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Abstract

Learning with errors (LWE) was introduced by Regev in 2005, which enjoys attractive worst-

case hardness properties. It has served as the foundation for a variety of cryptographic schemes.

There are two main types of attacks against LWE: one for the decision version of LWE [31], the

other for the search version of LWE [26] [24].

In this paper, we apply the list decoding method to solve search version of LWE. Our algorithm

runs in probabilistic polynomial time and results in specific security estimates for a large range of

parameters. To our knowledge, it is the first time to apply the list decoding method to recover the

key of LWE. Our algorithm improves Laine and Lauter’s result [24].

Key words: Hidden number problem, LWE, list decoding, multiplication code.

1 Introduction

Inspired by the hardness of the learning from parity with noise problem, Regev [35] introduced the
generalized learning with errors (LWE) problem in 2005. Informally, the LWE problem is to distinguish
(decision version) or solve (search version) random congruent linear equations with some amount
of noise. In order to explain the apparent difficulty of the problem, Regev established quantum
reductions from certain approximate lattice problems, namely the decision version of the shortest
vector problem (GAPSVP) and the shortest independent vectors problem (SIVP) within approximation
factor γ = poly(n) to LWE. Thus if one can solve the average case of LWE problem efficiently, then
one can solve the worst case of aforementioned approximate lattice problems efficiently via quantum
algorithms. Peikert [33] and Brakerski et al. [7] have managed to establish the hardness of LWE via
classical reductions based on more restricted lattice problems.

The LWE problem has been very attractive as a plausible candidate primitive since its proposition.
There are mainly two lines of research around this problem and its variant (say, Ring-LWE [28] ):
one line focuses on building cryptographic schemes based on the LWE problem as an assumed firm
foundation; another line focuses on analyzing the security of this primitive. These two lines enjoy
asymmetric developments, as outlined in the following.
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A variety of cryptographic schemes have been proposed utilizing the LWE as a primitive. These
applications range over several aspects of cryptology. To name a few, Regev [35], Peikert and Waters
[34], Peikert [33], Lindner and Peikert [26], Micciancio and Peikert [29] have designed public key
encryption schemes based on LWE problem respectively. Gentry, Peikert, and Vaikuntanathan [18],
Cash, Hofheinz, Kiltz, and Peikert [13], Agrawal, Boneh, and Boyen [1] [2] have proposed identity-
based encryption (IBE) schemes based on LWE problem respectively. Brakerski and Vaikuntanathan
[10], Brakerski, Gentry, and Vaikuntanathan [9] have presented fully homomorphic encryption (FHE)
schemes based on LWE problem respectively. Besides, there are many other applications based on
LWE.

Compared with the diverse applications of LWE, not so many efficient cryptanalysis algorithms
are known to attack LWE. Micciancio and Regev [31] presented the distinguishing attack for the
decision version of LWE. Besides, they recommended certain parameter ranges to avoid such attack.
Lindner and Peiker [26] provided the decoding attack against the search version of LWE. Their attack
combined the basis reduction technique and a post-reduction decoding algorithm. The decoding
attack is preferable to the distinguishing attack in that it recovers the secret key. But due to its
utilization of the BKZ algorithm, it does not run in polynomial time and its performance is difficult
to analyze. Recently, Laine and Lauter [24] constructed an algorithm to recover the key of LWE by
applying LLL algorithm [25], which runs in polynomial time. Their algorithm may some threaten
homomorphic encryption schemes. They also remarked that with the pure LLL the attack does not
threaten commonly recommended practical parameters.

Boneh and Venkatesan [12] introduced the hidden number problem (HNP) originally to study the
bit security of Diffie-Hellman key exchange protocol. The hidden number problem has proven to be
useful in different settings. Galbraith and Shani [19] defined the multivariate hidden number problem
as a generalization of the hidden number problem, and developed the tool of Fourier learning to solve
it.

Goldreich and Levin [21] introduced a general list decoding algorithm for Hadamard code to prove
hard-core predicates for general one-way functions. Akavia, Goldwasser, and Safra (AGS) [4] formal-
ized the list decoding methodology and applied it to a broad family of conjectured one-way functions.
Morillo and Ràfols [30] extended the AGS result to prove the unpredictability of every individual bit
for these functions. Duc and Jetchev [15] showed how to extend to elliptic curve-based one-way func-
tions which do not necessarily enjoy the homomorphic property. FGPS [17] proved for a weak CDH
problem (i.e. Partial-CDH problem) the unpredictability of every single bit of one of the coordinates
of the secret CDH value over finite fields Fp2 . Wang et al [39] showed that almost all bits of the CDH
value are hardcore over finite field Fpt for t > 1 over a random representation of the finite field. Zhang
[40] proved that any bit of each coordinate of hyperelliptic curves Diffie-Hellman secret value in genus
2 is hard as the entire Diffie-Hellman value.

Informally, list decoding algorithm works as following. Given a one-way function f : D → R and a
predicate π, one would have to identify an error-correcting code Cπ = {Cα : D → {±1}}α∈D such that
every input α of the one-way function is associated with a codeword Cα. The code needs to satisfy the
following properties: Accessibility, Concentration, Recoverability. Then one can invert the one-way
function f .

1.1 Our results

This paper aims to adding another powerful tool in the toolkit of attacking LWE. Our methodology is
to relate the LWE problem to the hidden number problem, and then apply the list decoding technique
to solve the resulting problem.
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In this paper, we apply the list decoding method to recover the key of LWE. The list decoding
approach allows to consider hardness of single bits, even for noisy oracles that only have a non-
negligible advantage over the bias of the function in question. Here, we consider the most significant
bit(MSB) function over Zq. Let s = (s1, . . . , sn) ∈ Znq be the LWE problem the security key. The
key of our method is that MSB([〈a, s〉]q) can be learned easily from MSB([〈a, s〉 + e]q) with high
probability, for the error e centered around 0 with high probability. This means we can get a noise
code of Cs(x) = MSB([〈x, s〉]q) under the uniform queries.

Our algorithm runs in probabilistic polynomial time. The success probability is high for a large
range of parameters. Our result improves the work in Laine and Lauter [24]. Besides, we estimate the
parameter security of some specific ranges utilizing our result.

1.2 Roadmap of the paper

In Section 2 we review some relevant background, particularly of Fourier transform and error correcting
codes. In Section 3 we establish the relation between two classes of most significant bits. In Section
4 we describe our main algorithm to recover the key of LWE. In Section 5 we present some specific
implication for specific parameters. In Section 6 we conclude the paper.

2 Preliminaries

2.1 Notation

We use the standard symbols N, Z, R and C to denote the natural numbers, the integers, the real
numbers and the complex numbers, respectively. Let Z+ and R+ stand for the positive integers and
reals, respectively. A function ν(l) : N→ R is negligible if for every constant c ∈ R+ there exists lc ∈ N
such that ν(l) < l−c for all l > lc. A function ρ(l) : N → R is non-negligible if there exists a constant
c ∈ R+ and lc ∈ N such that ρ(l) > l−c for all l > lc. For a Boolean function f : D → {±1} over an
arbitrary domain D, denote by majf = max{b=±1} Prα∈D[f(α) = b] the bias of f toward its majority
value. By Zm we denote integers modulo m, but as a set of representatives for the congruence classes
we use integers in the interval [0,m− 1]. By a subscript m we denote the unique representative of an
integer modulo m within this interval.

2.2 Fourier Transform

Let G be a finite abelian group. For any two functions f, g : G→ C, their inner product is defined as
〈f, g〉 = 1/|G|

∑
x∈G f(x)g(x). The l2-norm of f on the vector space C(G) is defined as ‖f‖2 =

√
〈f, f〉.

A character of G is a homomorphism χ : G → C∗, i.e., χ(x + y) = χ(x)χ(y) for all x, y ∈ G. The
set of all characters of G forms a character group Ĝ, whose elements form an orthogonal basis (the
Fourier basis) for the vector space C(G). One can then describe any function f ∈ C(G) via its Fourier
expansion

∑
χ∈Ĝ f̂(χ)χ, where f̂ : Ĝ → C is the Fourier transform of f and we have f̂(χ) = 〈f, χ〉.

The coefficients f̂(χ) in the Fourier basis {χ}
χ∈Ĝ are the Fourier coefficients of f . The weight of a

Fourier coefficient is denoted by |f̂(χ)|2. When G = Zn (i.e., the additive group of integers modulo n)
and Ĝ = Ẑn, for each α ∈ Zn, the α-character is defined as a function χα : Zn → C such that
χα(x) = ωαxn , where ωn = e2πi/n. If Γ is a subset of Zn then it is natural to consider the projection
of f in set Γ, i.e., f|Γ =

∑
α∈Γ

f̂(α)χα, where f̂(α) = 〈f, χα〉. Since the characters are orthogonal, we

have ‖f‖22 =
∑

α∈Zn
|f̂(α)|2 and ‖f|Γ‖22 =

∑
α∈Γ
|f̂(α)|2.

3



Definition 1. (Fourier concentrated function [4]). A function f : Zn → C is Fourier ε-concentrated

if there exists a set Γ ⊆ Zn consisting of poly(log n, 1/ε) characters, so that

‖f − f|Γ‖22 =
∑
α/∈Γ

|f̂(α)|2 ≤ ε.

A function f is called Fourier concentrated if it is Fourier ε-concentrated for every ε > 0.

Definition 2. (τ-heavy characters [4]). Given a threshold τ > 0 and an arbitrary function f : Zn →
C, we say that a character χα ∈ Heavyτ (f) is τ -heavy if the weight of its corresponding Fourier

coefficient is at least τ . The set of all heavy characters is denoted by

Heavyτ (f) = {χα : |f̂(α)|2 ≥ τ}.

2.3 Error Correcting Codes: Definitions and Properties

Error correcting codes can encode messages into codewords by adding redundant data such that it can
be recovered even in the presence of noise. The code to be discussed here encodes each element α ∈ Zn
into a codeword Cα of length n. Each codeword Cα can be represented by a function Cα : Zn → {±1}.
We now recall a number of definitions and lemmata [4, 15] about codes over Zn.

Definition 3. (Fourier concentrated code). A code C = {Cα : Zn → {±1}} is concentrated if each

of its codewords Cα is Fourier concentrated.

Definition 4. (Recoverable code). A code C = {Cα : Zn → {±1}} is recoverable, if there exists a

recovery algorithm that, given a character χ ∈ Ẑn and a threshold τ , returns in time poly(log n, 1/τ)

a list of all elements α associated with codewords Cα for which χ is a τ -heavy coefficient (i.e., {α ∈
Zn : χ ∈ Heavyτ (Cα)}).

Lemma 1 below shows that in a concentrated code C, any corrupted (“noisy”) version C̃α of code-
word Cα share at least one heavy coefficient with Cα. Lemma 2 shows that when given query access
to any function f one can efficiently learn all its heavy characters.

Lemma 1. ([4, Lemma 1]). Let f, g : Zn → {±1} such that f is concentrated and for some ε > 0,

Pr
α∈Zn

[f(α) = g(α)] ≥ majf + ε.

There exists a threshold τ such that 1/τ ∈ poly(1/ε, log n), and there exists a non-trivial character

χ 6= 0 heavy for f and g: χ ∈ Heavyτ (f) ∩ Heavyτ (g).

Lemma 2. ([4, Theorem 6]). There is a probabilistic algorithm that, given query access to w : Zn →
{±1}, τ > 0 and 0 < δ < 1, outputs a list L of O(1/τ) characters containing Heavyτ (w) with probability

at least 1− δ, whose running time is Õ

(
log(n) · ln2 (1/δ)

τ5.5

)
.
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3 Learning the significant bit of the LWE sample

3.1 LWE problem

Definition 5. (search-LWE). Let n be a security parameter, q(n) a prime integer modulus, and χ

an error distribution over Zq. Let s ∈ Znq be a fixed secret vector chosen uniformly at random. Given

access to d samples of the form

(a, [〈a, s〉+ e]q) ∈ Znq × Zq,

where a ∈ Znq are chosen uniformly at random and e are sampled from the error distribution χ, the

problem search-LWEn,χ is to recover s.

In practice, the distribution χ is always taken to be a discrete Guassian distribution DZ,σ. This is
the probability distribution over Z that assigns to an integer x a probability

Pr(x) =
1

σ
√

2π
exp(− x2

2σ2
),

where σ is the standard deviation.

3.2 Extract the most significant bit

Let s = (s1, . . . , sn) ∈ Znq , and a = (a1, . . . , an) ∈ Znq . Define the most significant bit(MSB) function
over Zq as the following

MSB(x) =

 0, 0 ≤ x < q

2
,

1,
q

2
< x < q.

In the LWE problem the security key s should be not zero, i.e. not all si = 0. It is easy to see that
[〈a, s〉+ e]q is uniform when a is uniform in Znq . Hence the bias of MSB(〈x, s〉) is 1

2 .
Given an LWE sample, it’s trivial to calculate its most significant bit MSB([〈a, s〉+ e]q). Now we

observe that MSB([〈a, s〉]q) can be learned easily from MSB([〈a, s〉+ e]q) with high probability, for
the error e centered around 0 with high probability.

The following lemma is well known.

Lemma 3. Let B ≥ σ. Then

Pr[|DZ,σ| ≥ B] ≤ B

σ
exp(

1

2
− B2

2σ2
).

Lemma 3 implies that for δ ≥ σ

Pr[|e| ≤ δ] > 1− δ

σ
exp(

1

2
− δ2

2σ2
).

Since a is chosen uniformly from Znq and s is a fixed vector, their inner product 〈a, s〉 is a random
variable distributed uniformly on Zq.

Lemma 4. For δ ≥ σ, the probability that the most significant bit(MSB) of X is equal to the most

significant bit of X + e is at least (1 − 4δ
q )(1 − δ

σ exp(12 −
δ2

2σ2 )), where X is uniformly distributed on

Zq and e is chosen according to DZ,σ, moreover, X and e are independent variables.
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Proof. Using conditional probability formulas, we have

Pr[MSB(X) = MSB(X + e)]

≥ Pr[MSB(X) = MSB(X + e) | |e| ≤ δ]
= Pr[0 ≤ X + e <

q

2
, 0 ≤ X <

q

2
| |e| ≤ δ]

+ Pr[
q

2
≤ X + e < q,

q

2
≤ X < q | |e| ≤ δ]

≥ (Pr[δ ≤ X <
q

2
− δ] + Pr[

q

2
+ δ ≤ X < q − δ])× Pr[|e| ≤ δ]

≥ (
q − 4δ

q
)× Pr[|e| ≤ δ].

Therefore, we get the desired result

Pr[MSB(X) = MSB(X + e)] ≥ (1− 4δ

q
)(1− δ

σ
exp(

1

2
− δ2

2σ2
)).

This completes the proof of this lemma.

Corollary 1. The probability that MSB(〈a, s〉) can be read correctly from MSB(〈a, s〉+ e) is at least

(1− 4δ
q )(1− δ

σ exp(12 −
δ2

2σ2 )).

Take δ = kσ, for k > 1, then

Pr[MSB([〈a, s〉+ e]q) = MSB([〈a, s〉]q)] > (1− 4kσ

q
)(1− k exp(

1

2
) exp(

−k2

2
)).

Assume ε is a non-negligible quantity. Fixed q and σ, define

Sq,σ,ε = {k|Pr[MSB([〈a, s〉+ e]q) = MSB([〈a, s〉]q) >
1

2
+ ε}. (1)

It is easy to see that Sε is nonempty when σ is sufficient small compared with q.

4 Algorithm to recovery the key of LWE

4.1 Hidden number problems

In order to study the bit security of Diffie-Hellman key exchange, Boneh and Venkatesan [12] introduced
the hidden number problem over Fp. Fix p and k. Let Oα(x) be an oracle that on input x computes
the k most significant bits of αx mod p:

Oα(x) = MSBk(αx).

The task is to compute the hidden number α mod p, in expected polynomial (in log p) time, given
access to the oracle Oα(x).

In this paper, we consider the one bit hidden number problem.

Definition 6. let α 6= 0 be a secret element in F∗p and let f : F∗p → {−1, 1}. The goal is to compute

the secret element α in polynomial time, using oracle access to the function Cα(x) = f(xα).

Theorem 1. [3] Let A be an algorithm that learns the τ -heavy Fourier coefficients Cα of functions

defined over Fp. For any concentrated function f : Fp → {−1, 1}, there exists an algorithm that solves

the hidden number problem in F∗p.

6



4.2 Main result

Let ε be the probability advantage ofMSB(〈a, s〉+e) = MSB(〈a, s〉), and β be the bias ofMSB(〈x, s〉).

Theorem 2. Let s ∈ Znq , given an oracle O that, given x ∈ Znq as input, outputs the LWE sample

〈x, s〉 + e, where e ∈ DZ,σ, and Sq,σ,ε is nonempty. Then, there exists a probabilistic polynomial

algorithm that solves the LWE over Znq .

Define codes. For any element x ∈ Znq , we construct the following encoding of 〈x, s〉:

Cs : Znq → {±1} such that Cs(x) = MSB(〈x, s〉).

Since, given access to the LWE oracle, it is easy to verify wether si = 0 or not, for i = 1, . . . , n.
Without loss generality, we assume that s1 6= 0. For any element x ∈ Zq,

C̃s : Zq → {±1} such that C̃s(x) = MSB(〈(x, 0, . . . , 0), s〉).

The following lemma shows that Cs is concentrated.

Lemma 5. [19] Let f : Fq → {−1, 1}, let s = (s1, . . . , sn) ∈ Znq be such that not all si 6= 0, and

let fs : Znq → {±1} be the function fs(x) = f(s · x). Then, Heavyτ (f) = {c1, . . . , ct} if and only if

Heavyτ (fs) = {(cis1, . . . , cisn)|1 ≤ i ≤ t}.

Proof of Theorem 2. The proof of this theorem can be divided two steps. In the Access step, we
use the uniform distribution model, at each time the learning algorithm queries, its choice is uniform.
Access to the codes. Let O be the oracle that access to the LWE samples, i.e. O takes x ∈ Znq as
input, returns O(x) = 〈x, s〉+ e.

According to the output of O, for x ∈ Znq , we can define a corrupted codeword C ′s of Cs as C ′s(x) =

MSB(O(x)). Therefore, we have |Prx[Cs(x) = C̃s(x)]| ≥ β + ε. Similarly, for x ∈ Zq, we can de-

fine a corrupted codeword C̃ ′s of C̃s as C̃ ′s(x) = MSB(O(x, 0, . . . , 0)) and |Prx[C̃ ′s(x) = C̃s(x)]| ≥ β+ε.

Recover the key. Akavia [3] proved that the most-significant-bit function is concentrated, i.e. C̃s

is concentrated. By Theorem 1, there is a probability algorithm to recover the key s1.
By Lemma 2, there is a probabilistic algorithm that, given query access to C ′s : Zq → {±1},

τ > 0, outputs two lists Ls of O(1/τ) characters containing Heavyτ (C ′s), where τ satisfies 1/τ ∈
poly(1/ε, log n). By Lemma 1, there exists a non-trivial character χ(cs1,cs2,··· ,csn) 6= 0 such that
χ(cs1,cs2,··· ,csn) ∈ Heavyτ (Cs)∩Heavyτ (C ′s). This implies that χ(cs1,cs2,··· ,csn) ∈ Ls. Therefore, s belongs
to the following set

L = {(s1, s1β−11 β2, s1β
−1
1 β3, . . . , s1β

−1
1 βn)|χ(β1,β2,··· ,βn)∈Ls

}.

This shows that there exists an algorithm A to recover s.

5 Implication of security

In this section we determine the range of parameters that can be attacked by our method.
Theorem 2 implies that given a noise oracle that can predict the value of MSB(〈a, s〉) with non-

negligible probability, we can recover the secret key with high probability. Next we need to determine
under what conditions can we achieve that goal.
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Table 1: Maximum of σ vulnerable to our attack (ε = 1
q )

log2 q 10 11 12 13 14 15 16 17 18 19

σ ≤ 10.9 21.9 43.8 87.7 175.6 351.3 702.7 1405.4 2811 5622.0

In order to get MSB(〈a, s〉), we use the oracle of MSB(〈a, s〉 + e). By the discussion in Section
2, we have

Pr
a∈Zn

q

[MSB(〈a, s〉) = MSB(〈a, s〉+ e)] ≥ max
k>1
{(1− 4kσ

q
)(1− k exp

1
2
(1−k2))}.

To make our attack work, we need to make sure the above probability is greater than 1
2 + ε, where ε

is some non-negligible function of the modulus q. That is,

max
k>1
{(1− 4kσ

q
)(1− k exp

1
2
(1−k2))} ≥ 1

2
+ ε.

Clearly, this is equivalent to

σ ≤ max
k>1

q

4k

(
1−

1
2 + ε

1− k exp
1
2
(1−k2)

)
.

Therefore, we need only to find out the maximum of the right side of above inequality. By the
inequality

1− k exp
1
2
(1−k2) > 1− k(1 +

k2 − 1

2
)−1 = 1− 2k

k2 + 1
,

we can just calculate the maximum of

q

4k

(
1−

1
2 + ε

1− 2k
k2+1

)
.

Take ε = 1
8 and k = 8, we have

1

4k

(
1−

1
2 + ε

1− 2k
k2+1

)
≥ 1

200
.

This means that for σ ≤ 1
200q our method works.

In fact, by the above discussion, we have the following result.

Theorem 3. Let s ∈ Znq , given an oracle O that, given x ∈ Znq as input, outputs the LWE sample

〈x, s〉 + e, where e ∈ DZ,σ. Then, there is an absolute constant c, if σ ≤ cq, one can solve the LWE

over Znq in polynomial time with high probability.

Next, we illustrate the capability of our attack method by estimating parameters vulnerable to our
attack shown in Tables 1 and Table 2.

In the seminal work of Regev[35] which introduced LWE problem, a public key cryptosystem was
also presented. The error distribution χ is taken to be Ψ̄α(n) for α(n) = 1/(

√
n log2 n)). The modulus q

is chosen to be some prime number between n2 and 2n2. It’s not difficult to show that this distribution

8



Table 2: Maximum of σ vulnerable to our attack (ε = 1
log2 q

)

log2 q 10 11 12 13 14 15 16 17 18 19

σ ≤ 6.5 13.6 28.5 59.2 122 250.3 512 1044.2 2124.7 4315.3

has the shape of a discrete Gaussian with standard deviation αp. Thus, we can replace σ with αp,
since σ is the standard deviation of discrete Gaussian Dσ. By taking ε to be 1/n, we get

(1− 4k
√
n log2 n

)
(

1− k exp
1
2
(1−k2)

)
≥ 1

2
+

1

n
.

Take k = 10, it’s trivial to find that if n ≥ 40, the above inequality is satisfied.

6 Conclusion

We construct a probabilistic polynomial time algorithm to recover the key of LWE, which utilizes
the list decoding method at the core. Our algorithm is efficient for a large range of parameters as
analyzed, which has security implications for some proposed schemes based on LWE.
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