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Abstract. Recently, Hu and Jia presented an efficient attack on the GGH map. They show that the 
MPKE and WE based on GGH with public tools of encoding are not secure. Currently, an open 
problem is to fix GGH with functionality-preserving. We present a new construction of multilinear 
map using ideal lattices, which maintains functionality of GGH with public tools of encoding, such 
as applications of GGH-based MPKE and WE. The security of our construction depends upon new 
hardness assumption. 
Keywords. Multilinear maps, Ideal lattices, Multipartite Diffie-Hellman key exchange, Witness 
encryption, Zeroizing attack 

1 Introduction 

There are at present only three constructions of multilinear maps [GGH13, CLT13, GGH15]. The 
first candidate construction of multilinear maps is presented by Garg, Gentry, and Halevi (GGH) 
[GGH13]. Soon after, Coron, Lepoint, and Tibouchi [CLT13] (CLT) described a construction over 
the integers using same framework of GGH. Recently, Gentry, Gorbunov and Halevi [GGH15] 
constructed graph-induced multilinear maps from lattices. 

However, the zeroizing attacks for CLT and GGH demonstrate that previous constructions 
require further improvement. On the one hand, Cheon, Han, Lee, Ryu, and Stehle recently broke the 
CLT construction using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT 
construction, Garg, Gentry, Halevi and Zhandry [GGH+14], and Boneh, Wu and Zimmerman 
[BWZ14] presented two candidate fixes of multilinear maps over the integers. However, Coron, 
Lepoint, and Tibouchi showed that two candidate fixes of CLT can also be defeated using extensions 
of the Cheon et al.’s Attack [CHL+14]. By modifying zero-testing parameter, Coron, Lepoint and 
Tibouchi [CLT15] proposed a new construction of multilinear map over the integers. On the other 
hand, Hu and Jia [HJ15a] very recently presented an efficient attack on the GGH map, which breaks 
the GGH-based applications on multipartite key exchange (MPKE) and witness encryption (WE) 
based on the hardness of 3-exact cover problem. The Cheon and Lee [CL15] proposed an attack for 
the GGH map by computing a basis of secret ideal lattice. 

Gu (Gu map-1) [Gu15] presented a construction of multilinear maps without encodings of 
zero, which is an variant of the GGH map. Since no encodings of zero are given in the public 
parameters, MPKE based on Gu map-1 [HJ15c] successfully avoids the attack in [HJ15a]. However, 
Gu map-1 cannot be used for the instance of witness encryption based on the hardness of 3-exact 
cover problem [HJ15b]. This is because there is no randomizer in Gu map-1. But the instance of WE 
based on the hardness of 3-exact cover problem is a strong application of multilinear map. Currently, 
an open problem is how to fix the GGH map, whilst still maintaining functionality of the original 
GGH. 

Our results. 
We first briefly recall the GGH map. The GGH map works in a polynomial ring 

[ ] / 1nR x x  , where n  is a positive integer. A random large integer q , a secret short ring 

element Rg , and a secret random element 1 /qR R qR z  are chosen during construction, 

where g  generates a principal ideal I R g  and z  is invertible in qR . Elements in 

/R I  are encoded as follows: a level- k  encoding of the coset Ie I e  is an element of the 
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form 1/ k

q
  c z , where the Iec  norm is short. Encodings can both be added and multiplied if 

the numerator norm remains smaller than q . For a level-  encoding 1/
q

   u c z , the encoding 

u  can be determined as zero by computing  zt q
u p , where 1 1 /zt q

   p h z g  is a zero-testing 

parameter. If the norm of  zt q
u p  is small, then u  is the encoding of zero; otherwise, u  is the 

encoding of non-zero. 
Our main contribution is to construct a new multilinear map using ideal lattices. Our 

construction improves the origin GGH map in three aspects. 
(1) We introduce new noise term to avoid the zeroizing attack problem of GGH. Let 

    0 1 1 1, 1, 1 1 1par , (1 ) / , ( ) / , , /i i ztq q q
q i            y ag z x a g z p h z g  be the public 

parameters of GGH. Given arbitrary level- k  encoding 1/ k

q
   u c z , one can compute 

1
, , 1, 1 1 1,( ) (1 )j k j j j k j

k i j i zt iq q

                  v u x y p h c a g ag , where 1 k   ,1 j    

and k j    using so-called zeroizing attack method. It is easy to verify that , ,k i jv  is not 

reduced modulo q . As a result, one one can compute a basis of the secret ring element g . Using 

this method, Hu and Jia [HJ15a] have broken two applications of MPKE and WE based on GGH. To 
improve GGH and avoid the zeroizing attack, one needs to introduce new noise term for , ,k i jv . If 

one can add a random noise to , ,k i jv , then adversary cannot yield a basis of g . We introduce a 

new ring element f  in our construction to achieve this goal. 
(2) We use two zero testing parameters to introduce new noise term. We change ztp  into 

,1 1 1 2( / / )zt q

   p z h g h f . The problem is how to remove encoding of non-zero element for 

ideal lattice f . Roughly speaking, one must generate encoding of zero for f . For this purpose, 

we generate some encodings    2 2 2 2, 2, 2( ) / , ( ) / ,i i iq q
i       y e b f z x e b f z  such that 

(1 ) mod e ag f  and ( ) modi ie a g f . To obtain encoding of zero for f , we generate 

another zero testing parameter ,2 2 2( ) /zt q

   p z h hf f . When generating a level- k  encoding 

1 1 1/ k

q
   u c z , one also generates its corresponding level- k  encoding 2 2 2/ k

q
   u c z  such 

that 1 2 modc c f . Hence, given a level-  encoding  1 2,u u , we can determine whether the 

encoding of 1u  is zero for g  by computing 1 ,1 2 ,2zt zt q
    u p u p . Now, given arbitrary 

level- k  encoding  1 2,u u , one can compute 

, , 1 1, 1 ,1 2 2, 2 ,2
j k j j k j

k i j i zt i zt q

             v u x y p u x y p , where 1 k   , 1 j    and 

k j    using zeroizing attack method. Although , ,k i jv  is not reduced modulo q , one can no 

longer obtain a basis of g  using , ,k i jv .  

(3) Our new construction seemly supports more applications than the original GGH. Owing to 
adding new noise term, one can no longer yield a basis of g . Hence, we conjecture that the 

membership group problem (SubM) and the decisional linear (DLIN) problem are hard in our 
construction. However, in the original GGH map, one can compute non-reduced ring elements over 
modulus q  and a basis of g . As a result, the SubM problem and the DLIN problem are easy in the 

GGH map. 
Our second contribution is to describe the applications of MPKE and WE using our new 

multilinear map. Since these applications are attacked by [HJ15a], fix for them is urgently required. 
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The MPKE and WE based on our new map are same as ones using the GGH map. 
Organization. Section 2 recalls some background. Section 3 describes our new construction 

using ideal lattices. Section 4 presents two applications of MPKE and WE based on our construction. 
Finally, Section 5 draws conclusion. 

2 Preliminaries 

2.1 Notations 

We denote , ,    the ring of integers, the field of rational numbers, and the field of real 

numbers. We take n  as a positive integer and a power of 2. Notation  n  denotes the set 

 1, 2, ,n , and  qa  the absolute minimum residual system   mod ( / 2, / 2]
q

a a q q q   . 

Vectors and matrices are denoted in bold, such as , ,a b c  and , ,A B C . The j -th entry of a  is 

denoted as ja , the element of the i -th row and j -th colomn of A  is denoted as ,i jA (or 

[ , ]A i j ). Notation 


a  ( a  for short) denotes the infinity norm of a . The polynomial ring 

[ ] / 1nx x   is denoted by R , and [ ] / 1n
q x x   by qR . The elements in R  and qR  

are denoted in bold as well. Similarly, notation  qa  denotes each entry (or each coefficient) 

( / 2, / 2]ia p p   of a . 

2.2 Lattices and Ideal Lattices 

An n -dimension full-rank lattice nL    is the set of all integer linear combinations 

1

n

i ii
y

 b  of n linearly independent vectors n
i b  . If we arrange the vectors ib  as the 

columns of matrix n nB  , then  : nL  By y  . We say that B  spans L  if B  is a 

basis for L . Given a basis B  of L , we define  ( ) | , : 1/ 2 1/ 2n
iP i y     B By y   

as the parallelization corresponding to B . Let det( )B  denote the determinant of B . 

Given Rg , let I  g  be the principal ideal lattice in R  generated by g , whose 

 -basis is 1( ) ( , ,..., )nRot x x   g g g g . 

Given nc  , 0  , the Gaussian distribution of a lattice L  is defined as L x , 

, , , ,( ) / ( )LD L   c c cx , where 
2 2

, ( ) exp( / )    c x x c , , ,( ) ( )
x L

L  


c c x . 

In the following, we will write 
, ,0nD


 as 
,nD


. We denote a Gaussian sample as ,LD x  

(or ,ID d ) over the lattice L (or ideal lattice I ). 

2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1   cyclic groups 1,..., , TG G G  of the same 

order q , a  -multilinear map 1: Te G G G    has the following properties: 

(1) Elements  
1,...,j j j

g G


 , index  j  , and integer qa  hold that 

1 1( , , , , ) ( , , )je g a g g a e g g       
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(2) Map e  is non-degenerate in the following sense: if elements  
1,...,j j j

g G


  are 

generators of their respective groups, then 1( , , )e g g  is a generator of TG . 

 
Definition 2.2 ( -Graded Encoding System [GGH13]). A  -graded encoding system over R  

is a set system of   ( ) : ,jS S R R j       with the following properties: 

(1) For every index  j  , the sets  ( ) :jS R    are disjoint. 

(2) Binary operations ‘ ’ and ‘ ’ exist, such that every 1 2,  , every index  j  , and 

every 1( )
1 ju S   and 2( )

2 ju S   hold that 1 2( )
1 2 ju u S     and 1 2( )

1 2 ju u S    , where 

1 2   and 1 2   are the addition and subtraction operations in R  respectively. 

(3) Binary operation ‘ ’ exists, such that every 1 2,  , every index  1 2,j j   with 

1 2j j   , and every 1

1

( )
1 ju S   and 2

2

( )
2 ju S   hold that 1 2

1 2

( )
1 2 j ju u S  

  , where 1 2   

is the multiplication operation in R  and 1 2j j  is the integer addition. 

3 New Construction 

Setting the parameters. Let   be the security parameter,   the multilinearity level, n  the 

dimension of elements of R . Concrete parameters are set as n  , 1.5n   , 2   , 
8 ( )2 Oq n  , 2m  ,  2( )n O  , 2( )O n  , ( )O n  . 

3.1 Construction 

Instance generation: (par) InstGen(1 ,1 )  . 

(1) Choose a prime 8 ( )2 Oq n  . 

(2) Choose 
,

, nD


g f


 in R  so that 1 2n g  and 1 2n f . 

(3) Choose 1, 2, , '
, ni i D


a b


,  i   in R ; 

Choose 1 2 , '
, nD


a b


 and 1 2 ,

, , n q
Dh h h


 in R . 

(4) Choose random elements t qRz ,  2t  so that 1
t qR z . 

(5) Set 1 1( 1) mod e a g f , namely 1 1 11  a g b f e  so that 2
1 nb ; 

      1, 1,( ) modi ie a g f ,  i  , namely 1, 1, 1,i i i a g b f e  so that 2
1,i nb . 

(6) Set 1 1 1
1

1 1

1

q q

    
    
   

a g b f e
y

z z
 and 1, 1, 1,

1,
1 1

i i i
i

q q

   
    
   

a g b f e
x

z z
; 

2 1
2

2 q

 
  
 

b f e
y

z
 and 2, 1,

2,
2

i i
i

q

 
  
 

b f e
x

z
. 

(7) Set  1 1
,1 1 1 2zt

q

     p z h g h f , 1
,2 2 2( )zt q

    p z h hf f . 

(8) Output the public parameters     
 

,
2

par , , ,t t,i zt ti t
q

 

   
 

y x p . 
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Generating level- k  encoding:    1 2, Enc par, ,ku u d . 

(1) Sample 
, *ni D


r


,  i  ; 

(2) Given 
, 'nD


d


, compute ,1
( ) ( )k k

t t i t ii q




     u d y r x ; 

(3) Output  1 2,u u  as a level- k  encoding of d . 

Adding encodings:       1 2 1,1 2,1 1, 2,, Add par, , , , , ,s sku u u u u u . 

(1) Given s  level- k  encodings  1, 2,,l lu u , compute ,1
=

s

t t ll q
 
 u u . 

(2) Output a level- k  encoding  1 2,u u . 

Multiplying encodings:       1 2 1,1 2,1 1, 2,, Mul par,1, , , , ,k ku u u u u u . 

(1) Given k  level-1 encodings  1, 2,,l lu u , compute ,1
=

k

t t ll q
 
 u u . 

(2) Output a level- k  encoding  1 2,u u . 

Zero testing:   1 2isZero par, ,u u . 

Given a level-  encoding  1 2,u u , to determine whether 1u  is a level-  encoding of 

zero for g , we compute 1 ,1 2 ,2zt zt q
    v = u p u p  and check whether v  is short: 

  
3/4

1 2

1 if
isZero par, ,

0 otherwise

q 
 


v
u u . 

Extraction:   1 2Ext par, ,sk  u u . 

Given a level-  encoding  1 2,u u , we compute 1 ,1 2 ,2zt zt q
    v = u p u p , and collect 

(log ) / 4q    most-significant bits of each of the n  coefficients of v : 

     1 2 1 ,1 2 ,2Ext par, , Extract msbss zt zt q      u u u p u p . 

Remark 3.1 (1) One can only use one zero-testing parameter to introduce new noise term. We 

briefly describe this variant as follows. After running steps (1)-(7) of InstGen(1 ,1 )  , one first 

generates a pair of special encoding  1 2,p p  with 1
1

2

1

q



 
   

m fg
p

z z
 and 2

2
1 q



 
   

m gn
p

z z
 

such that 2 1modm gn f , where 1 2 , '
, nD


m m


, and an invertible random element qRz . 

To obtain n  over R , one computes 2  m g rf k , and solves an inverse element n  of k  for 

f  so that 1mod n k f  and n f . Then, one sets 

 1 1
2 ,1 1 2 1 2zt zt

q

            p z z p z z z h g h f . Finally, one outputs the public parameters 

    
 2

par , , , ,t t,i t zti t
q

 

   
 

y x p p . Now, given a level-  encoding  1 2,u u , one computes 

 1 1 2 2( ) zt q
   v = u p u p p  and check whether 3/4qv . It is easy to verify that this variant 

construction is correct and avoids the zeroizing attack problem of GGH. We observe that this variant 
in some sense is also a modification of the zero-immunizing transformation described by Boneh, Wu, 
and Zimmerman [BWZ14]. However, the difference between our variant and their transformation is 
from method introducing new noise term. In fact, to add new noise, our variant mainly modifies zero 
testing parameter, whereas their transformation adds new factor for modulo. 
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(2) We can also improve the CLT map [CLT13] using the methods of our construction. 

(3) The level-1 encoding 1
1

1

1

q

 
  
 

b g
y

z
 can be set to 1 1

1
1 q

'
 

  
 

b g e
y

z
. Of course, in 

this case, we take 2 1 1( ) mod e b g e f .  

(4) The zero testing parameter 1
,2 2 2( )zt q

    p z h hf f  can be set to 

1
,2 2 2zt q
'     p z h f . Here our aim is to further damage the relationship between ,1ztp  and ,2ztp . 

3.2 Correctness 

Lemma 3.2 The algorithm InstGen(1 ,1 )   runs in polynomial time. 

Lemma 3.3 The encoding    1 2, Enc par, ,ku u d  is a level- k  encoding. 

Proof. We only need to show that 1u  is a level- k  encoding of d  for the ideal lattice g , and 

level- k  encodings 1 2,u u  encode same level- 0  encoding for the ideal lattice f . 

(1) By ,1
( ) ( )k k

t t i t ii q




     u d y r x , for g  we have  

   

1 1 1,1

1,1
1

1 1

1 1,1

1

1

( ) ( )

1

1

k k
i ii q

k k

i
ii

q

kk

i ii
k

q

k

q













     

    
       
     

    
 
  

 
  
 







u d y r x

a ga g
d r

z z

d a g r a g

z

ag d

z

, 

where     1 1,1
1 /

kk

i ii




     a d a g r a g d g . 

Thus, 1u  is a level- k  encoding of the level- 0  encoding d  for g . 

(2) Similarly, for f  we have  

,1

, 1,1

1

( ) ( )k k
t t i t ii q

k k

t i it
ii

t t
q

t
k
t q









     

    
       
     

 
  
 





u d y r x

b f eb f e
d r

z z

c f e

z

, 

where    1 1,1

kk

i ii




   e d e r e ,     1 , 1,1

/
kk

t t i t i ii




      c d b f e r b f e e f . 

The level- k  encodings 1 2,u u  encode same level- 0  encoding for f         □ 

Lemma 3.4 The encoding       1 2 1,1 2,1 1, 2,, Add par, , , , , ,s sku u u u u u  is a level- k  
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encoding. 

Proof. Since for g , a level- k  encoding 1,lu  has the form 1,
1

l l
l k

q

 
  
 

r g d
u

z
, then the sum is 

1
1 1,1

1 1

( )
=

s
s l ll

l k kl q
q

q




               


r g d rg d

u u
z z

, 

where 
1

s

ll
=

r r  and 
1

s

ll
=

d d . 

Namely, 1u  is a level- k  encoding for g . 

Again for f , the level- k  encoding ,t lu  has the form ,
,

t l l
t l k

t q

 
  
 

c f e
u

z
. Thus, we have 

,1
,1

( )
=

s
s t l ll t

t t l k kl q
t t qq




               


c f e c f e

u u
z z

, 

where ,1

s

t t ll
=

c c  and 
1

s

ll
=

e e . 

That is, level- k  encodings 1 2,u u  encode same level- 0  encoding for f .        □ 

Lemma 3.5 The encoding       1 2 1,1 2,1 1, 2,, Mul par,1, , , , ,k ku u u u u u  is a level- k  

encoding. 

Proof. Since 1,
1

l l
l

q

 
  
 

r g d
u

z
 for g , their product is: 

1
1 1,1 1

1 1 1

( )
k

l lk k jl l
l k kl lq

q q
q



 

                     


 

r g dr g d rg d
u u

z z z
,  

where 
1 1

, ( ( ) ) /
k k

l l ll l
=

 
   d d r r g d d g .  

Again for f , the level-1 encoding ,t lu  has the form ,
,

t l l
t l

t q

 
  
 

c f e
u

z
. Thus, we have 

,, 1

1

( )
k

k t l lt l l l t
t k kl

t t tq q
q




          
     


c f ec f e c f e

u
z z z

, 

where 
1

k

ll
=

e e  and ,1
( ( ) ) /

k

t t l ll
=


 c c f e e f .                               □ 

Lemma 3.6 The zero testing   1 2isZero par, ,u u  correctly determines whether 1u  is a 

level-  encoding of zero for g .  

Proof. Given a level-  encoding  1 2,u u , we compute 1 ,1 2 ,2zt zt q
    v = u p u p  and check 

whether v  is short: 

  
3/4

1 2

1 if
isZero par, ,

0 otherwise

q 
 


v
u u . 
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If 1u  is a level-   encoding of zero for g , namely 1
1 q



 
  
 

rg
u

z
. Since 

t
t

t q



 
  
 

c f e
u

z
 for any level-  encoding  1 2,u u . Thus, we have 

 
1 ,1 2 ,2

1 1 1
1 1 1 2 2 2 2

1 1 1
1 1 1 1 1 2 2 2 2

1 1 11 2
1 1 1 2 2 2

1 1 2

1 1
1 1 2 2

( )

( )

( )

( ) (

zt zt q

q

q

q

 

  

  
  

  

  

  

 

    

       

       

  
      
 

   

v = u p u p

u z h g h f u z h hf f

u z h g + u z h f u z h hf f

c f e c f erg
z h g + z h f z h hf f

z z z

rgh g + c f e h f c f

 

1
2

1 1 2 2 2 2

)( )

( )

q

q

  

   

e h hf f

rh + c h c h c f e h

. 

For our choice of parameter, 1/8qr , 1/8
1 qc , 1/8

2 qc , 1/8
2 q c f e , and 

(1) 1/2On qh , (1) 1/2
1

On qh , (1) 1/2
2

On qh . Moreover, v  is not reduced modulo q , that is 

 q v v . Hence, 

 1 1 2 2 2 2

1 1 2 2 2 2

1 1 2 2 2 2

(1) 1/8 (1) 1/2

3/4

( )

( )

( )

4

q

O On q n q

q

   

   

   

   

v rh + c h c h c f e h

rh + c h c h c f e h

rh + c h c h c f e h . 

If 1u  is a level-  encoding of non-zero element for g . Namely 1
1 q



 
  
 

rg d
u

z
 with 

0modd g  and d g . Thus,  

 
1 ,1 2 ,2

1 1 1
1 1 1 2 2 2 2

1 1 1
1 1 1 1 1 2 2 2 2

1 1 11 2
1 1 1 2 2 2

1 1 2

1 1
1 1 2

( )

( )

( )

( ) ( )

zt zt q

q

q

q

 

  

  
  

  

  

  

 

    

       

       

  
      
 

  

v = u p u p

u z h g h f u z h hf f

u z h g + u z h f u z h hf f

c f e c f erg d
z h g + z h f z h hf f

z z z

rg d h g + c f e h f 1
2 2

1
1 1 1 2 2 2 2

( )( )

( )

q

q





    

      

c f e h hf f

dh g rh + c h c h c f e h

. 

By Lemma 4 in [GGH13], 1
1 q

q   dh g . Thus we have qv .         □ 

Lemma 3.7 Given two level-  encodings  1,1 2,1,u u ,  1,2 2,2,u u , suppose that 1,1 1,2,u u  encode 
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same plaintext, then 

     1,1 2,1 1,2 2,2Ext par, , Ext par, ,u u u u . 

Proof. Let 1,
1,

1 1

s ss
s

q q

 

   
    
   

c f er g d
u

z z
,  2s  so that 1/8

s q r g d , and 

2,
2,

2

s s
s

q



 
  
 

c f e
u

z
,  2s . Thus, we have 

 
1, ,1 2, ,2

1 1 1
1, 1 1 2 2, 2 2

1 1 1
1, 1 1 1, 1 2 2, 2 2

1, 2,1 1 1
1 1 1 2 2 2

1 1 2

( )

( )

( )

(

s s zt s zt q

s s
q

s s s q

s s s ss

q

 

  

  
  

  

  

  

    

       

       

  
      
 



v = u p u p

u z h g h f u z h hf f

u z h g + u z h f u z h hf f

c f e c f er g d
z h g + z h f z h hf f

z z z

r 1 1 1
1 1, 2 2, 2

1
1 1 1, 2 2, 2 2,

) ( ) ( )( )

( )

s s s s s q

s s s s s q

  



      

      

g d h g + c f e h f c f e h hf f

dh g r h + c h c h c f e h

. 

For our parameter setting, 3/4
1 1, 2 2, 2 2,( )s s s s s q

q     r h + c h c h c f e h . By Lemma 4 in 

[GGH13], 1
1 q

q   dh g  when 0modd g . Thus, the equality holds.                □ 

3.3 Security 

Consider the following security experiment: 

(1) par InstGen(1 ,1 )   

(2) For 0l   to  : 

          Sample 
, 'nl D


d


, , , *nl i D


r


; 

          Generate level-1 encoding , , ,1t l l t l i t ii q




   u d y r x ,  2t . 

(3) Set ,1t t ll q




   u u ,  2t . 

(4) Set   0 1,1 0 2,1Ext par, ,C D q q
        v v d u d u . 

(5) Sample 0 , 'nD


r


and set   0 1,1 0 2,1Ext par, ,R q q
q

          
v r u r u . 

Definition 3.8 (ext-GCDH/ext-GDDH). According to the security experiment, the ext-GCDH and 
ext-GDDH are defined as follows: 

Level-   extraction CDH (ext-GCDH): Given     1,1 2,1 1, 2,par, , , , , u u u u , output a 

level-  extraction encoding qRw  such that   3/4
C q

q


 v w . 

Level-  extraction DDH (ext-GDDH): Given     1,1 2,1 1, 2,par, , , , , , u u u u v , distinguish 
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between     1,1 2,1 1, 2,par, , , , , ,ext GDDH DD    u u u u v   and 

    1,1 2,1 1, 2,par, , , , , ,ext RAND RD    u u u u v . 

3.4 Cryptanalysis 

In this section, we give easily computable some quantities in our construction, and analyze 
possible attacks using these quantities.  

3.4.1 Easily computable quantities 

The encodings 1y , 1,ix  in the public parameters are same as that of GGH for the ideal lattice 

g . However, the zero testing parameter ,1ztp , which is different from one of GGH, includes 

1
1 2
 z h f . As a result, the encodings 1,ix  of zero for g  are not any more encoding of zero for 

f . Although the non-zero plaintexts encoded by 1y , 1,ix  are one-to-one corresponding to ones 

encoded by 2y , 2,ix  for f , respectively, they cannot be subtracted to obtain encoding of zero for 

f . This is because that random element 1z  using as level number of encoding is not equal to 2z . 

That is, one must use zero testing parameter ,2ztp  to remove the non-zero level- 0  encodings in 

1y , 1,ix . Thus, one can only get easily computable quantities in the following form. 

Given a level- k  encoding  1 2,u u  with 1 k   , we can compute using par  to get 

1 1, 1 ,1 2 2, 2 ,2( ) ( ) ( ) ( )j k j j k j
i zt i zt q

            v = u x y p u x y p . 

Without loss of generality, let 1 1
1

1 1 1
k k k

q q q

      
       
     

r g d c f ew
u

z z z
 and 

2
2

2
k

q

 
  
 

c f e
u

z
. Hence, 

1 1, 1 ,1 2 2, 2 ,2

1, 11
1 1

1 1 1

1, 1, 11 1 1
1 2

1 1 1

2, 1,2 2 1
2 2

2 2 2

( ) ( ) ( ) ( )

1
( ) ( )

( ) ( )

( ) ( ) (

j k j j k j
i zt i zt q

i j k j
k

i i j k j
k

i i j k j
k

 

 

 

 

   

  

  

 

        


  

 
   

 
    

v = u x y p u x y p

a g a gw
z h g

z z z

b f ec f e b f e
= z h f

z z z

b f ec f e b f e
z h h

z z z
1

1
1 1, 2 2,

)
q

j
i i i q





 
 
 
 
 
 
 
 
  

      

f f

= h wg h h  

 

It is easy to see that v  in the above equality is not reduced modulo q .  

First, one cannot yield a basis of g  using v  for the encoding scheme above. Since we add 

a new noise term 2 2,i i  h h   to 1
1 1,

j
i

 h wg   and 2 2,i i  h h   has not the factor of g . 

Hence, our construction hides the plaintext space /R g  itself. The aim we introduce f  is to add 

another noise term to remove the factor of g . 

Then, the subgroup membership problem is seemly hard for our construction. Let 1 2g g g . 
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Given a level- 1  encoding  1 2,u u  with 1
1 q

 
  
 

w
u

z
, determine if 1w g . Using 

1
1 1, 2 2,

j
i i i q

      v = h wg h h   , one cannot decide whether v  belongs to 1g  regardless 

of 1w g . This is again the result adding new noise term. 

Finally, the decision linear problem is also seemly hard for our construction. For a matrix of 

,( ) w w
i j R  A a , all encoded at level- k , 1 k    form a matrix T , the DLIN problem is to 

distinguish between rank w  and rank 1w  for A . Based on the similar reason above, one 
cannot compute the rank of A  in our encoding scheme. 

  

3.4.2 Hu-Jia Attack 

In this section, we show that the Hu-Jia attack [HJ15a] does not work for our construction. 
Hu-Jia Attack Description 

Their attack includes three steps. The first step generates an equivalent level- 0  encoding for 
a level-1 encoding; the second step computes an equivalent level-0  encoding for the product of 
several level- 0  encodings; the final step transforms an equivalent product level- 0  encoding into 
the shared secret key of MPKE by the modified encoding/decoding.  

By analysis, the first step is the key of the Hu-Jia attack. We describe the concrete details of the 
first step as follows: 

(1) Let       0par , (1 ) / , ( ) / , 2 , ( ) /i i ztq q q
q i         y ag z x a g z p hz g  be the 

public parameters of the GGH map. We generate special decodings  (1) ( ), , 1, 2i i y x , where 

(1) 1 1
1 1(1 )zt q

      y p y x h ag a , 

( ) 2 2
1 1(1 ) ( )i

zt i iq

      x p y x x h ag a g a , 1,2i  . 

Notice that (1) ( ), iy x  are not reduced modulo q . 

(2) Given a level-1 encoding u , we have  1 1 2 2 q
  u dy r x r x , where d  is secret 

level- 0  encoding, and 1 2,r r  random noise elements. 

Compute special decoding  
2 (1) (1) (2)

1 1 2zt q

      v p uy x dy r x r x . 

Since v  is not reduced modulo q , then compute 
(1) (1) (1) (2) (1) (1)

1 2mod ( mod mod ) mod v y r x y r x y y . 

(3) Given (1)modv y  and  (1) (1) (2) (1)mod , modx y x y , we get (1) (1) (2)mod ,'  v v y x x  

such that (1)( ) mod 0' v v y . Let (1) (2)
1 2
' ''  v r x r x . 

(4) Compute (0) (1)( ) /' d v v y  over [ ] / 1nx x   such that the quotient 

(0) Rd . By arranging, we obtain 
(0) (1)

1 1 1 2 2 2

( ) /

(( ) ( ) ) / (1 )' '

' 

     

d v v y

d r r a r r a g ag
. 

Again since g  and 1 ag  are co-prime, we get (0) d d g . Thus, (0)d  is an 

equivalent level-0 encoding of d . Although (0)d  is not small, Hu and Jia [HJ15a] controlled the 

size of (0)d  by using ( )i x g . 
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Non-applicabiltiy of Hu-Jia Attack 

(1) Let     
 

,
2

par , , ,t t,i zt ti t
q

 

   
 

y x p  be the public parameters of our construction. 

Similarly, we generate special decodings     (1) ( ), i

i
S


 y x  as follows: 

(1) 1 1
1,1 1 ,1 2,1 2 ,2 1 1,0 2 2,0 0( ) ( )zt zt q

            y x y p x y p h h h   , 

( ) 2 2
1, 1,1 1 ,1 2, 2,1 2 ,2 1 1, 2 2,( ) ( )i

i zt i zt i i iq

            x x x y p x x y p h g h h   . 

Notice that (1) ( ), iy x  are not reduced modulo q . 

(2) Given a level- 1  encoding  1 2,u u  with  ,1
, 2t t i t ii q
t




      u d y r x , we 

compute special decoding 
2 2 (1) ( )

1 1,1 1 ,1 2 2,1 2 ,2 1
( ) ( ) i

zt zt iiq

  


            v u x y p u x y p d y r x . 

It is easy to verify that v  is not reduced modulo q . On the one hand, one cannot find an 

equivalent level- 0  encoding encoded by  1 2,u u  using the Hu-Jia method. Because ( )i x g  

and the probability that (1)y , ( )ix  are co-prime is almost 1. Namely, (1)y , ( )ix  have not common 

factor. This is different from the case of the original GGH computed by Hu and Jia [HJ15a]. 

On the other hand, one cannot efficiently solve , id r  given (1) ( ), ,iy x v . Because computing 

, id r  are similar to solving small integer problem. However, currently there exists no efficient 

algorithm for small integer problem. 

Thus, one cannot find an equivalent level- 0  encoding encoded by  1 2,u u . That is, the 

Hu-Jia attack is prevented in our construction. 

3.4.3 Cheon-Lee Attack 

The Cheon-Lee attack [CL15] for the GGH map consists of three steps. The first step is find a 

basis of secret ideal lattice g . The second step is to find the shortest vector of g  using HNF. 

The third step is to apply a lattice reduction algorithm on reduced dimension to solve the GDDH on 
the GGH map. 

However, one cannot yield a basis of g  using the public parameters in our construction. 

Thus, The Cheon-Lee attack does not work in our construction. 

4 Applications 

In the following, we describe two applications using our construction: the MPKE protocol and 
the instance of witness encryption. 

4.1 MPKE Protocol 

(1 ,1 )NSetup . Output (par) InstGen(1 ,1 )   as the public parameters. 

(par, )jPublish . The j -th party samples 
, 'nj D


d


, , , *nj i D


r


,  i  , publishes the 

public key , ,1t j j t j,i t ii q




     u d y r x ,  2t  and remains jd  as the secret key. 

   1, 2,par, , , ,j k k k j
j


d u uKeyGen . The j -th party computes , ,t j t kk j

c u  and extracts 
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the common secret key   1, 2,Ext par, ,j j j jq q
sk        d c d c . 

Theorem 4.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.3 is hard, then our 
construction is one round multipartite Diffie-Hellman key exchange protocol. 
 

4.2 Witness Encryption 

4.2.1 Construction 

Garg, Gentry, Sahai, and Waters [GGSW13] constructed an instance of witness encryption 
based on the NP-complete 3-exact cover problem and the GGH map. However, Hu and Jia [HJ15a] 
have broken the GGH-based WE. In this section, we present a new construction of WE based on our 
new multilinear map. 

3-Exact Cover Problem [GGH13, Gol08] Given a collection Set  of subsets 1 2, ,...,T T T  

of    1, 2,...,K K  such that 3K   and 3iT  , find a 3-exact cover of  K .  For an 

instance of witness encryption, the public key is a collection Set  and the public parameters par  

in our construction, the secret key is a hidden 3-exact cover of  K . 

(1 , par, )MEncrypt : 

(1) For  k K , sample 
, 'nk Z

D


d , , , *nk i D


r


,  i   and generate level- 1 

encodings , ,1t k k t k,i t ii q




     u d y r x ,  2t . 

(2) Compute ,1

K

t t kk q
   u u  and   1 2Ext par, ,sk  u u , and encrypt a message 

M  into ciphertext C . 

(3) For each element  1 2 3, ,jT j j j Set  , sample , , *n
jT i D


r


,  i  , and generate a 

level-3  encoding 
1 2 3

3

, , , , ,1
( )

j jt T t j t j t j T ,i t ii
q




    u u u u r x ,  2t . 

(4) Output the ciphertext C  and all level-3  encodings   1, 2,, ,
j jT T jE T Set u u . 

( , , )C E WDecrypt : 

(1) Given C , E  and a witness set W , compute , jj
t t TT W

q


    u u . 

(2) Generate   1 2Ext par, ,sk  u u , and decrypt C  to the message M . 

 
Similar to [GGSW13], the security of our construction depends on the hardness assumption of 

the Decision Graded Encoding No-Exact-Cover. 
Theorem 4.2 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our 
construction is a witness encryption scheme. 

4.2.2 Hu-Jia Attacks 

Since 
1 2 3

3

, ,1
( )

j jt T j j j T ,i t ii
q




    u u u u r x ,  2t  is a level- 3  encoding in our 

encoding method, one cannot obtain 1
, , , ,( )

i j k lt T t T t T t T
q

   u u u u  when i j k lT T T T  . As a 

result, the Hu-Jia attacks [HJ15a, HJ15b] are prevented in our new construction. 
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5 Conclusion 

In this paper, we describe a new variant of GGH, which supports the applications for public tools of 
encoding in the original GGH, such as MPKE and WE. Using two zero testing parameters, our 
construction introduces new noise term to avoid weakness of GGH. As a result, our new 
construction not only prevents all known attacks, but also seemly supports the hardness assumption 
of the SubM problem and the DLIN problem. 
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