
Predictable Arguments of Knowledge

Antonio Faonio1, Jesper Buus Nielsen1, and Daniele Venturi2

1Department of Computer Science, Aarhus University, Denmark ,
{antfa,jbn}@cs.au.dk

2Department of Information Engineering and Computer Science, University of Trento ,
daniele.venturi@unitn.it

January 11, 2017

Abstract

We initiate a formal investigation on the power of predictability for argument of knowledge
systems for NP . Specifically, we consider private-coin argument systems where the answer
of the prover can be predicted, given the private randomness of the verifier; we call such
protocols Predictable Arguments of Knowledge (PAoK).

Our study encompasses a full characterization of PAoK, showing that such arguments
can be made extremely laconic, with the prover sending a single bit, and assumed to have
only one round (i.e., two messages) of communication without loss of generality.

We additionally explore PAoK satisfying additional properties (including zero-knowledge
and the possibility of re-using the same challenge across multiple executions with the prover),
present several constructions of PAoK relying on different cryptographic tools, and discuss
applications to cryptography.
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1 Introduction

Consider the classical proof system for Graphs Non-Isomorphism where, on common input two
graphs (G0, G1), the verifier chooses a random bit b, and sends a uniformly random permutation
of the graph Gb to the prover. If the two graphs are not isomorphic the prover replies correctly
sending back the value b.

A peculiar property of the above proof system is that the verifier knows in advance the
answer of the prover, i.e., the answer given by the prover is predictable. Another property is
that it uses only one round of communication and that the prover sends a single bit. Following
the work of Goldreich et al. [GVW02] we call a proof system with these properties extremely
laconic.

In this paper, we study the notion of predictability in interactive proof systems for NP .
More specifically, we focus on the cryptographic setting where the prover’s strategy is efficiently
computable and, moreover, we aim for the notion of knowledge soundness, where any convincing
polynomial-time prover must “know” the witness relative to the instance being proven.

We formalize this notion of Predictable Arguments of Knowledge (PAoK), explore their
properties and applications, and provide several constructions based on various cryptographic
tools and assumptions.

1.1 Our Contributions and Techniques

We proceed to describe our results and techniques in more details.

Characterizing PAoK. Syntactically a PAoK is a multi-round protocol (P,V) where in each
round: (i) The verifier V, given the instance x and private coins r, generates a challenge c (that
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is sent to P) together with a predicted answer b; (ii) The prover P, given (x,w, c), generates an
answer a. The prover is said to convince the verifier if and only if a = b in all rounds.

Apart from being complete—meaning that an honest prover convinces the verifier with over-
whelming probability—PAoK satisfy the standard property of knowledge soundness. Informally,
this means that given any successful prover convincing the verifier on instance x with probability
ε, there exists an efficient extractor recovering a witness for x with probability polynomially re-
lated to ε. Looking ahead, our definition of knowledge soundness is parametrized by a so-called
instance sampler. Intuitively this means that only instances sampled through the sampler are
extractable, and allows to consider more fine-grained flavours of extractability.1

Our first result is that PAoK can always be made extremely laconic, both in term of round
complexity and of message complexity (i.e., the number of bits sent by the prover). Such a
characterization is obtained as follows:

• First, we show that one can collapse any multi-round PAoK into a one-round PAoK with
higher message complexity. Let (P,V) be a ρ-round PAoK, where V generates several
challenges (c1, . . . , cρ) with ci used during round i.2 We turn (P,V) into a one-round
predictable argument (P̃, Ṽ) where the multi-round PAoK is “cut” at a random index
i∗ ∈ [ρ]; this essentially means that Ṽ runs V and forwards (c1, . . . , ci∗), whereas P̃ runs
P and replies with (a1, . . . , ai∗). One can show that, if the initial PAoK has knowledge
error ε, the transformed PAoK has knowledge error ε/ρ. The latter can finally be made
negligible via parallel repetition. It is important to notice that parallel repetition, in
general, does not amplify soundness for argument systems [BIN97, PW12]. However, it is
well known that for secret-coin one-round arguments (such as PAoK), parallel repetition
amplifies (knowledge) soundness at an exponential rate [BIN97].
• Second, we show how to reduce the prover’s answer length to a single bit3 as follows. Let

(P,V) be a PAoK with `-bit answers. We define a new PAoK (P ′,V ′) where the verifier V ′
runs V in order to obtain a pair (c, b), samples randomness r, and defines the new predicted
answer to be the inner product between b and r. Given challenge (c, r) the prover P ′ simply
runs P in order to obtain a and defines the answer to be the inner product between a and
r. Knowledge soundness follows by the Goldreich-Levin hard-core bit theorem [GL89].

Interestingly, we can wrap up the two results together showing that any PAoK, no matter of the
round or message complexity, can be made extremely laconic.

Constructions. Next, we turn to constructing PAoK. Our starting point is the observation
that full-fledged PAoK for a relation R imply (and in fact are equivalent to) extractable witness
encryption [GKP+13] (Ext-WE) for the same relation R. Briefly, a witness encryption scheme
allows to encrypt an arbitrary message using a statement x belonging to an NP -language L;
decryption can be performed by anyone knowing a valid witness w for x. Extractable security
means that from any adversary breaking semantic security of the encryption scheme, we can
obtain an extractor computing a valid witness for x.

The equivalence between PAoK and Ext-WE can be seen as follows:

• From Ext-WE to PAoK we encrypt a random bit a using the encryption scheme and then
ask the prover to return a.

1Similar fine-grained definitions have already been considered in the literature, e.g., for differing-inputs obfus-
cation [BST14].

2It is easy to see that generating all the challenges at the same time, independently of the prover’s answers,
is without loss of generality.

3 This further justifies our interest to arguments (as opposed to proofs) for NP as Goldreich et al. [GVW02]
showed that unless the polynomial-time hierarchy collapses there does not exist a laconic proof system for all
NP .
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• From PAoK to Ext-WE, we first make the PAoK extremely laconic, then we generate a
challenge/answer pair (c, a) for the PAoK, and encrypt a single bit β as (c, a⊕ β).4

In light of the recent work by Garg et al. [GGHW14], the above result can be seen as
a negative result. In particular, [GGHW14] shows that, under the conjecture that a certain
special-purpose obfuscator exists, it is impossible to have an Ext-WE scheme for a specific NP
relation. The reason for this depends on the auxiliary information that an adversary might have
on the input: The assumed special-purpose obfuscator could be used to obfuscate the auxiliary
input in a way that allows to decrypt ciphertexts, without revealing any information about the
witness. As stated in [GGHW14], such a negative result can be interpreted as an “implausibility
result” on the existence of Ext-WE with arbitrary auxiliary input for all of NP . Given the
equivalence between PAoK and Ext-WE such an implausibility result carries over to PAoK as
well.5

Motivated by the above discussion, we propose two constructions of PAoK that circumvent
the implausibility result of [GGHW14] by either restricting to specific NP relations, or by focus-
ing on PAoK where knowledge soundness is only required to hold for a specific class of instance
samplers (and thus for restricted auxiliary inputs). More in details:

• We show a simple connection between PAoK and so-called Extractable Hash-Proof Sys-
tems6 [Wee10] (Ext-HPS): Given an Ext-HPS for a relation R it is possible to construct
a PAoK for a related relation R′ in a natural way.
• We can construct a PAoK for a specific instance sampler by assuming a weak7 form of

differing-inputs obfuscation. The challenge c corresponds to an obfuscation of the circuit
that hard-wires the instance x and a random value b, and upon input w returns b if and
only if (x,w) is in the relation.

Interestingly, we can show that, for the special case of so-called random self-reducible relations,8

a PAoK with knowledge soundness w.r.t. the instance sampler that corresponds to the algorithm
for re-randomizing an instance in the language, can be generically leveraged to obtain a full-
fledged PAoK (with arbitrary auxiliary input) for any NP -relation that is random-self reducible.

Zero-Knowledge PAoK. Notice that, as opposed to standard arguments, predictable argu-
ments are non-trivial to construct even without requiring them to be zero-knowledge (or even
witness indistinguishable).9 Nevertheless, it is possible (and interesting) to consider PAoK that
additionally satisfy the zero-knowledge property. It is well known that argument systems with a
deterministic prover, such as PAoK, cannot be zero-knowledge in the plain model [GO94]. Moti-
vated by this, given any PAoK (for some fixed relation), we propose two different transformations
to obtain a zero-knowledge PAoK (for the same relation):

• The first transformation is in the non-programmable random oracle model. Here we ex-
ploit the fact that PAoK are honest-verifier zero-knowledge. Our strategy is to force the
malicious verifier to act honestly; we achieve this by having the prover check that the

4Domain extension for Ext-WE can be obtained by encrypting each bit of a message individually.
5Very recently, Bellare et al. [BSW16] show that assuming sub-exponential one-way functions and sub-

exponential indistinguishability obfuscation, differing-input obfuscation for Turing Machines [ABG+13] is im-
possible. While this result adds another negative evidence, it does not apply directly to Ext-WE.

6 The connection between Hash Proof Systems and Witness Encryption was already noted by [GGHW14].
7Namely, following the terminology in [BST14], extractability only holds for a specific class of circuit samplers,

related to the underlying instance sampler.
8Roughly speaking, a random self-reducible relation is a relation for which average-case hardness implies

worst-case hardness.
9This is because the trivial protocol where the prover forwards a witness is not predictable.
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challenge was honestly generated using randomness provided by the random oracle. In
case the check fails the prover will not reveal the answer, but instead it will output a
special symbol ⊥. To ensure knowledge soundness we define the check to be dependent on
the prover’s message, in such a way that a malicious prover cannot obtain the (private)
randomness of the verifier in case it does not already know the correct answer.
• The second transformation is in the common random string (CRS) model, and works as

follows. The verifier sends the challenge c together with a non-interactive zero-knowledge
proof π that c is “well formed” (i.e., there exists random coins r such that the verifier of
the underlying PAoK with coins r returns a pair (c, b)).

We leave it as an interesting open problem to construct a witness indistinguishable PAoK in the
plain model.

Predictable ZAP. In the basic definition of PAoK, the verifier generates the challenge c
(together with the predicted answer b) depending on the instance x being proven. We also look
at the special case where the challenge is generated in an instance-independent manner, together
with a trapdoor that later allows to predict the prover’s answer a. The goal here is to have the
same challenge being used across multiple executions of a PAoK with the prover.

Protocols of this type have been already considered in the literature under the name of
ZAP [DN07]. There are however a few crucial differences: (i) ZAP are public-coin, whereas pre-
dictable arguments are secret-coin; (ii) ZAP are witness indistinguishable, whereas predictable
arguments are interesting even without requiring such a property. Hence, we formalize the notion
of Predictable ZAP (PZAP) which is a kind of secret-coin ZAP in which the prover’s answer can
be predicted (given the secret coins of the verifier and some trapdoor), and the same challenge
can be re-used across multiple executions. We insist on PZAP satisfying knowledge soundness,
but we do not require them to be witness indistinguishable; the definition of knowledge sound-
ness features a malicious prover that can adaptively choose the target instance while keeping
oracle access to the verifier algorithm. We also consider a weaker flavour, where the prover has
no access to the verifier.

We give a construction of PZAP relying on the recently introduced tool of Extractable
Witness PRF [Zha16]. We also show that weak PZAP can be generically leveraged to PZAP
using standard cryptographic tools. This result shows that, under some standard cryptographic
assumptions, for any construction of weak PZAP there exists another construction satisfying
the definition of PZAP. It is interesting to understand if given a construction of weak PZAP the
construction itself already satisfies the definition of PZAP. We give a negative evidence for this
question. Namely, we show a black-box separation between weak PZAP and PZAP, ruling out
a large class of black-box reductions from the former to the latter.

Applications. Although we find the concept of PAoK to be interesting in its own right, we also
discuss applications of PAoK to proving lower bounds in two different cryptographic settings:

• Leakage-tolerant interactive protocols (as introduced by Bitanski, Canetti and Halevi [BCH12])
are interactive protocols whose security degrades gracefully in the presence of arbitrary
leakage on the state of the players.
Previous work [NVZ13] showed that any leakage-tolerant interactive protocol for secure
message transmission, tolerating leakage of poly-logarithmic size on the state of the re-
ceiver, needs to have secret keys which are as long as the total number of bits transmitted
using that key. Using PAoK, we can strengthen this negative result to hold already for
leakage of a constant number of bits. Details are deferred in Appendix A.
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• Non-malleable codes (as introduced by Dziembowski et al. [DPW10]) allow to encode a
message in such a way that the decoding of a tampered codeword either yields the original
message or a completely unrelated value.
Previous work [FMNV15] showed an interesting application of non-malleable codes to
protecting arbitrary computation (carried out by a von Neumann architecture) against
tampering attacks. This result requires to assume a leakage- and tamper-free CPU which
is used to carry out “simple” operations on a constant number of encodings.
A natural idea to weaken the assumption of a leakage-proof CPU, would be to design a
code which remains non-malleable even given a small amount of leakage on the encoded
message. Subsequent to our work [FN15], the concept of PAoK has been exploited to show
that such non-malleable codes tolerating leakage from the encoding process cannot exist
(under the assumption that collision-resistant hash functions exist).

1.2 Giving up on Knowledge Extraction

As already discussed above, the implausibility result of Garg et al. [GGHW14] has negative
implications on some of our results. We were able to circumvent these implications by either
constructing PAoK for restricted relations, or by considering weaker flavours of extractability.
Yet another way to circumvent the implausibility result of [GGHW14] is to give up on knowledge
soundness and to consider instead standard computational soundness (i.e., a computationally
bounded malicious prover cannot convince the verifier into accepting a false statement).

Let us call a multi-round, predictable, computationally sound interactive protocol a pre-
dictable argument. It is easy to see that all our results for PAoK continue to hold for predictable
arguments. In particular: (i) Predictable arguments can be assumed w.l.o.g. to be extremely
laconic; (ii) There exists a predictable argument for a relation R if and only if there exists a
(non-extractable) witness encryption scheme for R; (iii) We can construct a predictable argu-
ment for a relation R given any hash-proof system for R;10 (iv) Computationally sound PZAP
can be obtained based on any (non-extractable) Witness PRF.

1.3 Additional Related Work

A study of interactive proofs with laconic provers was done already in [GH98, GVW02]. They did
not investigate proofs of knowledge, though. As explained above our notion of PAoK is intimately
related to extractable witness encryption, as first proposed by Goldwasser et al. [GKP+13]—
where it is argued that the construction of Garg et al. [GGSW13] is extractable. See [AFP15,
DS15] for more recent work on witness encryption.

In [GOVW12], Garg et al. introduce the concept of Efficiently Extractable Non-Interactive
Istance-Dependent Commitment Scheme (Ext-NI-ID Commitment for short). The primitive
resembles the concept of PAoK, however there is a crucial difference. Ext-NI-ID Commitments
are statistical hiding, this implies that an Ext-NI-ID can be used to construct a Predictable
Argument with “statistical soundness” for the same language, however, the reverse implication
does not hold.

The problem we faced to amplify knowledge soundness of PAoK shares similarities with the
problem of amplifying computational soundness for argument systems. Although it is well known
that parallel repetition does not work in general [BIN97, PW12], there are some exceptions such
as 3-message arguments [BIN97, CHS05], public-coin arguments [PV07, CP15], and simulatable

10We note that, in the other direction, predictable arguments seem to imply some kind of hash-proof system
where “statistical smoothness” is replaced by “computational smoothness.” We leave it as an interesting direction
for future research to explore potential applications of such “computationally smooth” hash-proof systems and
their connection to trapdoor hash-proof system (see Benhamouda et al. [BBC+13]).
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arguments [HPWP10, CL10] (a generalization of both 3-message and public-coin). Relevant to
ours is the work of Haitner on random-terminating arguments [Hai13].

1.4 Roadmap

We start by setting some basic notation, in Section 2. The definition of PAoK, together with
their characterization in terms of round-complexity and amount of prover communication, can
be found in Section 3. In Section 4 we prove the equivalence between PAoK and extractable
witness encryption, and we further explore constructions of PAoK for random self-reducible
relations and for relations admitting an extractable hash-proof system. The two compilers
yielding zero-knowledge PAoK in the CRS model and in the non-programmable random oracle
model are presented in Section 5. In Section 6 we give the definition of (weak) predictable
ZAP, and exhibit a construction of this primitive from any extractable witness PRF.Finally, in
Section 7, we discuss a few interesting open problems related to our work.

2 Preliminaries

2.1 Notation

For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is
a string, we denote its length by |x|; if X is a set, |X | represents the number of elements in X .
When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write y←$A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation
of A(x; r) terminates in at most poly(|x|) steps. Vectors and matrices are typeset in boldface.
For a vector v = (v1, . . . , vn) we sometimes write v[i] for the i-th element of v. We use Maj to
denote the majority function.

Throughout the paper we let κ ∈ N denote the security parameter. We say that a function
ν : N→ [0, 1] is negligible in the security parameter, if ν(κ) = κ−ω(1). A function µ : N→ [0, 1]
is noticeable in the security parameter, if there exists a positive polynomial p(·) such that
ν(κ) > 1/p(κ) for infinitely many κ > κ0.

Let X and Y be a pair of random variables. The statistical distance between X and Y is
defined as ∆(X,Y ) := maxD |Pr[D(X) = 1] − Pr[D(Y ) = 1]|, where the maximum is taken
over all (possibly unbounded) distinguishers. In case the maximum is taken over all PPT dist-
inghuishers, we sometimes speak of computational distance. For two ensembles X = {Xκ}κ∈N
and Y = {Yκ}κ∈N, we write X ≡ Y to denote that X and Y are identically distributed, X

s
≈ Y to

denote that X and Y are statistically close (i.e., their statistical distance is bounded by a negligi-
ble function of the security parameter), and X

c
≈ Y to denote that X and Y are computationally

indistinguishable.
The following lemma follows directly from the definition of statistical distance.

Lemma 1. Let A and B be a pair of random variables, and E be an event defined over the
probability space of A and B. Then, ∆(A,B) 6 ∆(A,B|E) + Pr[¬E].

2.2 Non-Interactive Zero-Knowledge

We recall the notion of a non-interactive zero-knowledge proof of knowledge (NIZK-PoK) system
for an NP relation R (with corresponding language L). A NIZK-PoK is a tuple NIZK :=
(`,Prove,Ver) specified as follows: (i) At setup, a random common reference string (CRS)
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ω←$ {0, 1}`(κ) is generated where ` is polynomial in the security parameter; (ii) Algorithm
Prove takes as input the CRS together with some pair (x,w) ∈ RL, and returns a proof
π←$ Prove(ω, x, w); (iii) Algorithm Ver takes as input the CRS together with some pair (x, π),
and returns a decision bit Ver(ω, x, π).

The definition below is adapted from [RS91, SP92].

Definition 1. We say that NIZK = (`,Prove,Ver) is a NIZK-PoK system for the relation
R ⊆ NP , if the following conditions are met.

(a) Perfect Completeness. For all pairs (x,w) ∈ R, we have that Ver(ω, x,Prove(ω, x,w)) = 1
with probability 1 over the coin tosses of the prover algorithm and the choice of the CRS.

(b) Unbounded Zero-Knowledge. There exists a simulator Z = (Z0,Z1) such that for all PPT
distinguishers D, and all auxiliary strings z ∈ {0, 1}∗, there exists a negligible function
ν : N→ [0, 1] such that:∣∣∣Pr

[
DProve(ω,·,·)(ω, z; r) = 1 : ω←$ {0, 1}`(κ)

]
− Pr

[
DSimu(·,·,ϑ,z)(ω, z; r) = 1 : (ω, ϑ)←$ Z0(1κ)

] ∣∣∣ 6 negl(κ),

where Simu(x,w, ϑ, z) := Z2(ϑ, x, z).
(c) Knowledge Soundness. There exists a PPT extractor K = (K0,K1) such that the dis-

tribution induced by K0(1κ) is negligibly close (in statistical distance) to the uniform
distribution over {0, 1}`(κ). Moreover, for all PPT provers P∗ there exists a negligible
function ν : N→ [0, 1] such that

Pr[(x,w) ∈ R : (ω, ϑ)←$K0(1κ); (x, π)←$ P∗(ω);w←$K1(ω, ϑ, x, π)]

≥ Pr[Ver(ω, x, π) = 1 : ω←$ {0, 1}`(κ), (x, π)←$ P∗(ω)]− ν(κ).

2.3 Commitment Schemes

A (non-interactive) commitment scheme is a PPT algorithm Com that upon input the security
parameter, a message m (within a space of possible messages), and randomness r←$ {0, 1}∗
produces a commitment com. For a formal definition of commitment scheme we refer the reader
to the text book of Goldereich [Gol01]. We require Com to satisfy the following properties.

Perfect Binding. For any (possibly unbounded) adversary A, the following holds:

Pr[Com(1κ,m; r) = Com(1κ,m′; r′) ∧m 6= m′ : (m, r,m′, r′)←$A] = 0.

Computational Hiding. For any two messages m, m′ in the message space the ensembles
{Com(1κ,m)}κ∈N and {Com(1κ,m′)}κ∈N are computationally indistinguishable.

2.3.1 Interactive Protocols

Let R ⊆ {0, 1}∗×{0, 1}∗ be an NP -relation, naturally defining a language LR := {x : ∃w s.t. (x,
w) ∈ R}. We are typically interested in efficiently samplable relations, for which there exists
a PPT algorithm SamR taking as input the security parameter (and random coins r) and out-
putting a pair (x,w) ∈ R. An interactive protocol Π = (P,V) for R features a prover P (holding
a value x ∈ LR together with a corresponding witness w) and a verifier V (holding x), where the
goal of the prover is to convince the verifier that x ∈ LR. At the end of the protocol execution,
the verifier outputs either acc or rej. We write 〈P(1κ, x, w),V(1κ, x)〉 for the random vari-
able corresponding to the verifier’s verdict, and P(1κ, x, w)� V(1κ, x) for the random variable
corresponding to a transcript of protocol Π on input (x,w).
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Unless stated otherwise, all interactive protocols considered in this paper are secret-coin,
meaning that the verifier’s strategy depends on a secretly kept random tape. We also call Π a
ρ-round protocol if the protocol consists of ρ rounds, where each round features a message from
the verifier to the prover and viceversa.

3 Predictable Arguments of Knowledge

We start by defining Predictable Arguments of Knowledge (PAoK) in Section 3.1as multi-round
interactive protocols in which the verifier generates a challenge (to be sent to the prover) and
can at the same time predict the prover’s answer to that challenge; we insist on (computational)
extractable security, meaning that from any prover convincing a verifier with some probability
we can extract a witness with probability related to the prover’s success probability.

The main result of this section is that PAoK can be assumed without loss of generality to be
extremely laconic (i.e., the prover sends a single bit and the protocol consists of a single round
of communication). More in detail, in Section 3.2, we show that any multi-round PAoK can be
squeezed into a one-round PAoK. In Section 3.3 we show that, for any ` ∈ N, the existence of a
PAoK where the prover answer is of length ` bits implies the existence of a laconic PAoK.

3.1 The Definition

In a multi-round protocol the verifier produces many challenges c = (c1, . . . , cρ). W.l.o.g. in a
predictable argument, we can assume that all the challenges are generated together and then for-
warded one-by-one to the prover; this is because the answers are known in advance. Specifically,
a ρ-round predictable argument is fully specified by a tuple of algorithms Π = (Chall,Resp), as
described below:

1. V samples (c,b)←$ Chall(1κ, x), where c := (c1, . . . , cρ) and b := (b1, . . . , bρ).
2. For all i ∈ [ρ] in increasing sequence:

• V forwards ci to P;
• P computes (a1, . . . , ai) := Resp(1κ, x, w, c1, . . . , ci) and forwards ai to V;
• V checks that ai = bi, and returns rej if this is not the case.

3. If all challenges are answered correctly, V returns acc.

Notice that the algorithm Resp takes as input all challenges up-to round i in order to generate
the i-th answer.11

We say that prover P and verifier V, running the protocol above, execute a PAoK Π upon
input security parameter 1κ, common input x, and prover’s private input w; we denote with
〈P(1κ, x, w),V(1κ, x)〉Π (or, when Π is clear from the context, simply 〈P(1κ, x, w),V(1κ, x)〉) the
output of such interaction. We say that a prover P succeeds on the instance x and auxiliary
input w if 〈P(1κ, x, w),V(1κ, x)〉 = acc. We give a granular definition of extractability that is
parametrized by an efficient instance sampler S, and that roughly says that the protocol is sound
and moreover sampled instances are extractable. Here, the sampler is simply an algorithm taking
as input the security parameter and auxiliary input zS ∈ {0, 1}∗, and outputting an instance x
together with auxiliary information aux ∈ {0, 1}∗.

Definition 2 (Predictable Arguments of Knowledge). Let Π = (Chall,Resp) be a ρ-round pre-
dictable argument for an NP relation R, with `-bit prover’s answer. Consider the properties
below.

11In the description above we let Resp output also all previous answers a1, . . . , ai−1; while this is not necessary
it can be assumed w.l.o.g. and will simplify the proof of Theorem 1.
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Completeness: There exists a negligible function ν : N → [0, 1] such that for all sequences
{(xκ, wκ)}κ>0 where (xκ, wκ) ∈ R, we have that:

Pr
P,V

[〈P(1κ, xκ, wκ),V(1κ, xκ)〉 = rej] 6 ν(κ).

(S, f, ε)-Knowledge soundness: For all PPT provers P∗ there exists a PPT extractor K such
that for all auxiliary inputs zP , zS ∈ {0, 1}∗ the following holds. Whenever

p(κ) := Pr
P∗,V,rS

[〈P∗(1κ, aux , x, zP ),V(x)〉 = acc : (x, aux ) := S(1κ, zS ; rS)] > ε(κ)

then

Pr
K,rS

[
∃w s.t. f(w) = y

(x,w) ∈ R :
(x, aux ) := S(1κ, zS ; rS),
y←$K(1κ, x, zP , zS , aux )

]
> p(κ)− ε(κ).

We call Π a ρ-round S-PAoK for R, if Π satisfies completeness and (S, f, ε)-knowledge soundness
for any efficient computable function f , and moreover ε − 2−ρ` is negligible. We call Π an S-
PAoK for R, if Π is a 1-round S-PAoK and we call it a laconic S-PAoK if Π is an S-PAoK and
` = 1. Sometimes we also say that Π is a ρ-round (f,S)-PAoK if knowledge soundness holds for
a specific function f .

Consider the dummy sampler Sdummy that parses its input zS as (x, aux ) and then outputs
the pair (x, aux ). We call Π a ρ-round (f, ε)-PAoK for R, if Π satisfies completeness and
(Sdummy, f, ε)-knowledge soundness. We say that Π is a ρ-round PAoK for R, if Π is a ρ-round
Sdummy-PAoK for R.

The reason why the above definition is parametrized by the function f instead of considering
the relation R′ = {(x, y) : ∃w s.t. (x,w) ∈ R∧y = f(w)} is that such a relation might not be an
NP-relation (as it might be hard to check whether ∃w s.t. (x,w) ∈ R∧y = f(w). Our definition,
instead, ensures that the honest prover knows w but we can only extract f(w). Also note that,
in the above definition, the prover P∗ takes as input the auxiliary information returned by the
sampler.

3.2 On Multi-Round PAoK

In this section we show that multi-round PAoK can be squeezed into a one-round PAoK (main-
taining knowledge soundness).

Let Π = (Chall,Resp) be a ρ-round PAoK. Consider the following protocol between prover
P̃n and verifier Ṽn—let us call it the collapsed protocol for future reference—for a parameter
n ∈ N to be determined later:

• Repeat the following sub-protocol Π̃ = (P̃, Ṽ) in parallel for all j ∈ [n]:

– Ṽ runs (cj ,bj)←$ Chall(1κ, x); let cj = (cj1, . . . , c
j
ρ) and similarly bj = (bj1, . . . , b

j
ρ).

Then, Ṽ samples a random index i∗j ←$ [ρ], and forwards (cj1, . . . , c
j
i∗j

) to P̃.

– P̃, given a pair (x,w) and challenges (cj1, . . . , c
j
i∗j

), computes (aj1, . . . , a
j
i∗j

)←$ Resp(1κ, x,

w, cj1, . . . , c
j
i∗j

) and forwards (aj1, . . . , a
j
i∗j

) to Ṽ.

– Ṽ is said to accept the j-th parallel execution if and only if aji = bji for all i ∈ [i∗j ]

• Return acc if and only if all parallel executions are accepting.

We write Π̃n := (P̃n, Ṽn) for the n-fold repetition of the sub-protocol Π̃ = (P̃, Ṽ). Note that
the sub-protocol Π̃ is the one-round protocol (described above) that simply cuts the multi-round
protocol Π to a random round. We show the following theorem :
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Theorem 1. For any polynomial ρ(·) and any function f if Π is a ρ(κ)-round f -PAoK, then
the above defined collapsed protocol Π̃n = (P̃n, Ṽn) with parameter n = ω(ρ log κ) is an f -PAoK.

Proof overview. For simplicity, assume that Π is a 1
3 -PAoK for the relation R. We claim that

the knowledge error of the collapsed protocol is not bigger than 1− 2
3ρ . To see this, consider a

prover P∗ for the original protocol Π which at the i-th iteration (where i ∈ [ρ]) forwards the the
challenge c1, . . . , ci to a malicious prover P̃∗ for the collapsed protocol. Notice that conditioned
on i∗ = i the challenge has exactly the same distribution as a challenge for the collapsed protocol.
The prover P∗ fails if the malicious prover P̃∗ of the collapsed protocol answered wrongly at
least one of the queries that he received. So if we suppose that P̃∗ succeeds with probability
strictly bigger than 1 − 2

3ρ , then, by the union bound, the failing probability of P∗ is strictly
bounded by 2

3ρ · ρ, therefore P
∗ succeeds with probability strictly bigger than 1

3 .
Finally, we can make the knowledge soundness error of the collapsed protocol negligible via

parallel repetition. It is important to notice that parallel repetition, in general, does not amplify
soundness for argument systems [BIN97, PW12]. Luckily, it does so (at an exponential rate) in
the special case of secret-coin one-round arguments (such as PAoK) [BIN97].

Formal proof. More precisely, theproof of the above theorem relies on the well-known fact
that parallel repetition decreases the (knowledge) soundness error of one-round arguments at an
exponential rate.

Lemma 2 (Theorem 4.1 of [BIN97], adapted to one-round protocols). Let Π = (P,V) be a one-
round argument of knowledge and denote by Πn = (Pn,Vn) the one-round protocol that consists
of the n-fold repetition of the initial protocol Π. Suppose 0 < α, β < 1 and n > 2 is an integer.
Suppose α > (16/β) ·e−β·n/128. Then there is an oracle algorithm R such that for any prover P∗,
verifier V and input string x, the following is true: If Pr[〈P∗(1κ, x, aux ),Vn(x)〉 = acc] > 2α then
Pr[
〈
RP∗(1κ, x, aux ),V(x)

〉
= acc] > 1− β. Furthermore, RP∗ runs in time poly(n, |x|, α−1).

Proof of Theorem 1. Let P̃∗n be a prover for the collapsed protocol such that for some x and z
succeeds with probability at least κ−c for some constant c. Let α = 1

2κ
−c and β = 1

2ρ , notice
that setting n = ω(ρ log κ) the following equation holds for κ big enough:

1
2κ
−c = α > (16/β) · e−β·n/128 = 32ρ · e−ω(log κ)/256.

We can apply Lemma 2 with the parameters α and β set as above. Therefore, consider a single
instance of the sub-protocol Π̃, the prover RP̃∗n succeeds with probability 1− β = 1− 1

2ρ .

We build a prover P∗ for Π that succeeds with probability 1
2 . Specifically, Let P̃∗ := RP̃∗n

and let P∗ interact with the verifier V of the multi-round protocol as follow:

1. V samples (c,b)←$ Chall(1κ, x), where c := (c1, . . . , cρ) and b := (b1, . . . , bρ).
2. For all i ∈ [ρ] in increasing sequence:

• Upon input challenge ci from the verifier V, prover P∗ runs internally P̃∗ on input
(1κ, x) and challenge (c1, . . . , ci). If P̃∗ outputs (a1, . . . , ai), then P∗ forwards ai to
V; otherwise it aborts.

Rewriting explicitly the acceptance probability of P̃∗ in the collapsed protocol on (x, z):

Pr
[
P̃∗(1κ, x, z, c1, . . . , ci) = (b1, . . . , bi) : (c,b)←$ Chall(1κ, x), i←$ [ρ]

]
> 1− 1

2ρ .
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Let Wi be the event that ai = bi in the interaction between P∗ and V described above. We can
write:

Pr[〈P∗(1κ, x, z),V(1κ, x)〉 = acc] (1)

= Pr[∀i ∈ [ρ] : Wi] = 1− Pr[∃i ∈ [ρ] : ¬Wi] > 1−
∑
i∈[ρ]

Pr[¬Wi]

=1− ρ · Ei←$ [ρ]

[
Pr[P∗(1κ, x, c1, . . . , ci) 6= ai : (c,b)←$ Chall(1κ, x)]

]
>1−

(
1
2ρ

)
· ρ = 1

2 .

where the equations above follow by the definition of average and by our assumption on the
success probability of P̃∗ on (x, z). Notice that for any successful P̃∗n we can define an extractor
that is the same extractor for the machine P∗ executing P̃∗ = RP̃∗n as a subroutine. Moreover,
since P̃∗n succeeds with probability κ−c then P∗ runs in polynomial time.

3.3 Laconic PAoK

We show that laconic PAoK (where the size of the prover’s answer is ` = 1 bit) are in fact
equivalent to PAoK.

Theorem 2. Let R be an NP relation. If there exists a PAoK for R then there exists a laconic
PAoK for R.

The proof of the theoremrelies on the Goldreich-Levin Theorem [Gol01, Theorem 2.5.2].
Here is the intuition. Let (P,V) be a PAoK with `-bit answers. We define a new PAoK (P ′,V ′)
where the verifier V ′ runs V in order to obtain a pair (c, b), samples randomness r, and defines
the new predicted answer to be the inner product between b and r. Given challenge (c, r) the
prover P ′ simply runs P in order to obtain a and defines the answer to be the inner product
between a and r. Knowledge soundness follows by the Goldreich-Levin theorem. In particular,
we use the fact that Goldreich-Levin theorem holds not only for injective one-way functions, but
more generally for any relation, provided that for any instance there exists only one witness.

Lemma 3 (Goldreich-Levin Theorem). Consider a relation Rκ,` ⊆ {(c, b) : c ∈ {0, 1}κ, b ∈
{0, 1}`} with corresponding language Lκ,`, such that for any instance c ∈ Lκ,` there exists
only one valid witness b for c. There exists a PPT inverter I and a non-zero polynomial
q(·) such that, for any machine P and any c ∈ {0, 1}κ, whenever p(c) := Pr

[
P(c, r) =

〈b, r〉 : (c, b) ∈ Rκ,`; r←$ {0, 1}`
]
(where 〈·, ·〉 denotes the inner product over the binary field)

then Pr[IP(c,·)(1`, c) = b ∧ (c, b) ∈ Rκ,`] > q
(
p(c)− 1

2

)
.

Proof of Theorem 2. Consider Π = (Chall,Resp) to be a PAoK for R, with `-bit prover’s answer
for some ` = poly(κ). In what follows when we write 〈a, b〉 for strings a, b ∈ {0, 1}` we mean
the inner product between a and b when interpreted as vectors in the binary field. Define the
protocol Π′ = (Chall′,Resp′) described below:

• Upon input (1κ, x), let Chall′(1κ, x) := (c′, b′) where c′ = (c, r) and b′ = 〈b, r〉 for a random
r←$ {0, 1}`.
• Upon input (1κ, x, w, c′), let Resp′(1κ, x, w, c′) := 〈a, r〉 where c′ = (c, r) and a = Resp(1κ, x,
w, c).

Clearly, Π′ is laconic. Consider now the relation R∗ = {(c, b) : ∃r s.t. (c, b) = Chall(1κ, x; r)}.
Given a prover P ′ for Π′ we can define the prover P∗ that upon input the instance x and a chal-
lenge c runs the inverter I(1`, c) from Lemma 3 and forwards its oracle queries to P ′(1κ, x, z, ·).

By Lemma 3 we have that such a prover runs in polynomial time if P ′ does, and for ev-
ery challenge c its success probability is polynomially related to the success probability of P ′.
Therefore, if P ′ succeeds with noticeable probability so does P∗. The statement follows.
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4 Constructing PAoK

We explore constructions of PAoK. In Section 4.1 we investigate the relationship between PAoK
and Extractable Witness Encryption [GGSW13, GKP+13]. In particular, we establish the equiv-
alence between the two notions.

In Section 4.2 we show that we can construct a PAoK from any extractable hash-proof
system [Wee10] (Ext-HPS); if the Ext-HPS is defined w.r.t. a relation R, we obtain a PAoK for
a related relation R′ where R and R′ share the same x, and the witness for x w.r.t. R′ is the
randomness used to sample the instance (x,w) ∈ R.

In Section 4.3, we focus on constructing PAoK for so-called random self-reducible relations.
In particular, we show that, for such relations, a fully-extractable PAoK can be obtained by
generically leveraging a PAoK for a (much weaker) specific sampler (which depends on the
random self-reducible relation).

Finally, in Section 4.4, we show that a PAoK for a specific sampler can be obtained generically
by using a differing-input obfuscator [BST14] for a related (specific) circuit sampler.

4.1 Equivalence to Extractable Witness Encryption

We show that full-fledged PAoK imply extractable witness encryption (Ext-WE), and viceversa.
We start by recalling the definition of Ext-WE, taken from [GGHW14]12.

Extractable Witness Encryption. Let R be an NP -relation. A WE scheme Π = (Encrypt,
Decrypt) for R (with message space M = {0, 1}) consists of two PPT algorithms, specified as
follows:13 (i) Algorithm Encrypt takes as input a security parameter 1κ, a value x ∈ {0, 1}∗,
and a message β ∈ {0, 1}, and outputs a ciphertext γ; (ii) Algorithm Decrypt takes as input a
security parameter 1κ, a ciphertext γ, a value w ∈ {0, 1}∗, and outputs a message β ∈ {0, 1} or
a special symbol ⊥.

Definition 3 (Ext-WE). Let R be an NP -relation, and ΠWE = (Encrypt,Decrypt) be a WE
scheme for R. We say that ΠWE is an Ext-WE scheme for R if the following requirements are
met.

Correctness: For any (x,w) ∈ RL and β ∈ {0, 1}, we have that Decrypt(1κ, w,Encrypt(1κ, x, β)) =
β with probability one.

Extractable Security: For any PPT adversary A = (A0,A1) and for any noticeable func-
tion ε(·), there exists a non-uniform extractor K and a non-zero polynomial q(·) such
that the following holds. For any auxiliary information z ∈ {0, 1}∗ and for any tuple
(x, st)←$A0(1κ, z), whenever

Pr [A1(1κ, st , x,Encrypt(1κ, x, β), z) = β : β←$ {0, 1}] > 1

2
+ ε(κ)

we have Pr[(x,K(1κ, x, z)) ∈ RL] > ε(κ).

Theorem 3. Let R be an NP-relation. There exists a PAoK for R if and only if there exists an
Ext-WE scheme for R.

Intuitively, the equivalence between PAoK and Ext-WE can be established as follows:

• From Ext-WE to PAoK we encrypt a random bit a using the encryption scheme and then
ask the prover to return a.

12More precisely, we make the slightly stronger assumption that the value of the extraction probability is at
least the advantage of the adversary.

13WE for arbitrary-length messages can be obtained encrypting each bit of the plaintext independently.

12



• From PAoK to Ext-WE, we first make the PAoK extremely laconic, then we generate a
challenge/answer pair (c, a) for the PAoK, and encrypt a single bit β as (c, a⊕ β).

Proof of Theorem 3. Let Π = (Chall,Resp) be a PAoK for the relation R. Without loss of
generality, by our analysis in Section 3, we can assume that the PAoK is laconic (i.e., the output
of Resp is a single bit a ∈ {0, 1}). Consider the following construction of an Ext-WE scheme
ΠWE = (Encrypt,Decrypt) for R (with message spaceM = {0, 1}):

• Upon input 1κ, x and message β, define Encrypt(1κ, x, β) := (c, β⊕ b) := γ where (c, b)←$

Chall(1κ, x).
• Upon input 1κ, w, γ, where γ = (γ1, γ2), define Decrypt(1κ, w, γ) = γ2 ⊕ a where a←$

Resp(1κ, x, w, γ1).

Let A = (A0,A1) be an adversary for the WE scheme. Assume that there exists a noticeable
function ε(·) such that

Pr [A1(1κ, st , x, γ, z) = β : β←$ {0, 1}; γ←$ Encrypt(1κ, x, β)] >
1

2
+ ε(κ)

for (st , x)←$A0(1κ, z) (where z ∈ {0, 1}∗ is the auxiliary input). We use A to construct a
prover P∗ attacking knowledge soundness of Π. Prover P∗ first runs (st , x)←$A0(1κ, z), and
then interacts with the honest verifier of Π on common input x, as follows:

1. Receive challenge c from the verifier.
2. Sample β′←$ {0, 1} and run A1(1κ, st , x, γ, z) on γ := (c, β′), obtaining a bit β.
3. Send a := β ⊕ β′ to the verifier.

For the analysis, note that the ciphertext simulated by P∗ has the right distribution (in partic-
ular, the second component is a random bit). Since β′ = β ⊕ b we get that P∗ outputs a = b
with probability at least 1/2 + ε(κ) and thus P∗ convinces V with probability p(κ) ≥ 1/2 + ε(κ).
We are now in a position to run the extractor K of Π, and hence we obtain a valid witness
w←$K(1κ, x, z) with probability ε(κ). The statement follows.

Conversely, let ΠWE = (Encrypt,Decrypt) be an Ext-WE scheme for the relation R, with
message spaceM = {0, 1}. Consider the following construction of a PAoK Π = (Chall,Resp):

• Upon input 1κ, x, define Chall(1κ, x) := (Encrypt(1κ, x, b), b) where b←$ {0, 1}.
• Upon input 1κ, x, w, c, define Resp(1κ, x, w, c) := Decrypt(1κ, w, c).

Fix any x and let P∗ be a malicious prover for the PAoK. Assume that there exists a polynomial
p(·) such that

p(κ) := Pr [〈P∗(1κ, x, z),V(1κ, x)〉 = acc] ≥ ε(κ).

where z ∈ {0, 1}∗ is the auxiliary input. We use P∗ to construct an adversary A := (A0,A1)
attacking extractable security of ΠWE. Adversary A0(1κ, z) outputs x, and then A1 is given a
challenge ciphertext γ that is either an encryption of β = 0 or an encryption of β = 1 (under
x), and its goal is to guess β. To do so A proceeds as follows:

1. Forward γ to P∗.
2. Let a be the answer sent by P∗; output β := a.

For the analysis, note that the challenge simulated by A1 has the right distribution (in particular,
it is a witness encryption of a random bit). Since a = b = Decrypt(1κ, x, w, γ) with probability
at least p(κ), we get that A1 guesses β with at least the same probability. We are now in a
position to run the extractor K of ΠWE, and hence we obtain a valid witness w←$K(1κ, x, z)
with probability p(κ)− ε(κ). The statement follows. A similar argument shows that Π is a weak
PAoK whenever ΠWE is a weak Ext-WE.
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4.2 Construction from Extractable Hash-Proof Systems

The definition below is adapted from [Wee10].

Definition 4 (Ext-HPS). Let H = {hpk} be a set of hash functions indexed by a public key
pk , and let R be an NP -relation. An extractable hash-proof system for R is a tuple of PPT
algorithms ΠHPS := (SetupHash, SetupExt,Ext,Pub,Priv) such that the following properties are
satisfied.

Public evaluation: For all (pk , sk) ← SetupExt(1κ), and (x,w) ← SamR(1κ; r), we have
Pub(1κ, pk , r) = hpk (x).

Extraction mode: For all (pk , sk)← SetupExt(1κ) and all (x, π), we have that π = hpk (x)⇔
(x,Ext(1κ, sk , x, π)) ∈ R.

Hashing mode: For all (pk , sk) ← SetupHash(1κ), and for all (x,w) ∈ R, we have that
Priv(1κ, sk , x) = hpk (x).

Indistinguishability: The ensembles {pk : (pk , sk)← SetupHash(1κ)}κ∈N and {pk : (pk , sk)←
SetupExt(1κ)}κ∈N are statistically indistinguishable.

Let R be an efficiently samplable relation with sampling algorithm SamR. Define the relation
R′, such that (x,w′) ∈ R′ if and only if (x,w) ∈ R where (x,w) := SamR(1κ;w′). Consider the
following pair of PPT algorithms Π = (Chall,Resp), defining a one-round predictable argument
for R′ (as described in Section 3.1).

1. Algorithm Chall(1κ, x) runs (pk , sk) ← SetupHash(1κ), and defines c := pk and b :=
Priv(1κ, sk , x).

2. Algorithm Resp(1κ, x, w′, c) defines a := Pub(1κ, pk , w′).

Theorem 4. Let R, R′ and SamR be as above. Assume that ΠHPS is an Ext-HPS for the relation
R. Then Π = (Chall,Resp) as defined above is an f -PAoK for the relation R′ and where f(·)
returns the second output of SamR(·).

Proof. Completeness follows by the correctness property of the hashing mode of the underlying
HPS. In order to show knowledge soundness, we consider a mental experiment where algorithm
Chall is defined differently. In particular, the verifier samples (pk , sk)← SetupExt(1κ) using the
extraction mode instead of the hashing mode. By the indistinguishability property of the HPS
this results in a statistically close distribution.

Now, we can define the extractor K of the PAoK as follows. Let P∗ be a PPT algorithm
such that 〈P∗(1κ, x, z),V(1κ, x)〉Π = acc with probability p(κ), where P∗ uses auxiliary input
z ∈ {0, 1}∗. Define K(1κ, x, z) := Ext(1κ, sk , x, a) where a is the message sent by P∗. By
definition of protocol Π we get that whenever P∗ succeeds then c = hpk (x) = a. Thus the
extraction property of the HPS implies that w←$ Ext(1κ, sk , x, a) is a valid witness for x, i.e.
R(x,w) = 1 with probability 1. The proof now follows by the fact that for all w′ such that
SamR(1κ;w′) = (x,w), we also have R′(x,w′) = 1.

Instantiations. We consider two instantiations of Theorem 4, based on the constructions of
Ext-HPS given in [Wee10].

• The first construction is for the Diffie-Hellman relation RDH((u, s), α) = 1 iff u = sα,
with public parameters (g, gα) where g is a generator for a group G of prime order q and
α←$ Zq. Note that SamR(r) := (gr, gαr), for r←$ Zq. The corresponding relation R′DH is
defined by R′DH((u, s), r) = 1 iff u = gr and s = (gα)r; furthermore f(r) = fg,α(r) := gαr.
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• The second construction is based on factoring. Let RQR be defined by RQR((u, s), k) = 1 iff
u = s2k , such that (u, s) ∈ QR+

N ×QR+
N , and with public parameters (N, g, g2k) where N

is a 2k-bit Blum integer and g←$ QR+
N . Note that SamR(r) := (g2kr, gr), for r←$ QR+

N .
The corresponding relation R′QR is defined by R′QR((u, s), r) = 1 iff u = (g2k)r and s = gr;
furthermore f(r) = fg(r) := gr.

4.3 PAoK for Random Self-Reducible Languages

We construct a PAoK for languages that are random self-reducible. Random self-reducibility is a
very natural property, with many applications in cryptography (see, e.g., [AL83, TW87, OO89]).

Random self-reducibility. Informally a function is random self-reducible if, given an algo-
rithm that computes the function on random inputs, one can compute the function on any
input. When considering NP relations, one has to take a little more care while defining random
self-reducibility. We say that OR(·) is an oracle for the relation R, if on any input x ∈ LR we
have that (x,OR(x)) ∈ R.

Definition 5 (Self-Reducible Relation). An NP -relation R for a language L is random self-
reducible if there exists a pair of PPT algorithms W := (W0,W1) such that, for any oracle OR
for the relation R, the following holds.

• For any x ∈ L, we have that (x,w) ∈ R where w is defined as follows:

– Let x′ :=W0(x; r) for r←$ {0, 1}poly(|x|), and set w′ := OR(x′);
– Let w :=W1(x,w′; r);

• The value x′ is uniformly distributed over L.

We call the pair of algorithms W an average-to-worst-case (AWC) reduction.

Notice that the reduction W has access to a “powerful” oracle that produces a witness for a
randomized instance, and uses such witness to compute a witness for the original instance. As
an example, consider the discrete logarithm problem in a cyclic group G of prime order q and
with generator g. Given an instance x and an oracle ODLOG one can find w such that gw = x as
follows: (i) Pick a random r ∈ Zq, compute x′ = x · gr and ask to the oracle ODLOG a witness
for x′; (ii) Given w′ such that gw′ = x′ compute w := w′ − r.

Notice that, in the above example, given w and the auxiliary information r, one can easily
compute a valid witness w′ for the instance x′. This feature inspires the following property of a
random self-reducible relation R:

Definition 6 (Witness Re-constructibility). A random self-reducible relation R with AWC
reduction W is witness reconstructible if there exists a PPT algorithm Winv such that for any
r ∈ {0, 1}poly(|x|) and for any (x,w) ∈ R the following holds: Let x′ be the oracle call made by
W(x; r), and define w′ :=Winv(x,w; r); then (x′, w′) ∈ R.

The protocol. We show how to use a PAoK w.r.t. a specific sampler for a random self-
reducible relation R, to construct a fully-extractable PAoK for the same relation. The idea is
to map the input instance x into a random instance x′, and to additionally send the prover the
auxiliary information needed to compute a valid witness w′ for x′. This way a honest prover
essentially behaves as an oracle for the underlying relation R.

Let R be a random self-reducible NP -relation which is witness reconstructible and has AWC
reduction W = (W0,W1). Let Π′ := (Chall′,Resp′) be a PAoK for R. Consider the following
protocol Π = (Chall,Resp):
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1. Upon input 1κ, x algorithm Chall returns c := (c′, x′, r) and b such that x′ =W0(x; r) (for
r←$ {0, 1}poly(|x|)) and (c′, b)←$ Chall(1κ, x′).

2. Upon input 1κ, x, w, (c′, x′, r) algorithm Resp returns a where a←$ Resp(1κ, x′, w′, c′) for
w′ :=Winv(x,w; r).

Theorem 5. Let R be a random self-reducible NP-relation which is witness reconstructible and
has AWC reduction W = (W0,W1). Let Π′ be a (W0, ε)-PAoK for the relation R. Then protocol
Π is an ε-PAoK for R.

Before coming to the formal proof, let us discuss some intuition. Given a prover P∗ for Π we
need to define a knowledge extractor K. The point is that P∗ can equivalently be seen as a prover
for Π′ where instances are sampled using W0(x; ·). For this scenario the knowledge soundness
of Π provides a knowledge extractor K′, and such an extractor can output a valid witness for
a uniformly sampled instance. This is where we use the random self-reducibility property. The
extractor K′, in fact, can be seen as an oracle for the relation R that with noticeable probability
produces a valid witness for a uniformly chosen instance. Therefore, using the AWC reduction
W with oracle access to K′ we can reconstruct a valid witness for the instance x.

Proof of Theorem 5. For any PPT prover P∗ we need to define a knowledge extractor K such
that, for any instance x and auxiliary input zP for which p(κ) := Pr[〈P∗(1κ, x, z),V(1κ, x)〉 =
acc] > ε(κ), the extractor K produces a witness w for x with probability p(κ)− ε(κ).

Let K′ be the knowledge extractor w.r.t. W0 of Π′. Consider the knowledge extractor K
that works as follow:

1. Pick a random r←$ {0, 1}poly(κ).
2. Compute w′←$K′(1κ, x, zP ) and let x′ =W0(x; r).
3. If (x′, w′) ∈ R then output w :=W1(x,w′; r), otherwise output ⊥.

Clearly, the probability of K outputting ⊥ is the same as K′ outputting an invalid witness on a
random instance. Hence:

Pr
K

[(x,w) ∈ R : w←$K(1κ, x, zP )] > p(κ)− ε(κ).

This finishes the proof.

4.4 PAoK for a Specific Sampler

We use the framework for obfuscation proposed by Bellare et al. in [BST14]. A circuit sampling
algorithm is a PPT algorithm S = {Sκ}κ∈N whose output is distributed over Cκ×Cκ×{0, 1}p(κ),
for a class of circuit C = {Cκ}κ∈N and a polynomial p. We assume that for every C0, C1 ∈ Cκ
it holds that |C0| = |C1|. Given any class of samplers S for a class of circuits C consider the
following definition:

Definition 7 (S-Obfuscator). A PPT algorithm Obf is an S-obfuscator for the parametrized
collection of circuits C = {Cκ}κ∈N if the following requirements are met.

• Correctness: ∀κ,∀C ∈ Cκ, ∀x : Pr[C ′(x) = C(x) : C ′←$ Obf(1κ, C)] = 1.
• Security: For every sampler S ∈ S, for every PPT (distinguishing) algorithm D, and

every auxiliary inputs zD, zS ∈ {0, 1}∗, there exists a negligible function ν : N → [0, 1]
such that for all κ ∈ N:∣∣∣Pr

[
D(C ′, aux, zD, zS) = 1 :

(C0, C1, aux)←$ S(1κ, zS),
C ′←$ Obf(1κ, C0)

]
−

Pr

[
D(C ′, aux, zD, zS) = 1 :

(C0, C1, aux)←$ S(1κ, zS),
C ′←$ Obf(1κ, C1)

] ∣∣∣ 6 ν(κ),
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where the probability is over the coins of S and Obf.

Abusing the notation, given a circuit sampler S, we say that Obf is an S-obfuscator if it
is an {S}-obfuscator. It is easy to see that the above definition allows to consider various
flavours of obfuscation as a special case (including indistinguishability and differing-input obfus-
cation [BGI+12]). In particular, we say that a circuit sampler is differing-input if for any PPT
adversary A and any auxiliary input zS ∈ {0, 1}∗ there exists a negligible function ν : N→ [0, 1]
such that the following holds:

Pr

[
C0(x) 6= C1(x) :

(C0, C1, aux)←$ S(1κ, zS)
x← A(C0, C1, aux, zS)

]
6 ν(κ).

Let Sdiff be the class of all differing-input samplers; it is clear that an Sdiff-obfuscator is equivalent
to a differing-input obfuscator.

Consider the following construction of a PAoK Π = (Chall,Resp) for a relation R.

• Upon input (1κ, x) algorithm Chall(1κ, x) outputs c := Obf(Cx,b) where b←$ {0, 1}κ and
Cx,b is the circuit that hard-wires x and b and, upon input a value w, it returns b if and
only if (x,w) ∈ R (and ⊥ otherwise).
• Upon input (1κ, x, w, c), algorithm Resp(1κ, x, w, c) executes a := c(w) and outputs a.

Given an arbitrary instance sampler S, let CS[S] be the circuit samplers that sample randomness
r′ := r‖b, execute (x, aux) := S(1κ, zS ; r), and output the tuple (Cx,b, Cx,⊥, aux‖b). We prove
the following result .

Theorem 6. Let S be an arbitrary instance sampler and Sdiff and CS[S] be as above. If CS[S] ∈
Sdiff and Obf is a CS[S]-obfuscator, then the protocol Π described above is an S-PAoK for the
relation R.

Proof. Suppose that Π is not an S-PAoK, we prove that CS[S] ∈ Sdiff but the Obf is not a
CS[S]-Obfuscator. This means there exists a PPT adversary P∗, and a polynomial p(·) such
that the following holds. For for any PPT extractor K and infinitely many values of κ ∈ N there
exist auxiliary informations zP , zS ∈ {0, 1}∗, randomness rP ∈ {0, 1}∗, and a negligible function
ν : N→ [0, 1] for which:

Pr

[
a = b :

(x, aux )←$ S(1κ, zS),
(c, b)←$ Chall(1κ, x), a← P∗(1κ, c, aux , zP ; rP )

]
= Pr

[
a = b :

(Cx,b, Cx,⊥, aux‖b)←$ CS[S](1κ, zS),
c←$ Obf(1κ, Cx,b), a←$ P∗(1κ, c, aux , zP ; rP )

]
> p(κ)

(2)

but

Pr

[
(x,w) ∈ RL :

(x, aux)←$ S(1κ, zS),
w←$K(1κ, zP , rP , zS)

]
6 ν(κ). (3)

Consider now a modified algorithm Chall′ that, upon input (1κ, x), samples b←$ {0, 1}κ as
Chall would do, but then outputs c := Obf(Cx,⊥). Obviously:

Pr

[
a = b :

(x, aux )←$ S(1κ, zS),
(c, b)←$ Chall′(1κ, x), a←$ P∗(1κ, c, aux , zP ; rP )

]
= Pr

[
a = b :

(Cx,b, Cx,⊥, aux‖b)←$ CS[S](1κ, zS),
c←$ Obf(1κ, Cx,⊥), a←$ P∗(1κ, c, aux , zP ; rP )

]
= 2−κ

(4)

It is not hard to see that Eq. (3) implies that CS[S] ∈ Sdiff and Eq. (2) and Eq. (4) imply
that from P∗ we can build a distinghuisher for Obf by checking that the equation a = b holds.
This concludes the proof.
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By combining Theorem 6 together with Theorem 5 we get the following corollary.

Corollary 1. Let R be a random self-reducible NP-relation which is witness reconstructible
and has AWC reduction W = (Wsmp,Wcmp,Winv). If there exists a CS[Wsmp]-obfuscator and
CS[Wsmp] ∈ Sdiff then there exists a PAoK for R.

5 On Zero Knowledge

One can easily verify that PAoK are always honest-verifier zero-knowledge, since the answer to
a (honest) challenge from the verifier can be predicted without knowing a valid witness.

It is also not too hard to see that in general PAoK may not be witness indistinguishable
(more details in the full version of the paper [FNV15b]).

Furthermore, we note that PAoK in the plain model can be zero-knowledge only for trivial
languages. The reason is that predictable arguments have inherently deterministic provers and,
as shown by Goldreich and Oren [GO94, Theorem 4.5], the zero-knowledge property for such
protocols is achievable only for languages in BPP .

In this section we show how to circumvent this impossibility using setup assumptions. In
particular, we show how to transform any PAoK into another PAoK additionally satisfying
the zero-knowledge property (without giving up on predictability). We provide two solutions.
The first one in the common random string (CRS) model,14 while the second one is in the
non-programmable random oracle (NPRO) model.

5.1 Compiler in the CRS Model

We start by recalling the standard notion of zero-knowledge interactive protocols in the CRS
model. Interactive protocols in the CRS model are defined analogously to interactive protocols
in the plain model (cf. Section 2.3.1), with the only difference that at setup a uniformly random
string ω←$ {0, 1}` is sampled and both the prover and the verifier additionally take ω as input.

Definition 8 (Zero-knowledge protocol in the CRS model). Let (P,V) be an interactive protocol
for an NP relation R. We say that (P,V) satisfies the zero-knowledge property in the CRS model
if for every PPT malicious verifier V∗ there exists a PPT simulator Z = (Z0,Z1) and a negligible
function ν : N → [0, 1] such that for all PPT distinguishers D, all (x,w) ∈ R, and all auxiliary
inputs z ∈ {0, 1}∗, the following holds:

∆(Π,Z,V∗) := max
D,z

∣∣∣Pr

[
D(ω, x, τ, z) = 1 :

ω←$ {0, 1}`,
τ ← (P(ω, x,w)� V∗(ω, x, z))

]
− Pr

[
D(ω, x, τ, z) = 1 :

(ω, ϑ)←$ Z0(1κ),
τ ← Z1(ϑ, x, z)

] ∣∣∣ 6 ν(|x|).

The compiler. Our first compiler is based on a NIZK-PoK system (see full version for the
formal definition). Let Π = (Chall,Resp) be a PAoK for a relation R, and assume that Chall
uses at most ρ(|x|, κ) random bits for a polynomial ρ. Let NIZK = (`,Prove,Ver) be a NIZK
for the relation

Rchal = {((c, x), r) : ∃b s.t. (c, b) := Chall(1κ, x; r)} .

Consider the following one-round PAoK Π′ = (Chall′,Resp′) in the CRS model.
14This model is sometimes also known as the Uniform Random String (URS) model.
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• At setup a uniform CRS ω←$ {0, 1}` is sampled.
• Algorithm Chall′ takes as input (1κ, ω, x) and proceeds as follows:

1. Sample random tape r←$ {0, 1}ρ.
2. Generate a proof π←$ Prove(ω, (c, x), r) for ((c, x), r) ∈ Rchal.
3. Output c′ := (c, π).

• Algorithm Resp′ takes as input (1κ, ω, x, w, c′) and proceeds as follows:

1. Parse c′ := (c, π); in case Ver(ω, (c, x), π) = 0 return ⊥.
2. Output b′ := Resp(1κ, x, w, c).

Roughly speaking, in the above construction the verifier sends the challenge c together with a
NIZK-PoK π that c is “well formed” (i.e., there exist random coins r such that the verifier of the
underlying PAoK with coins r returns a pair (c, b)); the prover answers only in case the proof π
is correct. We show the following result.

Theorem 7. Let Π be a PAoK for the relation R ∈ NP and let NIZK be a NIZK-PoK for the
relation Rchal. Then the protocol Π′ is a ZK-PAoK in the CRS model.

The knowledge soundness of Π′ follows almost directly from the zero-knowledge property of
NIZK and from the knowledge soundness of Π. In fact, one can consider a mental experiment
where the verifier generates a simulated proof π instead of a real one. This proof does not carry
any information about the randomness but it is indistinguishable from a real one. A successful
prover in the real world is still successful in this mental experiment and, therefore, we reduced
to the knowledge soundness of Π. The zero-knowledge of Π′ follows from the fact that PAoK
are honest-verifier zero-knowledge, and from the knowledge soundness of NIZK. In particular,
given a maliciously generated challenge (c∗, π∗), the simulator can use the knowledge extractor
of NIZK on π∗, extract a valid witness r∗, and then produce a valid answer.

Proof of Theorem 7. The proof of the completeness property follows readily from the complete-
ness of the NIZK and of the underlying PAoK.

We proceed to show knowledge soundness of Π′, by relying on the zero-knowledge property
of the NIZK. Let P∗ be the prover in the definition of knowledge soundness, and consider the
hybrid experiment where at setup we run (ω, ϑ)←$ Z0(1κ) and we replace a protocol transcript
with τ ←$ Z1(ϑ, x). By unbounded15 zero-knowledge of the NIZK, it follows that the succees
probability of P∗ is negligibly close in the two experiments. We can thus define the knowledge
extractor of Π′ to be the same as the one for Π, additionally executing the simulated hybrid
experiment described above. Knowledge soundness of Π′ follows.

Next, we turn to show the zero-knowledge property. Consider the simulator Z ′ = (Z ′0,Z ′1)
described below.

• Algorithm Z ′0 returns (ω, ϑ)←$K0(1κ).
• Algorithm Z ′1 first runs the malicious verifier in order to obtain a challenge c′←$ V∗(ω, x, z)

where c′ := (c, π). It then checks whether Ver(ω, (c, x), π) = 0, in which case it outputs a
simulated transcript τ := (c′,⊥). Otherwise, in case the proof is accepting, it attempts to
extract a witness r←$K1(ω, ϑ, (c, x), π); in case the extractor fails, Z ′1 outputs a simulated
transcript τ := (c′,⊥), and otherwise it runs (c, b)←$ Chall(1κ, x; r) and returns τ := (c′, b).

To show that the above simulation strategy is sound, we rely on both the honest-verifier zero-
knowledge property of Π and on the knowledge soundness of the NIZK.

15Strictly speaking, for this step of the proof to go through, single-theorem zero-knowledge (see [SP92]) would
actually be sufficient.
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Let Tr = (ω, c′ := (c, π), b) be the random variable corresponding to a transcript produced by
an interaction between V∗ and the honest prover P. Similarly, denote with Ts = (ω̃, c̃′ := (c̃, π̃), b̃)
the random variable corresponding to a transcript produced by the above described simulator
Z ′. We will show that Tr and Ts are close in statistical distance, which concludes the proof.
Consider the following events:

A := {Ver(ω̃, c̃, π̃) = 0 ∨ ((c̃, x), r) ∈ Rchal}

B :=
{

(ω̃ = ω ∧ c̃′ = c′)⇒ b̃ = b
}
.

It is easy to verify that there exists a negligible function ν : N→ [0, 1] such that ∆(Tr, Ts|A∧B) ≤
ν(κ). This is because either the verification of π fails (and therefore the response is ⊥ both for
real and simulated transcripts), or the extraction succeeds and so the simulator Z1 produces an
answer b̃ 6= ⊥ and, for a fixed challenge and CRS, the event B ensures that we get the same
answer as in the real distribution. Notice that the challenges in both the real and simulated
transcripts are derived in the same way as a (randomized) function of the CRS; therefore the
distributions of the pairs (ω, c′) and (ω̃, c̃′) are negligible close (since ω and ω̃ are negligible
close).

By Lemma 1 , (cf. Section 2), and applying a union bound, we have that:

∆(Tr, Ts) 6 Pr[¬A] + Pr[¬B] + ν(κ).

So we are left with bounding the probability of events A and B not happening. To bound
the probability of ¬A we rely on knowledge soundness. In particular, there exists a negligible
function ν ′ : N→ [0, 1] such that

Pr[¬A] = Pr[Ver(ω̃, c̃, π̃) = 1 ∧ ((c̃, x), r) 6∈ Rchal]

6 Pr[Ver(ω̃, c̃, π̃) = 1]− Pr[((c̃, x), r) ∈ Rchal] 6 ν
′(κ).

The fact that the probability of ¬B is negligible follows readily by completeness of Π.

5.2 Compiler in the NPRO Model

We start by recalling the definition of zero-knowledge in the NPRO model, for interactive pro-
tocols. Recall that a NPRO is weaker than a programmable random oracle. Intuitively, in the
NPRO model the simulator can observe the verifier’s queries to the hash function, but is not
allowed to program the behaviour of the hash function. The definition below is adapted from
Wee [Wee09].

Definition 9 (Zero-knowledge protocol in the NPRO model). Let (P,V) be an interactive
protocol for an NP relation R. We say that (P,V) satisfies the zero-knowledge property in
the NPRO model if for every PPT malicious verifier V∗ there exists a PPT simulator Z and a
negligible function ν : N→ [0, 1] such that for all PPT distinguishers D, all (x,w) ∈ R, and all
auxiliary inputs z ∈ {0, 1}∗, the following holds:

∆(Π,Z,V∗) := max
D,z

∣∣∣Pr
[
DH(x, τ, z) = 1 : τ ← (PH(x,w)� V∗H(x, z))

]
− Pr

[
DH(x, τ, z) = 1 : τ ← ZH(x, z)

]∣∣∣ 6 ν(|x|).
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The compiler. Let Π = (Chall,Resp) be a PAoK for a relation R with `-bit prover’s answer,
and assume that Chall uses at most ρ(|x|, κ) random bits for a polynomial ρ. Let H be a
random oracle with output length ρ(κ). Consider the following derived one-round PAoK Π′ =
(Chall′,Resp′).

• Algorithm Chall′ takes as input (1κ, x) and proceeds as follows:

1. Sample a random tag t1←$ {0, 1}ρ and compute r := H(t1).
2. Run (c, b) := Chall(1κ, x; r).
3. Define t2 := H(b), and set the challenge to c′ := (c, t) where t := t1 ⊕ t2.

• Algorithm Resp′ takes as input (x,w, c) and proceeds as follows:

1. Parse c′ := (c, t) and run a←$ Resp(1κ, x, w, c).
2. Define t1 := t ⊕ H(a), and check whether (c, a) = Chall(1κ, x;H(t1)). If this is the

case, output a and otherwise output ⊥.

The main idea behind the above construction is to force the malicious verifier to follow the
underlying protocol Π; in order to do so we generate the challenge feeding the algorithm Chall
with the uniformly random string H(t1). What we need now is to both make able the prover to
check that the verifier followed the algorithm Chall and to maintain soundness. Unfortunately,
since PAoK are private-coin protocols, we can’t simply make the verifier output t1; what we do
instead is to one-time pad the value with the value t2 which is computable only knowing the
answer. We show the following result:

Theorem 8. If Π is a PAoK with `-bit prover’s answer for the relation R, and ` = ω(log κ),
then the protocol Π′ is a ZK-PAoK in the NPRO model.

Before coming to the proof, let us discuss some intuition. To prove soundness we show that
t = t1 ⊕ t2 is essentially uniformly random if the prover does not know b: this explains why we
need ` = ω(log κ), otherwise a malicious prover could just brute force the right value of b and
check for consistency. Note that here we are leveraging the power of the random oracle model,
that allows us to produce polynomially-long pseudorandomness from unpredictability. To prove
zero-knowledge we note that a simulator can look into the random-oracle calls made by the
malicious verifier while running it. Given the output (c∗, t∗) produced by the malicious verifier
two cases can happen:

• The simulator finds an oracle call t′ that “explains” the challenge c∗, namely (c∗, b) =
Chall(1κ, x;H(t′)); in this case the simulator just outputs b. We argue that the simulator
produces an indistinguishable view because the protocol Π has overwhelming completeness.
• The simulator does not find any t′ that explains the challenge. Then it outputs ⊥. Let b′

be the answer that the real prover would compute using the algorithm Resp. We argue that
the malicious verifier can find a challenge (c∗, t∗) that passes the check, namely (c∗, b′) =
Chall(1κ, x;H(H(b′)⊕t∗)) only with negligible probability. Therefore the real prover would
output ⊥ as well, and so the views are indistinguishable.

Proof of Theorem 8. Completeness follows readily from the completeness of the underlying PAoK.
We proceed to prove knowledge soundness of Π′. Given a prover P ′∗ for Π′ that makes

the verifier accept with probability p(κ), we define a prover P∗ for Π that is successful with
probability p(κ)/Q(κ) where Q is a polynomial that upper bounds the number of oracle calls
made by P ′∗ to the NPRO H. Prover P∗ proceeds as follow:

1. Upon input (1κ, c, z), set c′ := (c, t) for uniformly random t←$ {0, 1}ρ and run P∗(1κ, c′, z).
Initialize counter j to j := 1, Q := ∅, and pick a uniformly random index i∗←$ [Q(κ)].
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2. Upon input a random oracle query x from P ′∗, pick y←$ {0, 1}ρ and add the tuple (x, y, j)
to H. If j = i∗, then output x and stop. Otherwise set j ← j + 1 and forward y to P ′∗.

3. In case P∗ aborts or terminates, output ⊥ and stop.

Without loss of generality we can assume that the prover P ′∗ does not repeat random oracle
queries, and that before outputting an answer a∗, it checks that (c, a∗) := Chall(1κ, x;H(t ⊕
H(a∗))). We now analyse the winning probability of P∗. Let a be the correct answer corre-
sponding to the challenge c. Observe that the view produced by P∗ is exactly the same as the
real view (i.e., the view that P ′∗, with access to the random oracle, expects from an execution
with the verifier V ′ from Π′), until P ′∗ queries H with the value a. In this case, in fact, P ′∗
expects to receive a tag t2 such that (c, a) := Chall(1κ, x;H(t⊕ t2)). We can write,

Pr
[
P∗(1κ, c, z) returns a

]
= Pr

[
(a, ∗, i∗) ∈ Q

]
= Pr

[
a is the i∗-th query to H ∧ a = P ′∗(1κ, c′, z)

]
(5)

= Pr
[
a is the i∗-th query to H | a = P∗(1κ, c′, z)

]
Pr
[
a = P∗(1κ, c′, z)

]
> 1/Q(κ) · p(κ).

Notice that in Eq.(5) the two probabilities are taken over two different probability spaces, namely
the view provided by P ′∗ to the prover P∗ together with i∗ on the left hand side and the view
that P ′∗ would expect in an execution with a honest prover together with the index i∗ in the
right hand side. Knowledge soundness of Π′ follows.

We now prove the zero-knowledge property. Upon input (1κ, x, z) the simulator Z proceeds
as follows:

1. Execute algorithm V∗(1κ, x, z) and forward all queries to H; let Q be the set of queries
made by V∗.

2. Eventually V∗ outputs a challenge c∗ = (c′∗, t∗). Check if there exist (a∗, t∗1) ∈ Q such that
(c′∗, a∗) = Chall(1κ, x;H(t∗1)) and t∗ = t∗1 ⊕H(a∗). Output the transcript τ := (c∗, a∗). If
no such pair is found, output (c∗,⊥).

Let r′ be the randomness used by the prover. For any challenge c, instance x and witness w,
we say that r is good for c w.r.t. x,w, r′ if (c, a) = Chall(1κ, x; r) ∧ a = Resp(1κ, x, w, c; r′). By
completeness, the probability that r is not good, for r←$ {0, 1}ρ, is negligible. Therefore by
letting Good be the event that V∗ queries H only on inputs that output good randomness for
some c, by taking a union bound over all queries we obtain

Pr[Good ] > 1−Q(κ) · ν ′(κ) > 1− ν(κ), (6)

for negligible functions ν, ν ′ : N→ [0, 1].
From now on we assume that the event Good holds; notice that this only modifies by a

negligible factor the distinguishing probability of the distinguisher D.
We proceed with a case analysis on the possible outputs of the simulator and the prover:

• The second output of Z is a 6= ⊥, whereas the second output of P is ⊥. Conditioning
on Z’s second output being a 6= ⊥, we get that the challenge c is well formed, namely, c
is in the set of all possible challenges for the instance x and security parameter 1κ. On
the other hand, the fact that P outputs ⊥ means that either algorithm Resp aborted or
the check in step 2 of the description of Π′ failed. However, neither of the two cases can
happen unless event Good does not happen. Namely, if Resp outputs ⊥ the randomness
H(t∗ ⊕ H(a)) is not good for c (w.r.t. x,w, r′), and therefore Resp must have output a
which, together with t∗, would pass the test in step 2 by definition of Z. It follows that
this case happens only with negligible probability.
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• The second output returned by Z is ⊥, whereas P’s second output is a 6= ⊥. Conditioning
on Z’s second output being ⊥, we get that V∗ made no queries (a∗, t∗1) such that (c, a∗) =
Chall(1κ, x; t∗1) and t∗1 = H(t∗ ⊕H(a∗)). In such a case, there exists a negligible function
ν : N→ [0, 1] such that:

Pr[(c, a) = Chall(1κ, x;H(t∗ ⊕H(a∗)))]

6 Pr
[
t∗1 := (H(a)⊕ t) ∈ Q ∨ Chall(1κ, x;H(t∗1)) = (c, a)

]
6 Q · 2−ρ + 2−γ + ε 6 ν(κ), (7)

where 2γ is the size of the challenge space. Notice that by overwhelming completeness and
` = ω(log κ), it follows that γ = ω(log κ).
• Both Z’s and P’s second output are not ⊥, but they are different. This event cannot

happen, since we are conditioning on Good .

Combining Eq.(6) and Eq.(7) we obtain that ∆(Π,Z,V∗) is negligible, as desired.

On RO-dependent auxiliary input. Notice that Definition 9 does not allow the auxiliary
input to depend on the random oracle. Wee [Wee09] showed that this is necessary for one-round
protocols, namely zero-knowledge w.r.t. RO-dependent auxiliary input is possible only for trivial
languages. This is because the result of [GO94] relativizes.

In a similar fashion, for the case of multi-round protocols, one can show that also the proof
of [GO94, Theorem 4.5] relativizes. It follows that the assumption of disallowing RO-dependent
auxiliary input is necessary also in our case.

6 Predictable ZAPs

We recall the concept of ZAP introduced by Dwork and Naor [DN07]. ZAPs are two-message
(i.e., one-round) protocols in which:

(i) The first message, going from the verifier to the prover, can be fixed “once and for all,”
and is independent of the instance being proven;

(ii) The verifier’s message consists of public coins.

Typically a ZAP satisfies two properties. First, it is witness indistinguishable meaning that
it is computationally hard to tell apart transcripts of the protocols generated using different
witnesses (for a given statement). Second, the protocol remains sound even if the statement to
be proven is chosen after the first message is fixed.

In this section we consider the notion of Predictable ZAP (PZAP). With the terminology
“ZAP” we want to stress the particular structure of the argument system we are interested in,
namely a one-round protocol in which the first message can be fixed “once and for all.” However,
there are a few important differences between the notion of ZAPs and PZAPs. First off, PZAPs
cannot be public coin, because the predictability requirement requires that the verifier uses
private coins. Second, we relax the privacy requirement and allow PZAPs not to be witness
indistinguishable; notice that, in contrast to PZAPs, ZAPs become uninteresting in this case
as the prover could simply forward the witness to the verifier. Third, ZAPs are typically only
computationally sound, whereas we insist on knowledge soundness.

More formally, a PZAP is fully specified by a tuple of PPT algorithms Π = (Chall,Resp,Predict)
as described below:

1. V samples (c, ϑ)←$ Chall(1κ) and sends c to P.
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2. P samples a←$ Resp(1κ, x, w, c) and sends a to V.
3. V computes b := Predict(1κ, ϑ, x) and outputs acc iff a = b.

Notice that, in contrast to the syntax of PAoK, now the verifier runs two algorithms Chall,Predict,
where Chall is independent of the instance x being proven, and Predict uses the trapdoor ϑ and
the instance x in order to predict the prover’s answer.

Care needs to be taken while defining (knowledge) soundness for PZAPs. In fact, observe
that while the verification algorithm needs private coins, in many practical circumstances the
adversary might be able to infer the outcome of the verifier, and thus learn one bit of information
about the verifier’s private coins. For this reason, as we aim to constructing argument systems
where the first message can be re-used, we enhance the adversary with oracle access to the
verifier in the definition of soundness.

Definition 10 (Predictable ZAP). Let Π = (Chall,Resp,Predict) be as specified above, and let
R be an NP relation. Consider the properties below.

Completeness: There exists a negligible function ν : N→ [0, 1] such that for all (x,w) ∈ R:

Pr
c,ϑ

[Predict(1κ, ϑ, x) 6= Resp(1κ, x, w, c) : (c, ϑ)← Chall(1κ)] ≤ ν(κ).

(Adaptive) Knowledge soundness with error ε: For all PPT provers P∗ making polyno-
mially many queries to its oracle, there exists a PPT extractor K such that for any auxiliary
input z ∈ {0, 1}∗ the following holds. Whenever

pz(κ) := Pr

a = b :

(c, ϑ)←$ Chall(1κ),

(x, a)←$ P∗V(1κ,ϑ,·,·)(c, z) where |x| = κ,
b := Predict(1κ, ϑ, x).

 > ε(κ),

we have

Pr

(x,w) ∈ R :

(c, ϑ)←$ Chall(1κ),

(x, a)←$ P∗V(1κ,ϑ,·,·)(c, z) where |x| = κ,
w←$K(1κ, x, z,Q).

 > pz(κ)− ε(κ).

In the above equations, we denote by V(1κ, ϑ, ·, ·) the oracle machine that upon input a
query (x, a) computes b := Predict(1κ, ϑ, x) and outputs 1 iff a = b; we also write Q for
the list {((xi, ai), di)} of oracle queries (and answers to these queries) made by P∗.

Let ` be the size of the prover’s answer, we call Π a predictable ZAP (PZAP) for R if Π satisfies
completeness and adaptive knowledge soundness with error ε, and moreover ε−2−` is negligible.
In case knowledge soundness holds provided that no verification queries are allowed, we call Π
a weak PZAP.

The definition of laconic PZAPs is obtained as a special case of the above definition by
setting ` = 1. Note, however, that in this case we additionally need to require that the value x
returned by P∗ is not contained in Q.16

16This is necessary, as otherwise a malicious prover could query both (x, 0) and (x, 1), for x 6∈ L, and succeed
with probability 1.
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6.1 Construction via Extractable Witness PRF

We provide a construction of a PZAP based on any extractable witness pseudo-random function
(Ext-WPRF), a primitive recently introduced in [Zha16]. An Ext-WPRF is a tuple of algorithms
Πwprf := (KGen,F,Eval) specified as follow.

• Upon input the security parameter, and a relation R, the key generation algorithm KGen
returns a public evaluation key ek and a secret key fk .
• Upon input fk and an instance x ∈ {0, 1}κ, algorithm F produces an output y.
• Upon input (ek , x, w) the public evaluation algorithm Eval returns the value F(fk , x) if w

is a valid witness for x, and ⊥ otherwise.

We say that Πwprf is complete if F(fk, x) = Eval(ek, x, w) for all (x,w) ∈ R and all (ek , fk)

returned by KGen. Consider the following experiment Expwprf
R,A(b, κ) parametrized by an NP

relation R, an adversary A, the security parameter κ, and a bit b:

1. Run (ek , fk)←$ KGen(1κ, R).
2. Upon input ek and auxiliary input z ∈ {0, 1}∗, the adversary A can adaptively make

polynomially many queries (so-called F-queries) on instances xi ∈ {0, 1}κ, to which the
challenger answers by returning F(fk , xi).

3. Eventually, A can make a single challenge query by specifying an instance x∗ ∈ {0, 1}κ.
Upon input such a query, the challenger computes y0 := F(fk , x∗) and y1←$ {0, 1}κ and
returns yb to A.

4. After making additional F-queries, A produces a bit b′. Hence, the challenger checks that
x∗ was not part of any F-query made by A. If this is not the case, the experiment returns
a random bit. Otherwise, it returns b′.

We call αwprf(R,A) :=
∣∣Pr[Expwprf

R,A(0, κ) = 1] − Pr[Expwprf
R,A(1, κ) = 1]

∣∣ the advantage of A in
the above experiment.

Consider, additionally, the experiment Expwprf
R,A,K(κ) parametrized by an NP relation R, an

adversary A, an extractor K, and the security parameter κ.

1. Run (ek , fk)←$ KGen(1κ, R);
2. Upon input ek and auxiliary input z ∈ {0, 1}∗, adversary A can adaptively make polyno-

mially many queries (so-called F-queries) on instances xi ∈ {0, 1}κ, to which the challenger
answers by returning F(fk , xi).

3. Eventually, A can make a single challenge query by specifying an instance x∗ ∈ {0, 1}κ.
Upon input such a query, the challenger returns y∗ := F(fk , x∗).

4. Let Q = {(xi, yi)} be the set of all F-queries (and corresponding answers) made by A. The
challenger runs w∗←$K(ek, x∗, y∗, z,Q) and the experiment returns 1 iff (x∗, w∗) ∈ R.

Intuitively, security of an Ext-WE requires that for all adversaries that can distinguish the
output of F from random (as defined in the first experiment) with noticeable probability, there
exists an extractor that can extract a valid witness for the value x∗ returned by the adversary
with noticeable probability. For our purpose, we use a slightly stronger formulation where the
definition holds for non-uniform polynomial-time adversaries and, as done before, the extraction
probability match the advantage of the adversary. We note, however, that the constructions
from [Zha16] are secure under the non-uniform formulation by considering similar strengthening
on the underlying assumptions.

Definition 11 (Extractable witness PRF). We say that Πwprf = (KGen,F,Eval) is secure17 for a
relation R if, for all PPT adversaries A such that αwprf(R,A) > 1/p(κ) for a non-zero polynomial
p(·), there exists a PPT extractor K such that Pr[Expwprf

R,A,K(κ) = 1] > 1/p(κ).
17This is called adaptive instance interactive security in [Zha16].
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The construction. Let Πwprf = (KGen,F,Eval) be an Ext-WPRF for an NP relation R.
Consider the following construction of a PZAP Π = (Chall,Resp,Predict) for the same relation.

• Upon input 1κ, define Chall(1κ) := KGen(1κ, R).
• Upon input (1κ, x, w, c := ek), define Resp(1κ, x, w, c) := Eval(ek , x, w).
• Upon input (ϑ := fk , x), define Predict(ϑ, x) := F(fk , x).

Theorem 9. Assume that ΠWPRF is a secure Ext-WPRF for an NP relation R. Then Π as
defined above is a PZAP for the same relation R.

Proof. By contradiction, assume that Π is not a PZAP, namely there exists a prover P∗, an
auxiliary input z ∈ {0, 1}∗, and a polynomial p(·) such that for infinitely many values of κ ∈ N
we have pz(κ) ≥ 1/p(κ) + 2−` in Definition 10, but for all PPT extractors K

Pr

(x,w) ∈ R :

(c, ϑ)←$ Chall(1κ);

(x, a)←$ P∗V(ϑ,·,·)(c, z) where |x| = κ;
w←$K(1κ, x, z,Q).

 < 1/p(κ), (8)

where Q is the list of verification queries (and answers to these queries) made by P∗.
Consider the following adversary A, running in the experiment Expwprf

R,A(b, κ):

• Upon input ek , run (x, a)←$ P∗(ek , z).
• Upon input a query (xi, ai) from P∗, forward xi to the challenger receiving back a response
yi; return 1 to A iff yi = ai.
• Whenever P∗ outputs (x, a), forward x receiving back a challenge y. In case a = y output

1, else output 0.

We have:

αwprf(R,A) =
∣∣Pr[Expwprf

R,A(0, κ) = 1]− Pr[Expwprf
R,A(1, κ) = 1]

∣∣
= pz(κ)− 2−` ≥ 1/p(κ),

where the second equation comes from the fact that the answers to A’s F-queries are uniformly
random in the experiment Expwprf

R,A(1, κ), and by our assumption on the success probability of
P∗. Note that the above equation, together with Eq. (8), contradicts the fact that ΠWPRF is
secure, as any PPT extractor would have a negligible advantage in extracting a valid witness for
the value x returned by A. The theorem follows.

6.2 On Weak PZAP versus PZAP

We investigate the relation between the notions of weak PZAP and PZAP. On the positive side,
in Section 6.2.1, we show that weak PZAP for NP can be generically leveraged to PZAP for
NP in a generic (non-black-box) manner. On the negative side, in Section 6.2.2, we show an
impossibility result ruling out a broad class of black-box reductions from weak PZAP to PZAP.
Both results assume the existence of one-way functions.

6.2.1 From Weak PZAP to PZAP

We show the following result:

Theorem 10. Under the assumption that non-interactive zero-knowledge proof of knowledge
systems for NP and non-interactive computationally-hiding commitment schemes exist, weak
PZAP for NP imply PZAP for NP .
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Before coming to the proof, let us introduce some useful notation. Given a set I ⊆ {0, 1}κ,
we will say that I is bit-fixing if there exists a string in x ∈ {0, 1, ?}κ such that Ix = I where
Ix := {y ∈ {0, 1}κ : ∀i ∈ [κ], (xi = yi ∨ xi = ?)} is the set of all κ-bit strings matching x in
the positions where x is equal to 0/1. The symbol ? takes the role of a special “don’t care”
symbol. Notice that there is a bijection between the set {0, 1, ?}κ and the family of all bit-fixing
sets contained in {0, 1}κ; in particular, for any I ⊆ {0, 1}κ there exists a unique x ∈ {0, 1, ?}
such that I = Ix (and viceversa). Therefore, in what follows, we use x and Ix interchangeably.
We also enforce the empty set to be part of the family of all bit-fixing sets, by letting I⊥ = ∅
(corresponding to x = ⊥).

We now give some intuition for the proof of Theorem 10 . The proof is divided in two main
steps. In the first step, we define three algorithms (Gen,Sign,Verify). Roughly speaking, such
a tuple constitutes a special type of signature scheme where the key generation algorithm Gen
additionally takes as input a bit-fixing setI and returns a secret key that allows to sign messages
m 6∈ I. There are two main properties we need from such a signature scheme: (i) The verification
key and any set of polynomially many (adaptively chosen) signature queries do not reveal any
information on the set I; (ii) It should be hard to forge signatures on messages m ∈ I, even
when given the set I and the secret key corresponding to I. A variation of such a primitive,
with a few crucial differences, already appeared in the literature under the name of functional
signatures [BGI14].18 Fix now some NP -relation R. In the second step of the proof, we consider
an augmented NP -relation where the witness of an instance (x,VK ) is either a witness w for
(x,w) ∈ R, or a valid signature of x under VK . We then construct a PZAP based on a weak
PZAP and on a NIZK-PoK for the above augmented NP -relation.

The reduction from weak PZAP to PZAP uses a partitioning technique, similar to the one
used to prove unforgeability of several signature schemes (see, e.g., [BB04, HK08, MTVY11,
BSW13, FNV15a]). Intuitively, we can set the reduction in such a way that by sampling a
random bit-fixing set I all the verification queries made by a succeeding prover for the PZAP will
not be in I with good probability (and therefore such queries can be dealt with using knowledge
of the signature key corresponding to I); this holds because the prover has no information on
the set I, as ensured by property (i) defined above. On the other hand, the challenge x∗ output
by the prover will be contained in the set I, which will allow the reduction to break the weak
PZAP. Here, is where we rely on property (ii) described above, so that the reduction is not
able to forge a signature for x∗, and thus the extracted witness w∗ must be a valid witness for
(x∗, w∗) ∈ R.

Proof of Theorem 10. Let Com be a computationally hiding commitment scheme with message
space {0, 1, ?}κ ∪ {⊥}. Consider the following relation:

Rcom :=
{

(m, com), (x, r) : com = Com(x; r) ∧ m 6∈ Ix
}
.

Let NIZK = (`,Prove,Ver) be a NIZK-PoK for the relation Rcom. We define the following
tuple of algorithms (Gen, Sign,Verify).

• Algorithm Gen takes as input the security parameter and a string x ∈ {0, 1, ?}κ ∪ {⊥},
samples ω←$ {0, 1}`(κ), and defines com := Com(x; r) for some random tape r. It then
outputs VK := (ω, com) and SK := (ω, x, r).
• Algorithm Sign takes as input a secret key SK and a message m, and outputs σ :=
π←$ Prove(ω, (m, com), (x, r)).
• Algorithm Verify takes as input a verification key VK and a pair (m,σ), parses VK :=

(ω, com), and outputs the same as Ver(ω, (m, com), σ).
18On a high level, the difference is that functional signatures allow to generate punctured signature keys,

whereas our signature scheme allows to puncture the message space.
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The lemmas below show two main properties of the above signature scheme.

Lemma 4. For any PPT distinguisher D, and any bit-fixing set I ⊆ {0, 1}κ, there exists a
negligible function ν : N→ [0, 1] such that:∣∣Pr[DSign(SK I ,·)(VK , I) : (VK ,SK I)←$ Gen(1κ, I)]

− Pr[DSign(SK ,·)(VK , I) : (VK ,SK )←$ Gen(1κ,⊥)]
∣∣ 6 ν(κ),

where D is not allowed to query its oracle on messages m ∈ I.

Proof. We consider a series of hybrid experiments, where each hybrid is indexed by a bit-fixing
set I and outputs the view of a distinghuisher D taking as input a verification key and the set
I, while given oracle access to a signing oracle.

Hybrid HI1: The first hybrid samples (VK ,SK )←$ Gen(1κ, I) and runs the distinghuisher D
upon input (VK , I) and with oracle access to Sign(SK , ·).

Hybrid HI2: Let Z be the simulator of the underlying NIZK-PoK. The second hybrid samples
(ω̃, ϑ)←$ Z0(1κ) and defines com := Com(x; r) (for random tape r) and ṼK = (ω̃, com).
It then runs the distinghuisher D upon input (ṼK , I), and answers its oracle queries m by
returning σ̃←$ Z1(ϑ, (m, com)).

The two claims below imply the statement of Lemma 4.

Claim 1. For all bit-fixing sets I, we have {HI1}κ∈N
c
≈ {HI2}κ∈N.

Proof of claim. The only difference between the two experiments is in the way the verification
key is computed and in how the signature queries are answered. In particular, the second
experiment replaces the CRS with a simulated CRS and answers signature queries by running
the ZK simulator of the NIZK. Note that the commitment com has the same distribution in
both experiments.

Clearly, given any distinguisher that tells apart the two hybrids for some set I we can derive a
distinguisher contradicting the unbounded zero-knowledge property of the NIZK. This concludes
the proof.

Claim 2. Let I⊥ := ∅. For all bit-fixing sets I, we have {HI2}κ∈N
c
≈ {HI⊥2 }κ∈N.

Proof of claim. Given a PPT distinguisher D telling apart HI2 and HI⊥2 , we construct a PPT
distinguisher D that breaks computational hiding of the commitment scheme. Distinguisher D′
is given as input a value com ′ which is either a commitment to I or a commitment to I⊥. Thus,
D′ simply emulates the view for D but uses com ′ instead of com.

The claim follows by observing that in case com ′ is a commitment to I the view generated
by D′ is identical to that in hybrid HI2, whereas in case com ′ is a commitment to I⊥ the view
generated by D′ is identical to that in hybrid HI⊥2 . Hence, D′ retains the same advantage as D,
a contradiction.

Lemma 5. For any PPT forger F , and for any bit-fixing set I, there exists a negligible function
ν : N→ [0, 1] such that the following holds:

Pr

[
m∗ ∈ I ∧ Verify(VK ,m∗, σ∗) = 1 :

(m∗, σ∗)←$ F(I, r),
(VK ,SK I) := Gen(1κ, I; r)

]
6 ν(κ).
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Proof. We rely on the knowledge soundness property of the NIZK-PoK and on the binding
property of the commitment scheme. By contradiction, assume that there exists a PPT forger
F , a bit-fixing set Ix, and some polynomial p(·), such that for infinitely many values of κ ∈ N

Pr

m∗ ∈ Ix ∧ Ver(ω, (m∗, com), σ∗) = 1 :
r←$ {0, 1}∗, ω←$ {0, 1}`

com←$ Com(x; r)
(m∗, σ∗)←$ F(ω, r, Ix)

 ≥ 1/p(κ).

Consider the following adversary B attacking the binding property of the commitment
scheme:

i) Upon input 1κ, run (ω̃, ϑ)←$K0(1κ);
ii) Obtain (m∗, σ∗)←$ F(ω̃, r, Ix) for some x ∈ {0, 1, ?}κ and r←$ {0, 1}∗;
iii) Extract (x′, r′)←$K1(ω̃, ϑ, (m∗, com), σ∗), where com = Com(x; r);
iv) Output (x, r), (x′, r′) and m (as an auxiliary output).

By relying on the knowledge soundness property of the NIZK-PoK, and using the fact that the
forger outputs an accepting proof with non-negligible probability, we obtain:

Pr[B wins] = Pr
[
com = Com(x′; r′) ∧ (x, r) 6= (x′, r′) : ((x, r), (x′, r′)),m)←$ B(1κ)

]
≥ Pr

[
com = Com(x′; r′) ∧m 6∈ Ix′ ∧m ∈ Ix : ((x, r), (x′, r′)),m)←$ B(1κ)

]
− ν(κ)

≥ Pr

m∗ ∈ Ix ∧ Ver(ω, (m∗, com), σ∗) = 1 :
r←$ {0, 1}∗, ω←$ {0, 1}`

com←$ Com(x; r)
(m∗, σ∗)←$ F(ω, r, Ix)


> 1/p(κ)− ν(κ),

for some negligible function ν(·). The first inequality uses the fact that the condition (m 6∈
Ix′)∧m ∈ Ix) implies Ix 6= Ix′ (and thus x 6= x′), and thus is sufficient for violating the binding
property. This concludes the proof.

We can now explain how to transform a weak PZAP for NP into a PZAP for NP . Let R be
an NP -relation. Consider the following derived relation:

R′ = {((x,VK ), w) : (x,w) ∈ R ∨ Verify(VK , x, w) = 1)}.

Clearly, R′ is in NP , so let Π = (Chall,Resp,Predict) be a weak PZAP for R′. Define the
following PZAP Π′ = (Chall′,Resp′,Predict′) for the relation R.

• Algorithm Chall′ takes as input (1κ, x) and proceeds as follows:

– Run (c, ϑ)←$ Chall(1κ).
– Sample (VK ,SK )←$ Gen(1κ,⊥), and let the challenge be c′ := (c,VK ) and the

trapdoor be ϑ′ = (ϑ,VK ).

• Algorithm Resp′ takes as input (1κ, x, w, c′), parses c′ := (c,VK ), and outputs a :=
Resp(1κ, (x,VK ), w, c).
• Algorithm Predict′ takes as input 1κ, ϑ′, x, parses ϑ′ := (ϑ,VK ), and outputs b := Predict(ϑ,

(x,VK )).

The lemma below concludes the proof of Theorem 10.

Lemma 6. Let Π and Π′ be as above. If Π is a weak PZAP for R′, then Π′ is a PZAP for R.

Proof. Given a prover P∗ for Π′, we construct a prover Pα for Π′ for a parameter α ∈ [κ] to be
determined later. The description of Pα follows.
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• Upon input challenge c, choose s ∈ {0, 1, ?}κ in such a way that α := |{i ∈ [κ] : si = ?}|.
Sample (VK ,SK I)←$ Gen(1κ, I) for I := Is, and forward the challenge c′ := (c,VK ) to
P∗.
• Upon input a verification query (xi, ai) from P∗ behave as follows:

– In case xi ∈ I, stop simulating P∗, pick a random x∗←$ {0, 1}κ \ I, and return the
instance (x∗,VK ) and answer a∗ := Resp(1κ, c, (x∗,VK ),Sign(SK I , x

∗)).
– In case xi 6∈ I, compute σ←$ Sign(SK I , xi) and answer the verification query with 1

iff a = Resp(1κ, c, (x,VK ), σ).

• Whenever P∗ outputs (x∗, a∗), if x∗ ∈ I output ((x∗,VK ), a∗). Else pick a random
x∗←$ {0, 1}κ \ I and return the instance (x∗,VK ) and answer a∗ := Resp(1κ, c, (x∗,VK ),
Sign(SK I , x

∗)).

We define the extractor for Π′ (w.r.t. the relation R) to be the same as the extractor K for Π
(w.r.t. the relation R′). It remains to bound the probability that K output a valid witness for
the relation R.

Let Good be the event that x∗ ∈ I and all the xi’s corresponding to P∗’s verification queries
are such that xi 6∈ I. Moreover, let ExtR (resp. ExtR′) be the event that (x,w) ∈ R (resp.
((x,VK ), w) ∈ R′) where w comes from running the extractor K in the definition of PZAP. We
can write:

Pr[ExtR] > Pr[ExtR ∧Good ] (9)
> Pr[ExtR′ ∧Good ]− ν(κ)

> Pr[ExtR′ ]− Pr[¬Good ]− ν(κ)

>
(

Pr[P ′ succeeds]− ν ′(κ)
)
− Pr[¬Good ]− ν(κ), (10)

for negligible functions ν(·), ν ′(·). Here, Eq. (9) holds because of Lemma 5, whereas Eq. (10)
follows by knowledge soundness of Π.

Observe that, by definition of Pα, the success probability when we condition on the event
Good not happening is overwhelming (this is because in that case Pα just computes a valid
signature, and thus it succeeds with overwhelming probability by completeness of Π), therefore:

Pr[Pα succeeds] > Pr[Pα succeeds|Good ] · Pr[Good ] + (1− ν ′′(κ)) Pr[¬Good ],

for some negligible function ν ′′(·). Combining the last two equations, we obtain that there exists
a negligible function ν ′′′(·) such that:

Pr[ExtR] > Pr[Pα succeeds|Good ] · Pr[Good ]− ν ′′′(κ).

We analyse the probability that Pα succeeds conditioning on Good and the probability of
event Good separately. We claim that the first term is negligibly close to the success probability
of P∗. In fact, when the event Good happens, by Lemma 4, the view generated by Pα is
indistinguishable from the view in the knowledge soundness definition of PZAP.

As for the second term, again by Lemma 4, it is not hard to see that it is negligibly close to
(1 − 2−κ+α)Q · 2−κ+α, where Q is an upper bound for the number of verification queries made
by the prover. Since when 2−κ+α := 1−Q/(Q+ 1), then (1− 2−κ+α)Q · 2−κ+α > 1/e, it suffices
to set α := κ + log(1 − Q/(Q + 1)) to enforce that the probability of Good is noticeable. This
concludes the proof.
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6.2.2 Ruling-Out Challenge-Passing Reductions

Below, we define what it means to reduce weak knowledge soundness to knowledge soundness
of a PZAP Π (in a black-box way).

Definition 12. A PPT oracle machine R is called a black-box reduction from weak knowledge
soundness to knowledge soundness of a PZAP Π if there exists a polynomial q(·) such that for any
prover P∗ making polynomially many verification queries, and any auxiliary input z ∈ {0, 1}∗,
the following holds. Let pz(κ) be the succeeding probability of P∗(·, z); then RP∗(·,z)(1κ, ·) is a
prover for Π that does not make any verification query and has success probability q(pz(κ)).

Moreover, we say that R is challenge-passing if upon input a challenge c, the reduction
simply forwards the same challenge c to P∗.

The following theorem intuitively says that, if one-way functions exists, there cannot be a
challenge-passing black-box reduction from weak knowledge soundness to knowledge soundness
of a laconic PZAP.

Theorem 11. Assume that one-way function exists, and let Π be a laconic weak PZAP for NP .
There is no challenge-passing black-box reduction from weak knowledge soundness to knowledge
soundness of Π.

Proof. By contradiction, assume such a challenge-passing black-box reductionR exists. Consider
the following prover P∗ for the NP -relation Rprg := {(G(s), s) : s ∈ {0, 1}κ}κ∈N, where G is a
PRG with one-bit stretch (i.e., G(s) ∈ {0, 1}κ+1).

1. Check Verifier. Compute g0 := G(s0) for s0←$ {0, 1}κ and a0←$ {0, 1}. Forward
(g0, a0) to the verification oracle, and let di be the corresponding answer from the oracle.
Check whether a0 = Resp(1κ, c, (g0, s0)) (i.e, the prover produced a valid predictable proof)
if only if di = 0 (i.e., the verification oracle did not accept the proof). If that happens,
abort and output ⊥.

2. Gain Information. Let pϑ(κ) be a polynomial that upper bounds the length of the
trapdoor ϑ produced by Chall(1κ), and define m(κ) := pϑ(κ)+κ+1. Upon input challenge
c, for all i ∈ [m] sample gi←$ {0, 1}κ+1 and set ai←$ {0, 1}. Forward (gi, ai) to the
verification oracle, and let di be the corresponding answer from the oracle. If di = 0 set
ai := 1− ai.
(Notice that at the end of step 2 the answers a1, . . . , am are all correct.)

3. Sample Trapdoors. Let n = 6κ2. For all i ∈ [n] sample ϑ̃i at random from the
distribution defined below:{

ϑ̃ : Predict(1κ, ϑ̃, gi) = ai, ∀i ∈ [m]
}
.

4. Compute Answer. Sample g∗←$ {0, 1}κ+1 and let a∗ := Maj{Predict(1κ, ϑ̃j , g∗) :
j ∈ [n]}, and output (g∗, a∗).

Notice that prover P∗ is unbounded. Nevertheless, we will later show that we can emulate P∗
in polynomial time without any distinguisher being able to tell the difference. Before doing this,
we prove that P∗ succeeds with overwhelming probability.

Claim 3. The probability that P∗ succeeds is overwhelming.

Proof of claim. Notice first that P∗ aborts with probability bounded by the completeness error
of Π, which is negligible. Therefore, for the rest of the proof, we condition on the event that P∗
does not abort.
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For any tuple (ϑ, ϑ̃, g), define Eq(ϑ̃, ϑ, g) to be the event that

Predict(1κ, ϑ, g) = Predict(1κ, ϑ̃, g).

Fix any ϑ. Given a trapdoor ϑ̃, we say that ϑ̃ is Bad if Pr[Eq(ϑ̃, ϑ, g) : g←$ {0, 1}κ+1] < 1/4.
It is easy to check that, for any (ϑ, ϑ̃), and for randomly sampled g1, . . . , gm←$ {0, 1}κ+1:

Pr
[∧

i∈[m]
Eq(ϑ̃, ϑ, gi)

∣∣ ϑ̃ is Bad
]
6 (1− 1/4)m 6 2−pϑ(κ)−κ. (11)

We can now compute the following probability, for any fixed ϑ and for a randomly sampled
ϑ̃←$ {0, 1}pϑ(κ):

Pr
[
ϑ̃ is Bad

∣∣ ∧
i∈[m]

Eq(ϑ̃, ϑ, gi)
]

=
Pr
[∧

i∈[m] Eq(ϑ̃, ϑ, gi)
∣∣ ϑ̃ is Bad

]
Pr
[∧

i∈[m] Eq(ϑ̃, ϑ, gi)
]

6 Pr
[∧

i∈[m]
Eq(ϑ̃, ϑ, gi)

∣∣ ϑ̃ is Bad
]
· 2pϑ(κ) 6 2−κ.

Where the first equation follows by Bayes’ rule for conditional probabilities, the second inequality
follows because when ϑ̃ = ϑ the event at the denominator always happens (and therefore the
probability of such an event is at least 2−pϑ(κ)), and the last inequality follows by Eq. (11).
Let Good be the event that {∀i ∈ [m] : ϑ̃i is not Bad}. By a union bound, we have that
Pr[Good | ∧i∈[m],j∈[n] Eq(ϑ̃j , ϑ, gi)] > (1− n · 2−κ). Hence,

Pr
[
P∗ succeeds] = Pr

[
P∗ succeeds

∣∣∧
i∈[m],j∈[n]

Eq(ϑ̃j , ϑ, gi)
]

>Pr
[
P∗ succeeds

∣∣Good ,
∧

i∈[m],j∈[n]
Eq(ϑ̃j , ϑ, gi)

]
· Pr

[
Good

∣∣∧
i∈[m],j∈[n]

Eq(ϑ̃j , ϑ, gi)
]

>Pr
[
P∗ succeeds

∣∣Good ,
∧

i∈[m],j∈[n]
Eq(ϑ̃j , ϑ, gi)

]
· (1− n · 2−κ) (12)

Notice that the random variables Zj := Eq(ϑ̃j , ϑ, g), where j ∈ [n], g←$ {0, 1}κ+1 and ϑ̃j ←$ {0, 1}pϑ(κ),
are independent even conditioned on the event Good . In particular, for any j ∈ [n], we have
Pr[Zj |Good ] > 2/3. Thus, by a Chernoff bound:

Pr
[ ∑
j∈[n]

Zj >
2n

3
− κ

∣∣ Good
]
6 2−O(κ).

Finally, we note that whenever
∑

j∈[n] Zj >
n
2 the prover P∗ succeeds (as in such a case the

answer is predictable). Moreover 2n
3 − κ >

n
2 , and therefore:

Pr
[
P∗ succeeds

∣∣ Good ,
∧

i∈[m],j∈[n]
Eq(ϑ̃j , ϑ, gi)

]
>Pr

[ ∑
j∈[n]

Zj >
n
2

∣∣ Good ,
∧

i∈[m],j∈[n]
Eq(ϑ̃j , ϑ, gi)

]
> 1− 2−O(κ).

Combining the above equation with Eq. (12) yields the claim.

We now turn to define the simulated prover P̃. We give two alternative simulation strategies,
according to two different cases.

Case 1: The transcript of the interaction between R and P∗ contains the special symbol ⊥
with overwhelming probability. In this case the simulated prover P̃ simply runs the first step of
P, and then aborts.
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Case 2: The transcript of the interaction between R and P∗ does not contain the special
symbol ⊥ with noticeable probability. Specifically, let p(κ) be a polynomial such that the
probability that the transcript of the interaction between R and P∗ does not contain ⊥ is upper
bounded by 1− 1/p(κ). A description of P̃ in such a case follows:

1. Upon input c, run n := 2p(κ)2 + κ different internal instances of R (let us call these
instances R̃1, . . . , R̃n) on input c. Since R̃1, . . . , R̃n are challenge-passing they will first
return back c, and wait to receive the first query. Proceed in the same way as in the first
step in the description of P∗.

2. Proceed in the same way as in the second step in the description of P∗.
3. Pick random g̃←$ {0, 1}κ+1, and for all i ∈ [n] pick ãi←$ {0, 1} and forward (g̃, ãi) to R̃i

which will return a decision bit d̃i; in case d̃i = 0 set ã∗i := 1− ãi otherwise set ã∗i := ãi.
4. Output (g̃, ã) where ã := Maj{ã∗1, . . . , ã∗n}.

(Notice that the polynomial p(κ) depends only on the implementation of R and therefore can
be passed to P̃ via the auxiliary input.)

Claim 4. The views produced by running P∗ and P̃ are computationally indistinguishable.

Proof of claim. Notice that P∗ and P̃ proceed identically in the first two steps. In the third step,
P∗ outputs a uniformly chosen element g∗ and a valid predictable proof a∗, while P̃ outputs a
uniformly chosen element g̃ and a predictable proof ã which was previously queried to R̃.

We will show that since with noticeable probability the symbol ⊥ is not contained in the
transcript, and by indistinguishability of the PRG G, there exists a index i∗ for which the proof
ã is accepting for the challenge c and element g̃ with overwhelming probability. Therefore the
simulated prover succeeds with overwhelming probability, and so the two views are indistin-
guishable.

Recall that the special symbol ⊥ is contained in the transcript if a0 = Resp(1κ, c, (g0, s0))
and d0 = 0 or a0 6= Resp(1κ, c, (g0, s0)) and d0 = 1 (i.e. a0 = Resp(1κ, c, (g0, s0)) ⇐⇒ d0 = 0 ).

First, we note that by indistinguishability of the PRG G for any i ∈ [n] the transcript of P̃
with R̃i would lead to ⊥ with probability at most 1 − 1/p(κ) − negl(κ). Therefore, let Zi be
the random variable equal to 1 if ã∗i is the correct answer for the challenge c and element g̃, we
have that for any i ∈ [n], Pr[Zi = 1] > 1/2p(κ). Moreover, the random variables Z1, . . . , Zn are
independent, therefore by a Chernoff bound and because the answer is predictable, we have that
ã is correct with overwhelming probability.

Claim 3 and Claim 4, and the definition of challenge-passing reduction, imply that the
probability that RP̃ succeeds is noticeable. Notice that if R exists then P̃ can be efficiently
implemented, and therefore RP̃ is also efficient and it succeeds with noticeable probability in
breaking knowledge soundness of the weak PZAP. This concludes the proof.

7 Conclusion and Open Problems

We initiated the study of Predictable Arguments of Knowledge (PAoK) systems for NP . Our
work encompasses a full characterization of PAoK (showing in particular that they can with-
out loss of generality assumed to be extremely laconic), provides several constructions of PAoK
(highlighting that PAoK are intimately connected to witness encryption and program obfus-
cation), and studies PAoK with additional properties (such as zero-knowledge and Predictable
ZAP).

Although, the notions of PAoK and Ext-WE are equivalent, we think that they give two
different points of view on the same object. Ultimately, this can only give more insights.
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There are several interesting questions left open by our work. First, one could try to see
whether there are other ways (beyond the ones we explored in the paper) how to circumvent the
implausibility result of [GGHW14]. For instance it remains open if full-fledged PAoK for NP
exist in the random oracle model.

Second, while it is impossible to have PAoK that additionally satisfy the zero-knowledge
property in the plain model—in fact, we were able to achieve zero-knowledge in the CRS model
and in the non-programmable random oracle model)—such a negative result does not apply to
witness indistinguishability. Hence, it would be interesting to construct PAoK that are addi-
tionally witness indistinguishable in the plain model. An analogous question holds for PZAP.

Third, we believe the relationship between the notions of weak PZAP (where the prover is
not allowed any verification query) and PZAP deserves further study. Our impossibility result
for basing PZAP on weak PZAP in a black-box way, in fact, only rules out very basic types
of reductions (black-box, and challenge-passing), and additionally only works for laconic PZAP.
It remains open whether the impossibility proof can be extended to rule-out larger classes of
reductions for non-laconic PZAP, or if the impossibility can somehow be circumvented using
non-black-box techniques.

Finally, it would be interesting to find more applications for PAoK and PZAP (beyond the
ones we mentioned in the introduction).
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A Application to Leakage-Tolerant Secure Message Transmission

In this section we show an application of PAoK. We show that if you use a public-key encryption
scheme to implement secure message transmission and the resulting protocol can tolerate leakage
of even a constant number of bits, then the scheme will have to have secret keys which are as long
as the total number of bits transmitted using that key. Since the typical interpretation of public-
key encryption is that an unbounded number of messages can be encrypted using a fixed public
key, this shows that typical public-key encryption cannot be used to realize leakage-tolerant
secure message transmission even against a constant number of leaked bits.

This strengthens an earlier result which showed this was the case for schemes tolerating a
super-logarithmic number of bits of leakage. For the proof we need that there exists a PAoK for
a relation associated to the public-key encryption scheme, essentially proving knowledge of the
secret key. The result can therefore be interpreted as showing that either a public-key encryption
does not give secure message transmission secure against a constant number of bits of leakage or
there does not exists a PAoK for the applied public-key encryption scheme. Proving that such
a PAoK does not exists seems very challenging using current techniques, so the result indicates
that we probably cannot base leakage-tolerant message transmission secure against leaking a
constant number of bits on public-key encryption with our current proof techniques.

Syntax of PKE. A tuple of algorithms (KGen,Enc,Dec) is said to be a PKE scheme for
message space M if the following holds: (i) Algorithm KGen takes as input the security pa-
rameter and returns a pair (pk , sk); (ii) Algorithm Enc takes as input a public key pk and
a message m ∈ M, and outputs a ciphertext γ; (iii) Algorithm Dec takes as input a secret
key sk and a ciphertext γ, and outputs a message m ∈ M or ⊥. We require that for all
m ∈ M one has Dec(sk ,Enc(pk ,m)) = m with overwhelming probability over the randomness
of (KGen,Enc,Dec).

Message transmission with leakage. We recall the notion of leakage tolerance—introduced
by Bitansky et al. [BCH12]—for secure message transmission. Informally, in a leakage-tolerant
message transmission protocol leakage queries from an adversary A are viewed as a form of
partial corruptions, where A does not receive the complete state of the chosen party but just
some function of it. Security is then achieved if such an adversary can be simulated in the
UC framework [Can01]. Without loss of generality we will consider only dummy adversaries—
adversaries which just carry out the commands of the environment. I.e., it is the environment
which specifies all leakage queries. We will therefore completely drop the adversary in the
notation for clarity.

Let ΠPKE be a protocol between a sender Sen and a receiver Rec. The ideal-world func-
tionality for secure message transmission with leakage is depicted in Fig. 1. We say that ΠPKE

is a leakage-tolerant secure implementation of F+lk
SMT if there exists a simulator S such that no

environment Z can distinguish between the real life protocol ΠPKE and S interacting with the
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Functionality F+lk
SMT

Running with parties Rec,Sen and adversary S, the functionality F+lk
SMT is parametrized by

the security parameter κ, message spaceM and the set of all admissible leakage functions
Φ. Hence, F+lk

SMT behaves as follows:

• Upon input (send,Sen,Rec,m) send a message (send,Sen,Rec, |m|) to S. Once S
allows to forward the message, send (sent,Sen,m) to Rec.
• Upon input (leak, X, φZ) for X ∈ {Sen,Rec} and φZ ∈ Φ send a message (leak, X)

to S. Receive (leak, X ′, φS) from S, check that φS ∈ Φ, and that |φZ(·)| = |φS(·)| and
X ′ = X. Send (leak, φS(m)) to S and (leaked, |φS(m)|) to X ′.

Figure 1: Ideal functionality F+lk
SMT for secure message transmission with leakage

ideal functionality F+lk
SMT. We denote with IDEALF+lk

SMT,S,Z
(Φ, κ) the output of the environment

Z when interacting with simulator S in the simulation.
Consider the following protocol ΠPKE between a sender Sen and a receiver Rec, supposed

to realize F+lk
SMT via a public-key encryption scheme (KGen,Enc,Dec) with message space M,

assuming authenticated channels:

1. Sen transmits to Rec that it wants to forward a message m ∈M;
2. Rec samples (pk , sk) = KGen(1κ; rG), and sends pk to Sen;
3. Sen computes γ = Enc(pk ,m; rE) and forwards the result to Rec;
4. Rec outputs m′ = Dec(sk , γ; rD).

Note that at the end of the execution of ΠPKE the state of Sen is σS = (m, rE) whereas
the state of Rec is σR = (sk , rG, rD,m

′). Denote with REALΠPKE,Z(Φ, κ) the output of the
environment Z after interacting with parties Rec,Sen in a real execution of ΠPKE.

Definition 13 (Leakage-tolerant PKE protocol). We say that ΠPKE is a (λ, ε)-leakage-tolerant
PKE protocol (w.r.t. a set of leakage functions Φ) if ΠPKE securely implements F+lk

SMT, i.e., there
exists a probabilistic polynomial-time simulator S such that for any environment Z leaking at
most λ bits of information it holds that

{IDEALF+lk
SMT,S,Z

(Φ, κ)}κ∈N ≈ε {REALΠPKE,Z(Φ, κ)}κ∈N.

Necessity of long keys. Nielsen et al. [NVZ13] have shown that any leakage-tolerant PKE
protocol (as per Definition 13) requires long keys already when ΠPKE tolerates super-logarithmic
leakage. Below we strengthen their result proving a more fine-grained lower bound for any
λ = O(1) bits of leakage.

Consider the following NP relation, depending upon a PKE scheme (KGen,Enc,Dec):

RPKE := {((pk , γ,m), (sk , rG)) : (pk , sk) = KGen(1κ; rG) ∧ Dec(sk , γ) = m} (13)

We show the following theorem.
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Theorem 12. Let Π = (Chall,Resp) be a PAoK for the above relation RPKE, with knowledge
soundness error 2−`+ε, perfect completeness, and prover’s answers of length ` ≥ 1. Let ΠPKE be
an (`, ε′)-leakage-tolerant PKE protocol. Then it must be that |SK| > (1− 2−`− ε−µ− 2ε′)|M|,
where SK is the space of all secret keys.

Before we sketch the proof, we give an interpretation of the Theorem 12. When the knowledge
soundness of the PAoK is negligible and the PKE protocol is (`,negl)-leakage-tolerant it means
that |SK| > (1− 2−`+1)|M|

Proof sketch. We make the proof for the case where the decryption algorithm is deterministic
and has perfect correctness. Probabilistic decryption can be handled as in [NVZ13].

We construct an environment Z which uses ` bits of leakage on the receiver’s state after the
execution of Π, for which the existence of a simulator S implies our bound. The environment Z
works as follows:

1. Input a uniformly random m ∈M to Sen.
2. Let the protocol terminate without any leakage queries or any corruptions, i.e., simply

deliver all messages between Sen and Rec. As part of this Z learns pk and γ from observing
the authenticated channel between Sen and Rec.

3. After the protocol terminates, let Rec prove via leakage queries that x := (pk , c,m) ∈
LRPKE

using Π = (Chall,Resp). Notice that Rec can do this as it knows a valid witness
w := (sk , rG). More in detail, Z runs (c, b)←$ Chall(1κ, x) and specifies a single leakage
query defined as φx,cZ (σRec) = φx,cZ (w) = Resp(1κ, x, w, c) (the values x and c are hard-wired
into the function).

4. Finally Z outputs 1 if and only if a = b, where a is the output of Z’s leakage query.

Note that the total amount of leaked information is equal to the communication complexity of
the prover in Π, i.e., ` bits. By completeness of the PAoK, we know that REALΠPKE,Z(Φ, κ) = 1.
From this we conclude that IDEALF+lk

SMT,S,Z
(Φ, κ) = 1 except with negligible probability, by

security of the protocol. We write out what this means. The simulation proceeds as follows:

1. First Z inputs a uniformly random m ∈M to the ideal functionality on behalf of Sen. As
a result S is given (send, Sen,Rec, |m|).

2. Then S must simulate the communication of the protocol, which in particular means that
it must output some pk and γ to Z.

3. After the simulation of the protocol terminates, the environment runs (c, b)←$ Chall(1κ, x)
and makes the leakage query φx,cZ with which Rec proves that x = (pk , γ,m) ∈ LRPKE

. Such
leakage query is answered by S using another function φS producing a value a.

4. Finally Z outputs 1 if and only if a = b

Since Z is computing (c, b) as the verifier of Π would have done, and the value a is computed
by S which is PPT, and since Z outputs 1, it follows from soundness that x ∈ LRPKE

except
with probability ε = 2−` + negl(κ). This means that there exist (sk , rG) such that (pk , sk) =
KGen(1κ; rG) and m = Dec(sk , γ). In particular, there exists sk ∈ SK such that m = Dec(sk , γ).
Let Mpk ,γ ⊂ M denote the subset of m′ ∈ M for which there exist sk′ ∈ SK such that
m′ = Dec(sk ′, γ). An argument identical to the one in [NVZ13, Theorem 1] shows that m ∈
Mpk ,γ except with probability ε + ε′. Combined with the above, this implies that |Mpk ,γ | ≥
(1−2−`−negl(κ)−2ε′)|M|. Take twom0 6= m1 ∈Mpk ,γ . By definition there exist sk0, sk1 ∈ SK
such that m0 = Dec(sk0, γ) and m1 = Dec(sk1, γ). From m0 6= m1, we conclude that sk0 6= sk1,
so |SK| ≥ |Mpk ,γ |. From this we get the theorem.
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