
Fine-grained sharing of encrypted sensor data over cloud
storage with key aggregation

Hung Dang
School of Computing

National University of Singapore

Francois Brun
School of Computing

National University of Singapore

Ee-Chien Chang
School of Computing

National University of Singapore

Yun Long Chong
School of Computing

National University of Singapore

Abstract
We consider scenarios in sensor network where the sensed
samples are each encrypted with a different key and
streamed to a cloud storage. The large number of sam-
ples poses technical challenge in fine-grained sharing. For
instance, if the data owner wants to grant a user access to a
large subset of the samples, the straightforward solution of
sending all corresponding keys to the user would overwhelm
the data owner’s network resources. Although existing so-
lution such as Attribute-Based Encryption (ABE) and Key
Aggregation Cryptosystem (KAC) can aggregate a number
of keys into a single key of small size, each of the techniques
has limitations in certain aspects, which render them im-
practical in our applications. In particular, ABE generally
incurs large overhead in ciphertext size, while KAC, though
attaining constant ciphertext size and aggregated key size,
requires quadratic reconstruction time with respect to the
number of keys to be reconstructed. In this paper, we made
an observation that for a large class of queries, specifically
the combination of range and down-sampling queries, there
is a algorithmic enhancement for KAC that reduces its re-
construction time from quadratic to linear. Such improve-
ment addresses the main hurdle in adopting KAC for large
datasets. Experimental studies show that on those class
of queries, the proposed algorithm outperforms the original
KAC by at least 90 times when reconstructing 215 keys. We
also give a Minimum Spanning Tree (MST)-based algorithm
for general queries and a clustering algorithm to trade-off the
reconstruction time with the size of aggregated key. Exper-
imental studies show that these algorithms can reduce the
reconstruction time for keys that are dense in small range.

1. INTRODUCTION
There is a growing interest of incorporating cloud re-

sources into wide-area sensor network [25, 15, 13]. In such
solutions, the sensors continuously sense and stream sam-
ples to the cloud, wherein various users can retrieve and
process the data. Nevertheless, storing sensitive data in
public cloud storage faces a higher risk of information leak-
age as demonstrated by many well-known incidents [23].
Hence, it is desired to protect the sensitive data from po-
tentially curious servers using strong cryptographic means.
This, in turn, poses challenges in fine-grained sharing of the
data with multiple users. Although there are generic tech-
niques such as Attributed-Based-Encryption (ABE) to facil-
itate fine-grained access control of encrypted data, adopting

Figure 1: CCTV network in the City of Pasadena under
the Real-Time Data Capture and Management Program [1].
Each icon indicate location of a camera.

these techniques in large-scale systems remains challenging.
To illustrate the challenge, let us consider the following

scenario. A data owner has a collection of sensors deployed
along roads in a city. The sensors continuously capture, en-
crypt and stream samples to the storage servers. The size
of each sample can be large (e.g hundreds of Kbytes for im-
ages) or small (e.g a few bytes of temperature reading), with
different sampling rate (e.g. ranging from 24 frames per sec-
ond for video to single sample per second for temperature
reading). In addition, each sample can consist of multi-
ple components; for example, scalable coding that consists
of different layers of resolution. The data owner wants to
share selected samples with other users, for instance, shar-
ing images captured by 100 cameras along a particular road
segment, during every weekday from 6 am to 10 am at a
reduced rate of 1 frame per second, and at a low image reso-
lution. The users can be third party cloud-service providers
who are engaged by the data owner to perform certain pro-
cessing, or personnels who are authorised to access certain
cameras, etc. To handle multiple users, a fine-grained shar-
ing mechanism is required. Furthermore, due to privacy
concerns, it is desired that the samples remain encrypted
at rest in the storage servers, with the encrypted keys kept
secret from the potentially curious storage servers.

In a straightforward download-and-share method, the
data owner simply retrieves the encrypted video, decrypts

and sends them to the users in real-time. Clearly, such so-
lution consumes significant computation and networking re-
sources. Another method is to encrypt each sample (or each
component of the sample) using a different key. To grant
a user access to a set of samples, all keys corresponding to
those samples are sent to the users, either by the data owner
or a proxy. Using those keys to decrypt encrypted sam-
ples which could be downloaded from the storage servers,
the user can obtain the requested samples. However, the
number of keys in consideration can be very large. In our
example of sharing images extracted from 100 cameras for
four hours at the sampling rate of 1 frame per second, the
number of keys required per day is more than 1.4× 106. In
order to address this issue, there exists known techniques
that “aggregate” all the keys into a single key of small size
[11, 12, 10, 24, 5]. Hence, instead of sending a large num-
ber of keys to the user, the data owner only needs to have
one small aggregated key delivered. Unfortunately, each
of the known techniques has limitations in certain aspects,
which renders them impractical in our context. In particu-
lar, key-policy Attributed-Based Encryption (KP-ABE)[12,
10] would lead to large overhead on the ciphertext size, while
Key-Aggregation Cryptosystem (KAC) [11] incurs quadratic
key reconstruction time with respect to the number of keys
to be reconstructed.

In this work, we place our focus on time-series data which
can be found in a wide range of applications. Indeed, many
interesting sensor data are inherently time-series in nature,
such as CCTV’s images or environmental readings. More-
over, the sensors are typically spatially arranged. For ex-
ample, the public dataset made available by the US De-
partment of Transportations’s (US DOT) Real-Time Data
Capture and Management Program [1] contains images cap-
tured by 103 cameras deployed along roadway network in
the City of Pasadena, California (Figure 1). These images
are indexed by the their timestamps and cameras’ locations.
Major metropolitan cities such as Beijing and London are
known to have hundreds of thousands of surveillance cam-
eras and sensors installed; and the numbers are rapidly grow-
ing [2]. For these sensor data, we treat the spatial, temporal
and other meta information as non-sensitive, whereas the
confidentiality of the actual sensed sample are to be pro-
tected. Such assumption is reasonable, since after all, the
storage server is likely able to derive the source and timing
of the sensed data from the received network packets.

Our solution adopts Key-Aggregation Cryptosystem
(KAC) [11] as the underlying cryptographic scheme. KAC
enables aggregation of decryption keys for arbitrary set S
of samples into a constant size key, but incurs high cost in
reconstruction, requiring O(|S|2) group multiplications to
reconstruct all keys for S. We made an observation that,
for many types of queries, there are computation redundan-
cies in the reconstruction process that can be eliminated.
For combinations of multidimensional range (e.g. asking for
samples from cameras along a specific road segment during
a specific time period) and down-sampling (e.g. asking for 1
sample per second instead of the original 24 samples per sec-
ond) queries, we derive a “computation plan” which achieves
optimal linear time reconstruction; i.e. (O|S|). For general
query, speeding up reconstruction time is also possible. We
give an heuristic to derive the computation plan for those
queries, and another algorithm to trade-off the size of the
aggregated key with the reconstruction time.

Our enhancement addresses computational aspects of
KAC’s algorithms while preserves other characteristics such
as constant size ciphertext and constant size aggregated key
as well as its semantic security and collusion resistance. Ex-
perimental studies show that the proposed method is ef-
ficient, which outperforms relevant alternatives by signifi-
cant factors. To reconstruct 215 keys of down-sampled data
within a two-dimensional range, the reconstruction time
taken by our method is at least 90 times faster than the
original KAC (see Figure 7). For general query asking for
215 samples, our approach can achieve 24 times improvement
in reconstruction cost.

2. BACKGROUND ON KEY-AGGREGATE
ENCRYPTION

Key-Aggregate Encryption (KAC) [11] is a public key
cryptosystem that can aggregate any set of decryption keys
to derive a constant size decryption key. With a public key,
given a plaintext x and an index i ∈ [1, n], one can encrypt
x to get a ciphertext associated to the index i. Hence, if the
plaintexts are a sequence 〈x1, x2, . . . , xn〉, the ciphertexts
〈c1, c2, . . . , cn〉 form the corresponding sequence.

Same as typical public key cryptosystem, each ciphertext
ci can be decrypted using the private key. In addition, KAC
supports key aggregation. That is, for any set of indices
S ⊆ {1, 2, . . . , n}, the secret key holder can generate a small
aggregated key KS for another user. With only the aggre-
gated key KS and the public key, any ci where i ∈ S can be
decrypted. However, the aggregated key KS is unable to ob-
tain information from ci for any i 6∈ S. KAC’s security relies
on decisional Bilinear Diffie-Hellman Exponent (BDHE)[7].

The KAC comprises of five basic functions, Setup, Key-
Gen, Aggregate1 and Decrypt.

• param ←Setup(1λ, n): Given the security parame-
ter λ and n, output a bilinear group G of prime or-
der p where 2λ ≤ p ≤ 2λ+1, a generator g ∈ G and
a random number α ∈R Zp, output the system pa-
rameter param = 〈g, g1, g2, ..., gn, gn+2, ..., g2n〉 where

gi = gα
i

.

• (PK,SK) ←KeyGen(): Pick a value γ ∈R Zp, out-
put the public and master-secret key pair: (PK = v =
gγ , SK = γ).

• ζ ←Encrypt(PK, i, x): Given a public key PK, an
index i ∈ {1, 2, ..., n} and a message x ∈ GT, randomly
pick t ∈R Zp and output ζ = 〈gt, (vgi)t, x · e(g1, gn)t〉.

• KS ←Aggregate(SK,S): Given a set S of indices
j’s, output the aggregated decryption key KS =∏
j∈S

gγn+1−j .

• {x,⊥} ←Decrypt(KS , S, i, ζ = 〈c1, c2, c3〉): If i /∈ S,
output ⊥, else output x = c3 · e(KS · ρ, c1)/e(ρ̂, c2)
where ρ =

∏
j∈S,j 6=i

gn+1+i−j and ρ̂ =
∏
j∈S

gn+1−j

The aggregated key KS only consists of a single group ele-
ment and thus its size is O(λ) where λ is the security param-
eter. However, decrypting cost for each ciphertext increases

1The function Aggregate is also known as Extract in the lit-
erature [11].

proportionally to the size of the set. Specifically, given the
aggregated key KS corresponding to a set of ciphertext C
whose indices are in S, it takes O(|S|) group operations to
decrypt a single ciphertext in C, and thus O(|S|2) group
operations to fully reconstruct the ciphertext set. The high
reconstruction cost renders the scheme impractical for our
application.

3. PROBLEM DEFINITION

3.1 Sensor Data
We adopt a convention that [a, b] represents an inter-

val of integers from a to b, inclusively. We call L∆ =
[1, T1] × [1, T2] × . . . × [1, Td] a d-dimensional lattice with
the bounds T1, T2, . . . , Td. A hyper-rectangle S in L∆ is the
subset R1 × . . . × Rd of L∆ where each Ri is an interval in
the i-th dimension.

A sensor continuously senses and generates a sequence of
samples. A sample is represented by a tuple (i, x) where i
and x are its index and sample value respectively. The sam-
ple value is the data captured by the sensor at a particular
instance. It’s size can be large, such as an image, or just
a few bytes, such as temperature reading. The index i is a
multidimensional point, representing the sample’s temporal,
spatial and other meta information such as resolution level.
We assume that some normalisations have been applied such
that the indices are mapped to points in L∆. Note that the
temporal information is not restricted to be one-dimension.
For example, temporal information can be represented as a
multidimensional point with day, month, year, etc as its di-
mensions. The indices are considered as non-sensitive. As
such, they can be stored in plaintext in the storage server
to facilitate efficient searching.

3.2 System Model

Owner

User

Sensor

c1, c2, c3
· · · , cn

S = {1, 2, 3, 101, 102, 103}

Parameter Setup

KSqS
encrypted
sensor data

C={c1, c2, c3,
c101, c102, c103}

Figure 2: System model supporting fine-grained sharing of
encrypted sensor data

Figure 2 illustrates our system model. To protect the
confidentiality of sensor data, samples are encrypted before
being streamed to the cloud. When an user wants to gain
access to a subset C of encrypted sensor data whose indices
are in the set S, the user requests a decrypting capability
of C by sending a query qS to the owner. Upon approval,
the owner issues an aggregated key KS to the user. She can
then use KS to reconstruct (decrypt) the encrypted samples
in C, which can be directly retrieved from the storage server.
However, it is impossible for her to use such KS to decrypt
any sample which does not belong to C. An additional layer
of protection can also be implemented to guarantee that
only authorized users can download the relevant encrypted
samples. We discuss this in more details in section 7.

3.2.1 Security requirements
For security analysis, we consider a worst case scenario

in which the storage server is completely under the user’s
control; i.e. she has full access to all encrypted samples
stored in the cloud storage.

The key aggregation must be collusion resistance. A collu-
sion attack is carried out by combining multiple aggregated
keys, with the goal of deriving more information than each
aggregated key can individually derive. For example, if an
user has the aggregated key to decrypt images of road seg-
ment A on Jan 1st, and another aggregated key for road
segment B on Feb 2nd, then he must not able to obtain
other images, including images captured on A during Feb
2nd. We follow the model by Boneh et. al [8] on collusion
resistance.

We assume that sensors are trusted. Nevertheless, in case
a sensor is compromised and the secrets it holds are revealed
to an adversary, confidentiality of data generated by other
sensors must not be compromised. This implies that it is
impossible to derive the master key from the secrets known
to the sensors.

3.2.2 Efficiency requirements
As the sensors and the users can be operating on low-

powered devices, it is crucial to keep computation load low.
Furthermore, although cloud storage is relatively low in cost,
the communication and storage overhead incurred by the
security mechanisms has to be sufficiently reasonable so as
to keep the cloud solution economically attractive. In view
of the above considerations, we focus on the following three
measures of performance:

Reconstruction time..
Clearly, computation load of reconstructing the keys from

the aggregated key KS has to be low. In some applications
(e.g. viewing of video stream), the reconstruction time also
has to meet the real-time requirement. As mentioned in the
introduction, the known KAC scheme take quadratic time
with respect to |S| and thus is not acceptable.

Size of aggregated key..
To reduce the communication between the owner and

users, the size of the aggregated key KS has to be small.

Overhead of ciphertext size..
The overhead of ciphertext size directly increases the stor-

age and communication cost of the storage server. Since the
number of ciphertexts is large, the actual multiplicative over-
head on the ciphertext size is a practical concern, especially
for sample value that are relatively small.

3.3 Query Types
We classify queries for sensor data into three types:

Q1 - d-dimensional range query. .
Such a query asks for all samples whose indices reside in

a d-dimensional hyper-rectangle. For example, images from
cameras along a road segment during a certain period cor-
responds to a 2-dimensional range query. A d-dimensional
range can be compactly represented by 2d integers, which
indicates the corners of the hyper-rectangle.

In some cases, it is possible to represent multiple range

queries as a single range query. For example, the images
from 6 am to 12 pm of every weekday is an union of a series
of queries. We can represent this by a single query by re-
arranging and “lifting” the one-dimensional time component
to multi-dimensions. Specifically, by decomposing the single
time dimension into four dimensions which are (1) time in
a day, (2) day in a week, (3) week number and (4) year, the
aforementioned image subset can be represented by a single
query.

Q2 - Down-sampling query. .
Such a query asks for a down-sampled lattice. In one-

dimension, if one sample is extracted for every p samples,
we say that the down-sampling rate is 1/p. In higher di-
mension, a t-dimensional down-sampled lattice is the subset
L = {

∑t
i=1 aivi|ai ∈ Z} ∩ L∆ where each of the vi is a

d-dimensional vector and the basis {v1, v2, .., vt} is indepen-
dent. A down-sampling query is represented by its basis.
A query can also be an intersection of range and down-
sampling queries. For example, the query for a few images
per each hour captured along a road segment on a certain
day is a down-sampling range query.

Q3 - General query. .
A general query asks for an arbitrary set of samples

which are not necessary a combination of range and down-
sampling. If the query is sent from the user to the owner by
listing down all the indices, then the straightforward solu-
tion of sending individual decryption key to the user would
incur similar cost in both directions of communication, and
thus arguably acceptable. However, a query could be com-
bination of an arbitrary set in some dimensions, with range
and down-sampling in the other dimensions. For example,
an query that asks for samples from an arbitrary set of sen-
sors during all weekend’s morning. Hence, it is meaningful
to aggregate keys in general query.

As the distribution of the queries is applications depen-
dent, in this paper, we use the following simple distribution
model for general query in evaluating our algorithms: the
set S contains a set of rβ indices that are randomly selected
from the interval [1, β] where r < 1 and β are some param-
eters.

4. ALTERNATIVE CONSTRUCTIONS
Before presenting the proposed solution, we briefly discuss

a few alternative cryptographic solutions and their limita-
tions.

Top-down Hash-tree..
One possible approach is to use a binary tree to maintain

symmetric encryption keys (Figure 3) for sensor data. The
root is the master key, while the intermediate sub-keys are
generated in a top-down manner. The actual keys for en-
cryption/decryption are located at the leaves. Each sample
is associated with one external leaf, and is encrypted by the
corresponding key. In this construction, keys for m samples
in a range can be reconstructed using only O(log(m)) aggre-
gated keys. These aggregated keys are essentially interme-
diate sub-keys whose descendants are the m encryption keys
under consideration. For instance, in Figure 3, sub-keys 19,5
and 24 are aggregated keys from which encryption keys in
{4, 5, 6, 7, 8, 9} can be “reconstructed”.

However, it is not straightforward to extend this method
to support d-dimensions, where d > 1. A trivial method of
using multiple trees, one for each dimension, to generate d
keys for each sample is not secure against collusion attack
[21]. Furthermore, this method fails to aggregate keys for
down-sampling and general queries, such as ones asking for
encryption keys {1, 3, 5, 7, 9} or {1, 4, 5, 7, 10}.

Figure 3: Tree based construction for one-dimensional data.

ABE-based construction. .
There are a few ways to employ Attribute-Based Encryp-

tion (ABE) to aggregate decryption keys for multidimen-
sional range query. The most intuitive approach is to adopt
Key-Policy ABE (KP-ABE)[16] in the following way: An
index is represented by a set of attributes, each of which
corresponds to the location of an 1 in the index’s binary
representation. For instance, the index 9 = 10012 is repre-
sented by 2 attributes A0 and A3. In delegating decryption
ability of ciphertexts in a range of S, the data owner first de-
termines the “policy”A, which is a logical expression on the
attributes for indices in S. The aggregated key is then de-
termined from the policy. The size of the aggregated key is
often proportional to the number of logical operations in the
logical expression, and thus incurs a log(n) factor overhead
in specifying a range, where n is the total number of samples
encrypted under the same security setting. For example, if
n = 210 and an index set in question is S = [1019, 1023],
then the policy A = {A9 ∧ A8 ∧ A7 ∧ A6 ∧ A5 ∧ A4 ∧ A3}.
Furthermore, the ciphertext size of each index is propor-
tional to the number of attributes associated to it, which
implies a multiplicative log(n) factor overhead. Experimen-
tal studies also show that the reconstruction time of this
approach is slower than our proposed method, probably due
to the larger number bilinear map operations required. Fi-
nally, while it is easy to express down-sampling of rate 1/p
using short expression, where p is a power of 2, it is not
clear how to efficiently express other down-sampling rates.
Hence, it is not trivial to obtain short aggregated key for
other rates.

Multi-dimensional Range Query over Encrypted
Data..

Shi et al. address Multi-dimensional Range Query over
Encrypted Data (MRQED) problem [21]. The work can be
viewed as an enhancement of the ABE-based construction.
They aim to protect confidentiality of both query and the
indices. Specifically, if an index of a sample under consid-
eration is outside the queried range, one would learn no in-
formation beyond the fact that an aggregated key fails to
recover the sample from its ciphertext. Note that in our

application, the indices are not considered secret and made
publicly available. Thus, we do not have to enforce this se-
curity requirement. Similar to the ABE-based construction,
the method incurs an overhead of at least log(n) multiplica-
tive factor in ciphertext size and aggregated key size.

5. PROPOSED FAST RECONSTRUCTION

5.1 Main observation
To decrypt a single ciphertext with index i using an ag-

gregated keys of a set S (i ∈ S), the following two values
have to be computed (see Section 2):

ρi =
∏

j∈S,j 6=i
gn+1+i−j , ρ̂ =

∏
j∈S

gn+1−j

Since ρ̂ is independent of i, it can be computed once for all
i’s. Hence, let us focus on the computations of ρi, which re-
quires |S| − 2 group multiplications. Therefore, |S|(|S| − 2)
group multiplications are needed for all i, which is approxi-
mately |S|2.

Our main observation is that, for range and down-
sampling query, the indices in S follows some patterns
that permit fast computations. Let us first consider a 1-
dimensional range S = [1,m] for some m. Note that the
term (n + 1) in the subscript is a common offset of the in-
dices. For clarity in exposition, let us define ĝt = gn+1+t,
and

Ri =
∏
j∈S

ĝi−j

for all i ∈ S. For each i, we have ρi = ĝ−1
i Ri, and thus it can

be easily computed from Ri. Now, we explore how to com-
pute all Ri efficiently. Under the straightforward method, to
compute Ri requires |S| − 1 multiplications for each i, and
a total of |S|(|S| − 1) multiplications are required to com-
pute Ri for all i ∈ S. However, by exploiting the recurrence
relation

Ri+1 = (ĝi−m)−1 ·Ri · ĝi

we can obtain Ri+1 from Ri using only 2 multiplications.
This leads to a fast linear time algorithm that computes all
Ri’s recursively, which improves the original quadratic time
algorithm to linear time.

The next two sections show how to extend the observation
to multidimensional range and down-sampling queries.

5.2 Extension to multidimensional range
queries (Q1)

Let us first consider two dimensional lattice. Let
S = [1,m] × [1,m] be a rectangular range within the 2-
dimensional lattice with bound n in both dimension. Here,
the indices are two dimensional vectors. Let σ(x1, x2) =
x1(n − 1) + x2 be the mapping that maps the two dimen-
sional lattice to the one dimensional lattice. Similarly, to
decrypt the ciphertext with the index (i1, i2), the following
value has to be computed:

ρ(i1,i2) =
∏

(j1,j2)∈S,(j1,j2)6=(i1,i2)

gn2+1+σ(i1,i2)−σ(j1,j2)

Likewise, the term n2 + 1 in the subscript is simply some
fixed offset. For clarity, we can rewrite the coordinate, and
define ĝ(i1,i2) = gn2+1+σ(i1,i2) and R(i1,i2) as follow:

R(i1,i2) =
∏

(x,y)∈S
ĝ(i1,i2)−(x,y) =

m∏
x=1

m∏
y=1

ĝ(i1,i2)−(x,y)

Note that the required ρ(ii,i2) can be easily obtained from
R(i1,i2). Computing R(i1,i2) naively requires |S| − 1 group
multiplications. However, we can rewrite the above into a
recurrence relation:

R(i1+1,i2) = R(i1,i2)

m∏
y=1

ĝ−1
(i1,i2)−(i1−m,y)

m∏̃
y=1

ĝ(i1,i2)−(i1,ỹ)

Let us define

T(i1,i2) =
∏m
y=1 ĝ

−1
(i1,i2)−(i1−m,y), and

T̃(i1,i2) =
∏m
ỹ=1 ĝ(i1,i2)−(i1,ỹ).

By substituting the above definitions into the recurrence re-
lation, we have

R(i1,i2) = R(i1−1,i2)T(i1−1,i2)T̃(i1−1,i2).

Now, observe that T(i1,i2) can also be expressed as a recur-
rence relation and all of them can be computed in linear

time (with respect to |S|). Similarly for T̃(i1,i2). Putting
all together, we have a linear time algorithm to compute all
R(i1,i2)’s.

In general, for a d-dimensional range, the number of group
multiplications required is in O(d|S|). Since in our applica-
tion the dimension d is small, by treating it as a constant,
we have a linear time algorithm.

5.3 Extension to down-sampling queries (Q2)
Let us consider an example in 2-dimension. Given an

independent basis {(3, 0), (0, 2)} of down-sampling, we can
transform the co-ordinate (x, y) to (x/3, y/2) such that the
required samples correspond to samples with integer coor-
dinate. Hence for an intersection of a down-sampled range,
the above linear time algorithm can be applied under the
transformed co-ordinate. In general, for a down-sampled d-
dimensional range, the number of group multiplications re-
quired is also in O(d|S|). Although additional computations
are required to transform the coordinate, they are signifi-
cantly less expensive compare to the group multiplications.

5.4 MST for General queries (Q3)
The algorithm we discuss above reuses common terms

among different ρi’s to save computations. Such common
terms are apparent in range and down-sampling queries, but
not so for general queries. An interesting question to con-
sider is how to find a computation plan that computes all
ρi’s with the least number of group multiplications for a
given arbitrary S.

Given the set of indices S, recall that for each i ∈ S, ρi
is a product of selected elements from 〈g0, g1, g2, . . .〉. Let si
be the set of indices of these terms. For any i, j ∈ S,

ρi = ρj ·
∏

a∈(si\sj)

ga ·
∏

b∈(sj\si)
g−1
b .

Hence, to compute ρi, if the value of ρj is already known, we
can derive ρi from ρj with |si \ sj |+ |sj \ si| group multipli-
cations. Alternatively, we can compute ρi by directly mul-
tiplying the terms with indices in si using |si| − 1 = |S| − 2
multiplications. Let M(i, j) = min(|S|−2, |si\sj |+ |sj \si|),
which is the number of multiplications required to obtain ρi
if value of ρj is known.

The above definitions lead to a strategy – we can com-
pute the ρi’s one by one by reusing common terms that
have been previously computed. To compute ρi, we derive
it from ρj , where M(i, j) is the smallest and ρj has already
been computed. Now, the question is on how to determine
the optimal order in computing the ρi’s. It is easy to see
that we can formulate this as the Minimum-Spanning-Tree
problem where M(i, j) are the edges’ weights. This leads to
our algorithm for arbitrary set S.

Remarks. .
We stress that though the above MST algorithm is op-

timal in determining an order and a strategy with respect
to such an order in which ρi’s are to be computed, it may
not be optimal in minimising the number of multiplications.
Minimising the number of multiplications turns out to be
difficult, as one may introduce intermediate values to reduce
the number of operations. For instance, observe that in sec-
tion 5.2, the intermediate values T(i1,i2) help to significantly
reducing the number of multiplications.

We assume that the set S is pre-determined and thus
the computation plan can be pre-computed. Although re-
stricted, such scenarios are realistic, for example, in cases
where the same set S is to be repeated for multiple users
and thus the computation plan can be computed once for
all users. In such scenarios, the time taken by the greedy
algorithm is not a main concern in our applications. Also
note that since its computation only involves public data,
the MST algorithm can be performed by any entity, includ-
ing the user, owner or proxy in the cloud. Section 6 reports
empirical studies on the effectiveness of our algorithm.

5.5 Trade-off between number of aggregated
keys and reconstruction time

As the reconstruction time is superlinear, we can reduce
the time at the expense of using more aggregated keys by
partitioning the set S into a collection of clusters, where
each cluster corresponds to one aggregated key. To find a
good partition of k clusters, we employ the single-linkage
clustering approach. That is, initially, each element in S
is a cluster by itself, and the clusters are then sequentially
merged until only k clusters are left. The clustering relying
on a distance function on the clusters. At each step, the two
clusters with the shortest distance are selected to be merged.
The effectiveness of the partition, i.e. the reduction of re-
construction time, depends on the definition of this distance
function.

We adopt the following distance function. Let C(S) be
the number of group multiplications required to reconstruct
all keys in S. This value, in turn, relies on the computation
plan according to which all the required ρi are evaluated.
Such a computation plan can be determined using the MST
method described in the previous section. For two clusters
S1 and S2, their distance is simply C(S1 ∪ S2).

Although there are efficient algorithms for MST, it is still
too expensive as the distance function has to be evaluated
large number of times (quadratic with respect to |S|). In
our experiment, we adopt a simplified function. Given S,
instead of using MST to determine the order whereby the
ρi’s are to be computed, we only consider the sorted order
starting from the smallest index up to the largest index, and
determine the number of multiplications required by this
order. Section 6 gives empirical result on the effectiveness

KP-ABE KAC Ours

Encrypt
Mult. O(logn) 2 2
Exp. O(logn) 3 3

Pairing 1 1 1

Aggregate
Mult. O(logn) m m
Exp. O(logn) 1 1

Pairing 0 0 0

Reconstruct
Mult. O(m logn) O(m2) O(m)
Exp. O(m logn) 0 0

Pairing O(m logn) m+ 1 m+ 1
Ciphertext

O(logn) 3 3
size

Table 1: Costs of encrypting one record, extracting aggre-
gated key and reconstructing (decrypt) a range query of size
m, where n is total number of samples to be encrypted un-
der the same public key. The ciphertext size is measured by
the number of group elements.

of this algorithm on randomly chosen S.

6. PERFORMANCE
This section compares performance of our proposed

method with KP-ABE [16] and KAC [11] without the pro-
posed fast reconstruction.

6.1 Performance Analysis
Table 1 summarises the numbers of group operations,

i.e. multiplication, exponential and pairing, required by the
three procedures: (a) encryption of the samples, (b) aggre-
gation of the keys, and (c) reconstruction of the keys, and
(d) the size of the ciphertext in term of number of group
elements. Observe that KP-ABE suffers from a O(logn)
factor, which is arguably inevitable since logn attributes
are required to represent n indices. Since the total number
of samples can be very large (e.g. at 25 samples per sec-
ond, more than 2 millions samples will be generated every
day), the large overhead is not acceptable, especially for ci-
phertext size which affects the storage and communication
cost. Although KAC outperforms KP-ABE in almost all
aspects, its reconstruction cost is quadratic, which renders
the scheme impractical in our application. The proposed
method reduces the number of multiplications to linear on
range and down-sampled queries. Although KAC and our
method require more group multiplications than KP-ABS
during key aggregation, they require much fewer number of
expensive exponentiations, and thus it is not clear which is
more efficient in practice.

6.2 Experimental Setup.
In the experiments, we use randomly selected AES keys as

the sample values. Hence, a sample can be represented by a
single group element. Such assumption is appropriate since
in applications, when the size of a single sample is large,
it is more efficient to encrypt the sample using symmetric
encryption such as AES with a randomly chosen key, and
apply the key aggregation on the symmetric keys.

To measure the performance of aggregation and recon-
struction on range (i.e. type Q1) and downsampling (i.e.
type Q2) queries, the total number of samples is fixed at 218,
while the size of the query m = |S| varies from 25 to 215.
The query is a two-dimensional range (with the same width

23 26 29 212 215 218
2−3

22

27

212

217

KP-ABE

KAC & Ours

Figure 4: Encryption time (seconds) vs n, the total num-
ber of samples.

23 26 29 212 215 218

211

216

221

226

KP-ABE

KAC & Ours

Figure 5: Total ciphertext size (bytes) vs n, the total num-
ber of samples

25 27 29 211 213 215

2−9

2−7

2−5

2−3

2−1

ABE

KAC & Ours

Figure 6: Aggregation time (seconds) vs m, the number
of keys.

25 27 29 211 213 215
2−5

20

25

210

215

KP-ABE

KAC

Ours

Figure 7: Reconstruction time (seconds) vs m, the number
of keys, for a range with down-sampling query (i.e. Q1 &
Q2).

along both dimensions) with downsampling when testing on
KAC and the proposed method. Since KP-ABE can only
support downsampling of limited rate, we only conduct ex-
periment on the two-dimensional range query for KP-ABE.

For general queries (i.e. type Q3), the queries are gener-
ated by selecting m indices randomly from the range [1, n].
Let us call the ratio r = m/n the query density. Various
query densities are investigated. We do not study KP-ABE’s
performance on general queries, since it requires another al-
gorithm to find a compact logical expression for the arbitrary
given query, which could be a separate topic of interest.

To measure the trade-off achieved by the clustering al-
gorithm described in Section 5.5, we experiment with two
different numbers of aggregated keys k = 4

√
m and k =

√
m

for various m.
All experiments are performed on a system equipped with

Intel Core-i5-4570u@3.2Ghz processor and 8GB of RAM.
To simulate an environment with lower computation power
such as mobile devices, we limit the cpu usages to 20% of

the original using the tool cpulimit2. Our implementation
employs Charm [3] and symmetric pairings over Type-A (su-
persingular) curves with a base field of 512 bits as underlying
cryptographic framework and pairing group. We repeat each
experiment 10 times and report average results, with time
and size are measured in seconds and bytes respectively.

6.3 Experiment result

Encryption time..
Figure 4 compares the encryption time of the three alter-

natives under log-log scale, with the total number of samples
range from 24 to 218. Since our approach employs KAC’s en-
cryption algorithm, the performance of the two are exactly
the same. The experiment results agree with the analysis
in the previous section. The cost of encryption incurred
by KP-ABE is several times higher. For example, to en-
crypt 218 items, KP-ABE needs 17 hours, while KAC only
requires 70 minutes. Note that the main overhead of KP-

2http://cpulimit.sourceforge.net/

29 210 211 212 213 214 215
20

23

26

29

212
KAC

r = 0.5

r = 0.75

r = 0.85

r = 0.9

(a) Effectiveness of MST

29 210 211 212 213 214 215
21

24

27

210

213
KAC

k = 4
√
m

k =
√
m

(b) Effectiveness of clustering (r=0.25)

29 210 211 212 213 214 215
21

24

27

210

213
KAC

k = 4
√
m

k =
√
m

(c) Effectiveness of clustering (r=0.5)

29 210 211 212 213 214 215
20

23

26

29

212
KAC

k = 4
√
m

k =
√
m

(d) Effectiveness of clustering (r=0.75)

29 210 211 212 213 214 215
20

23

26

29

212
KAC

k = 4
√
m

k =
√
m

(e) Effectiveness of clustering (r=0.85)

29 210 211 212 213 214 215
20

23

26

29

212
KAC

k = 4
√
m

k =
√
m

(f) Effectiveness of clustering (r=0.9)

Figure 8: Reconstruction time (seconds) vs m, the number of keys, for a general query (i.e. Q3).

ABE’s encryption lies in carrying out exponent operations,
which directly depends on the total number of samples, and
thus the overhead would be higher for larger datasets.

Ciphertext Size (storage cost)..
A main disadvantage of KP-ABE lies in its ciphertext

size. Figure 5 reports storage space required with various
n, the total number of samples to be encrypted. When
n = 218, KP-ABE requires approximately 10 times more
than KAC. This is so because KAC’s ciphertext comprises
of only three group elements, whereas KP-ABE’s ciphertext
contains (3A + 2) group elements, where A is the number
of attributes associated with a ciphertext. The value of A
varies for different ciphertext, but its expected value is at
least 1

2
logn. Similar to the encryption time, gap between

KP-ABE and KAC would be wider for larger datasets.

Aggregation time..
As shown in Table 1, KP-ABE’s key aggregation time does

not depend on m, the number of keys to be aggregated, but
depends on n, the total number of samples. KAC, on the
other hands, aggregates keys in O(m) time. It turns out
that, when m is less than 215, KP-ABE needs longer time
compares to KAC (Figuer 6).

Reconstruction time..
Figure 7 shows the reconstruction time for the two-

dimension and down-sampled range. For small m, recon-
struction time incurred by ABE is higher than KAC, which
is due to the expensive pairing operations. However, for

larger m, we can observe the quadratic growth in KAC as
the computation is now dominated by multiplications. Our
proposed method, on the other hand, achieves linear recon-
structing time. When m = 215, it can reconstruct the 215

keys within 126 seconds, whereas KAC needs 3 hours, that
is, a speedup of almost 90 times.

Figure 8(a) shows the reconstruction time for general
queries of different densities. Unsurprisingly, the query den-
sity affects the speedup factor. When density is less than 0.5,
the gain is negligible but more significant for larger density.
At density 0.75, the speed-up is 2.5 times, and improves to
8 times when the density reaches 0.9.

We also evaluate the trade-off between number of aggre-
gated keys and reconstruction time (Figures 8(b) to 8(f)).
For a general query asking for m samples, with 4

√
m ag-

gregated keys, reconstruction time can be speeded-up by
10 times. With a cost of

√
m keys, we can achieve up to

24 times improvement. Note that for small queries, issuing
more aggregated keys may increase reconstruction time, due
to the increase in the number of pairing operations.

7. SYSTEM DESIGNS
In this section, we give two possible designs that incor-

porate key aggregation. We consider two types of sensors;
one with Public-key Cryptosystem (PKC) capability, and
the other that is only capable of performing standard sym-
metric key cryptosystem such as AES and SHA-1. We refer
to the first category as PKC-enabled sensors and the later
as low-powered sensors.

7.1 System with PKC-enabled sensors

Owner

User

PKC-enabled
Sensor

Cloud Storage

(1)PK

(4)t,KS(3)qS
(2) KAC-
encrypted
sensor data

(6)C

(5)t

Figure 9: System model for PKC-enabled sensors

During system setup, the owner distributes the public key
PK to all entities, and an unique identity ID to each sensor
(Figure 9). The identity ID ’s are not secrets and are made
public. For each sample (i, x), the sensor encrypts the sam-
ple value x with the index i using KAC’s encrypt algorithm
to obtain a ciphertext c. It then streams the c together with
the index i to the storage server.

In situation where sensor samples are of large size, (e.g.
images), they are encrypted using AES with a randomly gen-
erated key k, whereas the key k is being encrypted by KAC
under an index i of the sensor sample (similar to sensor sam-
ple of small size). The two ciphertexts (encrypted sample
and encrypted symmetric key) and the corresponding index
are then streamed to the server.

When an user asks for access to a subset C, whose indices
fall in S, he sends the query qS to the owner. The owner
issues an aggregated key KS to the user, together with an
authentication ticket t. The user presents the authentication
ticket t to the storage server as a proof that he is authorised
to access the C. Upon verification, the server sends the
requested ciphertexts to the user, which are later decrypted
using the aggregated key KS . In case of large samples, she
also needs to download corresponding encrypted symmetric
keys. The encrypted keys are first reconstructed, and then
used to decrypt the encrypted samples.

The incorporation of the authentication ticket can be
based on standard protocol such as Kerberos [17, 20]. Al-
though the authentication ticket is ineffective in scenario
where the users collude with the server, it forms another
layer of defence to prevent unauthorised downloading of the
ciphertexts.

7.2 System with low-powered sensors
Figure 10 shows the system design for low-powered sen-

sors, which are only capable of conducting non-expensive
cryptographic operations such as AES or SHA-1. To ad-
dress the resource constraints of these low-powered sensors,
we introduce a trusted encryption proxy. This proxy also
helps to relieve the owner’s computation load.

During system setup, the owner broadcasts the public key
PK to all entities except the low-powered sensors. The
owner also distributes an unique identity ID and a shared
secret key KID to each sensor. For each sensed sample (i, x),
the sensor generates a symmetric encryption key ki,ID using
a cryptographic pseudorandom function on input KID and
the index i. The sensor then encrypts the sample value x
obtaining c, and streams (i, c) to the storage server.

Owner

User

Low-powered
Sensor

Cloud Storage

Proxy

(1)KID

(5)
t,KS

(4)qS
(3) AES-
encrypted
sensor data

(1)PK, KID

AES keys
encrypted

by KAC

(7)C

(6)t

Figure 10: System model for low-powered sensors

All secret KID are also shared with the encryption proxy.
Because the proxy (which actually represents the data
owner) has knowledge of locations and frequencies at which
sensor data are collected, it can infer the set of indices asso-
ciated with the samples. With the knowledge of the indices
and all sensors’ secret keys, it can replicate a symmetric key
ki,ID. Each of these AES keys is encrypted with KAC under
the corresponding sample index, giving ci,ID.

The ciphertexts together with their indices, i.e.
(i, ci,ID)’s, are then sent to the storage server. Note that
this process need not be performed in realtime. Rather, the
proxy can replicate, encrypt and send the encrypted AES
keys to the cloud storage in batches well before the actual
sensing. In addition, although the encryption proxy has the
secret KID, it cannot derive the owner’s secret key. The
remaining steps (step (4) to (7) in Figure 10) are similar to
the previous setting.

Compare to the PKC-enabled sensor, if a low-powered
sensor ID is compromised, the secret KID could be re-
vealed. With KID, the adversary can decrypt all previously
encrypted sensor samples generated by that sensor.

8. RELATED WORK

Hierarchical access control..
Several cryptographic key assignment schemes exploit hi-

erarchical structures, such as trees, to maintain keys for var-
ious sets of objects [24, 5]. A key for an internal node is used
to derive keys for its descendant nodes. These approaches
efficiently support aggregating key for simple access policies.
Other schemes can support more complicated access policies,
such as those that are described by cyclic or acyclic graphs
[26, 4]. Benaloh et al. introduced an encryption scheme
supporting delegating decryption capability with flexible hi-
erarchy [6]. This scheme achieves constant-size aggregated
decryption keys. However, it is not clear how to extend the
schemes to maintain encryption keys for multidimensional
objects whose access policies do not follow any hierarchical
structure.

Key-policy Attributed-based Encryption..
KP-ABE enables various ciphertexts to be decrypted by

one single key. This technique associates a set of attributes
to a ciphertext and a policy to a decryption key, which is
able to decrypt all ciphertext whose attributes conform to
its policy [10, 16]. ABE obtains collusion-resistance at a cost
of secret keys’ compactness. More specifically, the key size
is proportional to the number of attributes it is associated

with. Other alternative can reduce size of decryption keys,
but inevitably increase ciphertext’s size [14, 18]. These ap-
proaches requires many bilinear-mapping operations in their
executions, which renders their performance cost prohibitive
and thus impractical.

Multi-Dimensional Range Query over Encrypted
Data..

Supporting complex queries over encrypted data is also
of interest. Boneh et al. presented a primitive named Hid-
den Vector Encryption (HVE) to enable range and subset
queries [9]. This scheme results in O(dt) encryption time,
ciphertext size and O(d) decryption key size and decryption
cost, where d is the number of dimensions and t the number
of points. Shi et al. proposed a construction adopting a spe-
cialized data structure for range query evaluation [21]. Its
encryption cost, ciphertext size and decryption key size are
all O(d log(t)) while decryption cost is O((log(t))d). Because
these schemes consider some security requirements which
are not relevant in our application, such as secrecy of all
attributes, they suffer from a poor performance and not ap-
plicable in our context.

9. CONCLUSION
Privacy has always been a serious concern in outsourced

storage. The data stored on the potentially curious cloud
storage should be protected by a strong cryptographic mean.
However, to have data encrypted brings forth fundamental
technical challenges in sharing the data with other entities,
including sharing with compute-servers that are authorised
to process selected data on a need-to-know basis. To support
fine-grained access control, we need a mechanism that can
efficiently aggregate and reconstruct large number of keys.
Although there are many known key aggregation techniques,
they are computationally intensive and not practical in our
applications.

In this work, we focus on sensor data, especially time-
series data that are continuously sensed, encrypted and
streamed to the cloud. The temporal and spatial arrange-
ments of these time-series data lead to queries of the form
of multidimensional range and down-sampling that can be
exploited for efficiency. We proposed a fast reconstruction
algorithm for the known KAC. The enhancement is signifi-
cant for range with down-sampling queries, for example, our
approach can achieve 90 times speed-up in reconstructing
215 ciphertexts. We also proposed reconstruction algorithms
for general queries and trade-off between number of aggre-
gated keys issued and reconstruction time. At an expense
of issuing a reasonable number of extra aggregated keys,
we can improve the reconstruction time of general queries
by 24 times compared to original KAC. The proposed fast
reconstruction addressed a main hurdle in adopting key ag-
gregation in large datasets.

10. REFERENCES
[1] Intelligent transportation systems research data

exchange. http://catalog.data.gov/dataset/intelligent-
transportation-systems-research-data-exchange-
pasadena-11-cctv-snapshots.

[2] Top 5 cities with the largest surveillance camera
networks.
http://www.vintechnology.com/journal/uncategorized/top-

5-cities-with-the-largest-surveillance-camera-
networks/.

[3] J. A. Akinyele, M. D. Green, and A. D. Rubin. Charm:
A framework for rapidly prototyping cryptosystems.
Cryptology ePrint Archive, Report 2011/617.

[4] M. J. Atallah, M. Blanton, N. Fazio, and K. B.
Frikken. Dynamic and efficient key management for
access hierarchies. ACM Trans. Inf. Syst. Secur., 2009.

[5] G. Ateniese, A. D. Santis, A. L. Ferrara, and
B. Masucci. Provably-secure time-bound hierarchical
key assignment schemes. Cryptology ePrint Archive,
Report 2006/225.

[6] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter.
Patient controlled encryption: Ensuring privacy of
electronic medical records. In CCSW 2009.

[7] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In CRYPTO 2005.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In Advances in Cryptology–CRYPTO
2005, pages 258–275. Springer, 2005.

[9] D. Boneh and B. Waters. Conjunctive, subset, and
range queries on encrypted data. In Theory of
cryptography. Springer, 2007.

[10] M. Chase and S. S. Chow. Improving privacy and
security in multi-authority attribute-based encryption.
In CCS 2009.

[11] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and
R. H. Deng. Key-aggregate cryptosystem for scalable
data sharing in cloud storage. IEEE TPDS, 2014.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In CCS 2006.

[13] M. M. Hassan, B. Song, and E.-N. Huh. A framework
of sensor-cloud integration opportunities and
challenges. In ICUIMC ’09.

[14] S. Hohenberger and B. Waters. Attribute-based
encryption with fast decryption. In PKC 2013.

[15] W. Kurschl and W. Beer. Combining cloud computing
and wireless sensor networks. In Proceedings of the
11th International Conference on Information
Integration and Web-based Applications & Services,
2009.

[16] A. Lewko, A. Sahai, and B. Waters. Revocation
systems with very small private keys. In SP, 2010.

[17] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
kerberos network authentication service (v5). RFC
4120, 2005.

[18] T. Okamoto and K. Takashima. Achieving short
ciphertexts or short secret-keys for adaptively secure
general inner-product encryption. Cryptology ePrint
Archive: Report 2011/648, 2012.

[19] S. Pettie and V. Ramachandran. An optimal minimum
spanning tree algorithm. Journal of the ACM
(JACM), 2002.

[20] A. A. Pirzada and C. McDonald. Kerberos assisted
authentication in mobile ad-hoc networks. In
Proceedings of the 27th Australasian conference on
Computer science-Volume 26, pages 41–46. Australian
Computer Society, Inc., 2004.

[21] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and
A. Perrig. Multi-dimensional range query over
encrypted data. In SP 2007.

[22] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[23] H. Takabi, J. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
Security Privacy, IEEE, 2010.

[24] W. G. Tzeng. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
IEEE Trans. on Knowl. and Data Eng., 2002.

[25] M. Yuriyama and T. Kushida. Sensor-cloud
infrastructure-physical sensor management with
virtualized sensors on cloud computing. In NBiS’10.

[26] Q. Zhang and Y. Wang. A centralized key
management scheme for hierarchical access control. In
In Proceedings of IEEE Global Telecommunications
Conference, 2004.

