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Abstract: In this paper, we analyze the security claims of Extended Generalized Feistel 

Networks (EGFNs) schemes proposed by Berger et al [1]. We provide impossible differentials 

for 10 rounds of EGFNs with 16 branches which add up one round to the claim of 9 rounds in the 

impossible differential trail. Therefore, impossible differential trail covers 10 rounds for the 

EGFNs scheme, which is the best result on impossible differentials of EGFNs so far. We also 

provide several 10 round impossible differential trails to attack EGFNs based new cipher 

proposals. �–method is also used by authors to assert their claim for maximum number of 

rounds in impossible differential trails of EGFNs. This analysis indicates that �–method does 

not provide optimal results for this scheme. 

Keywords: Feistel Network, Generalized Feistel Network, Impossible Differential 

Cryptanalysis, �–method 

1. Introduction: 

Feistel networks [2] are the extensively studied structures among the cryptographic primitives as 

compared to the Substitution Permutation Networks (SPN) [5] and other structures. Feistel 

networks have been used widely as a base structure in the designs of a large number of 

cryptographic primitives including Data Encryption Standard (DES) [10]. The first application of 

Feistel network is found in the design of block cipher Lucifer [13] which was designed by Horst 

Feistel himself and later modified to be accepted as DES. Several generalizations of Feistel 

networks and their analysis [4][6][8][12][14] have also been published in the literature and 

applied in the new block cipher proposals. EGFNs have been proposed as a new class of 

generalized Feistel schemes for cryptographic applications. 

The classical Feistel network processes the data by dividing the block length n into two equal 

parts: b1 and b2. Several generalizations of Feistel networks are proposed by increasing the 

number of divisions of the block length n from 2 parts to k parts: b1, b2,…bk. The block length n 

may be divided into k equal or unequal parts. The unequal division [12][15] of block length has 

not gained much attention of designers and it is not used in practice for designing new 

cryptographic primitives. The division of block is mostly done into k equal parts and these k 

divisions are mostly multiples of 2. The Feistel and generalized Feistel networks (GFN) with 

such divisions are called balanced Feistel and balanced GFN with k branches. Block cipher 

designs based on GFN proposed in the literature are mostly 4-branch GFNs. Several studies on 

the 4-branch GFNs have been published and the categorization of 4-branch GFN is done in 4 



ways: type I, type II, type III and type IV [4]. This categorization is basically done on the basis 

of number of round functions used and the number of Feistel branches remaining unchanged for 

the next round. 

Our Contributions: We have applied impossible differential attack on the particular scheme of 

EGFNs with 16 branches, 64-bit block size and diffusion delay d=4 (the minimum number of 

rounds in which the full diffusion is achieved) as proposed in SAC 2013 by Berger et al. It was 

claimed by authors that maximum number of rounds covered in impossible differential trail is 

2d+1 for this scheme. �-method is used to provide accurate estimates for the maximum number 

of rounds in the impossible differential trails of block ciphers [7][9]. Authors have also 

supported their claim with the results obtained using �-method. For d=4, the maximum number 

of rounds in the trail is claimed to be 9 in [1]. We have increased this number by 1 and asserted 

that the number of rounds in the impossible differential trail of these EGFNs is 10. We provide 

several 10-round impossible differential trails for EGFNs which can be used to mount impossible 

differential attack on EGFN based schemes for more number of rounds. 

Organization of the rest part of the paper is as follows. We describe a particular example of 16-

branch EGFN schemes in the second section. We describe the impossible differential attack on 

this scheme in third section with detailed method for finding impossible differential trail for 10 

rounds. Fourth section discusses the impact of this analysis on other proposals relying on the 

security estimates provided by �-method with further work and finally conclude the paper. 

2. Extended Generalized Feistel Networks (EGFNs): 

Berger et al proposed the EGFNs using Matrix representation [1] with the security estimates in 

SAC 2013. Several properties of GFN layer are presented by authors representing these as matrix 

M = P x F, where P is used for permutation layer and F is used for round functions. GFN are 

investigated exhaustively with 8 blocks for various parameters like the full diffusion delay d in 

[1], the number of round functions Nf used in each round and the cost for achieving full diffusion 

Cfd. It was reported in [1] that no GFN exist with cost Cfd less than 24 and the minimum number 

of round functions required for full diffusion in 6 rounds is 4. Authors extended this analysis and 

presented the Extended GFNs to achieve full diffusion in fewer rounds and less round functions. 

An efficient example of this EGFNs scheme (Fig. 1) presented in [1] is discussed below in detail. 

This EGFNs scheme can be used to design a lightweight block cipher with block size 64-bit or a 

block cipher with bigger sizes like 128, 192 and 256 bits. The only non-linear part of this scheme 

is the round function. An immediate application of this EGFN scheme will be a new lightweight 

block cipher with 64-bit block size and 4-bit S-box used in round function. The design may 

consist of three layers as key addition layer, S-box layer and the permutation layer.  

2.1 EGFNs with 64-bit block size and 16 branches 

Input and output block size of EGFNs scheme is 64-bit which is divided into 16 equal parts Xi
’
s 

and Yi
’
s respectively. Each round consists of non-linear function, XOR operation and nibble 

permutation. The only non-linear function used in these 16 branch EGFNs is 4-bit S-box which 

takes 4-bit input and outputs 4-bit as described below: 



Input: X = (X0, X1, ... X15) 

Output: Y = (Y0, Y1, … Y15) 

Y0  =  X8 ⊕ S( X7 ) 

Yi = X8+i ⊕ X7 ⊕ S(X7-i);  1 ≤ i ≤ 6 

Y7= (X15 ⊕ X7 ⊕ X6 ⊕…..⊕ X1) ⊕ S(X0) 

Yi = Xi-8; 8 ≤ i ≤ 15 

Table 1: Extended GFNs with 16 branches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: EGFNs Example with 16 branches 

3. Impossible Differential Cryptanalysis of EGFN: 

Impossible differential cryptanalysis [3] is an extension of differential cryptanalysis which was 

applied by Biham et al. We work with zero probability differentials in this attack rather than 

working with high probability differences in differential attack. It is the best cryptanalysis 

method in terms of covering the most number of rounds for majority of the block cipher designs, 

one of the examples being the Advanced Encryption Standard (AES) [5]. This attack is proven to 

be more effective in practice than other attacks and it is necessary for all the new cipher 
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proposals to show the resistance to this attack. The zero probability differentials are used to find 

out the correct key by sieving all the keys suggesting the impossible differential and the correct 

one still surviving in the list. The impossible differential trail is usually constructed using miss-

in-the-middle approach [3] which finds trail by showing a contradiction between two 

differentials of probability 1. We construct probability 1 differential for some r forward rounds 

and also for some s backward rounds. If this probability 1 differentials show some disagreements 

at some intermediate level, then we have constructed an impossible differential trail for the total 

r+s rounds.  

Differential cryptanalysis of EGFNs, presented by Zhang et al [16] has also improved the 

security estimates given by authors for differential cryptanalysis. We investigated the security 

claims of EGFNs scheme for impossible differential attack. We found that the number of rounds 

calculated in impossible differential trail can be improved further from the author’s claim. The 

maximum number of rounds in the impossible trail given by the authors is 9 for diffusion delay 

d=4 and the claim is supported by showing the same results from �-method [7][9]. We provide 

several impossible differential trails for 10 rounds of EGFNs in this paper. This analysis will 

work irrespective of the block size of EGFNs as the non-linearity of round function is considered 

in this analysis. We discuss the method for finding the 10 round impossible differential trail 

below and provide several trails for 10 rounds in table 3. 

3.1 EGFNs algorithm in forward direction 

We rewrite the algorithm for 16 branch EGFNs described in Table 1 for input and output values 

X0, X1,…, X15 and Y0, Y1,…, Y15 respectively by dividing it into three layers viz. I, II and III for 

analysis purpose: 

Layer I: for i= 0 to 7, Ui = Xi; 

for i=8 to 15, Ui = Xi ⊕ S(X15-i) 

Layer II: for i= 0 to 8, Vi = Ui; 

for i=9 to 14, Vi = U7 ⊕ Ui; 

for i=15, Vi= U1⊕U2⊕U3⊕U4⊕U5⊕U6⊕U7⊕U15 

Layer III: for i=0 to 15, Yi= V(8+i)%16 

3.2 EGFNs algorithm in backward direction 

For the backward direction, we consider Y0, Y1,…, Y15  as input and X0, X1,…, X15 as output. 

Accordingly we rewrite the algorithm described in table 1 for input and output branches in 

backward direction as follows: 

Layer III: for i=0 to 15, Ui= Y(8+i)%16 

Layer II: for i= 0 to 8, Vi = Ui; 

for i=9 to 14, Vi = U7 ⊕Ui; 

for i=15, Vi= U1⊕U2⊕U3⊕U4⊕U5⊕U6⊕U7⊕U15 

Layer I: for i= 0 to 7, Xi = Vi; 

for i=8 to 15, Xi = Vi ⊕ S(V15-i) 



3.3 Impossible Differential Trail for 10 rounds of EGFNs 

We start with 16 branches each as input and output to this EGFNs example labeled as X0, X1,…, 

X15 and Y0, Y1,…, Y15 respectively. We assign some non-zero value α to one of the 16 branches. 

After one application of S-box on α, we get β which is also some non-zero value by the property 

of difference distribution table of S-boxes. Once again we apply S-box on β gives us some non-

zero value γ and finally we get some non-zero value δ by applying S-box on γ one more time. 

This process can be represented as follows: 

S(α) = β, S(S(α)) = S(β) = γ, S(S(S(α))) = S(S(β)) = S(γ) = δ 

Algorithm I & II are applied for obtaining forward and backward differentials with probability 1. 

Then, we use miss-in-the-middle approach to construct 10 round impossible differential trail 

using algorithm III. We have used “||” symbol for concatenating 4 nibbles of 16-bit size. 

Algorithm I: Forward Differential Trails: 

1. First we start with assigning non-zero value α to any one branch Xi (8 ≤ i≤ 14) and the values 

for the remaining branches Xj (0 ≤ j ≤ 15, j≠i) must be set to zero. For i=13, we find one 

forward differential trail of 5 rounds in the following steps. 

Starting Difference: 0,0,0,0 || 0,0,0,0 || 0,0,0,0 || 0,0,α,0 

2. There is no application of S-box on the branch with value α, therefore we get the same output 

from Layer I and II. Application of Layer III leads to the following output from the first round 

with probability 1: 

Layer III:  0,0,0,0 || 0,0,α,0 || 0,0,0,0 || 0,0,0,0 

3. There is one application of S-box on α which outputs β in first Layer and application of all 

three layers return the following outputs from second round with probability 1: 

Layer I:  0,0,0,0 || 0,0,α,0 || 0,β,0,0 || 0,0,0,0 

Layer II:  0,0,0,0 || 0,0,α,0 || 0,β,0,0 || 0,0,0,α 

Layer III:  0,β,0,0 || 0,0,0,α || 0,0,0,0 || 0,0,α,0 

4. We have two nonzero values as input to S-box in this round, one application on α which 

outputs β and second application on β which outputs γ  and we get the output from third round 

with probability 1 as follows applying all three layers: 

Layer I:  0,β,0,0 || 0,0,0,α || β,0,0,0 || 0,0,α⊕γ,0 

Layer II:  0,β,0,0 || 0,0,0,α || β,α,α,α || α,α,γ,α⊕β 

Layer III:  β,α,α,α || α,α,γ,α⊕β || 0,β,0,0 || 0,0,0,α 

5. There are four applications of S-box, one application on α which gives β, second application 

on β gives γ, third application on γ outputs δ and fourth application on α⊕β output some 

undetermined value ?. The following outputs with probability 1 from three layers of fourth 

round are  returned: 

Layer I:  β,α,α,α || α,α,γ,α⊕β || ?,β⊕δ,β,β || β, β,β,α⊕γ 

Layer II:  β,α,α,α || α,α,γ,α⊕β || ?,α⊕δ,α,α || α,α,α,α⊕β 

Layer III:  ?,α⊕δ,α,α || α,α,α,α⊕β || β,α,α,α || α,α,γ,α⊕β 



6. There are four applications of S-box, one application on α gives β, second application on α⊕β 

gives ?, third application on α⊕δ gives ? and fourth application on ? outputs some value ?. 

We get the following output in fifth round with probability 1: 

Layer I:  ?,α⊕δ,α,α || α,α,α,α⊕β || ?,α⊕β,α⊕β,α⊕β || α⊕β,α⊕β,?,? 

Layer II:  ?,α⊕δ,α,α || α,α,α,α⊕β || ?,0,0,0 || 0,0,?,? 

Layer III:  ?,0,0,0 || 0,0,?,? || ?,α⊕δ,α,α || α,α,α,α⊕β 

Algorithm II: Backward Differential Trails: 

1. We assign value α to any one branch Yi (1 ≤ i ≤ 6) and zero to other branches Yj (0 ≤ j ≤ 15, 

j≠ i). For i=5, we find one backward differential trail of 5 rounds in the following steps. 

Ending Difference: 0,0,0,0 || 0,α,0,0 || 0,0,0,0 || 0,0,0,0 

2. There is no application of S-box on α due to EGFNs structure so there is no effect of Layer II 

and III on the input. Application of layer I returns the following output after  one round with 

probability 1 in upward direction: 

Layer I:  0,0,0,0 || 0,0,0,0 || 0,0,0,0 || 0,α,0,0 

3. There is one application of S-box on α which gives β as output and we get the following 

probability 1 output of second round using all three layers: 

Layer III:  0,0,0,0 || 0,α,0,0 || 0,0,0,0 || 0,0,0,0 

Layer II:  0,0,0,0 || 0,α,0,0 || 0,0,0,0 || 0,0,0,α 

Layer I:  0,0,0,0 || 0,α,0,0 || 0,0,β,0 || 0,0,0,α 

4. There are two applications of S-box, one application on α which gives β and second 

application on β which gives γ  as output and we get the following output of third round with 

probability 1 from all layers: 

Layer III:  0,0,β,0 || 0,0,0,α || 0,0,0,0 || 0,α,0,0 

Layer II:  0,0,β,0 || 0,0,0,α || 0,α,α,α || α,0,α,α⊕β 

Layer I:  0,0,β,0 || 0,0,0,α || β,α,α,α || α,γ,α,α⊕β 

5. There are four applications of S-box, one application on α gives β, second application on β 

gives γ, third application on γ gives δ as output and fourth application on α⊕β gives ?. The 

following outputs from fourth round with probability 1 is returned: 

Layer III:  β,α,α,α || α,γ,α,α⊕β || 0,0,β,0 || 0,0,0,α 

Layer II:  β,α,α,α || α,γ,α,α⊕β || 0,α⊕β,α,α⊕β || α⊕β,α⊕β,α⊕β,α⊕β⊕γ 

Layer I:   β,α,α,α || α,γ,α,α⊕β || ?,α,α⊕δ,α || α,α,α,α⊕β 

6. There are four applications of S-box, one application on α gives β, second application on α⊕β 

gives ?, third application on α⊕δ gives ? and fourth application on ? gives some value ? as 

output. We get the following outputs in fifth round with probability 1: 

Layer III:  ?,α,α⊕δ,α || α α,α,α⊕β || β,α,α,α || α,γ,α,α⊕β 

Layer II:  ?,α,α⊕δ,α || α,α,α,α⊕β || β,β,β,β || β,α⊕β⊕γ,β,δ 

Layer I:  ?,α,α⊕δ,α || α,α,α,α⊕β || ?,0,0,0 || 0,?,0,? 

Algorithm III: Impossible Differential trail using miss-in-the-middle approach: 

Finally we get the following 10 round impossible differential trail for any non-zero value α: 



0, 0, 0, 0 || 0, 0, 0, 0 || 0, 0, 0, 0 || 0, 0, α, 0 

            Probability 1   5 FR                
?, 0, 0, 0 || 0, 0, ?, ? || ?, ?, α, α || α, α, α, ? 

?, α, ?, α || α, α, α, ? || ?, 0, 0, 0 || 0, ?, 0, ? 

            Probability 1   5 BR                
 0, 0, 0, 0 || 0, α, 0, 0 || 0, 0, 0, 0 || 0, 0, 0, 0 

Table 2: 10 round Impossible Differential trail 

We get several 10 round impossible differential trails by varying the positions for the non-zero 

difference α. We get these impossible differential trails either by showing a contradiction 

between two 5 round forward and backward differentials of probability 1 or by getting a 

contradiction between a 6 round forward differential and a 4 round backward differential each 

with probability 1. Some of the 10 round impossible differential trails are listed below: 
 

S. 

No. 

Start and End Differences 

(nonzero difference α) 

No. of 

Rounds 

Intermediate Differences 

(with contradictions α ≠ 0) 

1 0,0,0,0||0,0,0,0||0,0,0,0||0,α,0,0 5 FR→ ?,0,0,0||0,?,0,?||?,α,?,α||α,α,α,? 

 0,0,0,0||0,α,0,0||0,0,0,0||0,0,0,0 5 BR→ ?,α,?,α||α,α,α,?||?,0,0,0||0,?,0,? 

2 0,0,0,0||0,0,0,0||0,0,0,0||α,0,0,0 5 FR→ ?,0,0,0||?,0,0,?||?,α,α,?||α,α,α,? 

 0,0,0,0||α,0,0,0||0,0,0,0||0,0,0,0 5 BR→ ?,α,α,?||α,α,α,?||?,0,0,0||?,0,0,? 

3 0,0,0,0||0,0,0,0||0,0,0,α||0,0,0,0 5 FR→ ?,0,0,?||0,0,0,?||?,α,α,α||?,α,α,? 

 0,0,0,α||0,0,0,0||0,0,0,0||0,0,0,0 5 BR→ ?,α,α,α||?,α,α,?||?,0,0,?||0,0,0,? 

4 0,0,0,0||0,0,0,0||0,0,α,0||0,0,0,0 5 FR→ ?,0,?,0||0,0,0,?||?,α,α,α||α,?,α,? 

 0,0,α,0||0,0,0,0||0,0,0,0||0,0,0,0 5 BR→ ?,α,α,α||α,?,α,?||?,0,?,0||0,0,0,? 

5 0,0,0,0||0,0,0,0||0,α,0,0||0,0,0,0 5 FR→ ?,?,0,0||0,0,0,?||?,α,α,α||α,α,?,? 

 0,α,0,0||0,0,0,0||0,0,0,0||0,0,0,0 5 BR→ ?,α,α,α||α,α,?,?||?,?,0,0||0,0,0,? 

6 0,0,0,0||0,0,0,0||0,0,0,0||0,0,0,α 6 FR→ ?,?,?,?||?,?,?,?||0,?,?,?||?,?,?,? 

 α,0,0,0||0,0,0,0||0,0,0,0||0,0,0,0 4 BR→ ?,β,β,β||β,β,β,β||γ,?,?,?||?,?,?,? 

7 0,0,0,0||0,0,0,0||α,0,0,0||0,0,0,0 6 FR→ γ,?,?,?||?,?,?,?||?,β,β,β||β,β,β,β 

 0,0,0,0||0,0,0,α||0,0,0,0||0,0,0,0 4 BR→ 0,?,?,?||?,?,?,?||?,?,?,?||?,?,?,? 

Table 3: 10-round Impossible Differential trails 

4. Impact of Analysis and further work 

Security estimates of EGFNs for impossible differential attack were provided by authors in [1] 

and claim for the maximum number of rounds in the impossible differential were supported by 

�-method. Our analysis indicates that �-method does not give optimal results for this type of 

schemes and it should be analyzed for optimality to such schemes. The number of rounds in 

impossible differential trail may be increased further by relaxing the condition for input 

differentials. We can try with non-zero nibble values greater than one and the values should be 

taken in a way such that it cancels some of the intermediate values. 

5. Conclusion: 

An Encryption scheme with less number of rounds in impossible differentials is considered more 

secure and greater the number of rounds in impossible differentials gives an attack on more 



rounds of the scheme. We have added one round in impossible differential of EGFNs scheme to 

the claim of authors. We have provided several 10 round differential trails for this scheme which 

can be easily applied to new block cipher proposals based on EGFNs scheme. We have increased 

the number of rounds in impossible differential claimed by authors for all block sizes which also 

indicates that �-method does not give correct estimates of security for EGFNs. 
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