
Faster ECC over F2571

(feat. PMULL)

Hwajeong Seo1, Zhe Liu2, Yasuyuki Nogami3,
Jongseok Choi1, and Howon Kim1⋆

1 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,jschoi85,howonkim}@pusan.ac.kr

2 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu}@uni.lu

3 Okayama University,
Graduate School of Natural Science and Technology,

3-1-1, Tsushima-naka, Kita, Okayama, 700-8530, Japan
{yasuyuki.nogami}@okayama-u.ac.jp

Abstract. In this paper, we show efficient implementations of K-571
over ARMv8. We exploit an advanced 64-bit polynomial multiplication
(PMULL) supported by ARMv8 for high speed multiplication and squaring
operations. Particularly, multiplication is conducted with three terms of
asymptotically faster Karatsuba multiplication. Inversion is constructed
by using constant time Fermat-based inversion method. For high speed
scalar multiplication, 4TNAF method is exploited which takes an ad-
vantage of simple doubling method. Finally, our method conducts ECDH
over K-571 within 783,705 clock cycles. Our proposed method on ARMv8
improves the performance by a factor of 4.6 times than previous tech-
niques on ARMv7.

Keywords: Polynomial Multiplication, Binary Field Multiplication, ARMv8,
Elliptic Curve Cryptography, Karatsuba Multiplication, Koblitz Curve

1 Introduction

Since binary field multiplication is an important component of elliptic curve
cryptography and authenticated encryption, many researches have studied the
high speed implementation of binary field multiplication in software engineering.
The typical binary field multiplication over embedded processor may compute
the results with bitwise-xor and logical shift operations. The other more clever
approach exploits the look-up table by calculating the part of results in ad-
vance [9, 10, 13, 11, 12]. Recently, many modern embedded processors adopt the

⋆ Corresponding Author

advanced built-in binary field multiplication. ARMv7 supports VMULL.P8 oper-
ation which can compute eight 8-bit wise polynomial multiplications with single
instruction. In [3], author shows that efficient implementation techniques to con-
struct the 64-bit binary field multiplication with the VMULL.P8 operation. After
then multiple levels of Karatsuba multiplication is applied to several binary
field multiplications including F2251 , F2283 and F2571 . The most recent processor,
ARMv8, supports PMULL operation which can compute 64-bit wise polynomial
multiplication with single instruction. In [5], author shows that compact imple-
mentation of GCM based authenticated encryption with the PMULL operation.
Since the 64-bit multiplication is quite fast enough for 128-bit multiplication,
they avoid Karatsuba multiplication. The implementation of GCM achieved 11
times faster results than ARMv7. However, the paper does not show binary
field multiplication for long length operands. The long operands are required
to compute ECC based cryptography. In this paper, we present efficient imple-
mentations of K-571 curve on ARMv8. We exploit the new PMULL operation and
applied to various binary field arithmetics. Finally, our compact implementation
achieved 4.6 times faster than ARMv7 implementations.

The remainder of this paper is organized as follows. In Section 2, we recap the
K-571 Koblitz curve, target ARM processor and Karatsuba method. In Section
3, we propose the efficient binary field multiplication. In Section 4, we evaluate
the performance of proposed methods in terms of clock cycles. Finally, Section
5 concludes the paper.

2 Related Works

2.1 Koblitz curve F2571

The 571-bit Koblitz elliptic curve namely K-571 standardized in [4] and the finite
field F2m is defined by:

f(x) = x571 + x10 + x5 + x2 + 1

The curve E : y2 = xy = x3 + ax2 + b over F2m is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

b = 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000001

and group order is defined by:

n = 02000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138

B630D84B E5D63938 1E91DEB4 5CFE778F 637C1001

For a point P2 = (X2, Y2, 1) which is affine point and not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed with 8 multiplication, 5
squaring, one a2 and 9 addition operations as follows [1]:

A← Y1 + Y2 · Z2
1 , B ← X1 +X2 · Z1, C ← B · Z1,

Z3 ← C2, D ← X2 · Z3, X3 ← A2 + C · (A+B2 + a2 · C),

Y3 ← (D +X3) · (A · C · Z3) + (Y2 +X2) · Z2
3

The K-571 curve satisfies the Frobenius map τ : E(Fm
2)→ E(Fm

2) is defined
by:

τ(∞) =∞, τ(x, y) = (x2, y2)

The Frobenius map can be efficiently computed since squaring in Fm
2 is

relatively inexpensive.

2.2 ARM Processor

ARM processor is a well known family of RISC processor architectures intro-
duced in 1985 [14]. The most recent version, ARMv8, supports both 32-bit and
64-bit processing. The 32-bit ARMv8 architecture is known as AArch32, while
the 64-bit is known as AArch64. An ARMv8 processor can support both, al-
lowing the execution of 32-bit and 64-bit applications. ARM processors sup-
port a single-instruction multiple-data (SIMD) module called the NEON engine.
AArch32 features sixteen 32-bit registers (R0-R15) and sixteen 128-bit NEON
registers (Q0-Q15). The NEON registers can also be viewed as pairs of 64-bit
registers (D0-D32). For example, D0 and D1 are the lower and higher parts of Q0,
respectively. AArch64 features thirty two 64-bit registers (X0-X31) and thirty
two 128-bit NEON registers (V0-V31). The NEON registers can no longer be
viewed as pairs of 64-bit registers. From ARMv8, two polynomial dedicated in-
structions, PMULL and PMULL2, are available. Both of which carry out a single
64-bit multiplication. In both cases, the inputs are 128-bit registers. Their differ-
ence is that in PMULL the lower 64-bit parts of the inputs are used as operands,
while in PMULL2 the higher 64-bit parts are used [5].

2.3 Karatsuba Algorithm

Of finite field arithmetics, multiplication operation consumes massive body of
overheads. In order to accelerate the performance, we can exploit the Karatsuba

method. The basic idea of Karatsuba multiplication is to split a multiplication
of two s words operands into three multiplications of size s

2 , which is possible at
the expense of some additions [8]. Taking the multiplication of s words operands
A and B as an example, we represent the operands as A = AH · 2

s
2 + AL and

B = BH · 2
s
2 +BL. The multiplication P = A ·B can be computed according to

the Equation 1.

AH ·BH · 2s + [(AH +AL)(BH +BL)−AH ·BH −AL ·BL] · 2
s
2 +AL ·BL

Karatsuba method roughly executes 3s2

4 mul instructions to multiply two s-
word operands [6]. Recently, the refined Karatsuba’s algorithm from a Crypto
2009 paper by Bernstein [2] makes efficient use of the available registers to keep
the low overheads from load and store instructions.

3 Proposed Method

3.1 Polynomial Addition

The polynomial addition is executed with bit-wise exclusive-or operation. For
571-bit operand, nine times of 64-bit wise exclusive-or operations are required.
The detailed algorithm and source code are available in Algorithm 1 and 7,
respectively.

Algorithm 1 571-bit Polynomial Addition

Require: 571-bit Operands A and B.
Ensure: 571-bit Result C = A⊕B.
1: for i = 0 to 8 by 1 do
2: C[i] = A[i]⊕A[i]
3: end for

3.2 Polynomial Multiplication

Polynomial multiplication can be implemented in ordinary multiplication or
Karatsuba method. The Karatsuba multiplication is an efficient approach when
size of operand is long enough than processor’s word size. The efficient Karatsuba
multiplication techniques are highly relied on the number of terms where term is
calculated in following equation (operand size/word size). In case of our target
operand (571-bit), Karatsuba approach would be better choice due to its long
operands. Our method combines the both Karatsuba algorithm and a new mul-
tiplier based on PMULL and we named the method as Karatsuba/NEON/PMULL
multiplier (KNP). Since the 571-bit operands have 192-bit nine terms, straight-
forward Karatsuba implementation introduces the high complexity. We firstly

divide 571-bit operands into three 192-bit operands. For the 192-bit operand
multiplication, ordinary multiplication method is the more efficient than that
of Karatsuba algorithm. The comparison results are drawn in Table 1. Three
terms of Karatsuba multiplication reduces the number of multiplication from 9
to 6. However, additional 8 and 5 times of eor and ext instructions are required.
For this reason, ordinary multiplication is better choice for 192-bit polynomial
multiplication. The detailed 192-bit wise polynomial multiplication is available
in Algorithm 2. In Step 1 and 2, 192-bit operands (A and B) are loaded from
memory. By using option 8b, we loaded operands by sequential 64-bit format
to the 128-bit registers, which lefts higher 64-bit as an empty. In Step 3 ∼ 6,
four multiplications including (CL ← A[63:0] · B[63:0], TL ← A[63:0] · B[127:64],
CM ← A[63:0] · B[191:128] and Temp ← A[127:64] · B[63:0]) are conducted. After
then results (A[127:64] · B[63:0]) are added to TL. From Step 8 to 15, remaining
multiplications are conducted and then added to the intermediate results. After
then the results are aligned and accumulated to the intermediate results in Step
17 ∼ 22. Finally, total 384-bit results are stored into memory.

Table 1. Comparison of 192-bit polynomial multiplication methods

Instructions pmull eor movi ext

Ordinary 6 16 1 8
Karatsuba 9 7 1 3

After then we conduct the 571-bit multiplication with the 192-bit wise mul-
tiplication (refer Algorithm 2). We can see the 571-bit multiplication as a three
terms of multiplication where each term has 192-bit. On these three terms, we
applied three terms of Karatsuba algorithm. The three terms of Karatsuba mul-
tiplication replaces two s words operands into six multiplications of size s

3 ,
which is possible at the expense of some additions [8]. Taking the multiplica-
tion of s words operands A and B as an example, we represent the operands as
A = AH ·2

2s
3 +AM ·2

s
3 +AL and B = BH ·2

2s
3 +BM ·2

s
3 +BL. The multiplication

P = A ·B can be computed according to the Equation 1.

(AH ·BH · 2
2s
3 +AM ·BM · 2

s
3 +AL ·BL) · (2

2s
3 + 2

s
3 + 1) +

(AH +AM) · (BH +BM) · 2s + (AH +AL) · (BH +BL) · 2
2s
3 + (1)

(AM +AL) · (BM +BL) · 2
s
3

The pseudo code for 571-bit polynomial multiplication is available in Al-
gorithm 3. In Step 1 and 2, we group the nine operands {(A[8], A[7], A[6]),
(A[5], A[4], A[3]), (A[2], A[1], A[0])} and {(B[8], B[7], B[6]), (B[5], B[4], B[3]), (B[2],
B[1], B[0])} into three groups {AH , AM , AL} and {BH , BM , BL}. In Step 3 ∼ 6,
192-bit wise partial products of AH ×192 BH , AM ×192 BM and AL ×192 BL are
computed and then added to intermediate results T . In Step 7, the intermediate

Algorithm 2 192-bit Polynomial Multiplication (mul192 p64)

Require: 192-bit Operands A, B.
Ensure: 384-bit Result C.
1: ld1.8b {v0, v1, v2}, [x2] {Load 192-bit Operand A}
2: ld1.8b {v3, v4, v5}, [x1] {Load 192-bit Operand B}
3: pmull v6.1q, v0.1d, v3.1d {CL ← A[63:0] ·B[63:0]}
4: pmull v9.1q, v0.1d, v4.1d {TL ← A[63:0] ·B[127:64]}
5: pmull v7.1q, v0.1d, v5.1d {CM ← A[63:0] ·B[191:128]}
6: pmull v11.1q, v1.1d, v3.1d {Temp← A[127:64] ·B[63:0]}
7: eor.16b v9, v9, v11 {TL ← TL ⊕ Temp}
8: pmull v11.1q, v1.1d, v4.1d {Temp← A[127:64] ·B[127:64]}
9: eor.16b v7, v7, v11 {CM ← CM ⊕ Temp}
10: pmull v10.1q, v1.1d, v5.1d {TH ← A[127:64] ·B[191:128]}
11: pmull v11.1q, v2.1d, v3.1d {Temp← A[191:128] ·B[63:0]}
12: eor.16b v7, v7, v11 {CM ← CM ⊕ Temp}
13: pmull v11.1q, v2.1d, v4.1d {Temp← A[191:128] ·B[127:64]}
14: eor.16b v10, v10, v11 {TH ← TH ⊕ Temp}
15: pmull v8.1q, v2.1d, v5.1d {CH ← A[191:128] ·B[191:128]}
16: movi.16b v11, #0 {Clear Reg}
17: ext.16b v11, v11, v9 , #8 {Align Result}
18: ext.16b v9, v9, v10 , #8 {Align Result}
19: ext.16b v10, v10, v11, #8 {Align Result}
20: eor.16b v6, v6, v11 {CL[127:64] ← CL[127:64] ⊕ TL[63:0]}
21: eor.16b v7, v7, v9 {CM ← CM ⊕ {TH[63:0]||TL[127:64]}}
22: eor.16b v8, v8, v10 {CH[63:0] ← CH[63:0] ⊕ TH[127:64]}
23: st1.16b {v6,v7,v8}, [x0] {Return 384-bit Result C}

results are shifted and added to the intermediate results. In Step 8 ∼ 10, a pair
of operands are added and then multiplied each other. Finally the results are
added to the intermeidate results.

3.3 Polynomial Squaring

Since squaring a binary polynomial is a linear operation, this is much faster than
multiplying two polynomials. The polynomial squaring is obtained by inserting
a 0 bit between consecutive bits of operand. With the PMULL instruction, single
multiplication can generate the 64-bit wise squaring at once. Finally, we can get
the 571-bit squaring operation by conducting nine times of PMULL operation as
described in Algorithm 4.

3.4 Binary Field Reduction

s word of binary field multiplication produce values of degree at most 2s − 2,
which must be reduced modulo f(z) = zm + r(z). The usual approach is to
multiply the higher parts by r(z) using shift and xors. For small polynomials
r(z) we can exploit the PMULL instruction to carry out 64-bit multiplication by

Algorithm 3 571-bit Polynomial Multiplication

Require: 571-bit Operands A and B.
Ensure: 1142-bit Result C = A ·B.
1: A = {AH , AM , AL} = {(A[8], A[7], A[6]), (A[5], A[4], A[3]), (A[2], A[1], A[0])}
2: B = {BH , BM , BL} = {(B[8], B[7], B[6]), (B[5], B[4], B[3]), (B[2], B[1], B[0])}
3: CH = (AH ×192 BH)≪ 384
4: CM = (AM ×192 BM)≪ 192
5: CL = AL ×192 BL

6: T = CH ⊕ CM ⊕ CL

7: C = T ⊕ (T ≪ 192)⊕ (T ≪ 384)
8: CH = ((AH ⊕AM)×192 (BH ⊕BM))≪ 576
9: CM = ((AH ⊕AL)×192 (BH ⊕BL))≪ 384
10: CL = ((AM ⊕AL)×192 (BM ⊕BL))≪ 192
11: C = CH ⊕ CM ⊕ CL

Algorithm 4 571-bit Polynomial Squaring

Require: 571-bit Operand A.
Ensure: 1142-bit Result C = A2.
1: for i = 0 to 8 by 1 do
2: {C[i+ 1]||C[i]} = A[i]×64 A[i]
3: end for

r(z). The modulo of binary field F2571 is defined by (r(z)= z10 + z5 + z2 + 1).
The detailed reduction method is available in Algorithm 5. In Step 1, modulus p
is set to 0x425. In Step 2, lower part of A by 571-bit is extracted to AL. In Step
3, higher part of A by 571-bit is extracted to AH . In Step 4, higher part AH is
multiplied by modulus p and then added to the lower part AL. From Step 5 to
7, one more reduction is conducted to handle the parts beyond the 571-bit.

Algorithm 5 Binary Field Reduction over F2571

Require: 1142-bit Operands A.
Ensure: 571-bit Result C.
1: p =0x425

2: AL = A mod 2571

3: AH = A div 2571

4: T = AL ⊕ (AH · p)
5: TL = T mod 2571

6: TH = T div 2571

7: C = TL ⊕ (TH · p)

3.5 Binary Field Inversion

For fast and secure against timing attack, we used the Itoh-Tsujii algorithm [7],
which is an optimization of inversion through Fermat’s little theorem (a(x)−1 =

a(x)2
m−2. The algorithm uses a repeated field squaring and multiplication op-

erations for a(x)2
k

. The multiplication and squaring are conducted with NEON
KNP instruction and detailed descriptions are available in Algorithm 6. The in-
version operation requires only 570 multiplication and 13 squaring operations.
For implementation, we conduct the multiplication and squaring in assembly
and combine the both operations in C language.

Algorithm 6 Fermat-based inversion mod F2571

Require: Integer a1 satisfying 1 ≤ a1 ≤ 2m.
Ensure: Inverse z = a2m−2

1 = a−1
1 .

1: a2 ← (a1)
21 · a1 { cost: 1S+1M}

2: a4 ← (a2)
22 · a2 { cost: 2S+1M}

3: a8 ← (a4)
24 · a4 { cost: 4S+1M}

4: a16 ← (a8)
28 · a8 { cost: 8S+1M}

5: a17 ← (a16)
21 · a1 { cost: 1S+1M}

6: a34 ← (a17)
217 · a17 { cost: 17S+1M}

7: a35 ← (a34)
21 · a1 { cost: 1S+1M}

8: a70 ← (a35)
235 · a35 { cost: 35S+1M}

9: a71 ← (a70)
21 · a1 { cost: 1S+1M}

10: a142 ← (a71)
271 · a71 { cost: 71S+1M}

11: a284 ← (a142)
2142 · a142 { cost: 142S+1M}

12: a285 ← (a284)
21 · a1 { cost: 1S+1M}

13: a570 ← (a285)
2285 · a285 { cost: 285S+1M}

14: return (a570)
21 { cost: 1S}

3.6 Scalar Multiplication

The scalar multiplication over Koblitz curves is to convert a scalar k to a radix τ
expansion where k =

∑
uτ and u ∈ {0,+1,−1}. After conversion, NAF method

is applied to τ -adic representation. The τ -adic analogue of the ordinary NAF is
known as τ -adic(TNAF). With extra memory consumption for pre-computation,
we can apply a window method named wTNAF. In this paper, we used the
4TNAF method which has window size 4 and the number of addition is reduced
to a quarter of the conventional double and add method.

4 Evaluation

For the test over ARMv8 architecture, we set the development environment as
follows. We used Xcode (ver 6.3.2) as a development IDE and set the optimiza-
tion level to -Ofast. The target device is iPad Mini2 (iOS 8.4). The iPad Mini2
supports Apple A7 with 64-bit architecture operated in 1.3GHz. In Table 2, the

comparison results of binary field arithmetic, scalar multiplication and ECDH
over K-571 curve are drawn. For the binary field multiplication, conventional
LD method exploits the series of bit-wise exclusive-or and look-up table access
operations not that of NEON instruction sets. On the other hand, the KNV
method conducts the eight vectorized 8-bit polynomial multiplication namely
VMULL.P8. This method conducts multiple data at once so performance is better
than LD method. However, the method requires high overheads to combine the
eight vector results into one so it acts as a performance bottle neck. In proposed
method, we exploit new 64-bit polynomial multiplication namely PMULL. This
method significantly improves the performance by a factor of 8.3 times than
previous works. This is possible because it directly outputs the 128-bit outputs
rather than vector form. In this paper, we couldn’t compare our results with
the methods on same ARMv8 architecture because this is the first ECC imple-
mentation over ARMv8. The recent work by [5] only explores the short 128-bit
binary field multiplication. For the squaring, traditional table based squaring
can accelerate the performance by exploiting the look-up table. With VMULL.P8

NEON instruction set, we can compute the eight 8-bit polynomial multiplica-
tion. The squaring operation does not require to realign the intermediate results
so it shows much faster performance than that of multiplication. On ARMv8,
we can exploit the PMULL and performance is enhanced further by a factor of 2.4.
Thanks to high performance binary field multiplication and squaring, Itoh-Tujii
method which consists of only multiplication and squaring also shows high per-
formance. Our implementation only needs 31,232 clock cycles and this is 56%
better than previous implementations. For scalar multiplication, we measure the
performance of unknown point and fixed point. We used 4TNAF method for
both implementations. Particularly, fixed point scalar multiplication can avoid
the point pre-computation so it shows 8 % better than unknown point. Lastly
ECDH agreements including scalar multiplication on both unknown and fixed
point are completed within 783,705 clock cycles. This improves the performance
by a factor of 4.6.

5 Conclusion

In this paper, we show efficient implementation techniques for K-571 curve on
ARMv8. We exploit the novel PMULL operation and Karatsuba algorithm to
reduce the computation time. Our proposed method improves the performance
by a factor of 4.6 times than previous implementations on ARMv7. This is first
work targeting the binary field ECC over ARMv8.

References

1. E. Al-Daoud. An improved implementation of elliptic curve digital signature by
using sparse elements. Int. Arab J. Inf. Technol., 1(2):203–208, 2004.

2. D. J. Bernstein. Batch binary edwards. In Advances in Cryptology-CRYPTO 2009,
pages 317–336. Springer, 2009.

Table 2. Comparison results of binary field arithmetic, scalar multiplication and
ECDH over K-571

Algorithm Architecture Processor Clock Cycles

Multiplication
LD [3] Cortex-A8 ARMv7 3,071
LD [3] Cortex-A9 ARMv7 3,140
LD [3] Cortex-A15 ARMv7 1,424
KNV [3] Cortex-A8 ARMv7 1,506
KNV [3] Cortex-A9 ARMv7 1,889
KNV [3] Cortex-A15 ARMv7 1,103
Proposed Method (KNP) Apple-A7 ARMv8 132

Squaring
Table [3] Cortex-A8 ARMv7 349
Table [3] Cortex-A9 ARMv7 394
Table [3] Cortex-A15 ARMv7 282
VMULL [3] Cortex-A8 ARMv7 126
VMULL [3] Cortex-A9 ARMv7 146
VMULL [3] Cortex-A15 ARMv7 99
Proposed Method (PMULL) Apple-A7 ARMv8 41

Inversion (Itoh-Tsujii)
Previous Method [3] Cortex-A8 ARMv7 90,936
Previous Method [3] Cortex-A9 ARMv7 97,913
Previous Method [3] Cortex-A15 ARMv7 71,220
Proposed Method Apple-A7 ARMv8 31,232

Scalar multiplication
Proposed Method (Unknown Point) Apple-A7 ARMv8 408,720
Proposed Method (Fixed Point) Apple-A7 ARMv8 374,985

ECDH Agreement
Previous Method [3] Cortex-A8 ARMv7 4,870,000
Previous Method [3] Cortex-A9 ARMv7 6,018,000
Previous Method [3] Cortex-A15 ARMv7 3,603,000
Proposed Method Apple-A7 ARMv8 783,705

3. D. Câmara, C. P. Gouvêa, J. López, and R. Dahab. Fast software polynomial
multiplication on arm processors using the neon engine. In Security Engineering
and Intelligence Informatics, pages 137–154. Springer, 2013.

4. S. for Efficient Cryptography Group. Recommended elliptic curve domain param-
eters. 2000.

5. C. P. Gouvêa and J. López. Implementing gcm on armv8. In Topics in Cryptology—
CT-RSA 2015, pages 167–180. Springer, 2015.

6. J. Großschädl, R. M. Avanzi, E. Savaş, and S. Tillich. Energy-efficient software
implementation of long integer modular arithmetic. In Cryptographic Hardware
and Embedded Systems–CHES 2005, pages 75–90. Springer, 2005.

7. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in gf
(2 m) using normal bases. Information and computation, 78(3):171–177, 1988.

8. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
In Soviet physics doklady, volume 7, page 595, 1963.

9. J. López and R. Dahab. High-speed software multiplication in f2m. In Progress in
CryptologyINDOCRYPT 2000, pages 203–212. Springer, 2000.

10. L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara, J. López, and
R. Dahab. Tinypbc: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Computer Communications, 34(3):485–493, 2011.

11. H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim. Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors. Security and
Communication Networks, 7(4):774–787, 2014.

12. H. Seo, Z. Liu, J. Choi, and H. Kim. Karatsuba–block-comb technique for elliptic
curve cryptography over binary fields. Security and Communication Networks,
2015.

13. M. Shirase, Y. Miyazaki, T. Takagi, and D.-G. HAN. Efficient implementation of
pairing-based cryptography on a sensor node. IEICE transactions on information
and systems, 92(5):909–917, 2009.

14. Steve Ranger. Internet of things and wearables drive growth for
ARM. Available for download at http://www.zdnet.com/article/

internet-of-things-and-wearables-drive-growth-for-arm/, Apr. 2014.

Appendix A. Polynomial Addition in Assembly Code

Algorithm 7 571-bit Polynomial Addition

Require: 571-bit Operands A and B.
Ensure: 571-bit Result C = A⊕B.
1: ld1.16b {v0, v1, v2, v3}, [x1], #64

2: ld1.8b {v4}, [x1]

3: ld1.16b {v5, v6, v7, v8}, [x2], #64

4: ld1.8b {v9}, [x2]

5: eor.16b v5, v5, v0

6: eor.16b v6, v6, v1

7: eor.16b v7, v7, v2

8: eor.16b v8, v8, v3

9: eor.16b v9, v9, v4

10: st1.16b {v5,v6,v7,v8}, [x0], #64

11: st1.8b {v9}, [x0]

Appendix B. Polynomial Squaring in Assembly Code

Algorithm 8 571-bit Polynomial Squaring

Require: 571-bit Operand A.
Ensure: 1142-bit Result C = A2.
1: ld1.16b {v0, v1, v2, v3}, [x1], #64

2: ld1.8b {v4}, [x1]

3: pmull v5.1q, v0.1d, v0.1d

4: pmull2 v6.1q, v0.2d, v0.2d

5: pmull v7.1q, v1.1d, v1.1d

6: pmull2 v8.1q, v1.2d, v1.2d

7: pmull v9.1q, v2.1d, v2.1d

8: pmull2 v10.1q, v2.2d, v2.2d

9: pmull v11.1q, v3.1d, v3.1d

10: pmull2 v12.1q, v3.2d, v3.2d

11: pmull v13.1q, v4.1d, v4.1d

12: st1.16b {v5, v6, v7, v8}, [x0], #64

13: st1.16b {v9, v10, v11, v12}, [x0], #64

14: st1.16b {v13}, [x0]

