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Abstract. The bilinear map whose domain and range are identical is
called self-bilinear map. Once such kind of bilinear map exists, the multi-
linear map can be constructed easily by using self bilinear map as a com-
ponent. Yamakawa et al. have introduced the first secure self-bilinear
map with auxiliary information based on the integer factoring assump-
tion in Crypto 2014. Inspired by their work, we find that any encoding
system with particular properties could be used to build self-bilinear
map. We generalize them as one way encoding system and propose a
generic construction of self-bilinear map. For cryptographic use, we de-
fine a new encoding division assumption to make the analog DDHP hard.
We show that one level encoding of graded encoding system which is used
to build multilinear map nowadays satisfy all the properties of one way
encoding system. We also present an instance that is build on GGH grad-
ed encoding scheme and analyze how hard the encoding division problem
is. Our self-bilinear map is believed to be quantum resistance. It seems
more secure than the scheme of Yamakawa et al. Moreover, the encoding
size of n-multilinear built on our self-bilinear map is smaller than that
of GGH scheme.

1 Introduction

Bilinear maps were first used to solve of discrete logarithm problem for some
weak elliptic curves [9, 20]. Then, these elliptic curves show powerful capability
as a cryptographic primitive. It provides solutions for many cryptographic ap-
plication such as identity-based encryption [1], non-interactive zero-knowledge
proof systems [15], attribute-based encryption [21] and short signature, etc. A
special instance of bilinear map of which the target group and preimage group
are the same is called self-bilinear map. Because of the exclusive property, self-
bilinear map may apply to more scenes. One direct application of self-bilinear
map which is not impled by the ordinary one is to construct multilinear maps.

Lee designed the first candidate self-bilinear map [19]. After his work, Cheon
and Lee remark that the self-bilinear map above is not essentially self-bilinear [5].
They also proved the impossibility result that there isn’t any secure self-bilinear



maps in known prime order cyclic group G. The computational Diffie-Hellman
(CDH) assumption in G collapses because the map e reveals much information
about group G. Excluding the known prime order cyclic group, two natural
ideas to build self-bilinear map emerge. The first one takes use of the unknown
composite order cyclic groups. The scheme of Yamakawa et al. [22] belongs to
this classification. They choose to take use of the signed quadratic residue group
QR

+
n of Z∗

n [16]. The integer factoring assumption guarantees the hardness of
DDHP in G. Moreover there is a polynomial reduction from factoring problem
to BCDH problem with respect to self-bilinear map. The second idea is inspired
by the scheme of multilinear map nowadays, that is to build self-bilinear map
from some special set rather than cyclic groups. This is the start point of our
work.

Multilinear maps are generic notion from bilinear maps. Not long after the-
bilinear map shows the convenience it brings to the cryptography, Boneh and
Silverg [2] first image the existence of multilinear maps and their abundant
applications. But, when they tried to forge such fantastic tool, they met serious
obstacles. From then on, constructing multilinear map became a long-standing
open problem. Until recently, three candidate multilinear maps were proposed –
the GGH scheme [10] on ideal lattices, the CLT scheme [7] over the integer and
the GGH14 [14] on lattices. The multilinear map is a basic component of some
new cryptographic primitives such as witness encryption [13], indistinguishability
obfuscation and functional encryption [11].

Multilinear maps met extremely strong challenges in 2014 and 2015. Not
long after the CLT scheme was completely broken by “zerozing algorithm” [4],
GGH scheme was under attack. Hu uses weak-DL attack and modified encod-
ing/decoding algorithm that they designed in [17] to break the GMDDH as-
sumption which is the security basis of many multilinear map applications. Two
candidate fixes of multilinear maps over integers [12, 3] been proposed soon after
the CLT broken. But Coron et al [8] state that these two patchs are still unsafe.
They describe a new scheme over the integers [6] which is believed secure. To
the ideal lattice side, there isn’t any accepted scheme proposed. To construct a
secure and efficient multilinear map is still a worthwhile work.

Multilinear map can be constructed trivially if the self-bilinear map exists.
Say, if e : G × G → G is a self-bilinear map, one can combine sufficient many
self-bilinear maps to build a multilinear map among these groups. This is owe
to the special property that the target group of self-bilinear map e is also one
of the domain group of e. Thus, one of the constructing method of multilinear
map can be reduced to find a good self-bilinear map.

To construct self-bilinear map which is not in cyclic group, we studied from
the cyclic group G. Treat gα ∈ G as an encoding of α ∈ Zord(G). Thus, cyclic
is an encoding scheme from ring Zord(G) to group G. f : Zord(G) → G, f(x) =
xg mod ord(G) is an efficient encoding algorithm. Note that xg is an operation
between ring element and group element. x1g + x2g = (x1 + x2)g mod ord(G)
remind us that the analogous distributed law holds in encoding scheme. Follow-
ing the unconventional explanation from group to encoding system, we define a



more abstract edition called one way encoding system (OWES). OWES removes
the restriction to domain ring and image set (in cyclic group case, Zord(G) is
also a cyclic group with respect to addition operation, G is a cyclic group). It
defines the map f : R→ S, where R is a finite ring with identity and S is a set
with additive operation. This leads to some essential differences to cyclic group.
Since the plaintext space (ring) R of OWES is not an additive cyclic group like
Zord(G), the scheme needs a new efficient manipulation that multiply a plaintext
(in R) and encoding to get a new encoding (α ∈ R, g ∈ S imply αg ∈ S). This
operation is quite like the scalar multiplication of vector in linear spaces. We
stress that multiplying operation in S is not necessary. Thus, the sum of encod-
ing of α ∈ R and encoding of β ∈ R is the encoding of α+ β, the multiplication
of encoding of α ∈ R multiply plaintext β ∈ R is the encoding of αβ. Once the
efficient operations are defined, we can easily simulate the DLP and CDHP in
the encoding scheme. That is, DLP: given αg, g to compute α, CDHP: given
αg, βg, g to compute αβg.

Now we have the encoding system with some necessary hardness assumption.
The self-bilinear map is fixed as e(αg, βg) = rαβg, where r ∈ R is an element
in R. Since the map e have to be non-degenerate, the size of {xg|x ∈ R, g ∈ S}
should equal to that of {rxg|x ∈ R, g ∈ S}. This requirement forces r not be
a zero divisor of R. Since an element in finite ring with identity is either a
unit or a zero divisor, it is equivalent to choose r as an invertible elements in
R at random. If such a self-bilinear map is built up, we are faced with a CDH
assumption challenge that similar to that in known prime order group. Namely, r
is a public parameter. Given αg and βg, rαβg is efficient computable. If adversary
can get r−1 ∈ R efficiently or divide r from rαβg, the CDHP assumption in S is
broken. So we propose a new hardness assumption to stop this from happening.
Moreover, Such an assumption is justifiable. We will show that GGH graded
encoding scheme [10] could achieve all the property we discussed above.

Firstly, we define a generic encoding system which is called one way encoding
system (OWES) and prove that any encoding schemes contains its property
can build a secure self-bilinear map. Secondly, we take GGH graded encoding
system as example to build a secure self-bilinear map. GGH scheme is based
on ideal lattices, the security of our self-bilinear map is believed to be quantum
resistance. Finally, we give some security analysis to the instance of one way
encoding system which is one level of GGH encoding scheme. Since the new
hardness assumption can not reduce to classical problem, we try to enhance the
confidence that they are indeed hard. The attack of Hu et al. [17] which breaks
the MDDH assumption in GGH scheme does not threaten our scheme.

2 Preliminaries

2.1 Notations

We use Z to denote the set of all integer numbers, Q to denote set of all ra-
tional numbers, F to denote number field. Z[x] to denote all polynomials with
coefficients in Z. Let [n] be the set {x ∈ Z|1 ≤ x ≤ n} and [0,n] be the set



{x ∈ Z|0 ≤ x ≤ n}, λ is the secure parameter. We use e← DS,σ to denote that
e is sampled from the discrete distribution with mean 0 and standard deviation
σ in set S. {xi}ni=1 represent the set {x1, · · · , xn}.

R = Z[x]/(xn + 1) is the residue class ring mentioned in the GGH scheme.
We use I = 〈g〉 to denote the principal ideal of R, where g ∈ R. Let R/I be
the palintext space of GGH map. q is a large number. All operation of GGH
map is run over the ring Rq = R/qR = Zq[x]/(x

n + 1), and we use [·]q to
denote the operation in Rq. The re-randomizer parameter are xi = [ biz ]q with
bi ∈ I. We combine xi as a row vector of matrix X , and use r to denote a row
vector sampled in DZn,σ∗ , where σ∗ is a large enough standard deviation. The
“generator of group” is y = [az + rX ]q, where a is in 1+ I. Pzt is the zero-testing
parameter.

2.2 Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine
iO is called an indistinguishability obfuscator for a circuit class Cλ if the following
conditions are satisfied:

– For all security parameters λ ∈ N, all C ∈ Cλ, and all inputs x, we have that

Pr[C′(x) = C(x) : C′ ← iO(λ,C)] = 1

– For any (non necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N , for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ)

Informally speaking, iO can make two circuits or functions which have the
same size and achieve the same goal be computationally indistinguishable.

2.3 One Way Encoding System

Since we want to construct self-bilinear map over some encoding system, we
have to define corresponding manipulations to imitate manipulation in group.
We regard the representation of an element xg in cyclic group as an encoding
of a ring element x ∈ Zn, where n is the order of the cyclic group. Thus, the
plaintext space is a ring and the encoding space is a set with addition operation.
On the other hand, the DL assumption is a basic requirement for group to be
used in cryptography. This leads us to define a new notion of one way encoding
system (OWES).

Assume that S0 is a finite ring with identity, S1 is an additive group, f is a
surjection f : S0 → S1.

Definition 2 (OWES). An encoding system (S0, S1, f) is called one way en-
coding system, if it has the following properties:



– f is additive homomorphism: for a, b ∈ S0, f(a+ b) = f(a)⊕ f(b).
– Palintext multiplication: for a ∈ S0 and f(b) ∈ S1, a⊗ f(b) = f(ab).
– f is computational one way function: Given f(a), it’s hard to compute a.

Given an OWES (S0, S1, f) and an element b ∈ S0, (S0, b⊗ S1, b⊗ f) is also an
OWES.

For cryptographic use, the analogue of CDHP should hold in OWES. To
achieve it, we introduce two new hardness assumption to assure. The first one
is encoding computational Diffie-Hellman assumption (ECDHA).

Definition 3 (ECDHA). For OWES (S0, S1, f), the Encoding CDH problem
is, on input f(a), f(b) ∈ S1, to compute f(ab) ∈ S1. The assumption state
that there isn’t any efficient algorithm to solve this problem with non-negligible
probability.

The self-bilinear map reveals extra information about CDHP. Adversary may
take use of these extra information to solve CDHP. For this reason, the encoding
division assumption (EDA) should hold in OWES.

Definition 4 (EDA). For OWES (S0, S1, f), the Encoding Division problem
is, on input the f(ab) ∈ S1 and a ∈ S0, where a is invertible in S0, to compute
f(b) ∈ S1. The assumption state that there isn’t any efficient algorithm solve
this problem with non-negligible probability.

We state that any level of GGH graded encoding system is OWES. We can
also believe that OWES is a generalization of GGH graded encoding system.
Moreover, the graded encoding system which is used to build multilinear maps
are likely instances of OWES.

3 Self-bilinear Map and Multilinear Map

In this section, we describe the definition of self-bilinear map and multilinear
map. Then, a generic construction of self-bilinear (multilinear) map is given.
After that, we propose a concrete scheme from GGH graded encoding system.

3.1 Self-bilinear Map

Cheon and Lee [5] introduced a special kind of bilinear map. The preimage group
and target group are the same. They called it self-bilinear map. The self-bilinear
map constructed in our work is not in groups, we give the formal definition
below.

Definition 5 (Self-bilinear Map). For an OWES (S0, S1, f), e : S1×S1 → S1

is called self-bilinear map, if the following properties hold.

– for all g1, g2 ∈ S1 and α ∈ S0, it holds that

e(α⊗ g1, g2) = e(g1, α⊗ g2) = α⊗ e(g1, g2)

– The map e is non-degenerate. Namely, e is surjective.



3.2 Hardness Assumption

For cryptographic use, the hard problem such as discrete logarithm (DL) and
computational Deffie-Hellman (CDH) Problem should keep computational un-
solvable in single group.

Definition 6 (DL). The Discrete-Log problem is hard for a bilinear map scheme,
if for all probabilistic polynomial time algorithms, the discrete-logarithm advan-
tage of A,

AdvDlog
A (λ) = Pr[A(g, α⊗ g) = α|g ∈ S1, α ∈ S0]

is negligible in λ.

The Computational Diffie-Hellman assumption (CDH) should hold in the
single set of self-bilinear map.

Definition 7 (CDH). For a self-bilinear map scheme, the computational Diffie-
Hellman problem is hard, if for every probabilistic polynomial time algorithms
A, the CDH advantage of A,

AdvCDH
A (λ) = Pr[A(g, α0 ⊗ g, α1 ⊗ g) = (α0α1)⊗ g|α0, α1 ∈ S0, g ∈ S1]

is negligible in λ.

Bilinear computational Diffie-Hellman assumption (BDDH) is the security basis
of 3 party Diffie-Hellman key exchange scheme.

Definition 8 (BCDH). For a self-bilinear map scheme, the computational bi-
linear Diffie-Hellman problem is hard, if for every probabilistic polynomial time
algorithms A, the BCDH advantage of A,

AdvBCDH
A (λ) = Pr[A(g, α0⊗g, α1⊗g, α2⊗g) = α2⊗e(α0⊗g, α1⊗g)|α0, α1 ∈ S0, g ∈ S1]

is negligible in λ

The BCDHP can be generalized as multilinear computational Diffie-Hellman
problem which is an important hard problem in multilinear maps.

3.3 Multilinear Map

Boneh et al [2]. first give the formal definition of multilinear maps. Their mul-
tilinear map was built on cyclic groups. The multilinear map scheme nowadays
don’t satisfy their definition. For this reason, we describe a new definition that
doesn’t base on cyclic groups.

Definition 9 (Multilinear Map). For OWES (S0, S1, f), a map e : S1×· · ·×
S1 → S1 is called n-multilinear if it has the following properties:

1. For elements {gi ∈ S1}ni=1, α ∈ S0 it holds that

e(g1, · · · , α⊗ gi, · · · , gn) = α⊗ e(g1, · · · , gn).



2. The map e is non-degenerate: if S1 = {α ⊗ gi|α ∈ S0}, for i = [n], then
S1 = {α⊗ e(g1, · · · , gn)|α ∈ S0}.

n-mutilinear maps have symmetric case and asymmetric case. Self-bilinear map
can only be used for designing the symmetric one (The domain set are all the
same). The relationship between self-bilinear map and multilinear map in sym-
metric case can be inducted iteratively as follows

en+1(g1, . . . , gn, gn+1) := e(en(g1, . . . , gn), gn+1).

where e with the subscript i denote the i−multilinear map consists of self-bilinear
map. gi denote the element in S1.

4 Generic Construction from OWES and iO

In this section, we construct a self-bilinear map SBP from OWES and iO. Then,
we use SBP to build a multilinear map schemeMMP. We also trying to prove
that the necessary hardness assumption like DL, BCDH, CDH assumption etc
hold in our self-bilinear map and multilinear map scheme.

4.1 Our Construction

We describe some notations for circuits on OWES, since the scheme take iO as
a basic component.

Notation for Circuits on OWES. For the OWES and a1 ∈ S0, Ca1 denotes
the circuit that work as follows. If the input f(a2) ∈ S1, Ca1(f(a2)) computes
the value of f(a1a2) ∈ S1 . If f(a2) /∈ S1, then outputs ⊥. For circuits C1, C2

whose output elements are in S1, Plus(C1, C2) denotes a circuit that computes
Cadd(C1(x), C2(y)) for input (x, y) where Cadd is a circuit that computes a ad-
dition for elements of S1. If an input of Cadd is not a pair of two elements in S1,
then it outputs ⊥.

We use SBP to denote self-bilinear map that we construct. SBP contains
procedures below.

params← InstGen(1λ).

– On input the security parameter λ, initiate an OWES (S0, S1, f).
– Chooses a invertible element r ∈ S0 at random.
– Outputs params = (S0, S1, f, r) system parameters.

After InstGen procedure executed, the self-bilinear map e is fixed as:

e : S1 × S1 → S1

(f(a1), f(a2)) 7→ f(ra1a2)



(f(a), τf(a))← Enc(params, a).

– On input params, a ∈ S0, computes f(a).
– Generates the corresponding τf(a) = iO(Cra)

f(ra1a2) ← Map(params, f(a1), τf(a2)). On input f(a1), runs the obfuscated
circuit τf(a2) to compute τf(a2)(f(a1)) = f(ra1a2).

(f(a1 + a2), τf(a1+a2))← Add(params, f(a1), f(a2), τf(a1), τf(a2)).

– On input f(a1), f(a2) ∈ S1 and the corresponding τf(a1), τf(a2). Computes
f(a1 + a2) = f(a1)⊕ f(a2).

– Computes τf(a1+a2) ← iO(Plus(τf(a1), τf(a2)))

4.2 Security Analysis of SBP.

As we mentioned in section 3.2, for cryptographic use, the DL, CDH, BCDH
assumption should hold in SBP . The DL assumption is directly following the
one way property of OWES. THE ECD assumption and the ED assumption in
OWES assure that the CDH problem is hard in SBP. We prove that the BCHD
problem is hard in SBP below.

Theorem 1. If there is a PPT algorithm A solving BCDH problem in SBP
efficiently, then there is an algorithm to solve ED problem in OWES efficiently.

Proof. First, we introduce two games [22] played between adversary A and chal-
lenge C, where C simulates the SBP scheme. We want to prove that A wins these
games with the same advantage.

Game 1. C simulates the original SBP scheme in this game.

1. C takes λ and initiates an OWES (S0, S1, f).
C chooses an invertible r ∈ S0 and sets params = (S0, S1, f, r)

2. C chooses a0, · · · , an $←− S0 uniformly at random.
3. C computes f(ai) and generates its corresponding auxiliary information

τf(ai) = iO(Crai
), for i ∈ [0, n].

4. C sends params, {f(ai)}ni=0, {τf(ai)}ni=0 to A. A takes these parameters as
input, then returns U .

Game 2. Game 2 is similar to Game 1 except that parameters are chosen differ-
ently.

1. C takes λ and initiates an OWES (S′
0, S

′
1, f

′).
C chooses a random element b ∈ S0 and an invertible r ∈ S0. Then, computes
rb encodes it as f ′(rb).
C computes S0 = S′

0, f : S0 → S1, f(x) = x ⊗ f ′(rb), S1 = {f(a)|a ∈ S0}.
Set params = (S0, S1, f, r).



2. C chooses a′0, a
′
1, a

′
2

$←− S0. Let rai = ra′i + 1, i = 0, 1, 2. (note that r is
invertible in S0, this equation is possible, and ai = a′i + r−1).

3. Makes f(rai) = (ra′i + 1)⊗ f ′(rb), i = 0, 1, 2.

C generates the auxiliary information corresponding to f(ai), τf(ai) = iO(Crai
) =

iO(Cra′

i
+1), for i = 0, 1, 2.

4. C sends {f(ai), τf (ai)}2i=0, params to A. A takes these parameters as input,
then outputs U .

If U = f(ra0a1a2), we say that A wins games. Use G1 and G2 to denote
the event that A wins game 1 and game 2 respectively. In essentially, game
1 and game 2 is the same because of the distribution of their parameters are
computationally indistinguishable. In other word, the view of A in game 1 and
2 are the same. We analysis the differences part of game 1 and 2 below.

Step 1 simulates the instance generation step of SBP scheme. The instance
generation step accomplish two things in essentially. First, initiate an OWES.
Secondly, choose an invertible element in S0 at random. Step 1 of game 2 is an
extend to that of game 1. If (S0, S1, f) is an OWES, (S0, b ⊗ S1, b ⊗ f) also is.
Thus, Game 2 simulate the instance generation step perfectly in the view of A.

Step 2 samples elements uniformly at random in S0. Since r is an invertible
element in S0 and ai obey the uniformly distribution in S0, ai = a′i + r−1 also
obey the uniformly distribution in S0. We state that game 2 simulates the sample
operation perfectly in SBP.

Step 3 was executed by the rule of original scheme, the difference between
Game 1 and Game 2 is the parameters generated in step 1 and step 2.

Depending on all these facts analyzed above, A wins game 1 and game 2 with
similar probability. Namely, |Pr[G1]− Pr[G2]| = negl(λ).

We give a polynomial reduction from EDP to BCDHP by introducing an
algorithm B.

Algorithm B: B takes (f ′(rb), r) and the OWES (S′
0, S

′
1, f

′) as input.

1. Computes f ′(r2b) = r⊗f ′(rb). Let S0 = S′
0, f : S0 → S1, f(x) = x⊗f ′(r2b),

S1 = {f(a)|a ∈ S0}. Setss params = (S0, S1, f, r).

2. Samples elements a′0, a
′
1, a

′
2

$←− S0.

3. Computes rai = ra′i+1. (note that r is invertible S0, this equation is possible)
Thus, f(ai) = (ra′i + 1)⊗ f ′(rb)

4. Generates the auxiliary information corresponding to f(ai), i = 0, 1, 2 re-
spectively. τf(ai) = iO(Crai

) = iO(Cra′

i
+1), i = 0, 1, 2.

5. Runs A(params, f(a0), f(a1), f(a2), τf(a0), τf(a1), τf(a2)) to get U .

6. Computes p = a′0(ra
′
1 + 1)(ra′2 + 1).

7. Computes q =
(ra′

1+1)(ra′

2+1)−1
r = ra′1a

′
2 + a′1 + a′2.

8. If U = f(ra0a1a2), calculates U
′ = U − [p+ q]⊗ f ′(rb) and outputs it.

Otherwise, abort.



Correctness of B: We show that the step 7 of B outputs the right answer for
ED problem.

U = f(ra0a1a2)
= f ′(ra0a1a2r2b)
= f ′[a0ra1ra2rb]
= f ′[(a′0 +

1
r )(ra

′
1 + 1)(ra′2 + 1)rb]

= f ′[(a′0(ra
′
1 + 1)(ra′2 + 1) +

(ra′

1+1)(ra′

i+1)
r )rb]

= f ′[(a′0(ra
′
1 + 1)(ra′2 + 1) +

(ra′

1+1)(ra′

i+1)−1
r + 1

r )rb]
U ′ = U ⊖ [p+ q]⊗ f ′(rb)

= U ⊖ [a′0(ra
′
1 + 1)(ra′2 + 1) +

(ra′

1+1)(ra′

2+1)−1
r ]⊗ f ′(rb)

= U ⊖ f ′[(a′0(ra
′
1 + 1)(ra′2 + 1) +

(ra′

1+1)(ra′

2+1)−1
r )rb]

= f ′[(1r )rb]
= f ′(b)

Time complexity: It’s easy to see that the whole algorithm B except step 7 and
step 5 has polynomial size operations. Because of the assumption that A is an
efficient algorithm, we know that step 5 also runs in polynomial time. So only step

7 is needed to be analyzed. Writing
∏n

i=1(ra
′

i+1)−1

r as sum of algebraic expression,
it contains 2n − 1 terms, each term contain at most n multiply operations. This
is a disappointed result because that we have to limited multilinear level n is a
logarithmic function of secure parameter to continue our proof. But this is quite
conform to the reality. If n = O(logλ), Step 7 also runs in polynomial time. As
a conclusion of the discussion above, B is a function that polynomial reduce ED
problem to BCDH problem.

Since there is a polynomial reduction from ED problem to n-MCDH problem
and we assume that ED assumption is hold, such kind of algorithmA which solve
n-MCDH problem efficiently do not exist.

Remark If there is an efficient division algorithm in S1 or S1 have some particular
properties, we can use this algorithm to achieve the goal of step 7. This division
algorithm will also reduce the time complexity of the algorithm B

4.3 Multilinear Maps

Self-bilinear map SBP can be easily extended to a multilinear mapMMP. For
cryptographic use, the hardness assumption such as MCDHA [10] etc should
hold. As self-bilinear map with auxiliary information is a weak variant, Ya-
makawa etc have defined new hardness assumption in [22] which is called multi-
linear computational Diffie-Hellman with auxiliary information assumption (M-
CDHAI).

Definition 10 (MCDHAI assumption [22]). We say that the n-MCDHAI
assumption holds with respect toMMP if for any efficient algorithm A,

Pr[f(rn−1
n
∏

i=0

xi)← A(params, f(x0), · · · , f(xn), τx0 , · · · , τxn
)] = negl(λ).



where params← InstGen(1λ), x0, · · · , xn ← Sample(params), τx0 , · · · , τx0 ←
AIGen(params, xi).

The MCDH assumption is a generalization of BCDH.

Theorem 2. The n-MCDHAI assumption with respect to MMP holds if the
ED assumption corresponding to underlying OWES holds.

5 A Concrete Construction from GGH and iO

We have stated that OWES can be initiated. One level of the graded encoding
system used in multilinear maps nowadays satisfied all the properties that we
required. In this section, we introduce a more concrete self-bilinear map scheme
built on GGH graded encoding system [10].

5.1 Construction

An instance of this scheme is run in the polynomial ring R = Z[x]/(xn + 1)
depending on the GGH scheme [10]. The suggested approximate setting of the
basic parameter is n = Õ(κλ2), q = 2n/λ, m = O(n2). Define Rq = R/qR.

InstGen(1λ).

– Generate variant of GGH 1-graded encoding system as follows: choose the se-
curity parameter λ large enough, and set n = Õ(κλ2), q = 2n/λ, m = O(n2).
Then, the ring R = Z[x]/(xn +1), Rq = R/qR. choose an invertible polyno-
mial z in Rq and sample a short polynomial g ∈ R in the distribution DZn,σ,
where g should satisfied that g−1 is short in Q[x]/(xn + 1). Use I to denote
the ideal generated by g. To generate the re-randomization parameters xi,
i = [m], we simply draw bi ← DI,σ∗ , and compute xi = [ biz ]q. Sample a from
DI+1,σ′ , compute y = [az ]q. Draw element h← DZn,

√
q and let Pzt = [hz/g]q.

– Choose a random element α← DZm,σ′ .
– Choose a random element s̄ ∈ R/I by sample s ← DZm,σ′ , then compute

v = s ·y. After v chosen, the self-bilinear map e is defined as e(dv+rX, d′v+
r′X) = αdd′v + r̄X .

– Define params = (R/I,Rq, v, {xi}mi=1, α, Pzt) and makes them public.

Encode(params, d).

– Computes c(d) = [dv +
∑m

i=1 rixi]q, where r ← DZm,σ∗ , σ∗ = 2λ.
– Generates the corresponding auxiliary information τc(d) = iO(CRq ,αd).

Add(params, c(d), c(d
′), τc(d) , τc(d′)).

– Computes c(d+d′) = [c(d) + c(d
′)]q directly.

– Generate the corresponding auxiliary information τc(d+d′) ← iO(Plus(τc(d) , τc(d′))).



Map(param, c(d), τc(d′)). Runs circuit τc(d′)(c
(d)) to compute αd′c(d) which is a

valid level-1 encoding of αdd′.

isZero(params, c). Outputs 1 if ||[Pztc
(d)]q|| < q3/4, otherwise outputs 0.

5.2 Setting and Parameters

In GGH graded encoding system, the setting of each parameter is given for keep
security and function. The setting of our scheme is based on their conclusion.

GGH are noise encodings, the noise level should never be too large. The valid
encoding is a vector of the form [ c

zi ]q, where i is the level. The “noise level” of

is bounded by the numerator of encodings. The upper bound of ||c|| is q1/8. The
adding operation cause less noise growing than multiplying operation, but the
concrete differences between them didn’t mentioned in GGH’s paper. When two
elements [d1

zi ]q, [
d2

zi ]q ∈ Rq executing multiply operation, the size of numerator
bounded by ||d1|| · ||d2|| ·

√
n = poly(n). Adding and multiplying can do any

times if the sum and product of encodings is still short, namely ||∑j cj < q1/8||,
||∏j cj < q1/8||. The public parameter h in Pzt is sampled from DZn,

√
q, then

g is bounded by
√
qn. This is the key point that make zero testing procedure

work. When Pzt =
[

hzk/g
]

q
multiply level k encoding u = [c/zk]q, zero testing

procedure checks the size of ||[h · c/g]q|| to judge whether u is encoding zero
in R/I or not. If c is a vector in I, then g can divided c in R which means
c · g−1 ∈ K and c/g ∈ Rq are same vector (They are not the same element
since they are not in the same ring. But they are the same vector when regard
them as a polynomial in R). So we can use h · c · g−1 to bounded the size,
||c ·g−1|| = ||c|| · ||g−1|| ·√n = ||c|| ·poly(n). then ||h · c/g|| ≤ ||h|| · ||c|| ·poly(n) =
q1/2 · q1/8 · poly(n) < q5/8 < q3/4.

The setting of parameters should satisfy the basic GGH requirements.

– To draw ideal generator g ← DZn,σ, set σ =
√
λn, since σ should larger than

the smoothing parameter (η2−λ(Zn)). As a result, the size of g bounded with
||g|| ≤ σ

√
n = n

√
λ.

– To sample ai, bi and level-0 elements, fix σ = λn3/2. Then, these elements
are bounded by λn2. GGH state that numerator in y and the xi is bounded
by σn4.

– To sample r ← DZn,σ∗ , set σ∗ = 2λ. As a result, the numerate size xi is
bounded by ||c|| ≤ 2λ · poly(n).

– The value of k-multilinear map of k encodings is essentially the product of
one level-1 encoding and k − 1 plain-text. Hence the numerate of this final
encoding is bounded by ||c|| ≤ 2λ · poly(n) · (λn3/2)k−1 = λ2λnO(k).

– To get λ-level security against lattice attack , The dimension n should be
roughly fixed so that q < 2n/λ, which means that n > Õ(κλ2).

– Finally, m should be larger than n log q. m = O(n2) is enough.



5.3 Security of Corresponding Multilinear Map

Multilinear map can be easily extended from self-bilinear map, we will analyze
the the security of multilinear map below.

Modified Edcoding/Decoding Attack Shortly after the original CLT multi-linear
map was fully broken by zerozing algorithm, GGH map met extreme challenge
provided by Hu and Jia [17]. They name it modified encoding/decoding be-
cause of the exclusive processing routines. In fact, their algorithm analyze the
GGHLite map [18] which has a little differences with GGH map mainly in the re-
randomization procedure. Modified encoding/decoding algorithm almost totally
break the n-GDDHA.

The necessary parameters of attack algorithm are ”generator” y, re-randomization
parameters X(1), X(2). They run following process when face to a k−GDDHP
instance (y,X(1), X(2), v(0)y + u(0,1)X(1) + u(0,2)X(2), · · · , v(n)y + u(n,1)X(1) +
u(n,2)X(2), H), where H is the k-level encoding of random elements in R/I or
multiply of all v(i).

1. Use weak-DL attack to generate n + 1 equivalent secret level-0 encodings
respectively from level-1 encodings.

2. Multiply these level-0 encodings together to get level-0 encoding of the prod-
uct.

3. Use modified encoding/decoding procedure to get the new level-n encoding.
4. Extract the high order bits of the result in the step 3.

The output of this procedure can help adversary to break the n−MDDHA, since
most important bit of output is equivalent to that of Pzt times valid encoding.

This attack doesn’t threaten our scheme. When they perform the weak-DL
attack, it needs compute assistance parameters X(i) = yn−2xix1pzt(mod q). If
the multi-linear level n < 2, these assistance parameters are obviously hardly
generated. Our scheme exactly take use of the level-1 graded encoding system.

n-MCDHA Assumption Since self-bilinear map build on GGH graded encoding
system is an instance of generic model SBP, the polynomial reduction from ED
problem to n-MCDHA problem is directly hold. More over, there exists efficient
division in polynomial ring Z[x]. This leads to a more optimized reduction. So,
the remain work is to see the hardness of ED in GGH graded encoding system.
But ED in GGH can’t be reduce to some classic problem directly, we try to
analysis some of its property to strengthen the idea that it is hard. This topic
will discussed in next section.

6 Further Consideration to ED

In this section, we describe our attempts at cryptanalysis of our self-bilinear map.
We mainly have some argue about the hardness of inverse encoding problem. We
give a algorithm to solve this problem in directly, and state that these algorithm



couldn’t solve it efficiently. We also discuss the property of polynomials with
coefficient in integer and its residue class ring. The content of them including
the co-prime, Euclidean algorithm and so on.

6.1 Division Algorithm

Because ring contains nonzero elements which do not have inverses, one can’t
introduce division by means of inverse and multiplication. So, There is a division
algorithm in ring Z and Q[x] which can be conclude as a = qb+ r, where r = 0
or σ(r) < σ(b), and

σ : R∗ → N
c 7→ σ(c)

R∗ is the set of all elements in R except 0. In Z, the map maps the elements to
itself, and in Z[x], the map maps polynomial to its degree. Sometimes they call
rings have such property Euclidean rings. This property ensure that Euclidean
algorithm will end in finite steps.

Even though division algorithm isn’t known in Z[x] for Z[x] do not obtain a
map making it a Euclidean ring, the division algorithm defined in Q[X ] is still
work in Z[x], if b is actually a divisor of a, where a, b are inputs of division
algorithm. If r 6= 0, we say that b don’t divide a, a

b is not an elements in Z[x],
Q[x] ,or Z.

6.2 Variant of Euclidean Algorithm

In this section we will state that, Euclidean algorithm is defined in Q[x] and also
can be implement in Z[x]. It can compute the greatest common divisor of two
elements in Q[x], since “GCD equals 1” and “co-prime” is a equivalent relation
in Q[x]. But when we modify a bit steps to make Euclidean algorithm work in
Z[x] in which “GCD equals 1” and “co-prime” aren’t the same meaning, the
output of the algorithm can only be used to judging the co-prime relation.

The property of Z[x] and Q[x] have quite many differences which is occurred
by their coefficients chosen in field and unique factoring domain respectively. The
famous Euclidean algorithm is defined to be worked in F[X ], it can calculate the
GCD in F[x]. by using the GCD, we can judging the co-prime relation in F[x].
We all knows that GCD is exists in unique factoring domain, But Euclidean
algorithm doesn’t mentioned in D[x] in textbook. This happen because that
every elements in F (or polynomial of degree 0) are unit. On input a, b ∈ F[x]
and assume that deg(a) ≥ deg(b), b can cancel the greatest degree term of
a. Since Euclidean algorithm is defined iteratively, this happen iteratively. we
only discuss Euclidean algorithm in Z[x] and Q[x] for division relation in Q,
Z is efficiently discovered. We state that Euclidean algorithm is also worked in
Z[X ] after adding a extra step in it, but the information it tells us have some
differences. When the Euclidean run in some step and b can’t cancel the greatest
degree term of a, we multiply b with the leading coefficients of a. For example, on
input 3x2+1, 2x+2, we can multiply 2x+2 with 3, then do the normal progress



of Euclidean algorithm. If the final output is c, we can know that ∃s, t ∈ Z[X ]
such that sa + tb = c. On this condition, Euclidean algorithm can judging the
co-prime relation in Z[X ], but it can’t output the GCD in it.

For example. In Q[x], On input x3 + 1 and x2 + 1, the output of Euclidean
algorithm are 1, it means ∃s, t ∈ Q[x], let s(x3 + 1) + t(x2 + 1) = 1. This result
tells us the x3 + 1 and x2 + 1 are co-prime in Q[x] and their GCD is also 1.
Because Z[x] ∈ Q[x], the GCD of x3 + 1 and x2 + 1 only can be 1 in Z[x]. But
when we run algorithm in Z[x], the final result is 2, which mean the output of it
is not the GCD of two elements in Z[X ]. But we also have ∃s, t ∈ Z[x] such that
s(x3 +1)+ t(x2) + 1 = 2. moreover, we have no idea to change this 2 to become
1. This tells us x3 + 1 and x2 + 1 are not co-prime in Z[x].

6.3 Co-prime in Ring and its Residue Class

In this section. we notice that if we have an algorithm to check the co-prime
relation in R, so all the co-prime relation in its residue class probably can be
check.

At the first glance, we have an algorithm to check the co-prime relation only
if we had the Euclidean algorithm in this ring. Unfortunately, even though we
can check co-prime relation in Z[x] and Q[x], these case in residue class of them
are more complicated so that we can’t do it in directly. But this topic is quite
important since if we want to calculate the inverse of ā ∈ R/〈g〉, we usually
find s, t ∈ R such that sa + tg = 1, and pick this (s mod g) as the inverse of
ā ∈ R/〈g〉.

We obtained a simply and directly conclusion by exploring the procedure
which find inverse of elements in Zq. That is if calculating inverse in Zq, one
take use of Euclidean algorithms in Z. So we have conclusion below.

Theorem 3. Let R/〈g〉 be the residue class ring of R, where g ∈ R. Then
ā, b̄ ∈ R/〈g〉 are co-prime if and only if ∃s, t, p ∈ R such that ∀a + lg ∈ ā and
∀b+ ng ∈ b̄, s(a+ kg) + t(b+ ng) + pg = 1.

Proof. Assume that ⊕ and ⊙ denote the add and multiply in R/〈g〉 respectively.
1. Sufficiency. if ā, b̄ ∈ R/〈g〉 are co-prime, then ∃s̄, t̄ ∈ R/〈g〉 such that

s̄⊙ ā⊕ t̄⊙ b̄ = 1̄

(s+ kg) · (a+ lg) + (t+mg) · (b+ ng) = 1 + pg

(s+ kg) · (a+ lg) + (t+mg) · (b+ ng)− pg = 1

where k, l,m, n ∈ R. So a+ lg and b + ng can denote any element in ā and
b̄ respectively, and ∃(s+ kg), (t+mg), (−p) ∈ R to prove the result.

2. necessity. if ∃s, t, p ∈ R such that s(a+ lg) + t(b+ ng) + pg = 1. we have

sa+ tb ≡ 1 mod g

s̄⊙ ā⊕ t̄⊙ b̄ = 1̄

this means s̄, b̄ ∈ R/〈g〉 are co-prime by the definition.



By using this theorem, if we want to compute inverse of ā ∈ R/〈g〉 if it exists,
we simply use the representation of coset a+ 〈g〉 and find s, t, p ∈ Z[x] such that
sa + tg + pf = 1, then s is the a representation of coset a−1 + 〈g〉. But this is
a function with three variants. We wonder how hard it is, especially we limited
the norm of s.

6.4 Direct Attack

We describe a direct attack on encoding division assumption. Given an instance
of encoding division problem (α, y, u = αβy+ rX). Since we know α, the adver-
sary can attempt to do operation below to get βy + r′X .

Assume that α ∈ d + I, where d ∈ R/I. Use d−1 to denote inverse of din
R/I. We have mentioned that every non zero elements in R/I are invertible.

1. divide u by α in Rq[x].
2. Find short α′ ∈ d−1 + I, and multiply it to u in Rq[x].

For case 1, If there is an efficient algorithm to divide u by α in Rq[x], then
the re-randomization procedure in GGH map is useless. GGH state that the
noise in encoding could prevent adversary knowing d from [dy + rX ]q and y.
If noise doesn’t exist, adversary can divide [dy]q by y in Rq to get d. That is
that y doesn’t divide [dy+ rX ]q with high probability. The plain-text have been

changed even though [dy+rX
y ]q is in Rq. One can’t get a short polynomial in

d+ I.
For case 2. To find short α′ ∈ d−1 + I, Its equivalent to find

αα′ = 1 mod f(x) mod g(x)

That is ∃s, t ∈ Z[x] such that αα′ + sg(x)+ tf(x) = 1 and α′ is short enough. In
this function, α, f(x), is given. Adversary could recover a not short enough g(x)
by knowing the public parameters of GGH map even though vector g kept secret.
Adversary can fix a short α′, then find s and t which has no limited conditions.
But this method isn’t work since the inverse of a element in R/I is unique. If
α′ the adversary fixed is not in d−1 + I, the function doesn’t have solutions.
We know that |R/I| = det(G), where G = (g, g · x, · · · , g · xn−1). This means
adversary fixed a valid α′ with probability at most 1/det(G). Such a method is
quite like exhaustion and we believe that to find short α−1 is very hard.

7 Conclusion

We described a new notion called one way encoding system (OWES) and as-
sumed that some analog hardness assumptions hold on it. By taking use of
indistinguishability obfuscation, we design a self-bilinear map over the OWES.
The EBCDHP is proved to be hard if the EDP is hard. We also discussed that the
any level of graded encoding system like GGH satisfies the property of OWES.
After that, a concrete construction from GGH encoding system is proposed. To



increase the confidence of security, we give a simple analysis about the polyno-
mial ring and its residue class ring. We believe that the EDP in GGH is as hard
as we need.
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