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Abstract. Recently, Hu and Jia presented an efficient attack on the GGH map. They show that the
MPKE and WE based on GGH with public tools of encoding are not secure. Currently, an open
problem is to fix GGH with functionality-preserving. We present a new construction of multilinear
map using ideal lattices, which maintains functionality of GGH with public tools of encoding, such
as applications of GGH-based MPKE and WE. The security of our construction depends upon new
hardness assumption.
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1 Introduction

There are at present only three constructions of multilinear maps [GGH13, CLT13, GGH15]. The
first candidate construction of multilinear maps is presented by Garg, Gentry, and Halevi (GGH)
[GGH13]. Soon after, Coron, Lepoint, and Tibouchi [CLT13] (CLT) described a construction over
the integers using same framework of GGH. Recently, Gentry, Gorbunov and Halevi [GGH15]
constructed graph-induced multilinear maps from lattices.

However, the zeroizing attacks for CLT and GGH demonstrate that previous constructions
require further improvement. On the one hand, Cheon, Han, Lee, Ryu, and Stehle recently broke the
CLT construction using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT
construction, Garg, Gentry, Halevi and Zhandry [GGH+14], and Boneh, Wu and Zimmerman
[BWZ14] presented two candidate fixes of multilinear maps over the integers. However, Coron,
Lepoint, and Tibouchi showed that two candidate fixes of CLT can also be defeated using extensions
of the Cheon et al.’s Attack [CHL+14]. By modifying zero-testing parameter, Coron, Lepoint and
Tibouchi [CLT15] proposed a new construction of multilinear map over the integers. On the other
hand, Hu and Jia [HJ15a] very recently presented an efficient attack on the GGH map, which breaks
the GGH-based applications on multipartite key exchange (MPKE) and witness encryption (WE)
based on the hardness of 3-exact cover problem. The Cheon and Lee [CL15] proposed an attack for
the GGH map by computing a basis of secret ideal lattice.

Gu (Gu map-1) [Gul5] presented a construction of multilinear maps without encodings of
zero, which is an variant of the GGH map. Since no encodings of zero are given in the public
parameters, MPKE based on Gu map-1 [HJ15c] successfully avoids the attack in [HJ15a]. However,
Gu map-1 cannot be used for the instance of witness encryption based on the hardness of 3-exact
cover problem [HJ15b]. This is because there is no randomizer in Gu map-1. But the instance of WE
based on the hardness of 3-exact cover problem is a strong application of multilinear map. Currently,
an open problem is how to fix the GGH map, whilst still maintaining functionality of the original
GGH.

Our results.
We first briefly recall the GGH map. The GGH map works in a polynomial ring

R= Z[X]/<Xn +1>, where N is a positive integer. A random large integer q, a secret short ring
element g € R, and a secret random element z, € R, =R/gR are chosen during construction,
where g generates a principal ideal I:<g>c R and z is invertible in Rq. Elements in

R/ 1 are encoded as follows: a level-k encoding of the coset €, =e+ 1 is an element of the



form [C/Zf ]q, where the Ce €, norm is short. Encodings can both be added and multiplied if
the numerator norm remains smaller than (. For a level-x encoding U = [C / Zf]q , the encoding
U can be determined as zero by computing [u . pzt]q, where p,, = [hlzf / gl1 is a zero-testing

parameter. If the norm of [u-pzt]q is small, then U is the encoding of zero; otherwise, U is the

encoding of non-zero.

Our main contribution is to construct a new multilinear map using ideal lattices. Our
construction improves the origin GGH map in three aspects.

(1) We introduce new noise term to avoid the zeroizing attack problem of GGH. Let

par, ={q,yl =[A+ag)/z,], %, =[(@,0)/2,] .ie[r].p, =[h,z; /g}q} be the public
parameters of GGH. Given arbitrary level- K encoding u=[c/zf]q, one can compute
Vi :[u~x1{i- ke -pzt]q =[hl-c~(alyi)jgj‘1(1+ag)’“‘k‘j}q, where 1<k <x,1< j<x

and K+ j <k using so-called zeroizing attack method. It is easy to verify that Vyij is not

reduced modulo Q. As a result, one one can compute a basis of the secret ring element g . Using
this method, Hu and Jia [HJ15a] have broken two applications of MPKE and WE based on GGH. To
improve GGH and avoid the zeroizing attack, one needs to introduce new noise term for v, ; .. If

one can add a random noise to V, ; ;, then adversary cannot yield a basis of g. We introduce a

new ring element f in our construction to achieve this goal.
(2) We use two zero testing parameters to introduce new noise term. We change p,, into

P, :[Zf(hllg +h, /f)]q. The problem is how to remove encoding of non-zero element for
ideal lattice <f> . Roughly speaking, one must generate encoding of zero for <f> . For this purpose,
we generate some encodings Y, =[(e+b,f)/z,] ,X,; :[(ei +b2,if)/22:|q Jie[zr] such that
e=(1+ag)modf and e, =(a,g)modf. To obtain encoding of zero for <f> we generate

another zero testing parameter p, , = [2’2‘(h2 +hf)/f]q . When generating a level-K encoding
u, :[Cllzf ]q, one also generates its corresponding level-K encoding u, :[Cz /Z;l, such
that ¢, =C, modf . Hence, given a level-x encoding (ul,uz), we can determine whether the
encoding of U, is zero for <g> by computing [ul-pztll—uz-pmz]q. Now, given arbitrary

level- k encoding (u,u,) : one can compute

' k-] ' —Kk-j :
vk'i’j:[ul-xl{i- P Uy XY ‘~pzt12]q , where 1<k<x ,1<j<xk and

k+ j <k using zeroizing attack method. Although Vyj is not reduced modulo Q, one can no

longer obtain a basis of g using Vv, ;.

(3) Our new construction seemly supports more applications than the original GGH. Owing to
adding new noise term, one can no longer yield a basis of ¢. Hence, we conjecture that the

membership group problem (SubM) and the decisional linear (DLIN) problem are hard in our
construction. However, in the original GGH map, one can compute non-reduced ring elements over
modulus ¢ and abasis of g. As a result, the SubM problem and the DLIN problem are easy in the

GGH map.
Our second contribution is to describe the applications of MPKE and WE using our new
multilinear map. Since these applications are attacked by [HJ15a], fix for them is urgently required.



The MPKE and WE based on our new map are same as ones using the GGH map.

Organization. Section 2 recalls some background. Section 3 describes our new construction
using ideal lattices. Section 4 presents two applications of MPKE and WE based on our construction.
Finally, Section 5 draws conclusion.

2 Preliminaries
2.1 Notations

We denote 7Z,Q,R the ring of integers, the field of rational numbers, and the field of real

numbers. We take N as a positive integer and a power of 2. Notation |[n]] denotes the set
{1,2,---,n}, and [a]q the absolute minimum residual system [a]q =amodqe(-q/2,q/2].

Vectors and matrices are denoted in bold, such as a,b,c and A,B,C.The j-thentryof a is
denoted as a;, the element of the i-th row and j-th colomn of A is denoted as A ;(or

Ali, j]). Notation ||a||oo (||a|| for short) denotes the infinity norm of a. The polynomial ring
Z[X]/<X”+1> is denoted by R, and Zq[x]/<X”+1> by R,. The elements in R and R,
are denoted in bold as well. Similarly, notation [a]q denotes each entry (or each coefficient)

a,e(—p/2,pl/2] of a.

2.2 Lattices and Ideal Lattices

An n-dimension full-rank lattice L < R" is the set of all integer linear combinations

Zin:l y;b, of n linearly independent vectors b, € R". If we arrange the vectors b, as the
columns of matrix B e R™, then L:{By:yeZ”}. We say that B spans L if B is a
basis for L. Given a basis B of L, we define P(B) :{By|y eR"Vi:-1/2<y, <1/ 2}

as the parallelization correspondingto B . Let det(B) denote the determinant of B.

Given geR, let | =<g> be the principal ideal lattice in R generated by ¢ whose
7 -basis is Rot(g) =(g,X-0,..., X" "-Q).

Given ceR", 0 >0, the Gaussian distribution of a lattice L is defined as VXxelL,
D ,.=p,.X)/p,. (L), where p_.(X)= exp(—7z||x—c||2 /%), Py (L) = erL Py (X).
In the following, we will write D, ~~as D , . We denote a Gaussian sample as X« D, ,

(or d <« D, ) overthe lattice L (or ideal lattice ).

2.3 Multilinear Maps

Definition 2.1 (Multilinear Map [BSO03]). For x+1 cyclic groups G,...,G_,G; of the same
order g,a x-multilinearmap e:G, x---xG, — G; has the following properties:

(1) Elements {gj eGj} _, index je[x]. and integer aeZ, hold that

=Ly

e(gl’...'a.gj1...,g’():a.e(gl’...’gK)



(2) Map e is non-degenerate in the following sense: if elements {gj EGj}H are

generators of their respective groups, then e(g,,---,d,) isagenerator of G;.

Definition 2.2 (x -Graded Encoding System [GGH13]). A x -graded encoding system over R
is a set system of S = {Sf“) cR:aeR,je [[K]]} with the following properties:

(1) For every index j €[], the sets {Sf“) ‘ae R} are disjoint.

(2) Binary operations ‘4’ and ‘—’ exist, such that every o, ,, every index Je |[K]] and
every U, € S}“l) and U, € S}“Z) hold that u,+u, € Sf"’”"’” and U, —U, € Sf“l"“Z) , Where
a, +a, and o, —a, arethe addition and subtraction operationsin R respectively.

(3) Binary operation ‘x’ exists, such that every a,,c,, every index j,, j, e[[zc]] with
L+, <K, and every U, € S}f‘l) and U, € SEZ“Z) hold that U, xu, € S{*** where o, xa,

ki

is the multiplication operationin R and j, + j, is the integer addition.

3 New Construction

Setting the parameters. Let A be the security parameter, x the multilinearity level, n the
dimension of elements of R. Concrete parameters are set as o =+An,o’ =An"°, 0" =2%,
q=2"*n°® m=2 n>0(x1?),r=0(n%), p=0(n).

3.1 Construction

Instance generation: (par) < InstGen(1*,1%).
(1) Choose a prime > 2 n°*).
(2) Choose g,f <~ D,, in R sothat Hgflu <n® and Hfﬁlu <n’.
(3) Choose ,;,b,; <~ D,, .,ie[r] in R;
Choose a,,b, < DZ",O" and h,h;,h, « Dz",ﬁ in R.
(4) Choose random elements z, <— R_,t €[2] sothat z* R, .
(5) Set e, =(a,g+1)modf namely a,g+1=bf+e sothat [jo,|<n?;

e, =(a,;0)modf i e[r], namely a,,g=b,,f+e; sothat Hblli H <n’.

I a b fte,.
1 q 1 q 1 g 1 q

y = _bzf +e1 and X,. = M .
2 22 2,i 22
q q

(7 Set Py =| 2] (h19‘1+h2f‘1)]q, Puz=| 23 (h, +hE)f ] .

(8) Output the public parameters par = q,{yt,{xti}_ ,pm} .
P g



Generating level-k encoding: (ul,u2)<— Enc(par,k,d).
(1) sample 1, <~ D,, . ie[e];

(2) Given d « D,. .. compute U, :[d-(yt)k +Z:;lri -(Xt’i)kL;
(3) Output (u,,u,) asalevel-k encoding of d.

Adding encodings: (u,,u, )(—Add(par k( oy ) : (uls,UZS))
(1) Given s level-k encodings (ulvl,uz’,) compute U, =[zs u, L.
(2) Output a level-k encoding (u;, U, ).

Multiplying encodings: (ul,u )<—Mu|(par1( 119 21),---,(u1’k,u21k)).
(1) Given Kk level-1 encodings (ulll,uzvl),compute u, :|:H:<:1ut,l L.

(2) Output a level-k encoding (u,, U, ).
Zero testing: iSZero(par, (u,u, )) .
Given a level-x encoding (ul,uz), to determine whether u, is a level-x encoding of

zero for g, we compute V=] U, - -u,- and check whether |[v|| is short:
i t 1°Paz ~Uz Pz |, d check wheth hort

s u,)) |

Extraction: sk « Ext(par, (u,u,)).

1 if v <q*
0 otherwise

Given a level-x encoding (ul,uz), we compute V = [ul-pm—u2 -pM]q, and collect
n=(logq)/4— A most-significant bits of each of the n coefficients of v:
Ext(par,(u,,u, )) = Extract, (msbsq ([u1 Pps—U, -pzt'2:|q )) .

Remark 3.1 (1) One can only use one zero-testing parameter to introduce new noise term. We
briefly describe this variant as follows. After running steps (1)-(7) of InstGen(1*,1¥), one first

m,fg+1 m,gn
generates a pair of special encoding (pl,pz) with p, = 1—91( and p, = ng

z:7, | z-7;
such that m,gn =1modf, where m;,m, <~ D,, ., and an invertible random element z <— R, .
To obtain N over R, one computes mM,g =rf +k , and solves an inverse element n of K for

f SO that n-k=1modf and ||n|| < ||f || . Then, one sets

Py=225 Py, = [Z z¥ -z (hlg‘1+h2f‘l)]q. Finally, one outputs the public parameters

par :{q,{yt,{xtvi}ieﬂrﬂ ,pt}t 2 ,pzt}. Now, given a level-x encoding (U,,U, ), one computes

v =[(u,-P; —U,"P,) Py, and check whether [[v[|<q™*. It is easy to verify that this variant

construction is correct and avoids the zeroizing attack problem of GGH. We observe that this variant
in some sense is also a modification of the zero-immunizing transformation described by Boneh, Wu,
and Zimmerman [BWZ14]. However, the difference between our variant and their transformation is
from method introducing new noise term. In fact, to add new noise, our variant mainly modifies zero
testing parameter, whereas their transformation adds new factor for modulo.



(2) We can also improve the CLT map [CLT13] using the methods of our construction.

b,g+1 bg+e
(3) The level-1 encoding Y, =[ 9 } can be set to Y, :{L} . Of course, in
Zl Zl
q q

this case, we take €, =(b,g+e;)modf.
(4) The =zero ftesting parameter P, :[Z’z‘(hz +hf)f*l]q can be set to

P, = [z’z‘hzf’ljq . Here our aim is to further damage the relationship between p,, and p,,.

3.2 Correctness

Lemma 3.2 The algorithm InstGen(1*,1%) runs in polynomial time.
Lemma 3.3 The encoding (u,,U, ) < Enc(par,k,d) isalevel-k encoding.

Proof. We only need to show that U, is a level-k encoding of d for the ideal lattice <g> and

level-K encodings U,,u, encode same level-0 encoding for the ideal lattice <f>

(1) By ut:[d-(yt)k+Z:i (X“) } for < > we have
u, = [d'(Y1)k +Zi:1ri -(lei)kll

k k
ag+1 . a,;9
:d.l— + _r_. i
( Z j Zl_ll[zlj
q

a,9 +1)k + Z;l i '(al,ig)k '
2y

k
Zl

_ag+d}
q

where a=(d~&gg+1f-+§:iﬂ}(ang)k—d)/g.
Thus, U, isalevel-k encoding of the level-O encoding d for <g>
(2) Similarly, for <f> we have

= d-() + 2 ()" |
| (bfre) < . (b.fre,)
Joer oz ]|

o q

B cf+e}
__ 7 q
where e=d-(e,) + 3" r-(e,)", ¢, ( (bf+e) +3 (bt,if+e1,i)k—e)/f.
The level-k encodings u,,u, encode same level-0 encoding for <f> ]

Lemma 3.4 The encoding (Uu,,U, )(—Add(par K, (Uy,, 21)’...,(u1’5,u2’5)) is a level- k



encoding.
hg+d

k
Zl

u1:|:2|5=1u1,|}q: Zf_l(rll<g-|_dl) :{rgt }

Zy Z

Proof. Since for <g>,alevel—k encoding U, hasthe form u,, :{ } , then the sum is
a

q
where r=Z:IS:1|’I and d=z;d|.
Namely, u, isalevel-k encoding for <g>
c, f+e

k
t

! :[zs ! } | 2Lt re) :{ctf_wte} |

Again for f,thelevel-k encoding u,, hasthe form u,, ={
’ ’ VA

} . Thus, we have
q

Zt Zt
q

where Ctzz;cm and BZZIS:lel.

That is, level-k encodings u,,u, encode same level-0 encoding for <f> ]
Lemma 3.5 The encoding (ul,u2)<—Mul(par,l,(ulvl,uz’l),...,(ulyk,uz’k)) is a level- k
encoding.
rg+d,

Proof. Since Uy, =[ } for <g>,theirproduct is:
a

1

L(ng+d,
u1=[H.k_1U1,.L{Hf_l“gml} _ H,_l(rkg+ ) :[rgtd]

Z Z Z

q

where d=[ [ _d,,r=([] ,(rg+d)-d)/g.

c, f+e
Again for <f>,the level-1 encoding U, has the form u, :[ L '} . Thus, we have
Z, q
k
k C,f+e H|:1(Ct,lf+el) cf+e
U = H|:1 7 - 7¥ - VA ’
t q t t q
a
k k
where e=1_[|:1eI and ct=(H|:l(Ct’|f+e|)—e)/f. O

Lemma 3.6 The zero testing isZero(par,(ul,uz)) correctly determines whether u, is a
level- x encoding of zero for <g> .

Proof. Given a level-x encoding (U,,U, ), we compute V = [ul-pm—u2 -pM]q and check
whether ||V|| is short:

1 if|v|<g™

isZerO(paV! (U, uz)) - {0 otherwise



r
If u, is a level- k¥ encoding of zero for <g> namely ul={—g} . Since
Zl
a

cf+e :
ut:{ — } for any level- x encoding (ul,uz).Thus, we have
z
a

t

v = [ul “Pag = Uz P ]q

= ul-zf(hlg-1+h2f-1)—u2-z;(h2+hf)f-1]
:[u zthg ™t +u, - zfh,f T —u, - 25 (h, +hf)f‘1}

rg 2h.g cf+e c,f+e

zrh -

Z1 1 2

=[rgh,g™ + (c,f +e)h,f* —(c,f +e)(h, + hf)f*]q
=[rh, +ch, —c,h, —(c,f +e)h],

For our choice of parameter, [r|<qg™, [c,|<a” . |c,|<a" . [c,f+e|<qg”®. and
||h|| <n°Wg"? ||h1|| <n°®qg"? ||h2|| <n°®qgY?. Moreover, Vv is not reduced modulo ¢, that is

25 (h, hf)fl} |

q

[V]q = V. Hence,
V]| = H[rh1 +ch, —c,h, —(c,f +e)h]q”
=[rh, +ch, —coh, — (c.f +e)h]
< ey + Jeshy ||+ [le.h, |+ e.f +e)h.
— 4no(1) _ql/8 _nO(l) _ql/z

< q3/4

. . rg+ .
If u, isalevel-x encoding of non-zero element for <g> Namely u, :{ g - } with
Zl
a

d=0modg and [d||<]g|. Thus,
v :[ul'pzt,l_UZ.pzt,Z:Iq
=[uy-z5 (hg ™ +h,f )=y, 25 (h, +hi)f * |
q

=[u,-z*hg* +u,- thszl_uz.z;(hz+hf)f*1]q

{rg+d 2hg cf:e'thzf_1 c,f +e 25, hf)f‘l]
z

1 2 q

=[(rg+ch,g* + (e f +)hf * —(c,f +e)(h, +hi)f 1],
=[dh,g*+rh, +ch,-c, 2—(c2f+e)h]q
By Lemma 4 in [GGH13], H[dhlgl}q H ~ (. Thus we have |v||~q. O

Lemma 3.7 Given two level-x encodings (ulvl,uzll),(ulvz,uzvz),suppose that u,,,U,, encode



same plaintext, then
Ext(par, (uy,, u2,1)) = Ext(par, (Ul,yuz,z))-

Proof. Let ulls=[rsg+d} ={C1'Sf+es} ., se[2] so that |rg+d|<g”® , and
q q

K K
Zl Zl

c, f+e
U, = {M} .S €[2]. Thus, we have
’ Z; q

Vs = |:ul,s ’ pzt,l _uz,s ’ pzt,z:lq

25 (hg™ +h,f ) -u,, -zs(h, +hf)f- ]
-z;hlgy1 Uy, zihyf v, 25 (h, +hE)E ]

_ .25 (h, +hf)f~ }
Z; Z; q

{rsg +d . c,fre, g G fre,
[(rg+d)hlg-l+(clsf+e )h,f*—(c, f+e.)(h, +hf)f-1]

=[dhg™+rh, +c, h, - 2—(c2'sf+es)h]q

For our parameter setting, H[rsh1 +c¢,.h, —c, h, —(C,.f +es)h]qH <q**. By Lemma 4 in

[GGH13], H[dhlg‘1]q H ~( when d=0modg. Thus, the equality holds. O
3.3 Security

Consider the following security experiment:
(1) par « InstGen(1*,1%)
(2 For =0 to «:

Sample d, «<~D,, ., ;<D

n L
7" ,c*

Generate level-1 encoding U, :[dlyt+z:_lr|]ixt’i} , te[2].
B q

(3) Set U, :[H;um L, te[2].
(4) Set v, =V, = Ext(par,([dounjq ,[douM]q)).

(5) Sample I, <D, andset Vg = [Ext(par,([roulvqu ,[rouz,qu))}q.
Definition 3.8 (ext-GCDH/ext-GDDH). According to the security experiment, the ext-GCDH and
ext-GDDH are defined as follows:
Level- « extraction CDH (ext-GCDH): Given {par,(ull,uu),---,(ulyK,uzyK )} , output a

3/4

level- k extraction encoding WeR such that H v —W] ‘ <q

Level-x extraction DDH (ext-GDDH): Given {par’(u1,11u2,1)"“'(u1,x’uz,;«)’v}' distinguish



between Dext—GDDH = {par’(ul,l’uz,l)’”"(ul,K’UZ,K)’VD} and
Dext—RAND = {par’(ul,v u2,1) T (ul,x’ UZ,K)’VR} .
3.4 Cryptanalysis

In this section, we give easily computable some quantities in our construction, and analyze
possible attacks using these quantities.

3.4.1 Easily computable quantities

The encodings Y, X, ; in the public parameters are same as that of GGH for the ideal lattice
<g>. However, the zero testing parameter P, ,, which is different from one of GGH, includes
z¥h,f. As a result, the encodings Xy; of zero for <g> are not any more encoding of zero for
<f>. Although the non-zero plaintexts encoded by Y,,X;; are one-to-one corresponding to ones
encoded by Y,,X,; for <f> , respectively, they cannot be subtracted to obtain encoding of zero for
<f> . This is because that random element z, using as level number of encoding is not equal to Z, .
That is, one must use zero testing parameter P, , to remove the non-zero level-0 encodings in
Y. Xy; - Thus, one can only get easily computable quantities in the following form.

Given a level-k encoding (ul, uz) with 1<Kk < x, we can compute using par to get

V= [u1 ) (Xl,i)j '(yl)’(ikij Pag— Uy '(Xz,i)j '(yz)pkij 'pzt,Z:Iq .
Without  loss  of  generality, let u, = {T} ={ } { } and

q g
u, 2{ } . Hence,
q

Z
v = I:ul ’ (Xl,i)j '(Y1)K_k_j Py —U, '(Xz,i)j '(yz)K_k_j Pas ]q

w rg+d

k
Zl

cf+e

k
Zl

c,f+e

k
Z2

W a0, a0+l e
_k(l_)J (L) ‘ "zthg '
1 4 1
b, f+e . -
R A L
Zl Zl 1

b, f+e,. j

SGlre Qal TRy Ry 2 n, )i

i zZ, z, 2 -

=[hwg'™-a, +h, -4, +hea, ]q
Itis easy to see that Vv in the above equality is not reduced modulo (.
First, one cannot yield a basis of ¢ using Vv for the encoding scheme above. Since we add
a new noise term h,-A, +h-A, to hywg'™-2,; and h,-A,;+h-A; has not the factor of g.
Hence, our construction hides the plaintext space R/ <g> itself. The aim we introduce f is to add
another noise term to remove the factor of ¢ .
Then, the subgroup membership problem is seemly hard for our construction. Let g =g,0,.

10



w
Given a level- 1 encoding (ul,uz) with ul={—} , determine if We<g1>. Using
Zl
a

V= [hlwgifl AN, A, +h .Ai]q, one cannot decide whether Vv belongs to <91> regardless
of we <91> . This is again the result adding new noise term.

Finally, the decision linear problem is also seemly hard for our construction. For a matrix of
A=(a ;) eR™ all encoded at level-k , 1<k <« formamatrix T, the DLIN problem is to

distinguish between rank W and rank w—1 for A. Based on the similar reason above, one
cannot compute the rank of A in our encoding scheme.

3.4.2 Hu-Jia Attack

In this section, we show that the Hu-Jia attack [HJ15a] does not work for our construction.
Hu-Jia Attack Description

Their attack includes three steps. The first step generates an equivalent level-0 encoding for
a level-1 encoding; the second step computes an equivalent level-0 encoding for the product of
several level-0 encodings; the final step transforms an equivalent product level-0 encoding into
the shared secret key of MPKE by the modified encoding/decoding.

By analysis, the first step is the key of the Hu-Jia attack. We describe the concrete details of the

first step as follows:

(1) Let par, ={q,y =[(rag)/z], .x =[(@g) /2], .ic[2].p, :[(hz’f)/g]q} be the
public parameters of the GGH map. We generate special decodings {y(l) X i=1, 2} , Where

y® = [pzty’“‘lxljq =h(l+ag) 'a,,

X = [pzty’“‘zxixl]q =h(l+ag)*?(a,g)a,, i=12.

Notice that y(l),x(i) are not reduced modulo (.

(2) Given a level-1 encoding u, we have U :[dy+rlxl+rzxz]q, where d is secret

level-0 encoding, and r,,r, random noise elements.
Compute special decoding
V= [pztuy’“‘le]q =dy® +rx® +rx®,
Since V is not reduced modulo q, then compute
vmody® = (rx® mody® +r,x® mody®)mody®.
(3) Given vmody® and {x®mody®, x® mody®}, we get v'=vmody® e<x(1),x(2)>
such that (v—v)mody® =0.Let V' =rx® +rx®?.
@) compute d®=(v-v)/y® over k= IER[X]/<Xn +1> such that the quotient
d©® e R. By arranging, we obtain
d9=(v-v)/y®
=d+((r, - r]‘.)al +(r, - r‘z)az)g /(1+ag)
Again since g and 1+ag are co-prime, we get d—d® e(g). Thus, d© is an
equivalent level-0 encoding of d. Although Hd(o)H is not small, Hu and Jia [HJ15a] controlled the
sizeof d® byusing x" e(g).
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Non-applicabiltiy of Hu-Jia Attack

(1) Let par :{q,{yt,{xti}_ [],pm} } be the public parameters of our construction.
e ' teﬂZ]l

Similarly, we generate special decodings S = {y(l) . {X(i)}i [ ]]} as follows:

y(l) = |:X1’1 . (yl)K_l . pztvl - X2,1 : (yz)K_l : pzt,z l‘ = hlAl,O +|’]2A2,0+hA0 !
i K2 K—2

x" = |:X1,ixl,1 ’ (yl) Pag =X Xos (yz) Pa ]q = hlgAi,i+h2A2,i+hAi :

Notice that y(l),x(i) are not reduced modulo (.

(2) Given a level-1 encoding (u,,u,) with u, :[d-yt+z:=1ri .Xt'i}q tel2], we
compute special decoding

K=2 k=2 1 T P
V:[ulxl,l'(yl) "Pag —UXp - (Y2) 'pzt,z]q =d-y® +Zi:1ri X0

It is easy to verify that v is not reduced modulo Q. On the one hand, one cannot find an
equivalent level-0 encoding encoded by (ul,uz) using the Hu-Jia method. Because xV g <g>
and the probability that y(l) XD are co-prime is almost 1. Namely, y(l) X" have not common

factor. This is different from the case of the original GGH computed by Hu and Jia [HJ15a].
On the other hand, one cannot efficiently solve d,r; given y(l),x('),v. Because computing

d,r, are similar to solving small integer problem. However, currently there exists no efficient

algorithm for small integer problem.
Thus, one cannot find an equivalent level-0 encoding encoded by (ul,uz). That is, the

Hu-Jia attack is prevented in our construction.
3.4.3 Cheon-Lee Attack

The Cheon-Lee attack [CL15] for the GGH map consists of three steps. The first step is find a
basis of secret ideal lattice <g> . The second step is to find the shortest vector of <g> using HNF.

The third step is to apply a lattice reduction algorithm on reduced dimension to solve the GDDH on
the GGH map.

However, one cannot yield a basis of <g> using the public parameters in our construction.
Thus, The Cheon-Lee attack does not work in our construction.

4 Applications

In the following, we describe two applications using our construction: the MPKE protocol and
the instance of witness encryption.

4.1 MPKE Protocol

Setup(1*,1V) . Output (par) «— InstGen(1*,1*) as the public parameters.
Publish(par, j). The j-th party samples d; <~ D,, ., r;; <~ D, _,ie[r], publishes the

public key U, ; = [dj Y+ DT .Xt’i:|q .te[2] andremains d; as the secret key.

KeyGen(par, j’dj’{(ul,k’uzk)}kﬂ ) The j-th party computes C, :I_L#jut]k and extracts

12



the common secret key sk = Ext(par,([djclyj] [djcz,j L ))

ql
Theorem 4.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.3 is hard, then our
construction is one round multipartite Diffie-Hellman key exchange protocol.

4.2 Witness Encryption

4.2.1 Construction

Garg, Gentry, Sahai, and Waters [GGSW13] constructed an instance of witness encryption
based on the NP-complete 3-exact cover problem and the GGH map. However, Hu and Jia [HJ15a]
have broken the GGH-based WE. In this section, we present a new construction of WE based on our
new multilinear map.

3-Exact Cover Problem [GGH13, Gol08] Given a collection Set of subsets T, T,,...,T_
of [K]={12,...,K} such that K =360 and |Ti|:3, find a 3-exact cover of [K]. For an
instance of witness encryption, the public key is a collection Set and the public parameters par

in our construction, the secret key is a hidden 3-exact cover of [[K]]
Encrypt(l*, par,M):
(1) For ke[K], sample d, « D, ., N« D, .. ic [z] and generate level-1
encodings U,, = [dk DI -X“} tef2].
- " g
K
(2) Compute U, :[kalutk} and sk:Ext(par,(ul,uz)), and encrypt a message
= g
M into ciphertext C.
(3) For each element T; ={];, J,, J,} € Set, sample r; ; <~ D, _.ie[r], and generate a

r 3
level-3 encoding U, =[utyjlutyj2utyj3 +Z:i:1rTj'i (X.i) } te2].
q

(4) Output the ciphertext C and all level-3 encodings E = {(Unj Upr, ),Tj € Set}.
Decrypt(C,E,W):
(1) Given C,E and awitness set W , compute U, = |:HTJ-EW Ui, L.

(2) Generate Sk = Ext(par,(ul,uz)),and decrypt C to the message M .

Similar to [GGSW13], the security of our construction depends on the hardness assumption of
the Decision Graded Encoding No-Exact-Cover.
Theorem 4.2 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our
construction is a witness encryption scheme.

4.2.2 Hu-Jia Attacks

. T 3 . . .
Since U, =[uhuj2uj3 +Zi:1riji (%) } ,te[2] is a level- 3 encoding in our
q

encoding method, one cannot obtain U, , =[u”jutTk (Upr )‘lJ when T, =T,UT, -T,. As a
T T e M q

result, the Hu-Jia attacks [HJ15a, HJ15b] are prevented in our new construction.
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5 Conclusion

In this paper, we describe a new variant of GGH, which supports the applications for public tools of
encoding in the original GGH, such as MPKE and WE. Using two zero testing parameters, our
construction introduces new noise term to avoid weakness of GGH. As a result, our new
construction not only prevents all known attacks, but also seemly supports the hardness assumption
of the SubM problem and the DLIN problem.
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