
Achieving Compactness Generically:

Indistinguishability Obfuscation

from Non-Compact Functional Encryption

Prabhanjan Ananth∗ Abhishek Jain† Amit Sahai ‡

Abstract

We show how to construct indistinguishability obfuscation (iO) for circuits from any non-
compact functional encryption (FE) scheme with sub-exponential security against unbounded
collusions. We accomplish this by giving a generic transformation from any such FE scheme into
a compact FE scheme. By composing this with the transformation from sub-exponentially secure
compact FE to iO (Ananth and Jain [CRYPTO’15], Bitansky and Vaikuntanathan [FOCS’15]),
we obtain our main result.

Our result provides a new pathway to iO. For example, by combining our result with the
FE scheme of Garg et al. [ePrint 2014/666], we obtain a new construction of iO based on the
sub-exponential GGHZ assumption over composite-order multilinear maps.

We also identify a “simple” function family for FE that suffices for our general result. We
show that the function family Fsimple is complete, where every fsimple ∈ Fsimple consists of three
evaluations of a Weak PRF followed by finite operations. We believe that this may be useful
for realizing iO from weaker assumptions in the future.

∗Center for Encrypted Functionalities and Department of Computer Science, UCLA. prabhanjan@cs.ucla.edu
This work was partially supported by a grant from the Simons Foundation (#360584 to Prabhanjan Ananth).
†Department of Computer Science, John Hopkins University. abhishek@cs.jhu.edu. Research supported in part

from a DARPA/ARL SAFEWARE award and NSF CNS-1414023.
‡Center for Encrypted Functionalities and Department of Computer Science, UCLA. sahai@cs.ucla.edu. Re-

search supported in part from a DARPA/ONR PROCEED award, a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval
Research under Contract N00014-11-1-0389. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

0

1 Introduction

Program obfuscation [Had00, BGI+01] concerns with the problem of making a computer program
“unintelligible” while still preserving its functionality. While general-purpose program obfuscation
remained an elusive goal for several decades, the influential work of Garg et al [GGH+13b] changed
this picture by providing the first candidate construction of indistinguishability obfuscation (iO).
Since then, iO has found tremendous appeal in cryptography by enabling several advanced crypto-
graphic goals such as deniable encryption [SW14], functional encryption [GGH+13b], round-optimal
secure computation [GGHR14], digital watermarking [NW15, CHV15], time-lock puzzles [BGJ+15],
and more.

While the research direction of using iO to build other cryptographic primitives has already
met much success, building iO itself from standard cryptographic assumptions has so far proven
to be notoriously difficult. The security of candidate iO constructions in the works of [GGH+13b,
BGK+14, BR14, AGIS14, Zim15, SZ14, AB15] is only proven in generic models and lacks a reduction
in the standard model. The recent works of Pass et al. [PST14] and Gentry et al. [GLSW15] provide
the first standard model reductions: [PST14] relies on an “uber assumption” on multilinear maps,
while [GLSW15] relies on the “multilinear subgroup elimination assumption” (see [PST14] and
[GLSW15] for the description of the respective assumptions).

So far, [PST14, GLSW15] are the only known candidates for general-purpose iO whose security
can be based on concrete natural cryptographic assumptions.

Very recently, Ananth and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15] presented
a new direction for building iO. They give a transformation via functional encryption [SW05,
BSW11], specifically transforming compact public-key functional encryption (FE) for NC1 to iO
for P/Poly. Very roughly, in a compact FE scheme, the running time of the encryption algorithm
must only have a sublinear dependence on the size complexity of functions from the function family
supported by the scheme. However, presently, the only known FE constructions that achieve this
compactness property are based on iO [GGH+13b, Wat14]. As such, this approach, so far, has not
yielded any new iO candidates.

1.1 This Work

In this work, we continue to explore this line of research and obtain the following new results.

iO from Non-Compact Collusion-Resistant FE. Our main result is a reduction constructing
iO from any collusion-resistant public-key FE scheme that is not necessarily compact.

To achieve this, we first give an unconditional transformation from any public-key FE for NC1

that is secure against unbounded collusions (w.r.t. selective indistinguishability security definition
of [BSW11]) to a selective-secure compact public-key FE for NC1.1 The resultant scheme also
inherits security against unbounded collusions.2

Combining this transformation with the results of [AJ15, BV15], we obtain the following:

1There exist general bootstrapping theorems that transform any compact FE scheme for NC1 into a compact FE
scheme that supports circuits in P/Poly [GVW12, ABSV15]. Hence for simplicity, we only focus on NC1.

2Furthermore, our transformation also works in the secret-key setting. That is, if we start with a secret-key
collusion-resistant FE scheme, then we obtain a secret-key compact FE scheme.

1

Figure 1 A figure illustrating the functionalities for which keys are needed to obtain iO. The circles represent the
constants found in the function key, that are fed to the components in boxes. The box labeled “Finite” represents a
finite (constant) set of operations.

Theorem 1 (Informal). Public-key functional encryption for NC1 with sub-exponential indistin-
guishability security in the selective model against unbounded collusions implies indistinguishability
obfuscation for P/Poly.

Our work gives a new pathway for constructing iO. For example, a recent work of Garg et
al. [GGHZ14] constructs a collusion-resistant public-key FE scheme for NC1 based on the GGHZ
assumption on composite-order multilinear maps (see [GGHZ14] for a formal description of their as-
sumption). Combining their result with the above theorem yields a new general-purpose candidate
for iO.

Corollary 1 (Informal). Assuming sub-exponential hardness of the GGHZ assumption on composite-
order multilinear maps, there exists an indistinguishability obfuscation scheme for P/Poly.

This yields only the third known construction of iO with a security reduction to an underlying
natural assumption. Moreover, we see it as evidence that our approach is likely to yield other new
approaches to constructing iO.

iO from FE for “simple” functions. In the second part of the paper, we set out to identify
a “simple,” concrete function family in NC1 that suffices for Theorem 1. We consider the function
family Fsimple where every fsimple ∈ Fsimple corresponds to three weak PRF evaluations followed by
some simple, finite operations. See Figure 1 for an illustration of fsimple and Figure 3 in Section 4
for a formal description.

We show that collusion-resistant FE for Fsimple is sufficient to obtain iO for P/Poly. We can, in
fact, further simplify Fsimple such that each function in Fsimple corresponds to a “local” evaluation
of a polynomial-stretch PRG followed by some simple, finite operations.3

Future Directions. All current iO candidates rely on the same core cryptographic primitive,
namely, multilinear maps [GGH13a, CLT13, GGH15, CLT15]. This situation is unsatisfactory in

3This approach only yields compact FE with bounded collusion-resistance, but it suffices for constructing iO. See
Remark 4 in Section 3 for details.

2

light of several recent attacks on [CHL+15, GHMS14, BWZ14, CLT14, CGH+15] on some multilin-
ear maps candidates. We believe that our reduction makes it more likely that completely different
constructions, avoiding direct4 use of multilinear maps, may be achievable.

Related Work. Initial definitional works on FE [BSW11, O’N10] primarily considered the fully
collusion-resistant setting where the adversary can obtain any polynomial number of decryption
keys. However, FE for general circuits was also considered and achieved in the setting where the
adversary can only obtain a single decryption key [SS10]. This was later generalized to the bounded-
key setting [GVW12]. Both these schemes achieved non-compact FE. Goldwasser et al. [GKP+13]
made partial progress towards realizing the goal of making such FE schemes compact. They achieve
a single-key FE scheme for single-bit-output functions, where the size of the ciphertexts depend
only on the depth of the functions. Note however, that while none of these schemes require iO or
multilinear maps, we do not currently know how to achieve iO starting with these works, due to
the limitations discussed in this paragraph.

1.2 Technical Overview

Background. Recall that in a non-compact FE scheme, the running time of the encryption algo-
rithm may depend polynomially on the complexity of functions from the function family supported
by the scheme. Our goal is to remove this dependence generically, i.e., give a transformation from
any non-compact FE scheme into a compact FE scheme where the running time of the encryption
algorithm is independent of the function family.

Towards that end, let us first recall some related results known in the literature and folklore. The
works of [GVW12, ABSV15] show that dependence on the depth of the function can be removed
generically by using any (efficient) randomized encoding [IK00, AIK04, AIK06]. Recall that a
randomized encoding of any polynomial-sized circuit can be computed in only logarithmic depth.
Given this observation, their transformation is simple: instead of issuing a key for a function f , we
issue a key for a function f ′ where f ′ takes input x for f and computes an RE of (f, x). Indeed,
this idea has been used extensively throughout cryptography (see [App11] for a survey).

Next, we note the folklore observation that dependence on the function output-size can also be
removed generically if the underlying FE scheme is collusion-resistant. Very roughly, if a function
f has `-bit outputs, then the idea is to issue ` different keys Kf1 , . . . ,Kf` , where Kfi corresponds to
computing the ith bit of the output of f . Now, since each function key only corresponds to binary
functions, the resultant scheme will not have output-size dependence.

Of course, in a non-compact FE scheme, the running time of the encryption algorithm may
grow polynomially with the size of the function (in particular, the number of gates in the circuit
representation of the function). As such, the above simple transformations do not suffice for our
purpose.

Our Idea. Towards that end, our main idea is to further leverage collusion-resistance to achieve
compactness generically. Very roughly, instead of issuing a key for a circuit C, our idea is to issue

4A recent work of Paneth and Sahai [PS15] shows that iO implies a variant of multilinear maps called polynomial
jigsaw puzzles. In light of this, any construction of iO that avoids direct use of multilinear maps would still yield
a new construction of a variant of multilinear maps. For example, consider the following speculative scenario: if a
construction of non-compact FE for F from LWE is found, then by combining our result with [PS15] would not only
yield iO from LWE, but also a construction of a variant of multilinear maps from LWE.

3

multiple keys KG1 , . . . ,KG` where each key KGi corresponds to computing a “small component”
of C. From an efficiency viewpoint, we require that ` is some fixed polynomial in the security
parameter and for every i, the size of the circuit Gi computed by KGi is independent of |C|. From
a security viewpoint, intuitively, we want that given a key set KG1 , . . . ,KG` corresponding to a
circuit C and an encryption of a message x, an evaluator should only learn C(x).

Put differently, on the one hand, we want to “decompose” the process of computing C(x) into
` different parts such that the size of each part is independent of |C|. At the same time, these
parts should be “tied” together in such a manner that when put together, they reveal C(x), and
nothing else otherwise. A natural approach to achieve the efficiency requirement is to simply let
Gi correspond to evaluating the ith gate of C. Note, however, that this must be done in a manner
that preserves the security of the FE.

Program-Decomposable Randomized Encodings. To address this problem, we once again
turn to randomized encodings. Our idea is to use a specific form of RE that we refer to as program
decomposable RE (PD-RE). In a PD-RE scheme, the encoding process includes a “decomposition”
process for programs5 that decomposes a circuit C into several parts C1, . . . , C`, where for every i,
we have that |Ci| is independent of |C|. For every i, the encoding algorithm Enc on input Ci and

x outputs an encoding Ĉi, x. The decoding algorithm takes as input the tuple {Ĉi, x} and should
output y = C(x). The efficiency requirement is that for every i, |Enc| is independent of |C|. The
security requirement, however, is still the same as in standard RE: for any C = C1, . . . , C` and

input pair (x0, x1), the encodings (Ĉ1, x0, . . . , Ĉ`, x0) and (Ĉ1, x1, . . . , Ĉ`, x1) are computationally
indistinguishable as long as C(x0) = C(x1).

We observe that many RE schemes from the literature directly yield PD-RE schemes. For
example, Yao’s garbling technique [Yao86] yields a PD-RE scheme for general circuits. For any
circuit C, Ci corresponds to its ith gate and Enc on input (Ci, x) corresponds to computing the ith
“garbled gate table.” Later, we also identify another PD-RE scheme by modifying the RE scheme
of Kilian [Kil88] (which in turn uses Barrington’s theorem [Bar86]). This allows us to identify a
simple, concrete function family for collusion-resistant FE that suffices for our transformation. (See
Section 4 for details.)

Given such a PD-RE scheme, we obtain a compact FE construction as follows: a key for a circuit
C consists of a key set {KGi}i∈`. For every i, the function Gi associated with the key Ki takes as
input a message x and computes Enc(Ci, x). Note that this is a randomized procedure, and that
the randomness among different evaluations must be correlated. (We address this further below.)
An evaluator who is given a key set {KGi}i∈` and an encryption ct of x can now first perform `

FE decryptions of ct (one with each key Ki) to obtain a PD-RE (Ĉ1, x, . . . , Ĉ`, x) of (C, x). Next,
it can perform the RE decoding procedure to obtain C(x). From the security of PD-RE, we are
guaranteed that the evaluator cannot learn anything else.

We remark that the “program decomposability” property of garbled circuits has been used
in many cryptographic schemes in the past. To the best of our knowledge, the first such use is
due to Beaver et al. [BMR90] who used garbled circuits to construct constant-round multiparty
computation protocols. We note, however, that in their construction, they only use the fact that
each gate table can be computed in constant depth; for our purposes, it is important that the size

5For concreteness, we will restrict our discussion to circuits here, although this notion is compatible with other
computing models such as branching programs. See Section 3 for details.

4

of each decomposed unit is independent of the total size of the circuit. This property of garbled
circuits was recently used by Bitansky et al. [BGL+15] in their construction of succinct REs.

More Details. We now provide some more details of the above construction. First note that
the program encoding procedure is a randomized functionality. To provide randomness to each
invocation of the program encoding procedure Enc, as an initial “straw man” proposal, we consider
the following: we can modify the encryption algorithm of FE scheme to additionally encrypt a
random key K for a weak pseudo-random function (PRF) along with the input message x. The
function Gi computed by the key KGi now consists of the following steps: on input (K,x), it first
evaluates K on a random tag hardwired in its description to obtain ri. Next, it computes and
outputs Enc(Ci, x) using randomness ri.

We highlight a couple of problems with the above approach: first, we note that different in-
vocations of program encoding procedure Enc of known PD-RE schemes critically use correlated
randomness – intuitively, this use of correlated randomness is needed to make different parts of pro-
gram decomposition “talk with each other” when decoding. We address this need for correlation
by explicitly considering set systems that capture the necessary correlations, and incorporating this
into our construction: we refer the reader to Section 3 for details. A more important problem is
that we cannot directly rely upon the standard security of the underlying FE scheme to prove the
security of the new scheme. This is because Enc is a randomized functionality whereas standard
FE only considers deterministic functions. The recent work of [GJKS15] studies the problem of
public-key FE for randomized functions; however, they give a specific construction using iO which
is therefore not suitable for our purposes.6

To address this problem, we apply the “trapdoor circuits” technique of De Caro et al [CIJ+13].
Very roughly, we modify Gi such that it works in two modes: in the “honest” mode, it performs the
same functionality as discussed above. In the “trapdoor” mode, it outputs a fixed value hardwired
in its description. Using this idea, in our proof, we can switch from honest computation of Enci to
the PD-RE simulator. This step only relies on the security of the underlying PD-RE. Now, we can
simply change the message x0 in the ciphertext to x1 by relying upon the security of the underlying
FE scheme. Finally, we change Gi again to the honest mode, completing the proof. We remark
that several recent works [GGHR14, BS15, ABSV15]) make a similar use of the trapdoor circuits
technique in the context of FE.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We assume that the reader is
familiar with basic cryptographic concepts.

Given a PPT sampling algorithm A, we use x
$←− A to denote that x is the output of A when

the randomness is sampled from the uniform distribution.

6In the secret-key setting, [KSY15] show a generic transformation from any secret-key FE for deterministic func-
tions into one that supports randomized functions. However, no such transformation is known in the public-key
setting.

5

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation (iO) that was defined by Barak et
al. [BGI+01].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT algorithm iO is called an
indistinguishability obfuscator for a circuit class {Cλ}, where Cλ consists of circuits C of the form
C : {0, 1}λ → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}λ (i.e., it belongs to
the input space of C), we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x, we have:∣∣∣Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

2.2 Public-Key Functional Encryption

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ are sets of size,
functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collection of functions.
Each function f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.

A public-key functional encryption (FE) scheme FE for F consists of four algorithms (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec):

• Setup. FE.Setup(1λ) is a PPT algorithm that takes as input a security parameter λ and
outputs a public key, (master) secret key pair (FE.pk,FE.msk).

• Key Generation. FE.KeyGen(FE.msk, f) is a PPT algorithm that takes as input a master
secret key FE.msk and a function f ∈ Fλ and outputs a functional key FE.skf .

• Encryption. FE.Enc(FE.pk, x) is a PPT algorithm that takes as input a public key FE.pk
and a message x ∈ Xλ and outputs a ciphertext ct.

• Decryption. FE.Dec(FE.skf , ct) is a deterministic algorithm that takes as input a functional
key FE.skf and a ciphertext ct and outputs a string y ∈ Yλ.

Correctness. There exists a negligible function negl(·) such that for all sufficiently large λ ∈ N,
for every message x ∈ Xλ, and for every function f ∈ Fλ,

Pr
[
f(m)← FE.Dec

(
FE.KeyGen(FE.msk, f),FE.Enc(FE.pk,m)

)]
≥ 1− negl(λ)

where (FE.pk,FE.msk) ← FE.Setup(1λ), and the probability is taken over the random coins of all
algorithms.

6

Selective Security. We recall indistinguishability-based selective security for FE. This security
notion is modeled as a game between the challenger and the adversary where the adversary can
request functional keys and ciphertexts from the challenger. Specifically, the adversary can submit
function queries f to the challenger and receive corresponding functional keys. It can also submit
a message query of the form (x0, x1) and in response, the challenger encrypts message xb and
sends the ciphertext back to the adversary. The adversary wins the game if she can guess b with
probability significantly greater than 1/2 and if f(x0) = f(x1) for all function queries f . The only
constraint here is that the adversary has to declare the challenge messages at the beginning of the
game itself.

Definition 2 (IND-secure FE). A public-key functional encryption scheme FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) for a function family F is said to be qkey-selectively secure if for any PPT adversary
A, for all sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined as follows:

1. Challenge message query: A submits a message pair (x0, x1) to C.

2. The challenger C computes (FE.pk,FE.msk) ← FE.Setup(1λ) and sends FE.pk to the adver-
sary. It then computes ct = FE.Enc(FE.msk, xb) and sends ct to A.

3. Function queries: The following is repeated up to qkey times: A submits a function query
f ∈ Fλ to C. The challenger C computes the function key FE.skf ← FE.KeyGen(FE.msk, f)
and sends it to A.

4. If there exists a function query f such that f(x0) 6= f(x1), then the output of the experiment
is ⊥. Otherwise, the output of the experiment is b′, where b′ is the output of A.

Remark 1 (Selective-security against unbounded collusions). One can consider a strengthening of
the above definition where the adversary is allowed to make any unbounded polynomial number of
function queries. We refer to this as selective security against unbounded collusions.

2.2.1 Compactness

We now recall the notion of compact FE from [AJ15]. In a compact FE scheme, the running time of
the encryption algorithm only depends on the security parameter and the input message length. In
particular, it is independent of the complexity of the function family supported by the FE scheme.

Definition 3 (Compact FE). Let p(·) be a polynomial. A selectively secure public-key FE scheme
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec), defined for an input space X = {Xλ} and function
space F = {Fλ} is said to be compact if for all λ ∈ N, the running time of the encryption algorithm
FE.Enc, on input 1λ, FE.pk and a message x ∈ Xλ, is p(λ, qkey, |x|).

Remark 2 (Sublinear dependence). As observed in [BV15], a milder form of compact FE where
the running time of the encryption algorithm is sublinear in the size of any f ∈ F is sufficient
to obtain iO. For simplicity of exposition, however, we will use Definition 3 in this manuscript.
Indeed, our main transformation presented in Section 3 holds for this stronger definition.

7

3 Compact FE from Collusion-Resistant FE

We give a generic transformation from any collusion-resistant FE scheme (CRFE) that is not
necessarily compact to a compact FE (CFE) scheme.

The main tool underlying our transformation is the notion of Program Decomposable Random-
ized Encodings. We start by defining it below.

3.1 Program Decomposable Randomized Encodings

Let x be a string of length ` and let S be a subset of [`]. We define x∣∣S to be the string that is

obtained by concatenating all the bits of x corresponding to positions in S. We refer to this as “x
being restricted to S”.

Syntax. A Program Decomposable RE, defined for a function family F , consists of a tuple of
algorithms (Decomp,PrgEnc,Dec) described below:

• Program Decomposition: Let f be a function in F with input length `inp. The deterministic
algorithm Decomp takes as input a description of f and performs the following steps:

1. Compute a set of program components P = (P1, . . . , P`prg) representing f .

2. Generate two set systems S = {S1, . . . , S`prg} and I = {I1, . . . , I`prg}, where Si ⊆
[`R], Ii ∈ [`inp] for all i ∈ [`prg], and `R is a polynomial in (λ, `prg).

3. Output (P,S, I, `R).

• Program Encoding: Let P = P1, . . . , P`prg be a program decomposition and x = x1, . . . , x`inp
be an input for P that we wish to encode. Let S = {S1, . . . , S`prg} and I = {I1, . . . , I`prg} be
two set systems with Si ⊆ [`R], Ii ⊆ [`inp]. Let r be a string of length `R chosen uniformly at
random.

PrgEnc is a PPT algorithm that takes as input a program component Pi, string x∣∣Ii , random

string r∣∣Si and outputs an encoding P̂i, x.

• Output Decoding: Dec is a deterministic polynomial-time algorithm that takes as input an

encoding tuple

({
P̂i, x

}
i∈[`prg]

)
and outputs a value y.

This completes the description of the algorithms of a program-decomposable RE. We now state our
efficiency requirements and then formally define correctness and security of PD-RE.

Efficiency. On any input f , we require the output
(
P = {Pi}i∈`prg ,S = {Si}i∈`prg , I = {Ii}i∈`prg

)
of the Decomp algorithm to be such that:

• For every i ∈ [`prg], |Pi| = p(λ) where p(·) is a fixed polynomial that is independent of |P |.

• Every set in S and I is of size q = q(λ), where q(·) is a fixed polynomial that is independent
of |P |.

A direct consequence of the above two properties is that the running time of PrgEnc is t(λ),
where t(·) is a fixed polynomial that is independent of |P |.

8

Correctness. We say that a program decomposable RE (Decomp,PrgEnc,Dec) for F is correct
if for every f ∈ F and input x to f , we have that:

Pr

[
Dec

(
PrgEnc

(
P1, x∣∣I1 ; r∣∣S1

)
, . . . ,PrgEnc

(
P`prg , x

∣∣I`prg ; r∣∣S`prg
))

= P (x)

]
= 1− negl(λ)

where
(
P,S =

{
S1, . . . , S`prg

}
, I =

{
I1, . . . , I`prg

}
, `R
)
← Decomp(f), and r is a string of length `R

picked uniformly at random.

Security. We say that a program decomposable RE (Decomp,PrgEnc,Dec) for F is secure if for
every PPT adversary A, every f ∈ F and input pair (x0, x1) such that f(x0) = f(x1), we have
that: ∣∣∣Pr

[
A
(
P̂1, x0, . . . , ̂P`prg , x0

)
= 1
]
− Pr

[
A
(
P̂1, x1, . . . , ̂P`prg , x1

)
= 1
]∣∣∣ = negl(λ),

where P̂i, xb ← PrgEnc

(
Pi, x

b∣∣Ii ; r∣∣Si
)

,
(
P,S =

{
S1, . . . , S`prg

}
, I =

{
I1, . . . , I`prg

}
, `R
)
← Decomp(f),

and r is a random string of length `R.

3.2 Our Transformation: From CRFE to CFE

Let CRFE = (CRFE.Setup,CRFE.KeyGen,CRFE.Enc,CRFE.Dec) be any public-key FE scheme for
a function family FCRFE that is selective-secure against unbounded collusions. We defer the de-
scription of FCRFE to later. Given CRFE, we construct a compact public-key FE scheme CFE =
(CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec) for a function family F . The family Fλ = {Fλ}λ∈N
comprises of functions with input length λ. The associated message space is denoted by X = {Xλ}λ,
where Xλ = {0, 1}λ. The resulting scheme CFE inherits the security properties of CRFE, namely, it
achieves selective-security against unbounded collusions.

Our transformation uses the following additional tools:

• A program-decomposable RE scheme PDRE = (PDRE.Decomp,PDRE.PrgEnc,PDRE.Dec) for
the function family F .

• Weak pseudorandom function7 family PRF = {PRFK(·) : {0, 1}λ → {0, 1}} and a symmetric
encryption scheme Sym = (Sym.Setup,Sym.Enc, Sym.Dec). We assume that the ciphertexts
produced by Sym are pseudorandom.

We now describe the compact FE scheme scheme CFE below.

Setup CFE.Setup(1λ): On input security parameter λ, execute CRFE.Setup(1λ) to obtain (CRFE.MSK,
CRFE.PK). Output the master secret key CFE.MSK = CRFE.MSK and the public key CFE.PK =
CRFE.PK.

Key Generation CFE.KeyGen(CFE.MSK, f): On input a master secret key CFE.MSK = CRFE.MSK
and a function f ∈ Fλ,

7A weak pseudorandom function is a type of pseudorandom function wherein the adversary, in the security game,
is handed evaluations of the weak PRF on random points. This is in contrast to the scenario of PRFs, where the
adversary can choose his queries.

9

• Execute PDRE.Decomp(f) to obtain (P,S, I, `R). Parse P = (P1, . . . , P`prg).
• Pick tags tag1, . . . , tag`R , where tagi ∈ {0, 1}λ with `R = poly(`prg, λ).
• Parse S as {S1, . . . , S`prg}. Assign TAGi = (tagk)k∈Si for i ∈ [`prg].
• Pick strings CT1, . . . , CT`prg uniformly at random. (The length of CTi will be clear later).
• Execute CRFE.KeyGen(CRFE.MSK,Encode[Pi,TAGi, Ii, CTi]) with i ∈ [`prg] to obtain CRFE.ski.

The function Encode[·, ·, ·, ·] is described in Figure 2.

Output CFE.skf =
(
CRFE.sk1, . . . ,CRFE.sk`prg

)
.

Encode[P,TAG, I, CT](x,K,Sym.K,mode)

If mode = 0:

• Parse TAG as
(
tag1, . . . , tagp

)
.

• Execute the weak pseudo-random function PRFK(tagi) to get strings ri. Assign r = r1|| · · · ||rp.

• Execute PDRE.PrgEnc

(
P, x∣∣I ; r

)
to obtain the encoding P̂, x. Output P̂, x.

If mode = 1:

• Execute Sym.Dec(Sym.K,CT) to obtain P̂, x. Output P̂, x.

Figure 2

Encryption CFE.Enc(CFE.PK, x): On input a public key CFE.PK = CRFE.PK and a message x,
sample a PRF key K. Execute CRFE.Enc (CRFE.PK, (x,K,⊥,mode = 0)) to obtain CRFE.CT. Out-
put the ciphertext CFE.CTx = CRFE.CT.

Decryption CFE.Dec(CFE.skf ,CFE.CTx): On input a ciphertext CFE.CTx = CRFE.CT and a
functional key CFE.skf = (CRFE.sk1, . . . ,CRFE.sk`prg), execute the decryption algorithm CRFE.Dec(

CRFE.ski,CRFE.CT) to obtain P̂i, x. Execute PDRE.Dec

({
P̂i, x

}
i∈[`prg]

)
to obtain y. Output y.

This completes the description of the compact FE scheme.

Correctness. Observe that the output of CRFE.Dec(CRFE.ski,CRFE.CT) is an encoding P̂i, x.
These encodings are “valid”, meaning that they can be obtained by first running the decomposition
algorithm on f and then encoding the resulting decomposed program components along with x.

Therefore, by the correctness of PDRE, we have that the output of PDRE.Dec

({
P̂i, x

}
i∈`prg

)
is

f(x).

Compactness. First observe that the run-time of CFE.Enc depends only on |x|, run-time of
CRFE.Enc and λ. So it suffices for us to focus on CRFE.Enc. Since we make no assumptions on
the compactness of CRFE, it could very well be the case that the run-time of CRFE.Enc depends
polynomially on the size complexity of functions in FCRFE. Note, however, that the size of any
Encode ∈ FCRFE is simply a fixed polynomial in λ since it only involves weak PRF evaluations and
computing PrgEnc, whose complexity is polynomial in λ. Summing up, we have that the run-time
of CFE.Enc is poly(λ, |x|), as required.

10

Security. We prove the following theorem in Section 3.3:

Theorem 2 (Security of CFE). If CRFE is a public-key FE with selective-security against un-
bounded collusions, PDRE is a secure PD-RE scheme and PRF is a weak PRF, we have that CFE
is a public-key compact FE with selective-security against unbounded collusions.

Remark 3 (Secret-key setting). The above transformation is presented in the public-key setting.
It is easy to see that the same transformation also works in the secret-key setting. Namely, if we
start with a secret-key collusion-resistant FE scheme, we obtain a secret-key compact FE scheme.

Remark 4 (Replacing weak PRF with PRG). We can replace the weak PRF in the above approach
with a particular type of PRGs. We require the property that each block in the output of PRG can
be computed in time independent of the stretch of PRG. Now, the ith program component can be
encoded using (as randomness) the corresponding ith block in the output of PRG. Also note that the
generic symmetric-key encryption (used in mode 1) can also be instantiated with a one-time pad
implemented using a standard PRG. This is because we only need one-time security of the hardwired
ciphertext in our proof. Finally, we note that with this approach, the resulting scheme will not be
collusion-resistant, although this does not affect the implication to iO.

Remark 5 (Bootstrapping theorem). If we choose weak PRFs in NC1 and suitably instantiate
Program Decomposable RE (for ex., garbled circuits), Theorem 2 yields a bootstrapping mechanism
for transforming a non-compact collusion-resistant FE for NC1 into a compact collusion-resistant
FE for P/poly (assuming DDH or LWE). This is a generalization of the bootstrapping theorem
of [ABSV15] which was (non-)compactness preserving.

3.3 Proof of Theorem 2

The main idea is to hardwire the output program encodings in the functional keys. After this, we
can use the security of Program Decomposable RE to switch from one input to another. However,
functional keys do not hide its associated function and hence to enable the hardwiring process, we
use the trapdoor branch. We compute a symmetric encryption of the output encoding. We then
switch the mode in the message to now decrypt this (symmetric) ciphertext instead of executing
the encoding procedure. Once this is done, we have the program encoding hardwired as desired.
We now explain the technical details.

We define the advantage of a PPT adversary A in Hybridi.b to be AdvA,i.b.

∀ b ∈ {0, 1}, Hybrid1.b: This corresponds to the real experiment when the challenger uses the chal-
lenge bit b. That is, when the adversary submits a message pair (x0, x1), the challenger encrypts the
message xb as part of the challenge ciphertext. The hybrid outputs whatever the adversary outputs.

∀ b ∈ {0, 1}, Hybrid2.b: The output of the functional keys w.r.t the challenge ciphertext is hardwired
in their respective CT components.

At the beginning of the game, the challenger samples a symmetric key Sym.K by executing
Sym.Setup. It answers challenge message query from the adversary as in the previous hybrid. Denote
the challenge ciphertext answered by the challenger to be CFE.CT∗ = CFE.Enc(CFE.PK, (xb,K, 0)).

Upon receiving a function query f , the challenger first executes PDRE.Decomp(f) to obtain
(P,S, I, `R). It then picks the tags tag1, . . . , tag`R uniformly at random with tagi ∈ {0, 1}λ. Let

11

the set family S (resp., I) be denoted by {S1, . . . , S`prg} (resp., {I1, . . . , I`prg}). For i = 1, . . . , `prg,
it does the following:

1. Assigns TAGi = ∪k∈Si (tagk) for i ∈ [`prg]. Alternately, denote TAGi = (˜tag1, . . . , ˜tagp), where
p = |Si|.

2. Execute the weak pseudo-random function PRFKj (tagj) to get strings rj . Assign r =
r1|| · · · ||rp.

3. Execute PrgEnc(Pi,x∣∣Ii ; r) to obtain the encoding P̂i,x, where x = xb. Output P̂i,x.

4. The challenger encrypts P̂i,x by executing Sym.Enc(Sym.K, P̂i,x) to obtain Sym.cti. It sets
CTi = Sym.cti.

5. In the final step, it executes CRFE.KeyGen(CRFE.MSK,Encode[Pi,TAGi, Ii, CTi]) to obtain
CRFE.ski.

The challenger then sends across the functional key CFE.skf = (CRFE.ski)i∈[`prg] to the adversary.
The challenger repeats the above process for every function query.

Claim 1. Assuming the security of Sym, we have |AdvA,1.b − AdvA,2.b| ≤ negl(λ) for b ∈ {0, 1},
where negl is a negligible function.

∀ b ∈ {0, 1}, Hybrid3.b: The challenger changes the mode in the challenge ciphertext from mode = 0
to mode = 1. That is, upon receiving the message query (x0, x1), the challenger first samples the
symmetric secret key Sym.K by executing Sym.Setup. It then computes the challenge ciphertext
CFE.CT∗ ← CFE.Enc(CFE.PK, (⊥,⊥,Sym.K,mode = 1)). It sends CFE.CT∗ to the adversary. The
functional queries are answered as in the previous hybrid.

Claim 2. Assuming the selective security of CRFE, we have |AdvA,2.b − AdvA,3.b| ≤ negl(λ) for
b ∈ {0, 1}, where negl is a negligible function.

∀ b ∈ {0, 1}, Hybrid4.b: This hybrid is identical to Hybrid2.b except that the randomness supplied to
PDRE.PrgEnc is picked uniformly at random. Recall that the randomness in Hybrid2.b was generated
by executing weak pseudorandom functions. More precisely, we pick a random string r ∈ {0, 1}`R
at random. replace Bullet 2 in Hybrid2.b with the following.

2. Set r = r∣∣Si .
As before, the output of this hybrid is the adversary’s output.

Claim 3. Assuming the security of PRF , we have |AdvA,3.b − AdvA,4.b| ≤ negl(λ) for b ∈ {0, 1},
where negl is a negligible function.

Claim 4. Assuming the security of PDRE, we have |AdvA,4.0−AdvA,4.1| ≤ negl(λ), where negl is a
negligible function.

3.4 Proof of Theorem 2 cont’d: Proofs of Claims 1,2,3,4

Proof of Claim 1. We construct a reduction B that uses A to break the security of Sym.
The message query by the adversary is answered by B as in Hybrid1. The When B receives a

function query of f , it first decomposes f into program components and then computes its encodings
using the randomness derived from a weak PRF. This is performed as described in Hybrid2.b. We

12

denote the resulting encodings to be P̂i,x, for i ∈ [`prg], where x = xb. At this point, B submits

{P̂i,x}i∈[`prg] to the challenger of Sym. In return it receives the ciphertexts {CTi = Sym.cti}i∈[`prg].
Finally, B computes CRFE.ski ← CRFE.KeyGen(CRFE.MSK,Encode[Pi,TAGi, Ii, CTi]) for i ∈ [`prg].
It then sends CFE.skf = {CRFE.ski}i∈[`prg] to the adversary.

If Sym’s challenger answers with a random string then we are in Hybrid1.b otherwise we are in
Hybrid2.b. Thus, the advantage of B breaking the security of Sym is |AdvA,1.b − AdvA,2.b| which is
negligible in λ.

Proof of Claim 2. We construct a reduction B that uses A to break the security of CRFE.
When the reduction receives message query (x0, x1), it computes the following pairs of messages:(

ỹ0 = (xb,K,⊥, 0), ỹ1 = (⊥,⊥,Sym.K, 1)
)
,

where K is a weak PRF key and Sym.K is the secret key sampled using Sym.Setup. It then
forwards the message query (ỹ0, ỹ1) to the challenger of CRFE. The reduction B then forwards the
challenge ciphertext, received from the challenger of CRFE, to A. When B receives a functional
query f , it computes the functions Gi = Encode[Pi,TAGi, Ii, CTi], for i ∈ [`prg] as in Hybrid2.b (or
Hybrid3.b). It then forwards the functions G1, . . . , G`prg to the challenger of CRFE. Upon receiving
{CRFE.ski}i∈[`prg] from the challenger, B then sends CFE.skf = {CRFE.ski}i∈[`prg] to the adversary.

We have to first argue that B is a valid adversary in the game of CRFE. To do this we argue
that for every query Gi = Encode[Pi,TAGi, Ii, CTi] submitted by B, it holds that Gi(ỹ0) = Gi(ỹ1).
This is because we encrypt the output Gi(ỹ0) in CTi and the output of Gi(ỹ1) is the decryption of
CTi. Now that we have shown that B is a valid adversary, observe that if the challenger of CRFE
uses ỹ0 to encrypt the challenge message then we are in Hybrid2.b and if it uses ỹ1 to encrypt the
challenge message then we are in Hybrid3.b. Thus, the advantage of B in breaking the security of
CRFE is |AdvA,2.b − AdvA,3.b| which, by the security of CRFE, is negligible in λ.

Proof of Claim 3. We construct a reduction B that uses A to break the security of PRF .
B answers the challenge message query as in the previous hybrid. Upon receiving a function

query f , it first computes Decomp(f) as in Hybrid3.b (or Hybrid4.b). Let `prg be the number of
program components. The reduction then picks tags tag1, . . . , tag`R at random from {0, 1}λ, where
`R is a polynomial in (`prg, λ). It then queries the PRF oracle to get the evaluations of tagi for
every i ∈ [`R]. Denote by r the concatenation of the bits obtained from the evaluations. Then, B
proceeds as in Hybrid3.b or Hybrid4.b.

If the PRF oracle returned PRF evaluations then we are in Hybrid3.b otherwise we are in Hybrid4.b.
Thus, the advantage of B breaking the security of PRF is |AdvA,3.b−AdvA,4.b| which by the security
of PRF is negligible in λ.

Proof of Claim 4. We construct a reduction B that uses A to break the security of PDRE. We
just focus on the case when A makes a single message and function query. The general case when
A makes multiple message and function queries follows from a standard hybrid argument.
B handles the challenge message query (x0, x1) as in Hybrid4.0 or Hybrid4.1. Upon receiving a

function query f from A, it forwards this along with (x0, x1) to the challenger of PDRE. In return

it receives (P,S, I) and encodings {P̂i,x}i∈[`prg]. It then uses these encodings and the set systems

13

to generate the functional key CFE.skf = {CRFE.ski}i∈[`prg]. This functional key is then forwarded
to the adversary.

We first remark that B is a valid adversary in the security game of PDRE. To show this, it
suffices to argue that f(x0) = f(x1). This plainly follows from the fact that A is a valid adversary
in the game of CFE.

If the challenger of PDRE hands B the encodings of {P̂i,x}i∈[`prg] where x = x0 then we are in
Hybrid4.0, else if x = x1 we are in Hybrid4.1. This translates to the fact that B wins the security
game of PDRE with advantage |AdvA,4.0 −AdvA,4.1| which, by the security of PDRE is negligible in
λ.

4 Instantiations of Program Decomposable RE

We describe two different instantiations of PD-RE: one based on based on Kilian’s RE for polynomial-
size branching programs [Kil88, Bar86] and another based on Yao’s garbled circuits technique
[Yao86]. The former instantiation helps us identify a simple function family Fsimple such that
collusion-resistant FE for Fsimple suffices for our transformation in Section 3.

NC1 randomized encodings. We show how to instantiate program-decomposable RE used in
our transformation in Section 3 with a variant of Kilian’s RE [Kil88]. Since Kilian’s RE is described
for polynomial-size branching programs, we start by first briefly recalling the notion of branching
programs.

Kilian’s RE. We work over the symmetric group S5. A branching program with input length `inp

over S5 is represented by BP = (BP,χ), where BP =
(

(g01, g
1
1), . . . , (g0`prg , g

1
`prg

)
)

and χ : [`prg] →

[`inp]. Here, gbi ∈ S5. The evaluation of BP on input x is
`prg∏
i=1

g
xχ(i)
i .

A randomized encoding of (BP, x) is just
{
rig

xχ(i)
i r−1i+1

}
i∈[`prg]

, where r1, r`prg+1 = 1S5 (the

identity in S5 is denoted by 1S5) and ri, ∀i ∈ [2, `prg], is sampled at random from S5. To evaluate,
just compute the product of all the group elements in the encoding. That is, the evaluation is
`prg∏
i=1

rig
xχ(i)
i r−1i+1. Note that this is same as evaluating BP on x.

Program-decomposable RE. We now describe how to derive a PD-RE scheme from Kilian’s RE. We
refer to the resultant PD-RE scheme as PDREBP.

• Decomp: It takes as input a branching program BP = (BP,χ), where BP and χ are as defined
above. It then assigns the program component Pi = (i, g0i , g

1
i). The final program is P =

{Pi}i∈[`prg]. The set systems are computed in the following manner: first, construct a string
r of length `R. This string comprises of blocks with Block1 = (⊥, r2), Block`prg = (r`prg ,⊥)
and Blocki = (ri, ri+1) for i ∈ [2, `prg − 1]. The set Si is set to be all the positions in r
corresponding to Blocki. The set system S is set to {Si}i∈[`prg]. Similarly, the set Ii is set to
be {χ(i)}. And the set system I is just {Ii}i∈[`prg]. The final output is (P,S, I, `R).

• PrgEnc: It takes as input

(
Pi = (i, g0i , g

1
i), xχ(i); ri = r∣∣Si

)
. It then parses ri as (u, v). There

are three cases:

14

– Case 1. i = 1: It computes g̃ = g
xχ(i)
i · v−1. It outputs P̂i, x = g̃.

– Case 2. i = `prg: It computes g̃ = u · gxχ(i)i . It outputs P̂i, x = g̃.

– Case 3. i ∈ [2, `prg − 1]: It computes g̃ = u · gxχ(i)i · v−1. It outputs P̂i, x = g̃.

This completes the description of PrgEnc.

• Dec: It takes as input
(
P̂i, x

)
i∈[`prg]

and outputs
`prg∏
i=1

P̂i, x.

The output distribution of the program encoding algorithm is identical to the output distribution
of Killian’s RE.

We remark that the above PD-RE scheme can only be defined for NC1 circuits since the existence
of poly-sized branching programs for P/poly is not known.

Compact FE from Collusion-Resistant FE for “Simple” Functions. We now describe a
concrete function family Fsimple that suffices for our transformation in Section 3.

Let BP be a polynomial-size branching program. Let BP = (BP,χ), where BP = ((g01, g
1
1), . . . ,

(g0`prg , g
1
`prg

)). With respect to every element in the branching program BP, we define a 120 × 120

table (∵ |S5| = 120).

The Table function. We now define a function Table as follows:

• Case 1. i = 1: For b ∈ {0, 1}, we have Tablegbi
[u][v] = gbi · v−1.

• Case 2. i = `prg: For b ∈ {0, 1}, we have Tablegbi
[u][v] = u · gbi .

• Case 3. i ∈ [2, `prg − 1]: For b ∈ {0, 1}, we have Tablegbi
[u][v] = u · gbi · v−1.

Function family Fsimple. Given, the function Table, we can now replace the generic function family
FCRFE (consisting of functions Encode) used in our transformation in Section 3 with a simple func-
tion family Fsimple consisting of functions fsimple described in Figure 3. We replace the generic en-
cryption scheme used in Encode with the concrete symmetric encryption scheme defined in [Gol09],
where an encryption of a message m is (s, PRFK(s)⊕m).

fsimple[P = (i, g0i , g
1
i), τi, τi+1, I, CT = (s0, s1)](x,K,Sym.K,mode)

If mode = 0:

• u← PRFK(τi).

• v ← PRFK(τi+1).

• If xχ(i) = 0, output Tableg0i [u][v]. Else, output Tableg1i [u][v].

If mode = 1:

• Output PRFK(s0)⊕ s1.

Figure 3

By making the above modifications in our transformation, we obtain the following theorem:

15

Theorem 3. Let Fsimple be the function family described in Figure 3. A public-key FE scheme for
Fsimple with selective-security against unbounded collusions implies a compact FE scheme for NC1

with selective-security.

Garbled circuits. We show that Yao’s garbled circuits [Yao86] can be viewed as an instantiation
of the Program Decomposable RE scheme we define in Section 3. Before we show this, we briefly
recall the notion of garbled circuits. We first define an encoder that takes as input a circuit C and
input x. In the following description, we assume that C has fan-in 2 and fan-out 1. The encoder
then computes an encoding of C(x) as follows. First, two wire keys are associated to every wire
denoting bits 0 and 1.

1. A table of ciphertexts is then created for every gate in the circuit. To be more precise, there
is a PPT algorithm GateGarb that takes as input a description of gate G, keys (Ka

0 ,K
a
1)

corresponding to its first input wire wa, keys (Kb
0,K

b
1) corresponding to its first second wire

wb and keys (Kc
0,K

c
1) corresponding to its output wire wc of G. It then outputs a table TG.

We denote the randomness taken by GateGarb to be rG. It is important to note here that |rG|
depends only on λ (and not on the size of C).

2. There is a deterministic procedure ChooseInp that chooses one of the input wire keys corre-
sponding to the appropriate bit of x. That is, ChooseInp takes as input Wi, the description
of ith input wire of C, along with its associated keys (Ki

0,K
i
1) and it outputs the key Ki

xi .

So the final garbled circuit is
(
{TG}G∈Gates(C) ,

{
Ki
xi

}
i∈[|x|]

)
, where Gates(C) is a set of all gates in

C.
We now show to build an Program Decomposable RE scheme using garbled circuits.

• Decomp(C): It takes as input a circuit C. The program components are nothing but the

gates in C and its input wires. That is, P =
{
{PG = G}G∈Gates(C), {Pi}i∈[`inp]

}
, where Pi is

the description of ith input wire of C and `inp is the input length of C. We now deal with
computing the set systems. We first construct a string r. This string is made up of blocks,
one for every gate and every input wire of C. A block corresponding to a gate G, denoted
by BlockG, contains the wire keys of G’s input wires and its output wire. Furthermore,
BlockG also contains rG which is the randomness used by GateGarb to compute the table
of ciphertexts corresponding to G. We note that two blocks corresponding to two different
gates could contain same strings. For example, let the output wire of G be fed to the gate
G′ through the wire w. Then, both BlockG and BlockG′ contain wire keys of w. A block
corresponding to the ith input wire key wi of G, denoted by Blocki, contains the wire keys
corresponding to wi.

Let `R = |r|. The set SG ⊆ [`R] comprises of all the positions in r corresponding to BlockG
-substring of r. Further the set Si, associated to the ith input wire of C, comprises of all
the positions in r corresponding to Blocki -substring of r. It then computes the set system

S =
{
{SG}G∈Gates(C), {Si}i∈[`inp]

}
. On the other hand, Ii = {i} for all i ∈ [`inp]. The set

system I is then set to be {Ii}i∈[`inp].

Finally, it outputs
(
{PG}G∈Gates(C) ,S, I, `R

)
.

16

• PrgEnc(Pi, xi; ri = r∣∣Si): It takes as input program component Pi, input bit xi and random-

ness ri. If Pi is a gate, it does the following. It parses ri as a sequence of wire keys, denoted by
K, and string rG. It then executes GateGarb(Pi,K; rG) and the resulting TG is output. Else
if Pi is an input wire key, it executes ChooseInp(Pi, ri) to obtain Ki

xi which is then output.

• Dec
(
{TG}G∈Gates(C) ,

{
Ki
xi

}
i∈[`inp]

)
: It takes as input table of ciphertexts w.r.t to every gate

G in the circuit and input wire keys Ki
xi . It then executes the garbled circuit decoding

procedure to recover the output y.

5 Implications to iO

Here we state the implications of our main result towards achieving general-purpose iO.

iO from Collusion-Resistant FE. We first recall the main result of [AJ15, BV15]:

Theorem 4 ([AJ15, BV15]). Public-key compact FE for NC1 with sub-exponential security in the
selective model for a single key query implies iO for P/Poly.

Combining Theorem 4 with our transformation from Section 3, we obtain the following:

Theorem 5. Public-key FE for NC1 with sub-exponential security in the selective model against
unbounded collusions implies iO for P/Poly.

Combining Theorem 3 in Section 4 with Theorem 4, we obtain:

Theorem 6. Public-key FE for Fsimple (see Figure 3) with sub-exponential security in the selective
model against unbounded collusions implies iO for P/Poly.

iO from GGHZ assumption. Combining Theorem 5 with the main result of [GGHZ14] yields
the following:

Theorem 7. Assuming sub-exponential hardness of the GGHZ assumption over composite-order
multilinear maps, there exists an indistinguishability obfuscator for P/Poly.

6 Acknowledgements

This work was done in part while the authors were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant CNS-1523467.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, 2015.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

17

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding barrington’s theorem. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 646–658. ACM, 2014.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In 45th
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 166–175, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, 2015.

[App11] Benny Applebaum. Randomly encoding functions: A new cryptographic paradigm
- (invited talk). In Information Theoretic Security - 5th International Conference,
ICITS 2011, Amsterdam, The Netherlands, May 21-24, 2011. Proceedings, pages 25–
31, 2011.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in nc1. In Proceedings of the 18th Annual ACM Sym-
posium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages
1–5, 1986.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGJ+15] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. IACR Cryptology
ePrint Archive, 2015:514, 2015.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 221–238, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513,
1990.

18

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. In TCC, 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In CRYPTO, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable soft-
ware watermarking. IACR Cryptology ePrint Archive, 2015:373, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages
519–535, 2013.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of two
candidate fixes of multilinear maps over the integers. IACR Cryptology ePrint Archive,
2014:975, 2014.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In CRYPTO, 2015.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

19

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–527,
2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing without
zeroes: Cryptanalyzing multilinear maps without encodings of zero. IACR Cryptology
ePrint Archive, 2014:929, 2014.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption
for randomized functionalities. In Theory of Cryptography - 12th Theory of Cryptogra-
phy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II, pages 325–351, 2015.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
555–564. ACM, 2013.

[GLSW15] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In FOCS, 2015.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, vol-
ume 2. Cambridge university press, 2009.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 162–179, 2012.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology -
ASIACRYPT 2000, 6th International Conference on the Theory and Application of
Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,
pages 443–457, 2000.

20

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 294–304, 2000.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 20–31, 1988.

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized
functionalities in the private-key setting from minimal assumptions. In Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part II, pages 352–377, 2015.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against
arbitrary removal strategies. IACR Cryptology ePrint Archive, 2015:344, 2015.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PS15] Omer Paneth and Amit Sahai. On the equivalence of obfuscation and multilinear
maps. In Submission to TCC 2015, 2015.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 500–517, 2014.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pages 463–472,
2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings, pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

[SZ14] Amit Sahai and Mark Zhandry. Obfuscating low-rank matrix branching programs.
Technical report, Cryptology ePrint Archive, Report 2014/773, 2014. http://eprint.
iacr. org, 2014.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO, 2014.

21

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT, 2015.

22

	Introduction
	This Work
	Technical Overview

	Preliminaries
	Indistinguishability Obfuscation
	Public-Key Functional Encryption
	Compactness

	Compact FE from Collusion-Resistant FE
	Program Decomposable Randomized Encodings
	Our Transformation: From CRFE to CFE
	Proof of Theorem 2
	Proof of Theorem 2 cont'd: Proofs of Claims 1,2,3,4

	Instantiations of Program Decomposable RE
	Implications to iO
	Acknowledgements

