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Abstract. We propose generic constructions of public-key encryption schemes, satisfying key-dependent
message (KDM) security for projections and different forms of key-leakage resilience, from CPA-secure
private-key encryption schemes with two main abstract properties: (1) a form of (additive) homomor-
phism with respect to both plaintexts and randomness, and (2) reproducibility, providing a means for
reusing encryption randomness across independent secret keys. More precisely, our construction trans-
forms a private-key scheme with the stated properties (and one more mild condition) into a public-key
one, providing:
– KDM-projection security, an extension of circular security, where the adversary may also ask for

encryptions of negated secret key bits;
– a (1−o(1)) resilience rate in the bounded-memory leakage model of Akavia et al. (TCC 2009); and
– Auxiliary-input security against subexponentially-hard functions.

We introduce homomorphic weak pseudorandom functions, a homomorphic version of the weak PRFs
proposed by Naor and Reingold (FOCS ’95) and use them to realize our base encryption scheme.
We in turn obtain homomorphic weak PRFs from homomorphic hash-proof systems (HHPS). We also
show how the base encryption scheme may be realized using subgroup indistinguishability (implied, in
particular, by quadratic residuosity (QR) and decisional composite residuosity (DCR)). As corollaries
of our results, we obtain (1) the first multiple-key projection-secure bit-encryption scheme (as well as
the first scheme with a (1 − o(1)) resilience rate) based solely on the HHPS assumption, and (2) a
unifying approach explaining the results of Boneh et al (CRYPTO ’08) and Brakerski and Goldwasser
(CRYPTO ’10). Finally, by observing that Applebaum’s KDM amplification method (EUROCRYPT
’11) preserves both types of leakage resilience, we obtain schemes providing at the same time high
leakage resilience and KDM security against any fixed polynomial-sized circuit family.

1 Introduction

A central goal in cryptography is to build a variety of cryptographic primitives with a high degree of versatility
from assumptions that are as general as possible. Encryption in particular has been defined, starting with the
seminal paper of Goldwasser and Micali [23], with respect to successively strong models of security. However,
standard notions of encryption security (i.e., semantic (CPA) and different forms of chosen-ciphertext (CCA)
security [23,36,38,17]) fall short in certain applications, in particular, where the adversary may obtain some
side information about the internal secret parameters (e.g., the secret key) of the scheme. This leakage
of side information may occur due to some unforeseen attacks on the scheme (side-channel attacks), or
more fundamentally, when encryption is used as a primitive in a complex protocol which may inherently
expose inside information. These observations have led to the definition and realization of stronger notions
of encryption security, such as security against different forms of leakage [32,19,1,35,15,14,2,25,9], and key-
dependent message (KDM) security [7,27,8,5,4,9,31,3,10]. Our goal is to construct schemes realizing these
security properties from general assumptions. Our results concern a basic model of leakage, known as the
bounded-leakage model [1] and a basic model of KDM security, known as projection security (which is slightly
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stronger than circular security). We will also consider a model of auxiliary-input security [15,14]. We first
provide some background on these models and then describe our results.

For all definitions below (unless otherwise stated) we assume we are encrypting the secret key (or functions
thereof) bit-by-bit, i.e., the scheme is either bit encryption, or there is a mapping from bits to two fixed
plaintext messages.

KDM security. KDM security is defined with respect to a function family F : informally, an encryption
scheme (G,E,Dec) is F -KDM(1) secure if no adversary can distinguish between two oracles, where the first
one, on input f ∈ F , returns Epk(f(sk)) (for a random (pk, sk) chosen at the beginning), and the second
one, regardless of the input, returns an encryption of a fixed message. A basic form of KDM(1) security
is 1-circular security, allowing the adversary to obtain encryptions of any bit of the secret key. Another
basic notion is projection security, which also allows the adversary to obtain encryptions of negations of
secret key bits. KDM(1) security generalizes naturally to the case of multiple pairs of keys, giving rise to the
notion of F -KDM(n)-security, where in a system with the pairs of keys (pk1, sk1), . . . , (pkn, skn) a chosen
function f ∈ F comes with an index j, and as a result f(sk1, . . . , skn) is encrypted under pkj . For example,
n-projection security allows the adversary to see encryptions of any bit of any secret key or its negation
under (possibly) any other public key.

KDM security was originally defined by Black et al. [7], who built a fully-KDM -secure scheme (i.e.,
KDM-security with respect to all functions) in the random oracle model. In [8] Boneh et al. gave the
first construction in the standard model, based on the DDH assumption, of a public-key scheme that was
proved KDM(n) secure with respect to affine functions. This positive result led to a series of subsequent
works, focusing on building affine-KDM(n) security under alternate specific assumptions (i.e., LPN/LWE [4],
and QR/DCR and more generally subgroup indistinguishability (SG) assumptions [9]), and on developing
KDM-amplification methods for transforming schemes with basic forms of KDM security into schemes with
more sophisticated forms of KDM security [5,10,3]. These amplification methods in turn employ techniques
such as garbled circuits [5], randomized encoding of functions [3] and entropic-KDM security [10] to enable
KDM transformations. Most relevant to our work are the results of Applebaum [3], showing that, informally
speaking, projection security is sufficient to obtain KDM security with respect to any fixed circuit family
whose size is poly-bounded. Thus, a fundamental question regarding KDM security is to study general
assumptions sufficient for realizing projection security, which is one of the main goals in our paper.

It turns out that realizing even 1-circular security for bit encryption is considerably more difficult than
the case where the secret-key space is a subset of the plaintext space (so one can encrypt the whole key at
once). In the latter case, through simple modifications to the encryption algorithm, one can make any CPA-
secure scheme 1-circularly secure. Currently, the only constructions that provide bitwise 1-circular security
are those of [8,4,10], which are based on specific assumptions. Also, it was shown in [41] that the implication
that “any CPA-secure bit encryption scheme is also 1-circularly secure” is not provable using reductions that
use both the adversary and the scheme in a blackbox way.1 Moreover, under widely-believed assumptions,
there exist CPA-secure bit-encryption schemes that are not 1-circularly secure [41,30].

Leakage resilience. Akavia et al. [1] introduce the notion of encryption security against bounded memory
leakage, wherein an adversary (after seeing the public key) may obtain arbitrary information about the
secret key, of the form f(sk) for adaptively chosen f , as long as the total number of bits leaked does not
exceed an a priori fixed quantity, `. (We refer to the fraction `/|sk| as the resilience rate.) They showed
that Regev’s scheme [39] and the identity based encryption scheme of [20], both under the LWE assumption,
provide resilience rate O(1/polylog(|sk|)). Naor and Segev [35] showed how to obtain encryption schemes
resilient to high leakage lengths (but with low resilience rates) from any hash-proof system [13] and how to
obtain schemes with (1 − o(1))-resilience rates from d-linear assumptions; moreover, they showed that the
circularly-secure scheme of [8] provides a (1− o(1)) resilience rate. Brakerski and Goldwasser [9], under the
subgroup indistinguishability assumption, implied in turn by the QR and DCR assumptions, showed how to
obtain encryption schemes that are affine-KDM secure, with a (1− o(1)) resilience rate.

1 Note that this is different from asking whether CPA-secure bit encryption implies the existence of circularly-secure
bit encryption.
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Auxiliary-input security. In the auxiliary-input model [15,14] the adversary is given some side information
of the form h(pk, sk), and the goal is to guarantee security as long as recovering sk from h(pk, sk) is
sufficiently, computationally hard. For public-key encryption Dodis et al. [14] build schemes based on LWE
and DDH (where their DDH-based scheme is a variant of [8]) secure against subexponentially-hard-to-invert
functions. Brakerski and Goldwasser [9] present schemes with the same level of auxiliary-input security under
the subgroup indistinguishability assumption.

1.1 Our results (assumptions and constructions)

As pointed our earlier, the only constructions of circularly-secure/projection-secure bit encryption (even
1-circular security) are based on specific assumptions [8,4,9]. Moreover, the schemes of [8,9], referred to as
BHHO and BG henceforth, besides KDM security, also provide security against different forms of leakage
(as shown in [14,35,9]). Therefore, a natural question is whether there exist more general constructions that
encompass all these specific constructions.

We will try to answer these questions by building leakage-resilient, projection-secure encryption schemes
from CPA-secure private-key schemes with some special properties, which we now informally describe. Then
we will use this private-key encryption abstraction as a stepping stone toward obtaining our results under
other primitives.

The first property is a generalized version of additive homomorphism, where homomorphism is required
to hold also with respect to randomness (let Hom denote the associated function). The second property is
what Bellare et al. [6] call reproducibility, requiring that given a message m2, secret key sk2 and ciphertext
c = Esk1(m1; r), where sk1, m1 and r are unknown, one can efficiently obtain Esk2(m2; r), i.e., there is a way
to efficiently transfer the randomness from one encryption to another, provided the secret key for the second
encryption is known.2 We denote this efficient computation by Rep(c,m2, sk2). Note that if an encryption
algorithm reveals its randomness in the clear, then reproducibility is trivially satisfied, e.g., the standard way
of building CPA-secure private-key encryption from a pseudorandom function family F , defining encryption
as Esk(m) = (r, Fsk(r) ⊕ m), provides reproducibility. In fact, we will later use this idea to obtain our
encryption primitive, based on the existence of homomorphic weak pseudorandom functions. Note that for
homomorphism, we are assuming that the message and randomness spaces must form groups. For technical
reasons, we will also require the following property: from any encryption Esk(b; r), for unknown sk, b, r,
one can obtain Esk(1; 0), i.e., the encryption of bit 1 under key sk based on the identity element of the
randomness group.3 We see this as a form of degenerate homomorphism.

We introduce a construction C (formalized in Section 3 and sketched in Subsection 1.4) that transforms
a private-key scheme with the stated properties into a public-key one and show the following result.

Theorem (informal). Assume that E = (G,E,Dec,Hom,Rep) is a CPA-secure private-key, bit-encryption
scheme that is degenerate additively homomorphic and reproducible. Then the constructed scheme E ′ = C(E)
is a public-key bit-encryption scheme that satisfies the following properties.

– For any integer n, by appropriately choosing the system parameters, E ′ is n-projection secure. (Formalized
in Theorem 2)

– By appropriately choosing the system parameters, E ′ provides a (1− o(1))-leakage resilience rate. (For-
malized in Theorem 3)

– E ′ provides auxiliary-input leakage resilience against subexponentially-hard functions. (Formalized in
Theorem 6 and Remark 2)

We will also discuss generalizations of the above construction to the case the base scheme is not bit-
encryption.

2 Both these conditions were used implicitly by Peikert and Waters as the main building blocks for their construction
of lossy-trapdoor functions [37].

3 The actual assumption we need is substantially weaker. However, we leave it this way for the sake of readability.
In fact, under all concrete schemes we present, Esk(m; 0) depends only on m and is independent of sk.

3



1.2 Realizations

From homomorphic weak pseudorandom functions. Pseudorandom function families (PRFs) provide
a convenient way of realizing reproducible CPA-secure private-key encryption via the standard PRF-based
encryption construction. Towards providing homomorphism for a PRF-based scheme, we call a function
family homomorphic if both the domain and range of the underlying functions form groups, and each function
acts as a homomorphism. A standard PRF cannot, however, be homomorphic since with high probability a
truly random function will not be homomorphic and an adversary with the power to (even) nonadaptively
query a function oracle may easily exploit this fact. To prevent this type of attack, we work with weak
PRFs, defined by Naor and Reingold [34], which allow an adversary to see values of the function only on
a sequence of random inputs. Formally, fk is weakly pseudorandom if no adversary can distinguish between
(d1, fk(d1)), . . . , (dp, fk(dp)) and (d1, r1), . . . , (dp, rp), where all di’s and ri’s are chosen independently at
random. As we see next, not only is the notion of homomorphic weak PRFs meaningful, it is naturally
realizable under specific assumptions. We also note that the standard construction of private-key encryption
from a PRF, when applied to homomorphic weak PRFs, results in a scheme that satisfies the properties we
need from our base encryption primitive (Lemma 4).

For a DDH-hard group G with o = |G|, define F = {fk : G→ G}k∈Zo by fk(g) = gk. This function family
was introduced and proved to be weakly pseudorandom by Naor, Pinkas and Reingold [33]; the proof of weak
pseudorandomness uses standard techniques related to random-self-reducibility of DDH. The fact that fk is
homomorphic is clear. Interestingly, by plugging this PRF into our general construction, we obtain a scheme
which is a close variant of the BHHO scheme. We also give a realization of weak homomorphic PRFs under
homomorphic hash-proof systems (HHPS) [13]: here the PRF is simply the family of hash functions on valid
points (Theorem 4). A corollary of our results is the following.

Corollary. Under the HHPS assumption and for any integer n, there exists a public-key encryption scheme
that provides, at the same time, n-projection security and a (1− o(1))-leakage resilience rate.

To the best of our knowledge, our results give the first HHPS-based encryption scheme that provides
(even individually) n-projection security and a (1 − o(1))-leakage resilience rate. (See SubSection 1.4 for a
comparison of our results with those of the recent work of [42].) Naor and Segev [35] show how to construct
schemes with high tolerated leakage lengths (but low rates of leakage resilience) from any hash-proof system,
and also how to obtain schemes with (1 − o(1)) leakage-resilience rates from k-linear assumptions. Our
results can be thought of as complementing those of [35], by saying that if we add homomorphism to a HPS,
we obtain schemes with high resilience rates. Hazay et al. [26] show how to obtain schemes withstanding
high leakage lengths from any CPA-secure public-key encryption (which is the minimal assumption). Their
construction, however, produces a scheme with low leakage-resilience rates, and does not imply our leakage
resilience result based on HHPS.

From Subgroup indistinguishability. We show how to instantiate our encryption primitive under the the
subgroup indistinguishability (SG) assumption [9], of which QR and DCR are special cases (Lemma 5). Our
current formulation of homomorphic weak PRFs does not seem to be realizable under the SG assumption. It
is, however, possible to formulate a more relaxed version of such PRFs, one that is still sufficient for realizing
our encryption assumptions and is also realizable under the SG assumption. We choose not to pursue this
direction since there is already an easy way to realize our encryption primitive under the SG assumption.

We provide a summary of our results in Figure 1.

1.3 KDM amplification and leakage resilience

We prove that Applebaum’s KDM amplification method [3] for obtaining KDM-security for any fixed family of
bounded circuits from projection security also preserves both types of leakage resilience (Theorem 9). We were
not, however, able to show this for the KDM amplification methods of [5,10]. Applebaum’s transformation
has the key property that it only modifies the encryption and decryption algorithms of the base scheme,
by applying randomized encoding and decoding, which are fixed mappings constructed based on the target
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function family, inside the encryption and decryption algorithms. This property facilitates reducing leakage
resilience and auxiliary input security of the constructed scheme to the same requirements (i.e., with the same
parameters) on the base scheme. As a corollary, for any fixed bounded function family F and any integer
n, assuming the existence of private-key schemes with the stated properties, we obtain schemes that at the
same time provide (1) F -KDM(n) security, (2) a (1 − o(1))-leakage resilience rate, and (3) auxiliary-input
security against subexponentially-hard functions (Corollary 1).

1.4 Construction technique and further discussion

Construction and proof techniques. We now give a sketch of the construction, C, and proof techniques.
Fix E = (G,E,D,Rep,Hom) to be a private-key bit-encryption scheme that provides reproducibility and
the generalized homomorphism condition. The latter, using additive notation, states the following condition
that Hom(Esk(b1; r1), Esk(b2; r2)) = Esk(b1 + b2; r1 + r2). (Note that because of our additive notation our
message space is Z2, and 0 is the identity element of the randomness space.)

Under E ′ = C(E) = (G′, E′, D′), the secret key is a random string s ← {0, 1}l (for some poly l) and the
public key is a tuple of ciphertexts

pk = (Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)),

where sk, r1, . . . , rl are generated randomly under E and and (·) denotes the inner product of s and r =
(r1, . . . , rl). In words, pk consists of l + 1 E-encryptions of zero, where the first l encryptions are produced
independently, while the randomness value used for the last encryption is a “subset-sum” of the previous ones
based on s. To encrypt a bit b we sample sk′ ← G(1λ) and output (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r)),
which can be computed from pk by applying Rep component-wise. To decrypt (c1, . . . , cl, cl+1) under s, we
return 0 iff cl+1 = Homs(c1, . . . , cl), where Homs(c1, . . . , cl) “sums” those ciphertexts ci where ski = 1. The
correctness of decryption follows.

Some notes are in order. Firstly, under G′, the secret key of the old scheme, sk, is used only to compute
the encryptions needed to form pk. Roughly, the fact that s is independent of sk underlies the circular
security of E ′. Secondly, E′ has the somewhat unusual property that it calls G, with the returned values
comprising all the randomness used in encryption.

As a warm-up we first discuss CPA security of E ′. Consider a malformed public key pkmal with rl+1

chosen independently at random (instead of being s · r). CPA security under pkmal reduces to showing
(pkmal, c0) ≡c (pkmal, c1), where ≡c denotes computational indistinguishability, and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; rl+1)

This in turn follows by appealing to the CPA security and reproducibility of E . To complete the CPA-
security proof, it would suffice to argue that a malformed public-key is indistinguishable from a valid one,
which follows information theoretically (from the leftover hash lemma) if l is large enough. Below we extend
the arguments given here to argue about KDM and leakage-resilience security of the scheme.
KDM security. A main idea used in the proof of 1-circular security (for simplicity) is that if one possesses s,
then the encryption of a bit b may be equivalently computed as c = (c1, . . . , cl, Hom(ci1 , . . . , ciw , c

′)), where
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sk′ ← G(1λ), cj ← Esk′(0) for 1 ≤ j ≤ l, (i1, . . . , iw) are the indices of nonzero bits of s and c′ = Esk′(b; 0)
(i.e., c′ is the encryption of b where the randomness value is fixed to the group identity 0.) Now we consider
an intermediate hybrid, W1, in which to encrypt the hth bit of s, we return (c1, . . . , cl, Hom(ci1 , . . . , ciw , c

′)),
where now ch is an encryption of 1, but every other cj is an encryption of 0 (and c′ is an encryption of sh
under the identity randomness). We will show that W1 provides a view computationally indistinguishable
from the real view, W0; the main idea is that any distinguisher between W0 and W1 can be reduced to an
adversary A that wins in a special vector-encryption game (performed under E), in which A may adaptively
issue fixed-length vectors of bits (of a certain form), and in response to each vector query v, either v or the
all-zero vector (depending on the challenge bit) is component-wise encrypted under a fresh secret key, but
by reusing randomness across each fixed component of vectors (that is the ith component of each vector
is always encrypted under a fixed random ri). In Lemma ?? we show any A has a negligible advantage
under this game, and use this to prove the indistinguishability of W0 and W1. (It turns out this last step
also requires us to use degenerate homomorphism to compute Esk′(1; 0) obliviously to sk′.) Having proved
the indistinguishability of W0 and W1 we notice that under W1 the reply to “encrypt the hth bit of s” is
indeed formed as (Esk′(0; r1), . . . , Esk′(0; rh−1), Esk′(1; rh), Esk′(0; rh+1), . . . , Esk′(0; rl), Esk(0; s · r)), and in
particular is independent of s beyond s · r, which makes the rest of the proof follow smoothly using ideas
described for the CPA case.

The described techniques might be called simulated KDM encryptions, originally introduced in [8], used
also in subsequent works [4,9], which show how to simulate KDM responses under public information. The
main challenge in our setting is how to enable such properties under our general assumptions.
Leakage resilience. For simplicity, we first outline the idea of the proof for the case of nonadaptive leak-
age resilience (that is, the function f is queried before the public key being published). To argue about
nonadaptive leakage resilience, one has to show D0 ≡c D1, where Db = (pk, cb, f(s)), and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r))

Now since f is chosen independently of pk, it is also independent of r, which allows us to apply the average-
case version of the leftover hash lemma [16] (considering the inner product acts as a universal hash function)
to replace s·r with a totally random rl+1; the rest of the proof follows from the fact that E allows secure reuse
of randomness. For the adaptive case, to handle the issue that f depends on pk (and so we cannot apply
random extraction directly), we use similar techniques to those used by [35]: we consider a hybrid D′b, which
is similar to Db, but in which the first l bits encrypted under sk′ are independently random bits b1, . . . , bl
(as opposed to zeros) and that the last bit is s · (b1, . . . , bl) + b. By proving D′b ≡c Db, for both b ∈ {0, 1},
(essentially using reproducibility and semantic security of E) we can now apply the generalized leftover hash
lemma by taking (b1, . . . , bl) as the seed, s as the source and considering that bi’s are chosen independently
of f and r; this allows us to replace s · (b1, . . . , bl) with a uniformly random bit, proving D′0 is statistically
close to D′1. The leakage resilience proof follows. The proof for the auxiliary-input case essentially follows
the same line of arguments, except for replacing randomness extraction with pseudorandomness extraction
[22]. We refer the reader to the full proof.

Final remarks. Instantiating the above construction using homomorphic weak PRFs provides an improve-
ment in efficiency, matching the same level of efficiency as [8] if the base PRF (in turn) is instantiated
under the corresponding assumption. Technically, in this case, it would suffice to define the public key to
be (d1, . . . , dl, s · (d1, . . . , dl)), i.e., instead of putting the whole ciphertext in each component, we only give
the underlying randomness, which would have been given out by the ciphertext itself in the clear. Also, to
encrypt m under pk = (d1, . . . , dl, dl+1), we simply output (Fsk(d1), . . . , Fsk(dl), Fsk(dl+1) + m), where sk
is a fresh PRF key.

While our results enable us to explain those of [8,9,35], regarding KDM security and leakage resilience
of the BHHO and BG schemes, they suffer from the same limitations as those of [9], in that, in order to
achieve KDM(n) security, we must choose the parameters of our constructed scheme based on n. Boneh et al.
[8] get around this dependency by using the random self-reducibility of DDH and strong key-homomorphism
properties of DDH-based schemes. Similar dependencies for (even specific) non-DDH-based assumptions
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occur in other settings as well, e.g., [11]. We leave it as an open problem to resolve this dependency. We
should also mention that the BHHO and BG schemes were proved affine-KDM secure; under the current
assumptions, we were not able to extend our results to the affine-KDM setting. Finally, we note that just the
fact that we can build a CPA-secure (as opposed to KDM secure) public-key scheme from our private-key
assumptions is not unheard of since even weaker forms of homomorphism are known to be sufficient to bridge
this gap [40].

Comparison with [42]. Concurrently with our work, Wee [42] recently showed that the original HHPS-
based encryption scheme of Cramer and Shoup [13] provides F -KDM(1) security, where F is a function
class defined based on the underlying hash functions. (Specifically, following notation in Subsection 6.2,
F = {fc,k : SK 7→ K}, where fc,k(sk) = Λsk(c) + k.) We note that the basic KDM setting of [42] is different
from ours in that we are concerned with KDM-security with respect to bit-projections of the secret key.
Nevertheless, by instantiating that framework under specific DDH/SG-based HHPSs, [42] obtains schemes
that are close variants of BHHO and BG. Moreover, the results of [42] also explain the bit-affine-security of
BHHO and BG, while our results only explain the projection security. On the other hand, we obtain HHPS-
based schemes that are n-projection secure, while the results of [42] do not seem to extend to the multiple-key
setting (as noted there). Moreover, by using an encryption-based primitive as our base assumptions, we are
able to obtain generic constructions under homomorphic weak PRFs, that is a weaker abstraction than the
HHPS, as we show.

Other related work. Choi and Wee [12] show how to construct lossy trapdoor functions from homomorphic
reproducible encryption by abstracting the matrix-based construction of Peikert and Waters [37]. This shows
one more application of homomorphic weak PRFs as a general primitive. We mention, however, that the
main difference between our constructions and those of [37,12] is that in [37,12] the trapdoor key of the
constructed schemes consists of secret keys produced under the base scheme, while in our setting, the main
challenge (and novelty) is to come up with a construction whose encryption function still somehow calls that
of the base scheme (in order to inherit its security), but in such a way that the secret keys of the base scheme
are not included in the constructed secret key.

2 Definitions

2.1 Standard Notation and Definitions

For a finite set S we use x ← S to denote sampling x uniformly at random from S and denote by US or
U(S) the uniform distribution on S. If D is a distribution then x ← D denotes choosing x according to D.
We denote the support set of a distribution D by Sup(D), and write x ∈ D to indicate x ∈ Sup(D). The
notions of computational indistinguishability and statistical indistinguishability are standard. We use ≡c to
refer to computational indistinguishability, ≡s to statistical indistinguishability and ≡ to identity of two
distributions. We use the term PPT in this paper in the standard sense. We will often omit the adjective
PPT/efficient when discussing functions – by default we assume all such functions are efficient.

We denote the length of x ∈ {0, 1}∗ by |x| and the ith bit of x, for 1 ≤ i ≤ |x|, by xi. We denote the
n-th Cartesian power of a set S by Sn. We call f : N → R negligible if f(λ) < 1/P (λ), for any poly P and
sufficiently large λ.

All groups are assumed to admit efficient group operations, and to be commutative, but not necessarily
cyclic, unless otherwise indicated.

2.2 Syntax of encryption schemes

We first start with some notation. We use A(a1, a2, . . . ; r) to denote the deterministic output of randomized
function A on inputs a1, a2, . . . and randomness r, and use x ← A(a1, a2, . . . ) to denote the distribution
formed by first choosing r uniformly at random and then outputting A(a1, a2, . . . ; r).

We assume that all cryptographic primitives (encryption, PRFs, etc) discussed in this paper, besides their
usual algorithms, have a parameter-generation algorithm that produces public parameters (e.g., a group) used
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by all other algorithms. In situations where we talk about generating many keys it should be understood that
all keys are sampled under the same public parameters, which were generated randomly at the beginning.
We now give the syntax of encryption schemes.

A public-key encryption scheme E is given by algorithms (Param,G,E,Dec), all taking as input a security
parameter 1λ (that we make it explicit for Param and G and implicit for other algorithms.) Param takes
input 1λ, and outputs a public parameter, par. The key-generation algorithm, takes 1λ and par and outputs
public/secret keys, (pk, sk) ← G(1λ, par). The encryption algorithm E, takes a public key pk, a plaintext
m ∈ Mλ (where Mλ is the plaintext space) and randomness r ∈ Rλ (where Rλ is the randomness space),
and deterministically produces ciphertext c = Epk(b; r). Finally, the decryption algorithm takes a secret
key sk and ciphertext c, and deterministically outputs m = Decsk(c). For correctness, we require, for every
par ∈ Param(1λ), (pk, sk) ∈ G(1λ, param), everym and c ∈ Epk(m), thatDecsk(Epk(m)) = m. We typically
use PKλ and SKλ to refer to the public-key and secret-key spaces. Formally, (PKλ,SKλ) = Sup(G(1λ)).
We make the inclusion of Param implicit henceforth.

2.3 Key-dependent-message security

In this paper we consider encryption schemes, whose generated secret keys are always bitstrings, but whose
plaintext space may or may not be the single-bit space, e.g., it may be a group space. For the latter case, in
order to make the notion of bitwise encryption of the secret key meaningful, we assume that a fixed mapping
({0, 1} → Mλ) is already in place. In the following, when we say Epk(b), where b is a bit, if E is a bit
encryption algorithm, then we are encrypting the actual bit b, and otherwise, we are encrypting the element
that b is mapped to. We now proceed to describe the notion of KDM(n) security for an arbitrary encryption
scheme E = (G,E,Dec) (bit encryption or otherwise).

Assume that F = {Fλ}λ∈N is an ensemble of sets of functions, where for each f ∈ Fλ, it holds that
f : SKnλ → {0, 1}.

We define F -KDM(n) security through the following F -KDM(n) game, played between a challenger and
an adversary. The challenger first chooses b← {0, 1}, generates (pk1, sk1), . . . , (pkn, skn)← G(1λ), and gives
pk1, . . . , pkn to the adversary. The adversary A, given pki’s, can repeatedly and adaptively, for 1 ≤ i ≤ n,
make queries of the form (i, f), where f ∈ Fλ, or of the form (i,m), where m ∈Mλ, and in return,

– If b = 0, the challenger returns Epki(f(sk1, . . . , skn)) in response to (i, f) and Epki(m) in response to
(i,m); and

– If b = 1, the challenger returns Epki(0).

A finally outputs a bit b′. We define the F -KDM(n) advantage of A as

AdvF -KDM(n)

(A) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ,

where the probabilities are computed over the coins of A and of the challenger.

We say that E is F -KDM(n)-secure if for any A in the above game, it holds that AdvF -KDM(n)

(A) = negl.
Assume SKλ = {0, 1}l(λ) and let l = l(λ). For 1 ≤ i ≤ n and 1 ≤ j ≤ l, define Seli,j : SKnλ 7→ {0, 1}

to be the function that on input (sk1, . . . , skn) returns the jth bit of ski. Similarly, define NSeli,j to
be the function that on input (sk1, . . . , skn) returns the negation of the jth bit of ski. Finally, define
Sλ = {Seli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l} and Ŝλ = {NSeli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l}. We now give the following
definitions.

– We call E n-circularly secure if E is F -KDM(n) secure, where Fλ = Sλ.
– We call E n-projection secure if E is F -KDM(n) secure for Fλ = Sλ ∪ Ŝλ.

Semantic security for private-key encryption. For a private-key encryption scheme (G,E,Dec) it is
convenient to work with the following definition of CPA security. (1) The challenger chooses b← {0, 1} and
private key sk ← G(1λ). (2) The adversary submits a sequence of messages (m1, . . . ,mp), where p = p(λ) is
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an arbitrary function. (3) The challenger returns (Esk(m1), . . . , Esk(mp)) if b = 0, and (Esk(0), . . . , Esk(0)),
otherwise. (4) The adversary returns a bit b′. We define the CPA-security advantage of the adversary as

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ,

and call the scheme CPA secure if all adversaries have negligible advantage.

2.4 Leakage resilience

We define the notion of leakage resilience. For £ = £(λ), we say that the public-key encryption scheme E =
(G,E,Dec) is £-length leakage resilient if, for any adversary A, the £-leakage-advantage of A, Adv£-leak(A),
defined via the following game, is negligible.

– Setup: The challenger generates (pk, sk)← G(1λ) and gives pk to A.

– Leakage queries: A sends function f : SKλ → {0, 1}∗ to the challenger, where |f(sk)| ≤ £, and receives,
in response, f(sk).

– Challenge: A submits (m0,m1) ∈ M2
λ, and the challenger, samples b ← {0, 1}, and returns Epk(mb) to

A. Finally, A returns an output bit b′.

We define Adv£-leak(A) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| . We say that E is r-rate leakage resilient (or
has resilience rate r) if E is r · log |SK|-length leakage resilient.

Finally, we note that restricting A in the above game to a single leakage query is without loss of generality.
In particular, the security definition does not become stronger if A is allowed to adaptively make multiple
leakage queries provided that the total length of the bits leaked is bounded by £(λ). The proof of this fact
is straightforward; see [1] for a proof.

2.5 Properties of the base scheme

We give the definitions of the main properties that we need from the base private-key encryption scheme.

Definition 1. A private-key encryption scheme E = (G,E,Dec) provides reproducibility (or is repro-
ducible) if there is an efficient function Rep such that for any sk, sk′ ∈ G(1λ), r ∈ Rλ and m1,m2 ∈Mλ,

Rep(Esk(m1; r),m2, sk
′) = Esk′(m2; r).

Definition 2. Let E = (G,E,Dec) be a private key encryption scheme where both (Rλ,+) and (Mλ,+)
form groups. Then E is additively homomorphic with respect to plaintexts and randomness (PR-additively
homomorphic) if there is an efficient function Hom such that for every sk ∈ G(1λ), m1,m2 ∈ Mλ, and
r1, r2 ∈ Rλ,

Hom (Esk(m1; r1), Esk(m2; r2)) = Esk(m1 +m2; r1 + r2).

We extend the notation of Hom(·) to define Hom(c1, . . . , cm) in the straightforward way. For technical
reasons, we also need the following condition: for any sk, m, r and m′, given only m′ and Esk(m; r), we
can form the ciphertext Esk(m′, 0), where 0 denotes the identity element of Rλ. We sometimes refer to this
property as the degenerate condition.

Henceforth, when discussing encryption schemes, we will use “homomorphic” as shorthand for “PR-additively
homomorphic.”
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3 Construction

We first fix some notation. Throughout this section we will be working with additive notation for groups
with 0 denoting the identity element. For g = (g1, . . . , gp) ∈ Gp and b = (b1, . . . , bp) ∈ {0, 1}p we define b ·g
= b1 · g1 + · · ·+ bp · gp ∈ G, where, 0 · g = 0, and for n ∈ N, we define n · g = g + (n− 1) · g.

We present a generic construction that transforms a reproducible, homomorphic private-key encryption
scheme into a public-key bit-encryption scheme. This always produces a bit-encryption scheme even if the
base scheme is not. In the full version we show how to adjust the construction, to maintain the plaintext
space, at the cost of additional syntactic assumptions (which are satisfied by our specific instantiations).

We then show (Section A.1) how to adjust the construction, to maintain the plaintext space, at the cost
of additional syntactic assumptions (which are satisfied by our specific instantiations). For simplicity, we
present (and prove the security of) the bit-encryption construction for the case where the base scheme is
also bit encryption. We then discuss adaptations to the general case in the appendix, Remark 1.

Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption scheme providing repro-
ducibility (with the associated function Rep) and homomorphism (with the associated function Hom). Re-
call for homomorphism, both the message space, {0, 1}, and the randomness space, Rλ, form groups, which
implies the plaintext group is just Z2. We now present the construction.

Construction 1 (Single bit encryption): Let E = (G,E,Dec,Hom,Rep) be as above and let l = l(λ) be a
value that we instantiate later.

– Key generation G′: Choose the secret key as s← {0, 1}l and the public key as (Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)),
where sk ← G(1λ), r1, . . . , rl ← Rλ and r = (r1, . . . , rl).

– Encryption E′: To encrypt bit b under public key (c1, . . . , cl, cl+1), do the following: choose sk′ ← G(1λ)
and return (c′1, . . . , c

′
l, c
′
l+1), where c′i = Rep(ci, 0, sk

′), for 1 ≤ i ≤ l, and c′l+1 = Rep(cl+1, b, sk
′).

– Decryption Dec′: To decrypt (c′1, . . . , c
′
l, c
′
l+1) under secret key s, letting (i1, . . . , iw) be the indices of

non-zero bits of s, output 0 if c′l+1 = Hom
(
c′i1 , . . . , c

′
iw

)
, and 1 otherwise.

The completeness of the scheme follows immediately. A few comments are in order. First, the encryption
algorithm of the constructed scheme uses that of the base scheme, but by reusing the randomness values
of the ciphertexts given in the public key. Second, the constructed decryption function does not need any
secret keys of the base scheme, e.g., sk, for its computation. Roughly, this is why proving circular security
for the constructed scheme should not be much harder than proving CPA security. In our security proofs,
we will rely on the fact that we may use the homomorphism properties of the base primitive to form public
keys and encryptions in alternate, equivalent ways as described below.

Proposition 1 1. The public key may be computed as (c1, . . . , cl, cl+1), where ci ← Esk(0), for 1 ≤ i ≤ l,
and cl+1 = Hom (ci1 , . . . , ciw), where (i1, . . . , iw) are the indices of non-zero bits of s.

2. Let s, sk′ and c′1, . . . , c
′
l be as in the definition of encryption in Construction 1. Then, c′l+1 may be

computed as c′l+1 = Hom(ci1 , . . . , ciw , Esk′(b; 0)), where (i1, . . . , iw) are the indices of non-zero bits of s.

4 Proof of projection security

In this section we give the proof of projection security of our constructed scheme. For clarity of exposition,
we present the results with respect to asymptotic security, without specifying the exact advantage functions.
This section is organized as follows. In Subsection 4.1 we reviews some facts related to entropy which are
needed by our proofs. In Subsection 4.2 we introduce an intermediate lemma that will be used in the proofs
of our main theorems. Finally, in Subsection 4.3 we give the proof for projection security.
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4.1 Information-theoretic tools

We denote the min-entropy of a distribution D by H∞(D), defined as H∞(D) = mind∈D

[
log( 1

Pr[D=d] )
]
. We

also need to work with the notion of average min entropy, formalized by Dodis et al. [16], which measures
the expected unpredictability of X given a random value y of Y . Formally,

H̃∞(X|Y ) = − log
(
Ey←Y (2−H∞(X|Y=y))

)
= − log

(
Ey←Y (max

x
Pr[X = x|Y = y])

)
.

A well-known fact about average-min entropy is a special form of the chain rule, saying that conditioning
on a random variable Y , the average min entropy decreases by at most the logarithm of the support size of
Y .

Lemma 1. ([16]) For any (X,Y, Z) it holds that H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− log |Sup(Y )|.

A family of functions {h : D → R}h∈H is called universal if for all x1, x2 ∈ D, with x1 6= x2, it holds
that

Pr
h←H

[h(x1) = h(x2)] ≤ 1

|R|
.

We typically denote a family of functions {h : D → R}h∈H as a single function H : D × H → R, where
H(d, h) = h(d). We have the following fact, showing that universal hash functions are good average-case
extractors.

Lemma 2. ([16]) If Ext : {0, 1}n ×W → W ′ is a family of universal hash functions, then for any pair of
random variables (D,X), where D takes values in {0, 1}n, it holds that

∆ ((Ext(D,S), S,X), (R,S,X)) ≤ 1/2

√
2−H̃∞(D|X)|W ′|,

where S is uniform over W , R is uniform over W ′ and ∆ denotes statistical distance. We stress that S is
independent of (D,X).

4.2 A Useful lemma

We begin by introducing a game that will be used in proving our main results. Intuitively, the following
experiment corresponds to a vector-encryption game, in which an adversary may interactively issue vectors
of bits (of certain forms) to be encrypted, and each vector is component-wise encrypted under a fresh secret
key while reusing randomness across each fixed component of vectors.

The randomness-sharing (RS) Game. Let (G,E,Dec) be a private-key bit-encryption scheme. As some
notation, for l ∈ N, we let eli, for 1 ≤ i ≤ l, be the the vector of size l which has 1 in the ith position and

0 everywhere else, and e′
l
i, for 1 ≤ i ≤ l, be the vector of size l which has 1 in both its ith position and

last position, and 0 everywhere else. We let 0l be the all-0 vector of size l. Finally, for b = (b1, . . . , bl) and
r = (r1, . . . , rl), we define Esk(b; r) = (Esk(b1; r1), . . . , Esk(bl; rl)).

The game is parameterized over l = l(λ) and n = n(λ) and is played as follows.
The challenger chooses b← {0, 1} and for each 1 ≤ h ≤ n it samples rh = (rh1, . . . , rhl)← Rlλ. Then the

game proceeds as follows: the adversary repeatedly and adaptively makes queries of the form (h, e), where

1 ≤ h ≤ n and e ∈ {0l} ∪ {el1, . . . , ell} ∪ {e′
l
1, . . . , e

′l
l}, and in response to each such query, the challenger

samples sk ← G(1λ) (using fresh coins for each query) and returns Esk(e; rh) if b = 0, and Esk(0l; rh),
otherwise. Finally, the adversary outputs a bit b′ and its advantage is defined as:

Advp-rs (A) = Pr [b′ = 1 | b = 0]− Pr [b′ = 1 | b = 1] .

We now give the following lemma.
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Lemma 3. Assume E = (G,E,Dec,Rep) is a CPA-secure, private-key bit-encryption scheme that provides
reproducibility. For any polynomial functions l(·) and n(·), and any adversary A in the (l, n)-RS game has
a negligible advantage.

Proof. For convenience we drop the security parameter from all sets throughout the proof. Using a simple
hybrid argument we can show that any adversary that has advantage ε against the (l, n)-RS game can be
reduced to an adversary with advantage ε/n against the (l, 1)-RS game. So we assume n = 1.

First, we introduce the following notation. For b = (b1, . . . , bl) and c = (c1, . . . , cl), define

Rep(c,b, sk) = (Rep(c1, b1, sk), . . . , Rep(cl, bl, sk)) .

Assuming that A makes t = t(λ) queries q1, . . . ,qt we define the hybrid Wi, for 1 ≤ i ≤ t + 1, as follows:
first generate randomness vector r = (r1, . . . , rl)← Rl and respond to queries as follows: in response to the
j’th query, for 1 ≤ j < i, generate skj ← G(1λ) and return Eskj (qj ; r) (i.e., encryption of the actual vector);
and in response to the w’th query, for w ≥ i, generate skw ← G(1λ) and return Eskw(0l; r) (i.e., encryption
of the all-zero vector). Note that W1 and Wt+1 match exactly the view of the adversary produced under the
the RS game when b = 1 and b = 0, respectively. Thus, for the rest of the proof, we show how to reduce an
adversary that can distinguish between Wi and Wi+1, for some 1 ≤ i ≤ t, to an adversary against the CPA
security game; the whole proof then follows using a standard hybrid argument.

Assume that A′ can distinguish between Wi and Wi+1 with a non-negligible advantage. Noting that Wi

and Wi+1 only differ in the way that the answer to the ith query is made, and that each query vector can
take at most 2l + 1 different values, we guess the ith query vector (that is going to be issued by A′), call
the LOR-CPA oracle, which is parameterized over an unknown secret key, on the guessed vector to receive
c = (c1, . . . , cl), and start simulating A′ as follows: in response to the j’th query, qj , for 1 ≤ j < i, we
generate skj ← G(1λ) and return Rep(c,qj , skj); in response to the ith query we return c (if our guess for
qi was incorrect, we stop and return a random bit); and in response to the w’th query, qw, for w > i, we
generate skw ← G(1λ) and return Rep(c,0l, skw). Now it is easy to see that, if our guessing for the ith query
was correct, depending on whether the CPA-challenge bit was zero or one, the resulting experiment matches
exactly either Wi or Wi+1. This completes the proof. ut

4.3 Proof of projection security

We first give the proof of 1-projection security of our scheme and then present a proof for n-projection
security. Our proofs build on techniques from [9], which in turn generalize the DDH-based techniques of [8].

Theorem 1. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption scheme providing
degenerate homomorphism and reproducibility.Then, by taking l = l(λ) = ω(log λ) + log (|Rλ|), the scheme
built in Construction 1 is 1-projection secure.

Proof. To represent the 1-projection game more concisely, we denote:
– enc-secret(i) encrypt the ith bit of the secret key; and
– enc-secret(̄i) encrypt the negation of the ith bit of the secret key.

We introduce a series of hybrid games and show no adversary can distinguish between any two adjacent
games. The first game corresponds to the real-encryption circular-security game, while the last game is the
one where we always encrypt 0. Letting xi be the adversary’s output in Game-i, we write Game-i ≡G Game-j
to indicate |Pr[xi = 1]− Pr[xj = 1]| = negl. In all these games, whenever we write, say, sk′ ← G(1λ) we
mean that sk′ is chosen freshly, so we may keep using the same variable sk′ inside each game whenever
we are producing a new key. Let R = Rλ for the following discussion. Also, recall the notation Esk(b, r)
introduced in Subsection 4.2. Below we write ei as shorthand for eli.

Game-0: real encryption. This game provides the adversary with a view that is identical to that under the
projection security game in which the challenge bit is zero. The identical view is produced by using the
algorithm Hom to produce the public key and to reply to encryption queries. (See Proposition 1.)

Generate r = (r1, . . . , rl) ← Rl and s ← {0, 1}l and let (i1, . . . , iw) be the indices of nonzero bits of s.
Then,
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– the adversary is given (c1, . . . , cl, Hom(ci1 , . . . , ciw)) as the public key, where

(c1, . . . , cl) = Esk(0l; r)

and sk ← G(1λ).
– In response to enc-secret(i) we return (c′1, . . . , c

′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))), where

(c′1, . . . , c
′
l) = Esk′(0

l; r)

and sk′ ← G(1λ). Again we emphasize sk′ is chosen freshly for each query.
– In response to enc-secret(̄i) we return (c′′1 , . . . , c

′′
l , Hom(c′′i1 , . . . , c

′′
iw
, Esk′′(s̄i; 0))), where

(c′′1 , . . . , c
′′
l ) = Esk′′(0

l; r)

and sk′′ ← G(1λ).

Game-1: In this game we handle key generation exactly as in Game-0, but we reply to enc-secret queries in
a special way. Formally, generate r = (r1, . . . , rl)← Rl and s← {0, 1}l and let (i1, . . . , iw) be the indices of
nonzero bits of s. Then,

– the adversary is given (c1, . . . , cl, Hom(ci1 , . . . , ciw)) as the public key, where (c1, . . . , cl) = Esk(0l; r),
for sk ← G(1λ).

– In response to enc-secret(i) we return (c′1, . . . , c
′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))), where (c′1, . . . , c

′
l) =

Esk′(ei; r) and sk′ ← G(1λ).
– In response to enc-secret(̄i) we return (c′′1 , . . . , c

′′
l , Hom(c′′i1 , . . . , c

′′
iw
, Esk′′(s̄i; 0))), where (c′′1 , . . . , c

′′
l ) =

Esk′′(ei; r) and sk′′ ← G(1λ).

We claim that the difference between Game-0 and Game-1 can be simulated through the l-RS game. The
reason is if we know s, then we can compute Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0)) from (c′1, . . . , c

′
l) even if we do not

have sk′: note that here we are using the degenerate condition of the homomorphism property. A similar
argument holds with respect to c and c′′. Moreover, for every 1 ≤ j ≤ l, the ciphertexts cj , c

′
j and c′′j were

formed under the same randomness. Thus, we can reduce any distinguisher betweenGame-0 and Game-1 to
an l-RS game adversary A as follows: A samples s ← {0, 1}l and lets (i1, . . . , iw) be the indices of nonzero
bits of s; it calls its RS-oracle on 0l to receive (c1, . . . , cl) and then returns (c1, . . . , cl, Hom(ci1 , . . . , ciw))
as the public key; it responds to enc-secret(i) by first calling its oracle on ei to get (c′1, . . . , c

′
l) and then

returning (c′1, . . . , c
′
l, Hom(c′i1 , . . . , c

′
iw
, Esk′(si; 0))); it responds to enc-secret(̄i) in a similar way. Thus, by

Lemma 3 we obtain that Game-0 ≡G Game-1.
Finally, note that under this game, the distribution of the public key and the distributions of responses

to enc-secret(i)’s and to enc-secret(̄i)’s are:

(
Esk(0l; r), Esk(0; rl+1)

)
public key

(Esk(ei; r), Esk′(0; rl+1)) enc-secret(i)

(Esk(ei; r), Esk′′(1; rl+1)) enc-secret(̄i), (1)

where sk, sk′, sk′′ ← G(1λ), s ← {0, 1}l and r = (r1, . . . , rl) ← Rl and rl+1 = s · r. In particular, note that
the bits of s never appear as a plaintext (under E) in Equation 1, and the only place we use s is to form
rl+1.

Game-2: This game proceeds exactly as in Game-1, except we now sample rl+1 independently of all other
ri’s. Namely, we sample (r1, . . . , rl, rl+1)← Rl+1 and run the game by forming the public key and responses
to the adversary’s queries exactly as in Equation 1. Notice that the entire game can be simulated by only
knowing (r1, . . . , rl, rl+1): we generate the public key and we answer to enc-secret queries by sampling sk, sk′
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and sk′′ on our own and forming the outputs as spelled out by Equation 1. (Here we are exploiting the fact
that the bits of s never appear as a plaintext under E in Equation 1.) Thus, since l = ω(log λ)+log (|R|) and
the inner product is a family of universal hash functions, by Lemma 2 (indeed by the Leftover Hash Lemma,
which is a special case of Lemma 2) we obtain that the statistical distance between (r, s · r) and a tuple

chosen uniformly at random from Rlλ is at most
√

1/2ω(log λ) = negl(λ), and thus Game-1 ≡G Game-2.

Game-3: In this game we again sample rl+1 independently of other ri’s, but reply to all queries as “encryp-
tions” of zero. That is, we generate (r1, . . . , rl, rl+1) ← Rl+1 and form the public key and responses to the
adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key

(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) response to all queries (2)

where, again, sk′ is sampled freshly for each query. Now using the fact that all ri’s are sampled independently,
and also that sk′ is generated using fresh coins each time, we obtain that any adversary that can distinguish
between Game-2 and Game-3 can be reduced to break the (l+ 1)-RS security of E (which is a contradiction
by Lemma (3)). Thus, Game-2 ≡G Game-3.

Game-4: In this game we change back the distributions of ri’s to the original, but answer to all the adversary’s
queries as encryptions of zero. That is, we generate s ← {0, 1}l, r = (r1, . . . , rl) ← Rl, let rl+1 = s · r, and
form the public key and responses to the adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key

(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) responses to all queries (3)

Now, similarly to our proof of Game-1 ≡G Game-2, since Game-3 and Game-4 differ only in the way that
(r1, . . . , rl, rl+1) is generated, and again using the fact that l = ω(log λ) + log (|R|), by applying Lemma 2,
we conclude that Game-3 ≡G Game-4. This completes the proof. ut

We now give the statement and proof for n-projection security.

Theorem 2. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption scheme providing
degenerate homomorphism and reproducibility. For any constant c > 1, by taking l = n log (|Rλ|) +ω(log λ),
the scheme built in Construction 1 is n-projection secure.

Proof. To represent the n-projection game more concisely, we use the following notation for denoting the
adversary’s queries.

– Enc(pubh, secreti, j) encrypt the jth bit of the ith secret key under the hth public key; and
– Enc(pubh, secreti, j̄) encrypt the negation of the jth bit of the ith secret key under the hth public key.

We also need the following notation. In all the games below we denote the ith secret key as si and define
sij to be the jth-bit of the ith secret key. If v is a vector of size l, and s ∈ {0, 1}l we define v[s] to be
(vi1 , . . . ,viw), where i1 < · · · < iw are the indices of nonzero bits of s. We also recall the notation eli, 0l,
and Esk(b; r), defined at the beginning of Section 4. To ease notation though, we shall write ei to mean eli.

We introduce a series of hybrid games and show no adversary can distinguish between any two adjacent
games. The first game corresponds to the real-encryption n-circular-security game, while the last game is
the one where we always encrypt 0. Letting xi be the adversary’s output in Game-i, we write Game-i ≡c
Game-j to indicate |Pr[xi = 1]− Pr[xj = 1]| = negl. In all these games, whenever we write sk ← G(1λ) we
mean that sk is chosen freshly, so we keep using the same variable sk inside each game whenever we are
producing a new key.
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Game-0: real encryption. This game provides the adversary with a view that is identical to that under the
projection security game in which the challenge bit is zero. The identical view is produced by using the
algorithm Hom to produce the public keys and to reply to encryption queries. (See the first paragraph
following Construction 1.) Generate s1, . . . , sn ← {0, 1}l and for 1 ≤ i ≤ n, ri = (ri1, . . . , ril) ← Rlλ. (Here
si will be the secret key of the ith “user” and ri will be used to produce the public key for the ith user.) For
each h, where 1 ≤ h ≤ n, do:

– the adversary is given public key (c, Hom(c[sh])), where c = Esk(0l, rh), for sk ← G(1λ). Recall that
Esk(0l, rh) = (Esk(0; rh1), . . . , Esk(0; rhl)).

– In response to Enc(pubh, secreti, j), we return (c′, Hom(c′[sh], Esk′(sij ; 0))), where sk′ ← G(1λ), c′ =
Esk′(0

l, rh) = (Esk′(0; rh1), . . . , Esk′(0; rhl)). Recall by Proposition 1 that this provides an identical
encryption view. Again we stress that sk′ is chosen freshly for each query.

– In response to Enc(pubh, secreti, j̄), we return (c′′, Hom(c′′[sh], Esk′′(s̄ij ; 0))), where sk′′ ← G(1λ), c′′ =
Esk′′(0

l, rh) = (Esk′′(0; rh1), . . . , Esk′(0; rhl)).

Game-1: In this game we handle key generation exactly as in Game-0, but we reply to Enc queries in the
following way. For each h, where 1 ≤ h ≤ n,

– in response to Enc(pubh, secreti, j) we return (c′, Hom(c′[sh], Esk′(sij ; 0))), where sk′ ← G(1λ) and
c′ = Esk′(ej ; rh).

– in response to Enc(pubh, secreti, j̄) we return (c′′, Hom(c′′[sh], Esk′′(s̄ij ; 0))), where sk′′ ← G(1λ) and
c′′ = Esk′′(ej ; rh).

We now wish to use Lemma 3 to prove Game-0 ≡cGame-1. First, note that in both games the hth pub-
lic key is sampled as (c, Hom(c[sh])), for c = Esk(0l; rh). Moreover, in both games, the response to
Enc(pubh, secreti, j) is formed as (c′, Hom(c′[sh], Esk′(sij ; 0))) with the only difference that in Game-0,
c′ are bitwise encryptions of 0l under the randomness values (rh1, . . . , rhl) and under a fresh sk′, while in
Game-1, c′ are bitwise encryptions of ej under the randomness values (rh1, . . . , rhl) and under a fresh sk′.
Similarly, in both games, the response to Enc(pubh, secreti, j̄) is formed as (c′′, Hom(c′′[sh], Esk′′(s̄ij ; 0)))
with the only difference that in Game-0, c′′ are bitwise encryptions of 0l under the randomness values
(rh1, . . . , rhl) and under a fresh sk′′, while in Game-1, c′′ are bitwise encryptions of ej under the randomness
values (rh1, . . . , rhl) and under a fresh sk′′. Finally, note that if we have all of s1, . . . , sn and if we get c′

from an oracle, knowing that c′ corresponds either to Esk′(0
l, rh) or to Esk′(ej , rh), then we can compute

Hom(c′[sh], Esk′(sij ; 0)) even without knowing the underlying sk′; this follows by the degenerate PR-additive
homomorphism of the private-key scheme. A similar argument holds for c′′.

From the discussion above we can see how to reduce a distinguisher between Game-0 and Game-1 to an
adversary A against the (l, n)-RS security of the private-key scheme E : A samples sh, for each 1 ≤ h ≤ n
by itself; it generates the hth public key by querying its RS-oracle on (h,0l) to get c and then outputting
(c, Hom(c[sh])); it responds to an Enc(pubh, secreti, j) query by calling its RS-oracle on (h, ej) to get c′

and forming the output as explained above; and it responds to an Enc(pubh, secreti, j̄) in a similar manner.
Finally, notice that under Game-1, for each 1 ≤ h ≤ n, the distributions of the public key, the response

to Enc(pubh, secreti, j) and the response to Enc(pubh, secreti, j̄) are indeed identical to:

(Esk(0l; rh), Esk(0; rh,l+1)) public key

(Esk′(e
l
j ; rh), Esk′(sij + shj ; rh,l+1)) response to Enc(pubh, secreti, j)

(Esk′′(e
l
j ; rh), Esk′′(s̄ij + shj ; rh,l+1)) response to Enc(pubh, secreti, j̄),

(4)

where rh,l+1 = sh · rh.

Game-2: In this game we generate the distributions as in Equation 4, but with a small deviation. For
1 ≤ h ≤ n we generate sh ← {0, 1}l and rh ← Rlλ, and set rh,l+1 = sh · rh. Moreover, for 1 ≤ i ≤ n we set
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di = s1 + si, i.e., bitwise binary addition. We form the hth public key and responses to Enc(pubh, secreti, j)
and to Enc(pubh, secreti, j̄) queries as follows:

(Esk(0l; rh), Esk(0; rh,l+1)) public key

(Esk′(e
l
j ; rh), Esk′(dij + dhj ; rh,l+1)) response to Enc(pubh, secreti, j)

(Esk′′(e
l
j ; rh), Esk′′(dij + dhj ; rh,l+1)) response to Enc(pubh, secreti, j̄),

(5)

Now since sij+shj = s1j+sij+s1j+shj = dij+dhj and s̄ij+shj = s1j+s̄ij+s1j+shj = d̄ij+dhj = dij + dhj ,
and since the adversarial view under Game-1 is as in Equation 4, we get that Game-1 and Game-2 provide
identically-distributed adversarial views. Finally, note that by having only the tuple

D = (r1, . . . , rn, r1,l+1, . . . , rn,l+1,d2, . . . ,dn), (6)

(and in particular without having the individual s1, . . . , sn) we can perfectly simulate all the distributions
given in Equation 5, by sampling sk, sk′ and sk′′ by ourselves. Thus, the whole view of an adversary in this
game can be simulated by only having D, through a simulation algorithm Sim().

Game-3: This game proceeds exactly as in Game-2, to form the view as Sim(D), except that we generate
D (given in Equation 6) differently from Game-2 by sampling rh,l+1, for all 1 ≤ h ≤ n, independently of
rh; the rest of D remains unchanged. Now we show that the following two distributions are statistically
indistinguishable, which by the last statement of Game-2, it implies that Game-2 ≡s Game-3;

D = (r1, . . . , rn, s1 · r1, . . . , sn · rn,d2, . . . ,dn),

D′ = (r1, . . . , rn, r1, . . . , rn,d2, . . . ,dn), (7)

where r1, . . . , rn ← Rlλ, s1, . . . , sn ← {0, 1}l, and, for 2 ≤ i ≤ n, di = s1 + si. To show Equation 7,
observe that

H̃∞(s1, s2, . . . , sn | d2, . . . ,dn) ≥ H∞(s1, s2 . . . sn)− (n− 1)l

= l = n log |Rλ|+ ω(log λ).

Now considering the fact that

Ext((s1, . . . , sn), (r1, . . . , rn)) =def (s1 · r1, . . . , sn · rn)

is a family of universal hash functions, by applying Lemma (2) we obtain that the statistical distance between

D and D′ is at most
√

1/2ω(log λ), which is negligible.
Note that under this game for 1 ≤ h ≤ n, the distributions of the public key, the response to Enc(pubh, secreti, j)

and the response to Enc(pubh, secreti, j̄) are indeed identical to:

(Esk(0l; rh), Esk(0; rh,l+1)) public key

(Esk′(e
l
j ; rh), Esk′(dij + dhj ; rh,l+1)) response to Enc(pubh, secreti, j)

(Esk′′(e
l
j ; rh), Esk′′(dij + dhj ; rh,l+1)) response to Enc(pubh, secreti, j̄),

(8)

where r1, . . . , rh ← Rlλ, r1,l+1, . . . , rn,l+1 ← Rλ, s1, . . . , sn ← {0, 1}l and di = si + s1, for 1 ≤ i ≤ l. Note
that si’s, except in forming di’s, play no other role in the distributions above.

Game-4: This game proceeds as in Game-3 (i.e., Equation 8), but we reply to all queries as “encryp-
tions” of zero. That is, generate r1, . . . , rn ← Rnλ, and for 1 ≤ h ≤ n, form the hth public key as
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(Esk(0l; rh), Esk(0; rh,l+1)), where rh,l+1 is chosen independently of rh, and respond to every query under
this public key as (Esk′(0

l; rh), Esk′(0; rh,l+1)). (Note that sk′’s is chosen freshly for each query.)
Since rh,l+1 for every h is sampled independently of rh, again we can easily see that any adversary that

can distinguish between Game-3 and Game-4 can be reduced to break the (l+ 1, n)-RS security of E (which
is a contradiction by Lemma (3)), implying Game-3 ≡c Game-4. Finally, note that the entire view of an
adversary under this game can be simulated by having only (r1, r1,l+1, . . . , rn, rn,l+1).

Game-5: This game runs exactly like Game-4, except that for 1 ≤ h ≤ n we now define rh,l+1 = sh · rh.
For every h by the Leftover Hash Lemma (in fact a special case of Lemma 2) we have that (rh, sh · rh) is
statistically indistinguishable from a tuple chosen uniformly at random from Rl+1

λ . Since n is poly-bounded,
we obtain that Game-4 ≡s Game-5. The view of the adversary under this game is exactly that under the
n-projection security game when the challenge bit is one. This concludes the proof. ut

Remark 1. For simplicity, we presented Construction 1, which always produces a bit-encryption scheme,
only for the case that the base scheme is also a bit-encryption one. It is easy to modify Construction 1,
so it works (i.e., produces a bit-encryption scheme) even if the original scheme is not bit-encryption. To
do this, we just need to fix a nonzero m ∈ Mλ and change the encryption algorithm of Construction 1 by
replacing b with b · m. As for security, we need to change the RS game, so that the queried vectors can
now be of the form (0, . . . , 0,−m, 0, . . . , 0), (0, . . . , 0,m, 0, . . . , 0) or (0, . . . ,m, 0, . . . , 0,m). Now the proof
of Lemma 3 follows with straightforward changes. As for the the proof of Theorem 1 (for simplicity we
discuss changes with respect to the proof of Theorem 1, rather than the more complex proof of Theorem
2), we change Game-1 (i.e., the simulated encryption game), so that (i) in response to enc-secret(u) we
return (c′1, . . . , c

′
l, c
′
l+1), where c′l+1 = Hom(c′h1

, . . . , c′hw
, Esk(su · m; 0)), in which c′i = Esk(0; ri), for any

1 ≤ i 6= u ≤ l and c′u = Esk(−m; ru); also, in response to enc-secret(ū), we return (c′1, . . . , c
′
l, c
′
l+1), where

c′l+1 = Hom(c′h1
, . . . , c′hw

, Esk(s̄u ·m; 0)), where c′i = Esk(0; ri), for any 1 ≤ i 6= u ≤ l and c′u = Esk(m; ru).
Now Game-0 ≡c Game-1 follows by the new version of Lemma 3. Moreover, in Game-1, the view of an
adversary against enc-secret(u) and enc-secret(ū) would be, respectively,

(Esk′(0; r1), . . . , Esk′(0; ri−1), Esk′(−m; ri), Esk′(0; ri+1), . . . , Esk′(0; rl), Esk′(0; rl+1)) ,

(Esk′(0; r1), . . . , Esk′(0; ri−1), Esk′(m; ri), Esk′(0; ri+1), . . . , Esk′(0; rl), Esk′(m; rl+1)) ,

and since all the plaintexts encrypted under sk′’s are independent of s, the rest of the proof follows as
that of Theorem 1.

5 Proof of leakage resilience

The following theorem shows the leakage resilience property of our scheme.

Theorem 3. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption scheme providing
degenerate homomorphism and reproducibility. Then, the scheme built in Construction 1 is (l− log |Rλ|−u)-
length leakage resilient, for any u ∈ ω(log λ). Moreover, by taking l = ω(log |Rλ|+u), the constructed scheme
achieves a (1− o(1)) resilience rate.

Proof. We first show the second statement of the theorem, assuming the first statement is true. Fix u ∈
ω(log λ). We know that the scheme provides (l− log |Rλ| − u)-length leakage resilience, and so its resilience
rate is

ω (log |Rλ|+ u)− log |Rλ| − u
ω(log |Rλ|+ u)

= 1− log |Rλ|+ u

ω(log |Rλ|+ u)
= 1− o(1). (9)

To prove the first statement, first we assume without loss of generality that the adversary always outputs
(0, 1) as its challenge query, since otherwise the challenge ciphertext can be simulated by the adversary itself.
We prove the first statement through a series of games, where the first game matches the actual leakage
game (under a fixed challenge bit b), and in the last game the view of the adversary is independent of the
challenge bit b. We conclude the proof by showing that the views of the adversary under any two adjacent
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games under the same b ∈ {0, 1} are computationally indistinguishable. Thus, fix b ∈ {0, 1} for the rest of
the proof. In all game below, we let f be the leakage query of the adversary.

Game-0: In this game we reply to the adversary’s queries exactly as in the actual leakage game, where the chal-
lenge bit is b. Thus, at the end of the game, the view of the adversary is (c1, . . . , cl, cl+1, f(s), c′1, . . . , c

′
l, c
′
l+1),

produced as follows: s← {0, 1}l, r = (r1, . . . , rl)← Rlλ, rl+1 = s·r, sk ← G(1λ), sk′ ← G(1λ), ci = Esk(0; ri),
for 1 ≤ i ≤ l + 1, c′j = Esk′(0; rj), for 1 ≤ j ≤ l, and c′l+1 = Esk′(b; rl+1).

Notice that the view of the adversary may identically be produced as

(c1, . . . , cl, c
′′
l+1, f(s), c′1, . . . , c

′
l, c
′′′
l+1), (10)

where all ci’s and c′i’s are produced as above, and c′′l+1 = Hom(ch1
, . . . , chw

) and c′′′l+1 = Hom(c′h1
, . . . , c′hw

, Esk′(b; 0))
with (h1, . . . , hw) being the indices of non-zero bits of s.

Game-1. In this game we generate the secret key, the public key and the response to the leakage query exactly
as in Game-0, but we reply to the encryption challenge query in a special way. Formally, choose s← {0, 1}l,
r = (r1, . . . , rl)← Rlλ, let (h1, . . . , hw) be the indices of non-zero bits of s, and

– form the public key as (c1, . . . , cl, c
′′
l+1), where sk ← G(1λ), ci = Esk(0; ri), for 1 ≤ i ≤ l, and c′′l+1 =

Hom(ch1 , . . . , chw);
– reply to the the leakage query f with f(s);
– return (c′1, . . . , c

′
l, c
′′′
l+1) as the challenge ciphertext, where b = (b1, . . . , bl) ← {0, 1}l, sk′ ← G(1λ),

c′j = Esk′(bj ; rj), for 1 ≤ j ≤ l, and

c′′′l+1 = Hom(c′h1
, . . . , c′hw

, Esk′(b; 0)).

To show Game-0 ≡G Game-1, note that both games can be simulated in exactly the same way by only
having D = (c1, . . . , cl, c

′
1, . . . , c

′
l) (see Equation 10); this can be done by sampling s by ourselves and forming

c′′l+1 and c′′′l+1 from, respectively, (c1, . . . , cl) and (c′1, . . . , c
′
l) by using the degenerate homomorphic property

of E . Further, since E is reproducible, in both games the distribution of (c1, . . . , cl) can be generated from
(c′1, . . . , c

′
l) alone. Now since the distributions produced for (c′1, . . . , c

′
l) under the two games are computa-

tionally indistinguishable, which is followed by semantic security (recall that in Game-0, c′i’s are encryptions
of zeros and in Game-1, they are encryptions of the bits of b), we get that the distributions produced for D
under the two games are computationally indistinguishable. Thus, we conclude Game-0 ≡G Game-1. Notice
that, under Game-1, the view of the adversary is(

Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r), f(s),

Esk′(b1; r1), . . . , Esk′(bl; rl), Esk′(bl+1 + b; s · r)
)
, (11)

where bl+1 = s · b.

Game-2. This game runs exactly as in Game-1 (Equation 11), except that now we generate bl+1 ← {0, 1},
i.e., independent of b = (b1, . . . , bl). First, notice that both Game-1 and Game-2 can be simulated in exactly
the same manner by only having

Dis = (r, s · r,b, bl+1, f(s)). (12)

The only difference between Dis from Game-1 to Game-2 is that under Game-1 we set bl+1 = s · b, while
in Game-2 we sample bl+1 freshly; the other parts of Dis are generated in the same way under both games:
that is, s ← {0, 1}l and r = (r1, . . . , rl) ← Rlλ. Thus, to show the indistinguishability between these two
games, it suffices to show that the distributions of Dis under the two games are indistinguishable. We have,

H̃∞(s|r, s · r, f(s)) ≥ H̃∞(s|r, f(s))− log|Rλ|
= H̃∞(s|f(s))− log|Rλ|
≥ H∞(s)− l + log |Rλ|+ u− log|Rλ|
= u = ω(log λ).
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Now, since r is independent of b, and also that f is independent of b (since f is queried before seeing the
challenge ciphertext) we may use Lemma 2 to deduce that the distribution of Dis under Game-1 and Game-2
are statistically indistinguishable. To apply Lemma 2, take D = s, S = b and X = (r, s ·r, f(s)). Notice that
Game-2 produces the same views for the adversary under b = 0 and b = 1 (since bl+1 is chosen uniformly at
random and hides the value of b), and hence the proof is complete. ut

6 Realizations

We show how to realize our base encryption primitive under various number-theoretic assumptions. In
Subsection 6.1 we formulate an abstraction, called homomorphic weak pseudorandom functions, and use
them to realize our encryption primitive. Then in Subsection 6.2 we give realizations of such pseudorandom
functions using homomorphic hash-proof systems. Finally, in Subsection 6.3 we show how to realize our
encryption primitive under subgroup indistinguishably.

6.1 Realizations from homomorphic weak PRFs

We introduce the notion of homomorphic weak pseudorandom functions (PRFs), which is a homomorphic
version of the notion of weak PRFs, introduced by Naor and Reingold [34].

Let K = {Kλ}λ∈N, D = {Dλ}λ∈N and R = {Rλ}λ∈N be ensembles of sets. For each security parameter
λ and each k ∈ Kλ we have an associated function fk : Dλ → Rλ. We let Fλ = {fk | k ∈ Kλ} and
F = {Fλ}λ∈N. The following is the definition of weak pseudorandomness for a function family.

Definition 3. [34] We call F a weak pseudorandom function family if for any polynomial function p = p(λ),
it holds that DS1 ≡c DS2, where

DS1 ≡ (d1, r1), . . . , (dp, rp)

DS2 ≡ (d1, fk(d1)), . . . , (dp, fk(dp)),

for k ← Kλ, d1, . . . , dp ← Dλ and r1, . . . , rp ← Rλ.4

Note that a PRF in the standard sense is trivially a weak PRF.

Let F be as above. We call F homomorphic if for every λ ∈ N, both Dλ and Rλ are groups, and that for
every k ∈ Kλ, the function fk is a homomorphism from Dλ to Rλ.

Now we show that the standard method of constructing CPA-secure private-key encryption from a PRF,
when applied to a homomorphic weak PRF, results in the kind of encryption primitive we need.

Lemma 4. Assuming the existence of a homomorphic weak pseudorandom function family, there exists a
CPA-secure private-key encryption scheme which is degenerately homomorphic and reproducible.

Proof. Let F be a homomorphic weak PRF with the associated set parameters given above (i.e., Kλ, etc.).
Construct E = (G,E,Dec), with plaintext space Rλ and randomness spaces Dλ as follows: G(1λ) returns
k ← Kλ; Ek(p1; d1) returns (d1, fk(d1)+p1); and Deck(d, r) returns r−fk(d). CPA-security, homomorphism
and reproducibility of E are clear. Finally, note that since fk(0) = 0, we have Ek(p; 0) = (0, p), which verifies
the degenerate case of homomorphism. ut

4 The domain and the key spaces may themselves come with an associated distribution, but we leave this point
implicit for simplicity.
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6.2 Homomorphic hash-proof systems to homomorphic weak PRFs

We first review the notion of a homomorphic hash-proof system (HHPS), originally defined in [13]. Then we
realize homomorphic weak PRFs using an HHPS.

A HHPS HHPS = (Param,Priv,Pub) is described as follows. The randomized setup algorithm Param(·)
takes as input a security parameter 1λ and outputs public parameters HP = (C,Cv,W,K,SK,PK, µ : SK →
PK,Λ : SK × C → K), where, C is called the set of ciphertexts, Cv ⊆ C the set of valid ciphertexts, W the
set of witnesses, K the set of plaintexts, SK the set of secret keys and PK the set of public keys. We should
point out that all these aforementioned sets are indeed descriptions of their actual sets. Each c ∈ Cv admits
a witness w ∈W of its membership in Cv, meaning that there exists a PPT relation R such that

c ∈ Cv ⇔ ∃w ∈W s.t. R(c,w) = 1.

We assume it is efficiently possible to generate a uniform element from Cv along with a corresponding witness,
and also to sample uniformly from SK and K.

The efficient private evaluation algorithm Priv takes as input sk ∈ SK and c ∈ C, and deterministically
computes Privsk(c) = Λ(sk, c). The efficient public evaluation algorithm Pub, takes as input pk = µ(sk), c ∈ Cv
and a witness w for c, and deterministically computes Pubpk(c,wc) = Λ(sk, c). Finally, we require HHPS to
satisfy the following properties.

Subset membership: For every adversary A, given all the public parameters of the scheme, it holds that

|Pr [A(cv) = 1]− Pr [A(cinv) = 1]| = negl(λ),

where, cv ← Cv, cinv ← C \ Cv and the probabilities are computed over the random coins of the adversary
and over the choices of cv and cinv, and also over the choices of C and Cv, which are taken from the output
of Param(1λ).

Smoothness: It holds that ∆ [(pk,Privsk(c), c) , (pk, k, c)] = negl(λ), where c← C \Cv, k← K, sk← SK and
pk = µ(sk).

Homomorphism: (C,+), (Cv,+) and (K,+) admit groups (with efficient group operations), and, for every
sk, it holds that Λ(sk, ·) constitutes a homomorphism, i.e., for every sk ∈ SK and c1, c2 ∈ C, it holds that,

Λ(sk, c1) + Λ(sk, c2) = Λ(sk, c1 + c2).
5

We now show how to construct a homomorphic weak PRF from a HHPS.

Theorem 4. Assuming the existence of a HHPS, there exists a homomorphic weak PRF.

Proof. Assume that HHPS = (Param,Priv,Pub) is a HHPS. Let

HP = (C,Cv,W,K,SK,PK, µ : SK→ PK,Λ : SK× C→ K)

be the public parameters of HHPS produced by running Param. The tuple HP will also be the public pa-
rameters of our PRF, F , constructed as follows. We set Kλ = SK, Dλ = Cv and Rλ = K, and define
fsk(c) = Λsk(c). We have that both Cv and K admit groups and that fsk(c1) + fsk(c2) = fsk(c1 + c2), which
implies homomorphism for PRF F . To prove weak pseudorandomness for F we need to show that, for any
p = p(λ), it holds that DS ≡c DS ′, where

DS = (c1,Λsk(c1)), . . . , (cp,Λsk(cp))

DS ′ = (c1, k1), . . . , (cp, kp),

5 We remark that in many settings the homomorphism of Cv is implied by that of C: Especially in the standard
setting, where the set of valid ciphertexts is defined as those, for which the value of Λ(sk, ·), for any sk is determined
solely from the ciphertexts itself and µ(sk). However, we put it as a separate condition just to be as general as
possible.
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for c1, . . . , cp ← Cv, k1, . . . , kp ← K and sk ← SK. To this end, for 0 ≤ i ≤ p, we define the hybrid DSi as
follows.

DSi = ((c1,Λsk(c1)), . . . , (ci,Λsk(ci)), (ci+1, ki+1), . . . , (cp, kp)) , (13)

where c1, . . . , cp, k1, . . . , kp and sk are sampled as above. Note that DS ′ = DS0 and DS = DSp. Now to
conclude the proof for each 0i we show DSi ≡c DSi+1.

Note that we have (pk, ci+1,Λsk(ci+1)) ≡c (pk, ci+1, ki+1). This follows by combining the subset membership
and smoothness properties of HHPS. Now we claim that DSi = DSi+1 follows from the fact that was just
given: to see this, given (pk, ci+1, ∗), where ∗ either corresponds to Λsk(ci+1) or to ki+1, we form

((c1,Pubpk(c1,w1)) , . . . , (ci,Pubpk(ci,wi)) , (ci+1, ∗) , (ci+2, ki+2) , . . . , (cp, kp)) , (14)

where, for 1 ≤ j ≤ i, we sample cj ← Cv along with a witness wj , and sample ci+2, . . . , cp ← Cv and
ki+2, . . . , kp ← K. The distribution given in Equation 14 would either correspond to DSi or to DSi+1. ut

6.3 Realization under subgroup indistinguishability assumptions

For the sake of clarity, in this section we give an instantiation of our encryption primitive based only
on the quadratic residuosity assumption, which is a special case of the subgroup indistinguishability (SG)
assumption. We leave the general SG-based instantiation to the full version [24].

We first start by reviewing the quadratic residuosity assumption. For an RSA number N (i.e., N = pq,
where p and q are distinct odd primes) we use QRN to denote the subset of Z∗N consisting of quadratic
residues modulo N , and let JN denote the set of elements in Z∗N with Jacobi symbol one. Finally, we define
QNRN = JN \ QRN .

Assume that RSAGen(1λ) is a PPT algorithm that on input 1λ generates a Blum integer N , i.e., N = pq
with p and q being distinct primes satisfying p, q ≡ 3 (mod 4). We stress here that we do not need RSAGen(1λ)
to output the factorization of N as well. We say that the quadratic residuosity (QR) problem is hard under
RSAGen if {N,U(QRN )}λ∈N is computationally indistinguishable from {N,U(QNRN )}λ∈N, where N is
generated according to RSAGen(1λ).

Theorem 5. Assuming the quadratic residuosity assumption holds for RSAGen there exists a CPA-secure
private-key bit encrypiton scheme that is both reproducible and homomorphic.

Proof. We construct the private-key bit encryption scheme (G,E,Dec) as follows. The public parameter of
the scheme is N ← RSAGen(1λ), and the plaintext group and the randomness group of the scheme are, re-
spectively, Z2 and QRN . The components of the encryption scheme are defined as follows. (All computations,
if not otherwise stated, are done modulo N .)

– G(1λ): Choose the secret key as x← ZN2 ;
– Ex(b; g): return (g, (−1)bgx);
– Decx(g1, g2): return b ∈ {0, 1} if g2 = (−1)bgx1 .

We first verify the syntactic properties required of the scheme. Notice that given an encryption (g, (−1)bgx1)
(of an arbitrary bit b) under x1, we can efficiently obtain the encryption of an arbitrary bit b1 under the
same randomness, g, relative to a secret key x2 by simply outputting (g, (−1)b1gx2). This verifies the re-
producibility property. As for homomorphism, from (g1, (−1)b1gx1 ) and (g2, (−1)b2gx2 ), we can easily derive
(g1g2, (−1)b1+b2(g1g2)x), which is the encryption of b1 + b2 under randomness g1g2 (relative to the same
unknown secret key x). Note that as the randomness group here is multiplicative, we will denote the identity
element by 1. We then have that Ex(b; 1) = (1, (−1)b), independently of x. This verifies the degenerate case
of homomorphism.

To show that the above scheme is CPA-secure, we need to show that for any p = p(λ) and any sequence
of bits (b1, . . . , bp), it holds that DS0 ≡c DS1, where

DS0 =

[
g1 g2 . . . gp

(−1)b1gx1 (−1)b2gx2 . . . (−1)bpgxp

]
, and (15)
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DS1 =

[
g1 g2 . . . gp
gx1 gx2 . . . gxp

]
, (16)

for g1, . . . , gp ← QRN and x ← ZN2 . The proof of the above indistinguishability is standard. (See, e.g.,
[13,29] for a simple proof and also [9, Lemma 5.1] for a stronger statement.) ut

7 Extensions

In this section we discuss some extensions and complementary results. In Subsection 7.1 we show that our
constructed scheme provides auxiliary-input security. In Subsection 7.2 we show that an existing KDM-
amplification construction preserves leakage resilience.

7.1 Auxiliary-input security

We first give the definitions related to auxiliary-input security.

Background. Let E = (G,E,Dec) be an encryption scheme with public-key, secret-key and message spaces,
respectively, PKλ, SKλ and Mλ. Throughout this Section we use f to refer to a function with domain
(PKλ,SKλ) and range SKλ. We follow the notation of [9]. For E = (G,E,Dec) we define f -weak inversion
and f -strong inversion as follows. We say that f is ε-strongly-uninvertible under E if for any adversary A,
the probability that A outputs sk when given (f(pk, sk), pk) is at most ε(λ), where the probability is taken
over A’s random coins and (pk, sk)← G(1λ). Also, we say that f is ε-weakly-uninvertible under E if for any
adversary A, the probability that A outputs sk when given f(pk, sk) is at most ε(λ), where the probability
is taken over A’s random coins and (pk, sk) ← G(1λ). Let Auxstε be the class of all ε-strongly-uninvertible
functions and Auxwkε be the class of all ε-weakly-uninvertible functions. Note that Auxstε ⊆ Auxwkε .

We say that E is f -auxiliary-input secure if any adversary A has a negligible advantage in the following
game: A is given (pk, f(pk, sk)), where (pk, sk) ← G(1λ); A submits (m0,m1) ∈ M2

λ; A receives Epk(mb),
for b← {0, 1}; finally, A outputs bit b′, and achieves the following advantage

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

We say that E is ε-weakly-auxiliary-input secure (resp., ε-strongly-auxiliary-input secure) if E is f -auxiliary-
input secure for any f ∈ Auxstε (resp., Auxwkε ). We say E is auxiliary-input secure against subexponentially-
hard functions if for some c > 0, E is 1/(2λ

c

)-strongly-auxiliary-input secure.
We now show that the encryption scheme produced by Construction 1 provides auxiliary-input security.

We first consider weak-auxiliary-input security and then discuss the extension to the strong-auxiliary case.

Theorem 6. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption scheme providing
degenerate homomorphism and reproducibility. Let E ′ be the scheme constructed from E using Construction 1.
For any poly-bounded l = l(λ) and negligible function ε = ε(λ), it holds that E ′ is ε-weakly-auxiliary-input
secure.6

The proof of Theorem 6 follows similarly to that of Theorem 3, except for one step, where we replace
real-randomness extraction with pseudorandomness extraction. We first give the following theorem, due to
Goldreich and Levin [22], where we follow the presentation of [14], adapted to the binary field.

Theorem 7. ([22]) Assume that l = l(λ) and h : {0, 1}l → {0, 1}∗ is a (possibly randomized) function and
D is a distinguisher, where

|Pr[D(b, b, h(s)) = 1]− Pr[D(b, b′, h(s)) = 1]| = δ(l), (17)

6 In order for statement to be useful, it should hold that 1
2l
≤ ε, because otherwise the statement will be vacuously

true, as Auxstε = Auxwkε = ∅.
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where s,b← {0, 1}l, b← {0, 1} and b′ = s · b. Then there exists an inverter A, for which it holds that

Pr[A(y) = s] ∈ Ω(
δ3

l
), (18)

where s← {0, 1}l and y ← h(s).

We now give the proof of Theorem 6, using ideas from [14].

Proof. The proof follows by introducing Game-0, Game-1 and Game-2 exactly as in the proof of Theorem 3
(except that now the function f is applied to both the secret key and the public key), and deriving Game-
0 ≡G Game-1 exactly as in there. To prove Game-1 ≡G Game-2, however, we proceed as below. To prove
Game-1 ≡G Game-2, it suffices to show that

(b1, . . . , bl, bl+1,f(PK, s),

PK︷ ︸︸ ︷
Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) ≡c (19)

(b1, . . . , bl, b
′
l+1, f(PK, s), Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)︸ ︷︷ ︸

PK

),

where s ← {0, 1}l, b1, . . . , bl, bl+1 ← {0, 1}, b′l+1 = s · (b1, . . . , bl), r = (r1, . . . , rl) ← Rlλ, rl+1 = s · r and

sk ← G(1λ). The fact that proving Equation 19 suffices to conclude Game-1 ≡G Game-2 can easily be verified
by considering the descriptions of Game-1 and Game-2, taking into account the fact that the private-key
scheme is reproducible.

By the assumption of the theorem, we know that it is ε-hard to recover s from (PK, f(PK, s)). Now
Equation 19 follows from Theorem 7, by defining the randomized function h(s) = (PK, f(PK, s)), where
all the variables are sampled as above. Formally, if there is an adversary that can distinguish between the
distributions in Equation 19 with a non-negligible probability, then there exists an adversary that, with
a non-negligible probability, recovers s from h(s) = (PK, f(PK, s)), which is a contradiction to the first
sentence of this paragraph.

Remark 2. As in previous work [14,9] we can prove strong auxiliary-input security for E ′ with respect to
subexponentially-hard functions by working with a modification of Construction 1, letting (c1, . . . , cl) =
(Esk(0; r1), . . . , Esk(0; rl)) be the public parameters of the scheme, and letting the public key be computed,
under secret key s, as Hom(ci1 , . . . , ciw), where (i1, . . . , iw) are the indices of non-zero bits of s. Now since
a public key under the new scheme has at most l′ = |Rλ| different values we can obtain ε

l′ -strong auxiliary-
input security from ε-weak-auxiliary-input security. This last step follows since, for any scheme with l′

different public keys, if recovering sk from f(pk, sk) is ε/l′-hard (i.e., succeeds with a probability at most
ε/l′), recovering sk from (f(pk, sk), pk) is ε-hard. Finally, we mention that the proof of multiple-key circular
security (Theorem 2) extends to the setting above which contains public parameters.

7.2 KDM amplification

We show that Applebaum’s KDM-amplification method [3], which, informally speaking, shows that projec-
tion security is sufficient for obtaining “rich-KDM” security, preserves both types of leakage resilience. For
simplicity, we focus on the case of bit encryption and 1-KDM security.

As notation, we identify an efficiently computable function f = {fλ : {0, 1}l(λ) 7→ {0, 1}}λ∈N with an
ensemble of circuits {cλ}λ∈N, and say that f has size p = p(λ) if, for any λ, the circuit cλ has size at most
p. We say an ensemble of sets of functions F = {Fλ}λ∈N is p-bounded if for every λ and every f ∈ Fλ, f has
size p. The following theorem is a special case of the results of [3].

Theorem 8. ([3]) Assume that F = {Fλ}λ is a fixed p-bounded ensemble of sets of functions and E =
(G,E,Dec) is a 1-projection-secure public-key encryption scheme. The scheme E ′ = (G,E′, D′), constructed
below, is F -KDM(1) secure: E′pk(b) = Epk(Sim(b)) and D′sk(C) = Rec(Dsk(C)). Here Sim is a randomized
function and Rec is a deterministic function, both of which are constructed based on F , through the procedure
of randomized encoding of functions. The details of Sim and Rec are not important for our analysis, bu we
refer the reader to [3] for further details.

23



Theorem 9. Let E and E ′ be as in Theorem 8. Then assuming that E is r-rate leakage resilient (resp.,
ε-auxiliary input secure) then E ′ is r-rate leakage resilient (resp., ε-auxiliary input secure).

Proof. This follows by noting that the constructed scheme E ′ has the same key generation algorithm as that
E . We consider the leakage resilience case; the proof for the auxiliary-input case is entirely the same. Assume
A′ wins against `-length leakage resilience of E ′; we build A that breaks the `-length leakage resilience of E ′
by simulating A′ as follows: A runs A′(pk), where pk is the public key that A receives; when A′ sub,its the
leakage query f , A makes the same query from its oracle and gives f(sk) to A′; finally, when A′ submits
(b0, b1), A submits (Sim(b0), Sim(b1)) to its oracle and gives the returned ciphertext to A′. Thus, A achieves
the same advantage as A′ does, and the proof is complete. ut

We now obtain the following corollary, by combining Theorems 2, 3, 6 and 9.

Corollary 1. Assuming the existence of a CPA-secure private-key scheme with reproducibility and degener-
ate homomorphism, for any poly p and any fixed p-bounded function family F , there exists a scheme E ′ which
(at the same time) (1) is F -KDM secure, (2) achieves a (1− o(1)) resilience rate, and (3) is auxiliary-input
secure against subexponentially-hard functions.
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A Appendix

A.1 A scheme that preserves the plaintext space

Construction 1 yields a bit-encryption scheme, even when the scheme we start with has a larger plaintext
space. We now describe a scheme that maintains the plaintext space of the original scheme, at the cost of
making two additional syntactic assumption, aimed at making the decryption algorithm efficient. We stress
here that these new conditions are required solely for the efficiency of decryption, and are not used anywhere
in security proofs. We show that all these assumptions are satisfied for encryptions schemes built based on
homomorphic weak PRFs.

Definition 4. Assume E = (G,E,Dec,Hom,Rep) is a private-key scheme that provides homomorphism
and reproducibility. We define two new conditions for the scheme.

1. There exists an efficient algorithm RandInv, such that for every sk ∈ G(1λ) and r ∈ Rλ, it holds that

RandInv(Esk(0; r)) = Esk(0;−r)).

2. For every sk ∈ G(1λ) and m ∈ Mλ, one can efficiently compute m from the encryption of m under the
identity element, Esk(m; 0).

We now give the plaintext-preserving construction.

Construction 2 (Plaintext-preserving encryption)

Assume that E = (G,E,Dec,Hom,Rep) satisfies the conditions in Definition 4.

– Key generation G′: Choose the secret key as s← {0, 1}l, and the public key as

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)) ,

where sk ← G(1λ), r1, . . . , rl ← Rλ and r = (r1, . . . , rl).

– Encryption E′: To encrypt plaintext m ∈ Mλ under public key (c1, . . . , cl, cl+1), do the following:
choose sk′ ← G(1λ) and return (c′1, . . . , c

′
l, c
′
l+1), where c′i = Rep(ci, 0, sk

′), for 1 ≤ i ≤ l, and c′l+1 =
Rep(cl+1,m, sk

′).

– Decryption D′: To decrypt (c′1, . . . , c
′
l, c
′
l+1) under secret key s, letting (i1, . . . , iw) be the indices of non-

zero bits of s, compute c′ = Hom(ci1 , . . . , ciw , c
′′
l+1), where c′′l+1 = RandInv(c′l+1). Now recover m from

c′, using Condition 2 of Definition 4.

In the following theorem we state the modified version of Theorems 2, 3 for the case where the initial
scheme is not bit encryption. The proofs are entirely similar (except for a few simple changes) to the bit-
encryption case, and so we omit them here.

Theorem 10. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key encryption scheme providing
degenerate-homomorphism and reproducibility. Moreover, assume that E provides the conditions in Definition
4 (aimed at having efficient decryption). Then, the scheme E ′ = (G′, E′, D′) built in Construction 2 has the
following properties.

– for any constant c > 1, by taking l = cn log (|Rλ|) + ω(log λ), E ′ is n-projection secure; and

– E ′ is (l − log |Rλ| − log |Mλ| − u)-length leakage resilient, for any u ∈ ω(log λ). Moreover, by taking
l = ω(log |Rλ|) + ω(log |Mλ|) + ω(log λ), the constructed scheme achieves a leakage rate of (1− o(1)).
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A.2 From subgroup indistinguishability to homomorphic reproducible encryption

We refer the reader to [9] for the definition of subgroup indistinguishability assumptions. We use the same
notation as in [9] and refer the reader to [9] for a detailed definition. .

Theorem 11. Assuming the subgroup indistinguishability assumption holds there exists a CPA-secure private-
key encryption scheme that is both reproducible and degenerate-homomorphic.

Proof. We construct the scheme as follows. The plaintext group and the randomness group of the scheme
are, respectively, GM and GL. The components of the encryption scheme are defined as follows.

– G(1λ): Choose the secret key as x← ZT 2 ;

– Ex(m; r): return (r,m · rx);

– Dx(g1, g2): return g2 · (gx1 )−1.

The proof of CPA security of the scheme follows from the facts proved in [9] (specifically Lemma B.1.).
Moreover, it is not hard to show that the scheme provides all the properties needed by Theorem 10; we omit
the details. ut
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