paper, we focus on hashing with linear
functions of one variable over Fp. The corresponding hash functions are very
efficient, in particular, due to the fact that a linear function is determined by
its values at two points. Thus, we show that hashing a bit string of length n
with our method requires, in general, at most 2n multiplications in Fp, but with
particular pairs of linear functions that we suggest, one does not need to perform
any multiplications at all. We also give explicit lower bounds on the length
of collisions for hash functions corresponding to these particular pairs of linear
functions over Fp.

1. INTRODUCTION

Hash functions are easy-to-compute compression functions that take a variable-
length input and convert it to a fixed-length output. Hash functions are used as
compact representations, or digital fingerprints, of data and to provide message
integrity. Basic requirements are well known:

(1) Preimage resistance (sometimes called non-invertibility): it should be com-
putationally infeasible to find an input which hashes to a specified output;

(2) Second pre-image resistance: it should be computationally infeasible to
find a second input that hashes to the same output as a specified input;

(3) Collision resistance: it should be computationally infeasible to find two
different inputs that hash to the same output.

A challenging problem is to determine mathematical properties of a hash func-
tion that would ensure (or at least, make it likely) that the requirements above are
met.

An interesting direction worth mentioning is constructing hash functions that are
provably as secure as underlying assumptions, e.g. as discrete logarithm assump-
tions; see [3] and references therein. These hash functions however tend to be not
very efficient. For a general survey on hash functions we refer to [6].

Another direction, relevant to the present paper, is using a pair of elements, A
and B, of a semigroup S, such that the Cayley graph of the semigroup generated by

Research of the second author was partially supported by the NSF grant CNS-1117675 and by
the ONR (Office of Naval Research) grant N000141210758.

1



2 COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING

A and B has a large girth and therefore there are no short relations in the semigroup,
meaning there are no short collisions for the relevant hash function. Probably the
most popular implementation of this idea so far is the Tillich-Zémor hash function
[12]. We refer to [8] and [10] for a more detailed survey on Cayley hash functions.

The Tillich-Zémor hash function, unlike functions in the SHA family, is not a
block hash function, i.e., each bit is hashed individually. More specifically, the “0”
bit is hashed to a particular 2× 2 matrix A, and the “1” bit is hashed to another
2×2 matrix B. Then a bit string is hashed simply to the product of matrices A and
B corresponding to bits in this string. For example, the bit string 1000110 is hashed
to the matrix BA3B2A.

Tillich and Zémor use matrices A, B from the group SL2(R), where R is a com-
mutative ring (actually, a field) defined as R = F2[x]/(p(x)). Here F2 is the field
with two elements, F2[x] is the ring of polynomials over F2, and (p(x)) is the ideal
of F2[x] generated by an irreducible polynomial p(x) of degree n (typically, n is a
prime, 127 ≤ n ≤ 170); for example, p(x) = x131 +x7 +x6 +x5 +x4 +x+1. Thus,
R = F2[x]/(p(x)) is isomorphic to F2n , the field with 2n elements.

Then, the matrices A and B are:

A =

(
α 1
1 0

)
, B =

(
α α+1
1 1

)
,

where α is a root of p(x).
This particular hash function was successfully attacked in [5] and [9]; see also

[7] for a more general attack approach. It should be pointed out though that the
general attack in [7] works in super-polynomial time in the size of n; in particular,
it becomes infeasible already for the value n = 131 suggested in [12]. The attack in
[5] is more special, targeted specifically at the hash function in [12] (in particular,
they use a known result about a worst-case behavior of the Euclidean algorithm in
F2[x]), and it does actually find short collisions for various irreducible polynomials
p(x), including polynomials p(x) of a rather high degree, like n = 2039. Again,
this attack is specific to (some pairs of) matrices over a Galois field of characteristic
2. A more general attack in [7] works in super-polynomial time in the size of n,
so it is infeasible for a generic irreducible polynomial p(x) of degree n > 100, say.
To be fair though, we should mention that with p(x) of a high degree, efficiency
of the Tillich-Zémor hash function will fall behind that of hash functions in the
SHA family; the latter are the prevailing standard for hash functions, at least in the
United States. We also note that the attack reported in [9] is rather different: it
provides a technique for finding preimages, rather than collisions, for the Tillich-
Zémor hash function.

In a recent paper [1], the authors suggested other pairs of matrices, of the form(
1 k
0 1

)
and

(
1 0
k 1

)
, k ≥ 2, with the idea that since these matrices generate

a free monoid over Z, there cannot be any short relations between them over Fp.
In this paper, we also offer hashing with a pair of 2 × 2 matrices, but these

matrices generate a (semi)group isomorphic to the (semi)group (with respect to
composition) of linear functions of one variable over Fp. The corresponding hash



COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING 3

functions are very efficient since a linear function is determined by its values at
two points. If the values at two selected points are computed in parallel, then the
time complexity of hashing a bit string of length n with our method is determined
by performing n multiplications and about 2n additions in Fp (see our Section 4 for
more details), which is as efficient as it gets. In fact, if one uses linear functions
with small coefficients at x, then multiplications can be avoided altogether. The
input bit string for our hash function can have an arbitrary length, while the output
(with our suggested parameters) is a pair of 256-bit numbers or, equivalently, a
512-bit string. If we compare this to the Tillich-Zémor hash function and to the
hash function in [1], we see that in these previous proposals, if one uses a ground
field of size 2256, then the size of a hash will be 1024 bits, versus 512 bits in our
case, which gives our hash function another advantage as far as performance is
concerned.

In Section 2, we give explicit lower bound on the length of collisions for the
hash functions corresponding to some particular pairs of linear functions over Fp.
One particular pair is f (x) = 2x+1, g(x) = 3x+1, and we show in Section 2 that if
two bit strings have the same hash, then the length of at least one of the bit strings
is at least log3 p, which gives a lower bound of 162 if p is a 256-bit number. For
another particular pair, f (x) = 2x+ 1, g(x) = 2x, the lower bound is 256 (again,
if p is a 256-bit number), but at this time we are reluctant to recommend one of
these pairs over the other. While neither pair should be vulnerable to “generic”
attacks (on finding collisions) due to a high lower bound on collision length, the
pair (2x+ 1, 2x) might be more vulnerable to some special attacks, although this
is just speculative so far because we are unaware of any such special attack at this
time.

In Section 3, we discuss security of our hash function, and in Section 4 we
give some performance results and compare them to performance of SHA-512.
Here we just mention that a serious advantage (in terms of performance) of Cay-
ley hash functions, including our function, over hash functions in the SHA fam-
ily is that computing any Cayley hash function H can be easily parallelized due
to the homomorphic property H(AB) = H(A)H(B) and the associativity property
H(ABC) = H(AB)H(C) = H(A)H(BC) for any bit strings A,B,C. (Here AB means
a simple concatenation of A and B.) Thus, one can split a bit string in several pieces,
compute the hash of each piece separately, and then multiply out the hashes.

2. PAIRS OF LINEAR FUNCTIONS THAT GENERATE A FREE SEMIGROUP

Let f (x) = ax+ b and g(x) = cx+ d be two linear functions with integer coef-
ficients. The semigroup (under composition) generated by these two functions is
isomorphic to the semigroup of matrices generated by the following 2×2 matrices
(assuming that the composition f (x)g(x) is interpreted so that g(x) is applied first):

A =

(
a b
0 1

)
, B =

(
c d
0 1

)
.



4 COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING

It follows from the results of [2] that the semigroup generated by f (x) and g(x)
is free if f (x) and g(x) do not commute and a,c ≥ 2. Thus, for example, f (x) =
2x+ 1 and g(x) = 3x+ 1 generate a free semigroup since these two functions do
not commute: f (x)g(x) = 6x+ 3, while g(x) f (x) = 6x+ 4. If the coefficients of
linear functions are now considered as elements of some Fp rather than Z, then
there cannot be an equality of two different semigroup words in f (x) and g(x)
unless at least one of the coefficients in at least one of the two words is ≥ p. This
will therefore give a lower bound on the minimum length of bit strings where a
collision may occur. Specifically, we have, for example:

Proposition 1. Let the ‘1’ bit be hashed to f (x) = 2x+1 and the ‘0’ bit be hashed
to g(x) = 3x+1. If two bit strings U and V hash to the same linear function, then
the length of either U or V is at least log3 p.

Proof. Suppose the length of U is n, and the length of V is ≤ n. If L(x) = rx+ s
is the hash of U , then it is easy to see that both coefficients r and s are less than or
equal to 3n. Therefore, if 3n < p, the hashes of U and V cannot be equal because
otherwise they would be equal also over Z, which is impossible.

Thus, if the longer of the two bit strings has length < log3 p, their hashes cannot
be equal over Fp. �

For example, if p is on the order of 2256, the above hash function cannot have
collisions unless the length of at least one of the colliding bit strings is at least 162.

We note that the pair of functions f (x) = 2x+1 and g(x) = 2x generates a free
semigroup, too, and the corresponding lower bound for collision length would be
256 for a 256-bit p.

3. SECURITY

Not many attacks on Cayley hash functions are known. Probably the most
“generic” one is the “lifting attack” [11]. The idea is to find a preimage of a given
hash in the ambient free (semi)group by “splitting out” one (semi)group generator
at a time, so that the “size” of the result would decrease at every step. In our con-
text, where the hash is a linear function H(B) = rx+ s over Fp, one would lift it to
a linear function Rx+S over Z (i.e., R = r+ k1 p, S = s+ k2 p for some k1,k2 ∈ Z)
and try to multiply it by either f−1(x) or g−1(x) to decrease one or both coefficients
(or, perhaps, to decrease their sum). However, there are two major obstacles that
basically make this attack void. The main obstacle is that lifting itself in our situa-
tion is by no means unique, and there is no way to tell just by inspection which one
is a “good” lifting. This is in sharp contrast with the situation considered in [11]
where a “good” lifting can be detected by inspection. The only necessary condition
for a lifting to be “good” in our situation is that the coefficient at x should be of the
form 2m3n, but the only condition (visible by inspection) on the constant term S is
that S−1 should be divisible by either 2 or 3, which leaves a lot of possibilities for
lifting.

The other obstacle is that splitting out a generator in this case is not unique
either, because at every step of the procedure, one would have the constant term C



COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING 5

such that C− 1 is divisible by both 2 and 3 with non-negligible probability, thus
creating a tree of possible reduction sequences, where only one sequence is correct
(assuming that the lifting was “good” to begin with, so that there actually is a
correct sequence). Thus, even if the attacker was lucky to pick a “good” lifting,
he will still have to search over exponentially many (in the length of an input bit
string) possible reduction sequences. To be fair though, this problem is relatively
insignificant compared to the problem of finding a “good” lifting, especially for the
constant term s.

Another known attack on a Cayley hash function is that in [5], but there a colli-
sion for the Tillich-Zémor hash function [12] was found using an algorithm specific
to Galois fields of characteristic 2. A more general attack in [7] uses a “birthday
paradox” kind of argument and involves a “brute force” search over all bit strings
of a length depending on the size of the ground field. In our situation, since we
have a solid lower bound of 162 for the minimum length of colliding bit strings
(if p is on the order of 2256), a similar approach would involve a “brute force”
search over bit strings of length about 80, which is computationally infeasible, so
the “birthday paradox” reduction is simply not enough to make the attack feasible
with our suggested size of p.

We have also experimentally verified some statistical properties of our hash
function. In particular, for a number of randomly chosen bit strings B (of length
500 in our experiments), the set of pairs of numbers (r,s) coming from the hash
H(B) = rx+ s is uniformly distributed over Fp ×Fp, as expected.

4. PERFORMANCE

Recall that computing any Cayley hash function H can be easily parallelized due
to the homomorphic property H(AB) = H(A)H(B) and the associativity property
H(ABC) = H(AB)H(C) = H(A)H(BC) for any bit strings A,B,C. (Here AB means
a simple concatenation of A and B.) Thus, one can split a bit string in several
pieces, compute the hash of each piece separately, and then multiply out the hashes
(in our situation, multiplication is composition of (linear) functions).

A nice additional feature of our Cayley hash function, which is based on linear
functions, is that parallelization in this case can be taken a little further. Since any
linear function is determined by its values at two points, we can run evaluation of
the composite linear function at two pints in parallel, thus reducing the computation
time by half to begin with.

To compare performance of our hash function (with f (x) = 2x+ 1 and g(x) =
3x+ 1) to that of to other hash functions, we first note that the input bit string in
our situation can have an arbitrary length, while the output (with our suggested
parameters) is a pair of 256-bit numbers or, equivalently, a 512-bit string. That
means, the output is of the same length as it is for SHA-512, so below we compare
performance of our hash function to that of SHA-512, see [4].

According to [4], SHA-512 hashes approximately 99 MiB/second (MiB stands
for mebibyte, and 1 MiB = 220 bytes) and so this is roughly 108 bytes per second.
Our proposed hash function, with p = 2256 − 1053, hashes 108 bytes in about 2



6 COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING

seconds without any optimization or parallelization. The tests were performed on
an Intel Core i7 3.4GHz computer with 8 GB of RAM using Python 3.4. With a
standard 4-core desktop computer, parallelizing computation (see the beginning of
this section) using all 4 cores will therefore make hashing of long bit strings with
our hash function (again, without any optimization) approximately twice as fast as
with SHA-512.

To conclude this section, we mention one possible way to optimize computation
of our hash function. Even though all computation is done in Fp, in our situation
we can altogether avoid multiplications during reductions modulo p. This is be-
cause coefficients in our linear functions f (x) = 2x+1 and g(x) = 3x+1 are quite
small, so when we multiply an integer x < p by 2 or 3 and it becomes greater than
p, all we have to do to reduce it modulo p is to subtract p or 2p. Thus, the total
number of multiplications in the course of computing the value of a composition
of n linear functions at a point is n, and since we have to do it for two different
points, the number of multiplications is 2n, as claimed in the Introduction. More-
over, with coefficients at x as small as 2 and 3, multiplications can be avoided
altogether because multiplication by 2 is the same as addition, and multiplication
by 3 amounts to two additions. Thus, with our suggested parameters, one needs to
perform between 3n and 4n additions and no multiplications to hash a bit string of
length n.

It may seem that one inversion is still needed to recover a linear function from
its values at two points, but since the choice of the two points x1,x2 is up to us, we
can choose them so that x2 − x1 = 1, so that inversion is actually not needed.

5. CONCLUSIONS

• We have described a very efficient Cayley hash function where “0” and “1”
bits are hashed by linear functions over Fp. With particular suggested pair of linear
functions f (x) = 2x+ 1,g(x) = 3x+ 1, one needs to perform between 3n and 4n
additions and no multiplications to hash a bit string of length n.

• Computation of any Cayley hash function can be easily parallelized. If p is
on the order of 2256, then the output of our hash function is of size 512 bits, as in
SHA-512. At the same time, on a 4-core processor our hash function outperforms
SHA-512, even without any optimization.

• If p is on the order of 2256, then with the suggested pair of linear functions,
our hash function does not have collisions unless the length of at least one of the
colliding bit strings is at least 162.

REFERENCES

[1] L. Bromberg, V. Shpilrain, A. Vdovina, Navigating in the Cayley graph of SL2(Fp) and
applications to hashing, preprint, http://arxiv.org/abs/1409.4478

[2] J. Cassaigne, T. Harju, J. Karhumki, On the undecidability of freeness of matrix semigroups,
Internat. J. Algebra Comput. 9 (1999), 295–305.

[3] S. Contini, A. K. Lenstra and R. Steinfeld, VSH, an Efficient and Provable Collision Resistant
Hash Function, in: Eurocrypt 2006, Lecture Notes Comp. Sci. 4004 (2006), 165–182.

[4] W. Dai, Crypto++ 5.6.0 benchmarks, http://www.cryptopp.com/benchmarks.html



COMPOSITIONS OF LINEAR FUNCTIONS AND APPLICATIONS TO HASHING 7

[5] M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-Zémor hash
function, J. Cryptolgy 24 (2011), 148-156.

[6] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[7] C. Mullan and B. Tsaban, Short collision search in arbitrary SL2 homomorphic hash func-
tions, preprint, http://arxiv.org/abs/1306.5646

[8] C. Petit, On graph-based cryptographic hash functions, PhD thesis, 2009.
[9] C. Petit, J. Quisquater, Preimages for the Tillich-Zémor hash function, in: SAC 10, Lecture

Notes Comp. Sci. 6544 (2010), 282-301.
[10] C. Petit and J.-J. Quisquater, Rubik’s for cryptographers, Notices Amer. Math. Soc. 60

(2013), 733–739.
[11] J.-P. Tillich and G. Zémor, Group-theoretic hash functions, in Proceedings of the First

French-Israeli Workshop on Algebraic Coding, Lecture notes Comp. Sci. 781 (1993), 90–
110.

[12] J.-P. Tillich and G. Zémor, Hashing with SL2, in CRYPTO 1994, Lecture Notes Comp. Sci.
839 (1994), 40–49.

DEPARTMENT OF MATHEMATICS, THE CITY COLLEGE OF NEW YORK, NEW YORK, NY
10031

E-mail address: shpil@groups.sci.ccny.cuny.edu

GRADUATE CENTER, CITY UNIVERSITY OF NEW YORK

E-mail address: bsosnovski@gmail.com


