
Anonymous Traitor Tracing:
How to Embed Arbitrary Information in a Key

Ryo Nishimaki∗ Daniel Wichs† Mark Zhandry‡

Abstract

In a traitor tracing scheme, each user is given a different decryption key. A content distributor can
encrypt digital content using a public encryption key and each user in the system can decrypt it using her
decryption key. Even if a coalition of users combines their decryption keys and constructs some “pirate
decoder” that is capable of decrypting the content, there is a public tracing algorithm that is guaranteed
to recover the identity of at least one of the users in the coalition given black-box access to such decoder.

In prior solutions, the users are indexed by numbers 1, . . . , N and the tracing algorithm recovers the
index i of a user in a coalition. Such solutions implicitly require the content distributor to keep a record
that associates each index i with the actual identifying information for the corresponding user (e.g.,
name, address, etc.) in order to ensure accountability. In this work, we construct traitor tracing schemes
where all of the identifying information about the user can be embedded directly into the user’s key and
recovered by the tracing algorithm. In particular, the content distributor does not need to separately store
any records about the users of the system, and honest users can even remain anonymous to the content
distributor.

The main technical difficulty comes in designing tracing algorithms that can handle an exponentially
large universe of possible identities, rather than just a polynomial set of indices i ∈ [N]. We solve this by
abstracting out an interesting algorithmic problem that has surprising connections with seemingly unre-
lated areas in cryptography. We also extend our solution to a full “broadcast-trace-and-revoke” scheme
in which the traced users can subsequently be revoked from the system. Depending on parameters,
some of our schemes can be based only on the existence of public-key encryption while others rely on
indistinguishability obfuscation.

∗NTT Secure Platform Laboratories, nishimaki.ryo@lab.ntt.co.jp. This work was done while the author was visiting
Northeastern University.
†Northeastern University, wichs@ccs.neu.edu. Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-

1413964. This work was done in part while the author was visiting the Simons Institute for the Theory of Computing, supported
by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.
‡Stanford University and MIT, mzhandry@gmail.com

1 Introduction

The Traitor-Tracing Problem. Traitor-tracing systems, introduced by Chor, Fiat and Naor [CFN94], are
designed to help content distributors identify the origin of pirate decryption boxes (such as pirate cable-TV
set-top decoders) or pirate decryption software posted on the Internet.

In the traditional problem description, there is a set of legitimate users with numeric identities [N] =
{1, . . . , N} for some (large) polynomial N . Each user i ∈ [N] is given a different decryption key ski. A
content distributor can encrypt content under the public key pk of the system and each legitimate user i
can decrypt the content with her decryption key ski. For example this could model a cable-TV network
broadcasting encrypted digital content, where each legitimate customer i is given a set-top decoder with the
corresponding decryption key ski embedded within it.

One of the main worries in this scenario is that a user might make copies of her key to re-sell or even post
in a public forum, therefore allowing illegitimate parties to decrypt the digital content. While this cannot
be prevented, it can be deterred by ensuring that such “traitors” are held accountable if caught. To evade
accountability, a traitor might modify her secret key before releasing it in the hope that the modified key
cannot be linked to her. More generally, a coalition of several traitors might come together and pool the
knowledge of all of their secret keys to come up with some “pirate decoder” program capable of decrypting
the digital content. Such a program could be made arbitrarily complex and possibly even obfuscated in the
hopes that it will be difficult to link it to any individual traitor. A traitor-tracing scheme ensures that no such
strategy can succeed – there is an efficient tracing algorithm which is given black-box access to any such
pirate decoder and is guaranteed to output the numeric identity i ∈ [N] of at least one of the traitors in the
coalition that created the program.

Who Keeps Tack of User Info? The traditional problem definition for traitor tracing makes an implicit
assumption that there is an external mechanism to keep track of the users in the system and their identifying
information in order to ensure accountability. In particular, either the content distributor or some third party
would need to keep a record that associates the numeric identities i ∈ [N] of the users with the actual
identifying information (e.g., name, address, etc.). This way, if the tracing algorithm identifies a user with
numeric identity i as a traitor, we can link this to an actual person.

Goal: Embedding Information in Keys. The main goal of our work is to create a traitor tracing system
where all information about each user is embedded directly into their secret key and there is no need to keep
any external record about the honest users of the system. More concretely, this goal translates to having
a traitor tracing scheme with a flexibly large (exponential size) universe of identities ID where a user’s
identity id ∈ ID can be a string containing all relevant identifying information about the user. The content
distributor has a master secret key msk, and for any user with identity id ∈ ID the content provider can use
msk to create a user secret key skid with this information embedded inside it. The content provider does
not need to keep any records about the user after the secret key is given out. If a coalition of traitors gets
together and constructs a pirate decoder, the tracing algorithm should recover the entire identity id of a traitor
involved in the coalition, which contains all of the information necessary to hold the traitor accountable.

Moreover, if we have a traitor tracing scheme with a flexibly large universe of identities as described
above, it is also possible to construct a fully anonymous traitor tracing system where the content provider
never learns who the honest users are. Instead of a user requesting a secret key for its identity id ∈ ID by
sending id to the content provider directly, the user and the content provider can run a multiparty compu-
tation (MPC) where the user’s input consists of the string id containing all of her identifying information

1

(signed by some external identity verification authority), the content provider’s input is msk, and the com-
putation gives the user skid as an output (provided that the signature verifies) and the content provider learns
nothing. This can even be combined with an anonymous payment system such as bit-coin to allow users
to anonymously pay for digital content. Surprisingly, this shows that anonymity and traitor tracing are not
contradictory goals; we can guarantee anonymity for honest users who keep their decryption keys secret
while still maintaining the ability to trace the identities of traitors.

Unfortunately, it turns out that prior approaches to the traitor tracing problem cannot handle large iden-
tities and crucially rely on the fact that, in the traditional problem definition, the set of identities [N] is
polynomial in size. We first survey the prior work on traitor tracing and then present our new results and
techniques that allow us to achieve the above goals.

1.1 Prior Work

Traitor Tracing Overview. Traitor tracing was introduced by Chor, Fiat and Naor [CFN94]. There are
many variants of the problem depending on whether the encryption and/or the tracing algorithm are public
key or secret key procedures, whether the tracing algorithm is black-box, and whether the schemes are “fully
collusion resistant” (no bound on the number of colluding traitors), or whether they are “bounded collusion
resistant”. See e.g., the works of [NP98, KD98, FT99, BF99, CFNP00, SW00, NP01, NNL01, SSW01,
KY02, DF03, CPP05, BSW06, BW06, BZ14] and references within for a detailed overview of prior work.

In this work, we will focus on schemes with a public-key encryption and a public-key and black-box
tracing algorithm, and will consider both fully and bounded collusion resistance. In all prior systems, the set
of legitimate users was fixed to [N] = {1, . . . , N} for some large polynomial N , and the main differences
between the prior schemes depends on how various parameters (public key size, secret key size, ciphertext
size) scale with the number of users N .

Traitor Tracing via Private Broadcast Encryption (PLBE). The work of Boneh, Sahai, and Waters [BSW06]
builds the first fully collusion resistant traitor tracing scheme where the ciphertext size is O(

√
N), private

key size is O(1), public key size is O(
√
N) (we ignore factors that are polynomial in the security parameter

but independent of N). The scheme is based on bilinear groups. This work also presents a general ap-
proach for building traitor tracing schemes, using an intermediate primitive called private linear broadcast
encryption (PLBE). We follow the same approach in this work and therefore we elaborate on it now.

A PLBE scheme can be used to create a ciphertext that can only be decrypted by users i ∈ [N] with
i ≤ T for some threshold value T ∈ {0, . . . , N} specified during encryption. Furthermore, the only way
to distinguish between a ciphertext created with the threshold value T vs. T ′ for some T < T ′ is to have a
secret key ski with i ∈ {T, . . . T ′ − 1} that can decrypt in one case but not the other.

A PLBE scheme can immediately be used as a traitor-tracing scheme. The encryption algorithm of
the tracing scheme creates a ciphertext with the threshold T = N , meaning that all users can decrypt it
correctly. The tracing algorithm gets black-box access to a pirate decoder and does the following: it tries
all thresholds T = 1, . . . , N and tests the decoder on ciphertext created with threshold T until it finds the
first such threshold for which there is a “big jump” in the decryption success probability between T and
T − 1. It outputs the index T as the identity of the traced traitor. The correctness of the above approach can
be analyzed as follows. We know that the decoder’s success probability on T = 0 is negligible (since such
ciphertexts cannot be decrypted even given all the keys) and on T = N it is large (by the correctness of the
pirate decoder program). Therefore, there must be some threshold T on which there is a big jump in the
success probability, but by the privacy property of the PLBE, a big jump can only occur if the secret key skT
was used in the construction of the pirate decoder. Note that the run-time of this tracing algorithm is O(N).

2

State of the Art Traitor Tracing via Obfuscation. Recently, Garg et al. [GGH+13] and Boneh and
Zhandry [BZ14] construct new fully collusion resistant traitor tracing scheme with essentially optimal pa-
rameters where key/ciphertext sizes only depend logarithmically on N . The schemes are constructed using
the same PLBE framework as in [BSW06] and the main contributions are therefore the construction of a new
PLBE scheme with the above parameters. These constructions both rely on indistinguishability obfuscation.
More recently, Garg et al. [GGHZ14] construct a PLBE with polylogarithmic parameters based on simple
assumptions on multilinear maps.

Broadcast Encryption, Trace and Revoke. We also mention work on a related problem called broadcast
encryption. Similar to traitor tracing, such schemes have a collection of users [N]. A sender can create a
ciphertext that can be decrypted by all of the users of the system except for specified set of “revoked users”
(which may be colluding). See e.g., [DF02, GST04, HS02, NNL01, DF03, DFKY05, GSY99, NP01, TT01]
and references within.

A trace and revoke system is a combination of broadcast encryption and traitor tracing [NP01, NNL01].
In other words, once traitors are identified by the tracing algorithm they can also be revoked from decrypting
future ciphertexts. Boneh and Waters [BW06] proposed a fully collusion resistant trace and revoke scheme
where the private/public keys and ciphertexts are all of size O(

√
N). It was previously unknown how to

obtain fully collusion resistant trace and revoke schemes with poly-logarithmic parameter sizes. Separately,
though, it is known how to build both broadcast encryption and traitor tracing with such parameters using
obfuscation [Zha14, GGH+13, BZ14], and one could reasonably expect that it is possible to combine the
techniques to obtain a broadcast, trace, and revoke system.

Watermarking. Lastly, we mention related work on watermarking cryptographic functions [NW15, CHV15].
These works show how to embed arbitrary data into the secret key of a cryptographic function (e.g., a PRF)
in such a way that it is impossible to create any program that evaluates the function (even approximately)
but in which the mark is removed. This is conceptually related to our goal of embedding arbitrary data into
the secret keys of users in a traitor-tracing scheme. Indeed, one could think of constructing a traitor tracing
scheme where we take a standard public-key encryption scheme and give each user a watermarked version
of the decryption key containing the user’s identity embedded. Unfortunately, this solution does not work
with current definitions of watermarking security, where we assume that each key can only be marked once
with one piece of embedded data. In the traitor tracing scenario, we would want mark the same key many
times with different data for each user. Conversely, solutions to the traitor tracing problem do not yield
watermarking schemes since they only require us to embed data in carefully selected secret keys chosen by
the scheme designer rather than in arbitrary secret keys chosen by the user.

1.2 Our Results

Our main result is to give new constructions of traitor-tracing schemes that supports a flexibly large space
of identities ID = [2n] where the parameter n is an arbitrary polynomial corresponding to the bit-length
of the string id ∈ ID which should be sufficiently large encode all relevant identifying information about
the user. The user’s secret key skid contains the identity id embedded within it, so there is no need to keep
any external record of users. The tracing algorithm recovers all of the identifying information id about a
traitor directly from the pirate decoder. We construct such a scheme where the secret key skid is of length
poly(n), which is essentially optimal since it must contain the data id embedded within it. The first scheme
we construct also has ciphertexts of size poly(n) but we then show how to improve this to poly(logn). The

3

scheme is secure for unbounded collusions assuming the existence of indistinguishability obfuscation (iO)
and one-way functions (OWF). We also construct schemes which are only secure against collusions of size
at most q, where the ciphertext size is either of length O(n)poly(q) assuming public-key encryption, or of
length poly(logn, q) assuming sub-exponential LWE.1 We also extend the above construction to a full trace
and revoke scheme, allowing the content distributor to specify a set of revoked users during encryption.
Assuming iO, we get such as scheme where neither the ciphertexts nor the secret keys grow with the set of
revoked users.

1.3 Our Techniques

Our high level approach follows that of Boneh, Sahai, and Waters [BSW06], using PLBE as an intermediate
primitive to construct traitor tracing. There are two main challenges: the first is to construct a PLBE scheme
that supports an exponentially large identity space ID = [2n] for some arbitrary polynomial n. The second
and more interesting challenge is to construct a tracing algorithm which runs in time polynomial in n rather
than N = 2n.

PLBE with Large Identity Space. The work of Boneh and Zhandry [BZ14] already constructs a PLBE
scheme where the key/ciphertext size is linear in n. Unfortunately, the proof of security relies on a reduction
that runs in time polynomial in N = 2n which is exponential in the security parameter. We instead take a
different approach, suggested by [GGH+13], and construct PLBE directly from (indistinguishability based)
functional encryption (FE). For technical reasons detailed below, we actually need an adaptively secure
PLBE scheme, and thus an adaptively secure FE scheme. In the unbounded collusion setting, these can
be constructed from iO [Wat14, ABSV14] or from simple assumptions on multilinear maps [GGHZ14].
Alternatively, we get a PLBE scheme which is (adaptively) secure against a bounded number of collusions
by relying on bounded-collusion FE which can be constructed from any public-key encryption [GVW12] or
from sub-exponential LWE if we want succinct ciphertexts [GKP+13].

A New Tracing Algorithm and the Oracle Jump-Finding Problem. The more interesting difficulty
comes in making the tracing algorithm run in time polynomial in n rather than N = 2n. We can think
of the pirate decoder as an oracle that can be tested on PLBE ciphertexts created with various thresholds
T ∈ {0, . . . , N} and for any such threshold T it manages to decrypt correctly with probability pT . For
simplicity, let us think of this as an oracle that on input T outputs the probability pT directly (since we
approximate this value by testing the decoder on many ciphertexts). We know that p0 is close to 0 and that
pN is the probability that a pirate decoder decrypts correctly, which is large – let’s say pN = 1 for simplicity.
Moreover, we know that for any T, T ′ with T < T ′ the values pT and pT ′ are negligibly close unless there is
a traitor with identity i ∈ {T, . . . T ′ − 1}, since encryptions with thresholds T and T ′ are indistinguishable.
In particular this means that for any point T at which there is a “jump” so that |pT − pT−1| is noticeable,
corresponds to a traitor. Since we know that the number of traitors in the coalition is bounded by some
polynomial, denoted by q, we know that there are at most q jumps in total and that there must be at least
one “large jump” with a gap of at least 1/q. The goal is to find at least one jump. We call this the “oracle
jump-finding problem”.

An Algorithm for the Oracle Jump-Finding Problem. The tracing algorithm of [BSW06] essentially
corresponds to a linear search and tests the oracle on every point T ∈ [N] and thus takes at least O(N) steps

1The above parameters ignore fixed polynomial factors in the security parameters.

4

in the worst case to find a jump. Our goal is to design a better algorithm that takes at most poly(n, q) steps.
It is tempting to simply substitute binary search in place of linear search. We would first call the oracle

on the point T/2 and learn pT/2. Depending on whether the answer is closer to 0 or 1 we recursively search
either the left interval or the right interval. The good news is in each step the size of the interval decreases by
half and therefore there would be at most n steps. The bad news is that the gap in probabilities between the
left and right end points now also decreases by a half and therefore after i steps we would only be guaranteed
that the interval contains a jump with a gap of 2−i/q which quickly becomes negligible.

Interestingly, we notice that the same oracle jump-finding problem implicitly appeared in a completely
unrelated context in a work of Boyle, Chung and Pass [BCP14] showing the equivalence of indistinguisha-
bility obfuscation and a special case of differing-inputs obfuscation. Using the clever approach developed
in the context of that work, we show how to get a poly(n, q) algorithm for the oracle jump finding problem
and therefore an efficient tracing algorithm.

The main idea is to follow the same approach as binary search, but each time that the probability at the
mid-point is noticeably far from both end-points we recurse on both the left and the right interval. This
guarantees that there is always a large jump with a gap of at least 1/q within the intervals being searched.
Furthermore, since the number of jumps is at most q we can bound the number of recursive steps in which
both intervals need to be searched by q, and therefore guarantee that the algorithm runs in poly(n, q) steps.

Interestingly, due to our tracing algorithm choosing which T to test based on the results of previous
tests, we need our PLBE scheme to be adaptively secure, and hence also the underlying FE scheme must be
adaptively secure. This was not an issue in [BSW06], for two reasons: (1) their tracing algorithm visits all
T ∈ [N], and (2) in the case of polynomial N statically secure and adaptive secure PLBE are equivalent.
Fortunately for us, as explained above, we know how to construct PLBE that is adaptively secure against
unbounded collusions from iO or simple multilinear map assumptions. For the bounded collusion setting,
we can obtain adaptively secure PLBE from public key encryption following [GVW12].

Tracing More General Decoders. In [BSW06], a pirate decoder is considered “useful” if it decrypts the
encryption of a random message with non-negligible probability, and their tracing algorithm is shown to
work for such decoders. However, restricting to decoders that work for random messages is unsatisfying, as
we would like to trace, say, decoders that work for very particular messages such as cable-TV broadcasts.
The analysis of [BSW06] appears insufficient for this setting. In our analysis, we show that even if a decoder
can distinguish between two particular messages with non-negligible advantage, then it can be traced. To
our knowledge, ours is the first traitor tracing system that can trace such general decoders.

Short Ciphertexts. In the above approach we construct traitor-tracing via a PLBE scheme where the
ciphertext is encrypted with respect to some threshold T ∈ {0, . . . , N}. The ciphertext must encode the
entire information about T and is therefore of size at least n = logN , which corresponds to the bit-length
of the user’s identifying information id. In some cases, if the size of id is truly large (e.g., the identifying
information might contain a JPEG image of the user) we would want the ciphertext size to be much smaller
than n. One trivial option is to first hash the user’s identifying information, and use our tracing scheme
above on the hashes. However, the tracer would then only learn the hash of the identifying information, and
would need to keep track of the information and hashes to actually accuse a user. This prevents the scheme
from being used in the anonymous setting.

Instead, we show how to have the tracer learn identifying information in its entirety by generalizing
the PLBE approach in a way that lets us divide the user’s identity into small blocks. Roughly, we then
trace the value contained in each block one at a time. This lets use reduce the ciphertext to size to only be

5

proportional to logn rather than n. To do so we need to generalize the notion of PLBE which also leads to
a generalization of the oracle-jump-finding problem and the algorithm that solves it.

We implement our PLBE generalization using FE. As above, we need adaptive security, which corre-
sponds to an adaptively secure FE scheme. We now also need the FE to have compact ciphertexts, whose
size is independent of the functions being evaluated. In the unbounded collusion setting, a recent construc-
tion of Ananth and Sahai [AS15] shows how to build such an FE from iO. In the bounded collusion setting,
we can obtain such an FE from LWE using [GKP+13], though the scheme is only statically secure; we then
use complexity leveraging to obtain an adaptively secure scheme from sub-exponential LWE.

Trace and Revoke. Finally, we extend our traitor tracing scheme to a trace and revoke system where users
can be revoked. It turns out that this problem reduces to the problem of constructing “revocable functional
encryption” where the encryption algorithm can specify some revoked users which will be unable to decrypt.
The ciphertext size is independent of the size of the revoke list, but we assume that the revoke list is known
to all parties. We show how to construct such a scheme from indistinguishability obfuscation using the
technique of somewhere statistically binding (SSB) hashing [HW15].

1.4 Outline

In Section 2, we give some definitions and notations that we will use in our work. In Section 3, we define the
oracle jump-finding problem, and show how to efficiently solve it. In Sections 4 and 5, we use the solution
of the jump-finding problem to give our new traitor tracing schemes. In Section 6, we give our full trace and
revoke scheme.

2 Preliminaries

2.1 Notations

Throughout this work, we will use the notation [N] to mean the positive integers from 1 to N : [N] =
{1, . . . , N}. We will also use the notation [M,N] to denote the integers form M to N , inclusive. We will
use (M,N] as shorthand for [M + 1, N]. We will use [M,N]R to denote the real numbers between M and
N , inclusive.

Next, we will define several of the cryptographic primitives we will be discussing throughout this work.
We start with the definition of traitor tracing that we will be achieving. Then, we will define the primitives
we will use to construct traitor tracing. In all of our definitions, there is an implicit security parameter λ,
and “polynomial time” and “negligible” are with respect to this security parameter.

2.2 Traitor Tracing with Flexible Identities

Here we define traitor tracing. Our definition is similar to that of Boneh, Sahai, and Waters [BSW06],
though ours is at least as strong, and perhaps stronger. In particular, our definition allows for tracing pirate
decoders that can distinguish between encryptions of any two messages, whereas [BSW06] only allows for
tracing pirate decoders that can decrypt encryptions of random messages. In Section 4, we discuss why the
analysis in [BSW06] appears insufficient for our more general setting, but nevertheless show that tracing is
still possible.

Definition 2.1. Let ID be some collection of identities, andM a message space. A flexible traitor tracing
scheme forM, ID is a tuple of polynomial time algorithms (Setup,KeyGen,Enc,Dec,Trace) where:

6

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, id) takes as input the master secret msk and an identity id ∈ ID, and outputs a secret
key skid for id.

• Enc(mpk,m) takes as input the master public key mpk and a message m ∈M, and outputs a cipher-
text c.

• Dec(skid, c) takes as input the secret key skid for an identity id and a ciphertext c, and outputs a
message m.

• TraceD(mpk,m0,m1, q, ε) takes as input the master public key mpk, two messages m0,m1, and
parameters q, ε, and has oracle access to a decoder algorithm D. It produces a (possibly empty) list of
identities L.

• Correctness. For any message m ∈M and identity id ∈ ID, we have that

Pr[Dec(skid, c) = m : (msk,mpk)← Setup(), skid ← KeyGen(msk, id), c← Enc(mpk,m)] = 1

• Semantic security. Informally, we ask that an adversary that does not hold any secret keys cannot
learn the plaintext m. This is formalized by the following experiment between an adversary A and
challenger:

– The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

– A makes a challenge query where it submits two messages m∗0,m
∗
1. The challenger chooses a

random bit b, and responds with the encryption of m∗b : c
∗ ← Enc(mpk,m∗b).

– A produces a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the semantic security advantage of A as the absolute difference between 1/2 and the prob-
ability the challenger outputs 1. We say the public key encryption scheme is semantically secure if,
for all PPT adversaries A, the advantage of A is negligible.

• Traceability. Consider a subset of colluding users that pool their secret keys and produce a “pirate
decoder” that can decrypt ciphertexts. Call a pirate decoder D “useful” for messages m0,m1 if D
can distinguish encryptions of m0 from m1 with noticeable advantage. Then we require that such a
decoder can be traced using Trace to one of the identities in the collusion. This is formalized using the
following game between an adversary A and challenger, parameterized by a non-negligible function
ε:

– The challenger runs (msk,mpk)← Setup() and gives mpk to A.

– A is allowed to make arbitrary keygen queries, where is sends an identity id ∈ ID to the
challenger, and the challenger responds with skid ← KeyGen(msk, id). The challenger also
records the identities queries in a list L.

– A then produces a pirate decoder D, two messages m∗0,m
∗
1, and a non-negligible value ε. Let

q be the number of keygen queries made (that is, q = |L|). The challenger computes T ←
TraceD(mpk,m∗0,m∗1, q, ε) as the set of accused users. The challenger says that the adversary
“wins” one of the following holds:

7

* T contains any identity outside of L. That is, T \ L 6= ∅ or

* Both of the following hold:
· D is ε-useful, meaning Pr[D(c) = m∗b : b← {0, 1}, c← Enc(mpk,m∗b)] ≥ 1

2 + ε2.
· T does not contain at least one user inside L. That is, T ∩ L = ∅.

The challenger then outputs 1 if the adversary wins, and zero otherwise.

We define the tracing advantage of A as the probability the challenger outputs 1. We say the public
key encryption scheme is traceable if, for all PPT adversariesA and all non-negligible ε, the advantage
of A is negligible.

2.3 Private Broadcast Encryption

In our traitor tracing constructions, it will be convenient for us to use a primitive we call private broadcast
encryption, which is a generalization of the private linear broadcast encryption of Boneh, Sahai, and Wa-
ters [BSW06]. A private broadcast scheme is a broadcast scheme where the recipient set is hidden. Usually,
the collection of possible recipient subsets is restricted: for example, in private linear broadcast encryption,
the possible recipient sets are simply intervals. It will be useful for us to consider more general classes of
recipient sets, especially for our short-ciphertext traitor tracing construction in Section 5

Definition 2.2. Let ID be the set of identities. Let S be a collection of subsets of ID. LetM be a message
space. A Private Broadcast Encryption (PBE) scheme is a tuple of algorithms (Setup,KeyGen,Enc,Dec)
where:

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, id) takes as input the master secret msk and a user identity id ∈ ID. It outputs a secret
key skid for id.

• Enc(mpk, S,m) takes as input the master public key mpk, a secret set S ∈ S, and a messagem ∈M.
It outputs a ciphertext c.

• Dec(skid, c) takes as input the secret key skid for a user id, and a ciphertext c. It outputs a message
m ∈M or a special symbol ⊥.

• Correctness. For a secret set S ∈ S , any identity id ∈ S, any identity id′ /∈ S, any message m ∈M,
we have that

Pr[Dec(skid, c) = m : (msk,mpk)← Setup(), skid ← KeyGen(msk, id), c← Enc(mpk, S,m)] = 1

Pr[Dec(skid′ , c) = ⊥ : (msk,mpk)← Setup(), skid′ ← KeyGen(msk, id′), c← Enc(mpk, S,m)] = 1

In other words, a user id is “allowed” to decrypt if id is in the secret set S. We also require that if id is
not “allowed” (that is, if id /∈ S), then Dec outputs ⊥.

2Checking the “winning” condition requires computing the probabilities a procedure outputs a particular value, which is in
general an inefficient procedure. Thus our challenger as described is not an efficient challenger. However, it is possible to efficiently
estimate these probabilities by running the procedure many times, and reporting the fraction of the time the particular value is
produce. We could have instead defined our challenger to estimate probabilities instead of determine them exactly, in which case
the challenger would be efficient. The resulting security definition would be equivalent.

8

• Message and Set Hiding. Intuitively, we ask that for id that are not explicitly allowed to decrypt a
ciphertext c, that the message is hidden. We also ask that nothing is learned about the secret set S,
except for what can be learned by attempting decryption with various skid available to the adversary.
These two requirements are formalized by the following experiment between an adversary A and
challenger:

– The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

– A is allowed to make arbitrary keygen queries, where it sends an identity id ∈ ID to the
challenger, and the challenger responds with skid ← KeyGen(msk, id). The challenger also
records id in a list L.

– At some point, A makes a single challenge query, where is submits two secret sets S∗0 , S
∗
1 ∈ S ,

and two messages m∗0,m
∗
1. The challenger flips a random bit b ∈ {0, 1}, and computes the

encryption of m∗b relative to the secret set S∗b : c∗ ← Enc(mpk, S∗b ,m∗b). Then, the challenger
makes the following checks, which ensure that the adversary cannot trivially determine b from
c∗:

* If m∗0 6= m∗1, then successful decryption of the challenge ciphertext would allow determin-
ing b. Therefore, the challenger requires that none of the identities the adversary has the
secret key for can decrypt the ciphertext. In other words, for any id ∈ L, id /∈ S∗0 and
id /∈ S∗1 . In other words, the sets L ∩ S∗0 and L ∩ S∗1 must be empty.

* If S∗0 6= S∗1 , then successful decryption for S∗b but not for S∗1−b would allow for determining
b (even if m∗0 = m∗1). Therefore, the challenger requires that all of the identities the adver-
sary has secret keys for can either decrypt in both cases, or can decrypt in neither. In other
words, for any id ∈ L, id /∈ S∗0∆S∗1 , where ∆ denotes the symmetric difference operator.
Notice that this check is redundant if m∗0 6= m∗1.

If either check fails, the challenger outputs a random bit and aborts the game. Otherwise, the
challenger sends c∗ to A.

– A is allowed to make additional keygen queries for arbitrary identities id∗, subject to the con-
straint that id must satisfy the same checks as above: if m∗0 6= m∗1, then id /∈ S∗0 and id /∈ S∗1 ,
and if S∗0 6= S∗1 , then id /∈ S∗0∆S∗1 . If the adversary tries to query in an id that fails the check,
the challenger outputs a random bit and aborts the game.

– Finally, A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the private broadcast system is secure if, for all PPT adversaries A, the advantage
of A is negligible.

For a private broadcast scheme, we call the collection S of secret sets the secret class. We are interested
in several metrics for a private broadcast scheme:

• Ciphertext size. Notice that the ciphertext, while hiding the secret set S, information-theoretically
contains enough information to reveal S: given the secret key for every identity, S can be determined
by attempting decryption with every secret key. It must also contain enough information to entirely
reconstruct the message m. Thus, we must have |c| ≥ log |S| + log |M|. We will say the ciphertext
size is optimal if |c| ≤ poly(λ, log |S|) + log |M|.

9

• Secret key size. Assuming the public and secret classes P,S are expressive enough, from the secret
key skid for identity id, it is possible to reconstruct the entire identity id by attempting to decrypt
ciphertexts meant for various subsets. Therefore, |skid| ≥ log |ID|. We will say the user secret key
size is optimal if |skid| ≥ poly(λ, log |ID|).

• Master key size. The master public and secret keys do not necessarily encode any information, and
therefore could be as short as O(λ). We will say the master key sizes are optimal if |msk|, |mpk| ≤
poly(λ).

Notice that in the case where S = {ID}, our notion of private broadcast reduces to the standard notion
of (identity-based) broadcast encryption, and the notions of optimal ciphertext, user secret key, and master
key sizes coincide with the standard notions for broadcast encryption.

2.4 Obfuscation

The notion of indistinguishability obfuscation (iO) was proposed by Barak et. al. [BGI+01, BGI+12]
and the first candidate construction was proposed by Garg, Gentry, Halevi, Raykova, Sahai, and Waters
[GGH+13].

Definition 2.3 (Indistinguishability Obfuscation [BGI+01, BGI+12, GGH+13]). A PPT algorithm O is an
indistinguishability obfuscator (iO) if it satisfies the following two conditions.

Functionality: For all security parameter λ ∈ N, for all circuit C for all input x, it holds that

Pr[C ′(x) = C(x) | C ′ ← O(1λ, C)] = 1.

Indistinguishability: For all PPT distinguisher D and all circuit ensembles C0 = {C(0)
λ }λ∈N and C1 =

{C(1)
λ }λ∈N such that ∀λ, x : C(0)

λ (x) = C
(1)
λ (x) and |C(0)

λ | = |C
(1)
λ | there exists a negligible function

α, we have: ∣∣∣Pr[D(O(1λ, C(0)
λ)) = 1] − Pr[D(O(1λ, C(1)

λ)) = 1]
∣∣∣ < α(λ)

For simplicity, we writeO(C) instead ofO(1λ, C) when the security parameter λ is clear from context.

Puncturable Pseudorandom Functions. The notion of puncturable pseudorandom function (pPRF) was
proposed by Sahai and Waters [SW14]. This is a useful tool to prove the security of cryptographic schemes
based on iO.

Definition 2.4 (Puncturable Pseudorandom Functions). For sets D,R, a puncturable pseudorandom func-
tion (pPRF) F consists of a tuple of (probabilistic) algorithms F = (PRF.Gen,F,Punc) that satisfy the
following two conditions.

Functionality preserving under puncturing: For all polynomial size set S ⊆ D and for all x ∈ D \ S, it
holds that

Pr[Fr(x) = Fr{S}(x) | r ← PRF.Gen(1λ), r{S} = Punc(r, S)] = 1.

10

Pseudorandom at punctured points: For all polynomial size set S = {x1, . . . , xk(λ)} ⊆ D and all PPT
distinguisher D, there exists negligible function α, we have:∣∣∣Pr[D(Fr{S}, {Fr(xi)}i∈[k]) = 1]− Pr[D(Fr{S}, Uk) = 1]

∣∣∣ ≤ α(λ)

where r ← PRF.Gen(1λ), r{S} = Punc(r, S) and U denotes the uniform distribution over R.

Theorem 2.5 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exits, then for all efficiently com-
putable n(·) and m(·), there exists a pPRF family whose input is an n(·) bit string and output is an m(·) bit
string.

2.5 Functional Encryption

Definition 2.6. LetM be some message space, Y some other space, andF be a class of functions f :M→
Y . A Functional Encryption (FE) scheme forM,Y,F is a tuple of algorithms (Setup,KeyGen,Enc,Dec)
where:

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, f) takes as input the master secret msk and a function f ∈ F . It outputs a secret key
skf for f .

• Enc(mpk,m) takes as input the master public key mpk and a message m ∈M, and outputs a cipher-
text c.

• Dec(skf , c) takes as input the secret key skf for a function f ∈ F and a ciphertext c, and outputs
some y ∈ Y , or ⊥.

• Correctness. For any message m ∈M and function f ∈ F , we have that

Pr[Dec(skf , c) = f(m) : (msk,mpk)← Setup(), skf ← KeyGen(msk, f), c← Enc(mpk,m)] = 1

• Security. Intuitively, we ask that the adversary, given secret keys f1, . . . , fn, leans fi(m) for each i,
but nothing else about m. This is formalized by the following experiment between an adversary A
and challenger:

– The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

– A is allowed to make arbitrary keygen queries, where it sends a function f ∈ F to the challenger,
and the challenger responds with skf ← KeyGen(msk, f). The challenger also records f in a
list L.

– At some point, A makes a single challenge query, where it submits two messages m∗0,m
∗
1.

The challenger checks that f(m∗0) = f(m∗1) for all f ∈ L. If the check fails (that is, there
is some f ∈ L such that f(m∗0) 6= f(m∗1)), then the challenger outputs a random bit and
aborts. Otherwise, the challenger flips a random bit b ∈ {0, 1}, and responds with the ciphertext
c∗ ← Enc(mpk,m∗b).

– A is allowed to make additional keygen queries for functions f ∈ F , subject to the constraint
that f(m∗0) = f(m∗1).

11

– Finally, A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the functional encryption scheme is secure if, for all PPT adversaries A, the
advantage of A is negligible.

For a functional encryption scheme, we will be interested in the size of the various parameters (in
addition to the security of the system itself):

• Ciphertext size. At a minimum, the ciphertext must information-theoretically encode the entire mes-
sage (assuming the class F is expressive enough). Therefore |c| ≥ log |M|. We will consider a
scheme to have optimal ciphertext size if |c| ≤ poly(λ, log |M|)3.

• Secret key size. The secret key must information-theoretically encode the entire function f , so
|skf | ≥ log |F|. However, because we are interested in efficient algorithms, we cannot necessar-
ily represent functions f using log |F| bits, and may therefore need larger keys. Generally, f will be a
circuit of a certain size, say s. We will say a scheme has optimal secret key size if |skf | ≤ poly(λ, s).

• Master key size. The master public and secret keys do not necessarily encode any information, and
therefore could be as short as O(λ). We will say the master key sizes are optimal if |msk|, |mpk| ≤
poly(λ).

Construction. A construction of FE that has above properties is proposed by Ananth and Sahai [AS15].
The construction is based on indistinguishability obfuscation for circuits and one-way function.

2.6 Symmetric Key Encryption with Pseudorandom Ciphertexts

Definition 2.7. LetM be some message space. A symmetric key encryption scheme forM is a tuple of
algorithms (KeyGen,Enc,Dec) where:

• KeyGen() is a randomized procedure with no input (except the security parameter) that outputs a
secret key k.

• Enck(m) takes as input the secret key k and a message m ∈M, and outputs a ciphertext c.

• Deck(c) takes as input the secret key k and a ciphertext c, and outputs some m ∈M, or ⊥.

• Correctness. For any message m ∈M, we have that

Pr[Deck(c) = m : k ← KeyGen(), c← Enck(m)] = 1

• Security. The security is formalized by the following experiment between an adversary A and chal-
lenger:

– The challenger runs k ← KeyGen() and flips a random bit b ∈ {0, 1}.
– A is allowed to make arbitrary ciphertext queries, where it sends a message m ∈ M to the

challenger. If b = 0, then the challenger responds with Enck(m). If b = 1, then the challenger
outputs a uniformly random string of length `(λ) where `(λ) is the length of the ciphertexts.

3This property has been referred to as “compactness” [AJ15, BV15].

12

– Finally, A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the symmetric key encryption scheme with pseudorandom ciphertexts is secure if,
for all PPT adversaries A, the advantage of A is negligible.

We can construct such a symmetric encryption scheme with pseudorandom ciphertexts from OWF. For
example, we can use Enck(m; r) = (r,Fk(r) ⊕ m) where Fk is a standard PRF with a key k and r is a
uniformly random string (randomness for the ciphertext) [Gol04].

3 An Oracle Problem

Here we define the oracle jump finding problem, which abstracts the algorithmic problem underlying both
the iO/diO (differing-inputs obfuscation) conversion of [BCP14] as well as the tracing algorithm in this
work.

Definition 3.1. The (N, q, δ, ε) jump finding problem is the following. An adversary chooses a set C ⊆
[1, N] of q unknown points. Then, the adversary provides an oracle P : [0, N]→ [0, 1]R such that:

• |P (N)− P (0)| > ε. That is, over the entire domain, P varies significantly.
• For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points inC (that is, (x, y]∩C =
∅), it must be |P (x)− P (y)| < δ. That is, outside the points in C, P varies very little.

Our goal is to interact with the oracle P and output some element in C.

A pictorial representation of the jump finding problem is given in Figure 1.

0" N"

δ"

ε"

Figure 1: Example of an oracle P when C contains 4 points. The purple curve represents the outputs of the
oracle P on inputs in the interval [0, N]. The red hatch marks on the number line indicate the positions of
the elements in C. The horizontal dashed lines show that, between the points in C, P is never changes more
than δ. At the points in C, P can make arbitrary jumps in either direction.

Notice that if ε < qδ, it is possible to have all adjacent values P (x−1), P (x) be at less than δ apart, even
for x ∈ C. Thus it becomes information-theoretically impossible to determine an x ∈ C exactly. In contrast,
for ε ≥ qδ, if we query the oracle on all points there must exist some point x such that |P (x)−P (x−1)| > δ,
and this point must therefore belong to C. Therefor, this problem is inefficiently solvable ε ≥ qδ. The
following shows that for ε somewhat larger that qδ, the problem can even be solved efficiently:

13

Theorem 3.2. There is a deterministic algorithm PTraceP (N, q, δ) that runs in time t = poly(logN, q)
(and in particular makes at most t queries to P) that will output at least one element in C, provided that
ε ≥ δ(2 + (dlogNe − 1)q). Furthermore, the algorithm never outputs an element outside C, regardless of
the relationship between ε and δ.

Proof. We assume that P (N) − P (0) > ε. The general case can be solved by running our algorithm
once, and then running it a second time with the oracle P ′(x) = 1− P (x), and outputting the union of the
elements produced. We will also assume N = 2n is a power of 2, the generalization to arbitrary N being
straightforward.

First we define a recursive algorithm PTraceP0 (I, q, δ) which takes as input an interval I = (a, b], as
well as q, δ. For any interval I = (a, b], let |I| = b−a and let qI be the number of points in C in the interval
I: qI = |I ∩ C|. Define ∆I = P (b)− P (a). PTraceP0 (I, q, δ) works as follows:

• Let I = (a, b]. Query P on a, b to obtain P (a), P (b). Compute ∆I = P (b)− P (a)
• If ∆I ≤ δ, abort and output the empty list T = {}
• Otherwise, if |I| = 1, output T = {b}
• Otherwise, partition I into two equal disjoint intervals IL, IR so that IL ∩ IR = ∅, IL ∪ IR = I , and
|IL|, |IR| = |I|/2. Run TL = PTraceP0 (IL, q, δ) and TR = PTraceP0 (IR, q, δ). Output T = TL ∪ TR.

We then define PTrace to run PTrace0 on the entire domain (0, N]: PTraceP (N, q, δ) = PTraceP0 ((0, N], q, δ).
We now make several claims about PTrace0. The first follows trivially from the definition of PTrace0:

Claim 3.3. Any element outputted by PTrace0 on interval I must be in C ∩ I . In particular, any element
outputted by PTrace is inC. Moreover, we have that any element s outputted must have P (s)−P (s−1) > δ

Claim 3.4. The running time of PTrace is a polynomial in q and in n = logN .

Proof. The running time of PTrace is dominated by the number of calls made to PTrace0. We observe
that the intervals I on which PTrace0 is potentially called form a binary tree: the root is the entire interval
(0, N], the leaves are the singleton intervals (x − 1, x], and each non-leaf node corresponding to interval I
has two children corresponding to intervals IL and IR that are the left and right halves of I . This tree has
1 + logN levels, where the intervals in level i have size 2i. Based on the definition of PTrace0, PTrace0 is
only called on an interval I if I’s parent contains at least one point in C, or equivalently that I or its sibling
contain at least one point in C. Since there are only q points in C, PTrace is called on at most 2q intervals
in each level. Thus the total number of calls, and hence the overall running time, is O(q logN).

Claim 3.5. Define α(I) ≡ δ(log |I| + (n − 1)qI − (n − 2)) where n = logN . Any call to PTrace0 with
qI ≥ 1 and ∆I > α(I) will output some element.

Proof. If |I| = 1 and qI = 1, thenα(I) = δ((n−1)−(n−2)) = δ. We already know that if ∆I > δ = α(I),
PTrace will output an element. Therefore, the claim holds in the case where |I| = 1.

Now assume the claim holds if |I| ≤ r. We prove the case |I| = r + 1. Assume qI ≥ 1, and running
PTrace0 on I does not give any elements in C. Then running PTrace0 on IL and IR does not give any
elements. For now, suppose qIL

and qIR
both positive. By induction this means that ∆IL

≤ α(IL) =
δ(log |IL| + (n − 1)qIL

− (n − 2)) and ∆IR
≤ α(IR) = δ(log |IR| + (n − 1)qIR

− (n − 2)). Recall that
log |IR| = log |IL| = log |I| − 1. Together this means that ∆I ≤ α(IL) +α(IR) ≤ δ(log |I|+ (n− 1)qI −
(n− 2)− (n− log |I|)) = α(I)− (n− log |I|). Since log |I| ≤ n, we have that ∆I ≤ α(I).

Now suppose qIL
= 0, which implies qIR

= qI > 0. The case qIR
= 0 is handled similarly. Then

∆IL
≤ δ, and by induction ∆IR

≤ α(IR) = δ(log |I|+ (n− 1)qI − (n− 1)). Thus ∆I ≤ δ(log |I|+ (n−
1)qI − (n− 1) + 1) = α(I), as desired. This completes the proof.

14

Notice that α((0, N]) = δ(2 + (n − 1)q) ≤ ε. Also notice that by definition ∆(0,N] > ε. Therefore,
the initial call to PTrace0 by PTrace outputs some element, and that element is necessarily in C.

Remark 3.6. We note that PTraceP works even for “cheating” P that do not satisfy |P (x) − P (y)| < δ
for all (x, y] which do not intersect C, as long as the property holds for all pairs x, y that where queried by
PTrace. This will be crucial in our traitor tracing construction.

Now we define a related oracle problem, that takes the jump finding problem above and hides the oracle
P inside a noisy oracle Q, and only provides us with the noisy oracle Q.

Definition 3.7. The (N, q, δ, ε) noisy jump finding problem is the following. An adversary chooses a set
C ⊆ [1, N] of q unknown points. Then, the adversary builds an oracle P : [0, N] → [0, 1]R as above, but
does not provide it to us directly. As before, P must satisfy:

• |P (N)− P (0)| > ε
• For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points inC (that is, (x, y]∩C =
∅), it must be |P (x)− P (y)| < δ.

Instead of interacting with P , we interact with a randomized oracle Q : [0, N]→ {0, 1} defined as follows:
Q(x) chooses and outputs a random bit that is 1 with probability P (x), and 0 otherwise. A fresh sample is
chosen for repeated calls to Q(x), and is independent of all other samples outputted by Q. Our goal is to
interact with the oracle Q and output some element in C.

Theorem 3.8. There is a probabilistic algorithm QTraceO(N, q, δ, λ) that runs in time t = poly(logN, q, 1/δ, λ)
(and in particular makes at most t queries to O) that will output at least one element in C with probability
1 − negl(λ), provided ε > δ(5 + 2(dlogNe − 1)q). Furthermore, the algorithm never outputs an element
outside C, regardless of the relationship between ε and δ.

The idea is to, given Q, approximate the underlying oracle P , and run PTrace on the approximated
oracle. Similar to the setting above, QTrace works even for “cheating” oracles P , as long as |P (x)−P (y)| <
δ for all queried pairs x, y such that (x, y] contains no points inC. We still needQ to be honestly constructed
given P .

Proof. Our basic idea is to use O to simulate an approximation P̂ to the oracle P , and then run PTrace
using the oracle P̂ .

QTraceO(N, q, δ, ε, λ) works as follows. It simulates PTrace(N, q, δ). Whenever PTrace queries P on
input x, QTrace does the following:

• For i = 1, . . . , O(λ/δ2), sample zi ← O(x)

• Output p̂x as the average of the zi.

Then QTrace outputs the output of PTrace.

As PTrace makes O(q logN) oracle calls to P , QTrace will make O(λq logN/δ2) oracle calls. More-
over, the running time is bounded by this quantity as well. Therefore QTrace has the desired running time.

With probability at least 1 − 2−λ, we have that |px − p̂x| < δ/2 for each x that are queried. This
means that, with overwhelming probability, for all intervals (x, y] that do not contain any elements of x, we
have that |py − px| < δ, so |p̂y − p̂x| < 2δ with overwhelming probability. Moreover, |pN − p0| > ε, so

15

|p̂N − p̂0| > ε − δ. Thus with overwhelming probability the oracle P̂ seen by PTrace is an instance of the
(N, q, δ′ = 2δ, ε′ = ε− δ). Notice that

ε′ = ε− δ > δ(5 + 2(n− 1)q)− δ = (2δ)(2 + (n− 1)q) = δ′(2 + (n− 1)q)

Therefore, P̂ satisfies the conditions of Theorem 3.2, and PTrace outputs at least one element in C. QTrace
outputs the same element, completing the proof.

3.1 The Generalized Jump Finding Problem

Here we define a more general version of the jump finding problem that will be useful for obtaining short-
ciphertext traitor tracing. In this version, the points in C are more complex, and consist of a tag s ∈
[N], and a bit-string b = (b1, . . . , br) ∈ {0, 1}r. Our goal is to determine both s and b for some pair
(s, b) ∈ C. However, unlike the previous jump finding problem, we are not given an oracle that allows
for tracing both terms directly. Instead, we are given r separate jump-finding oracles corresponding to sets
Ci = {2s−bi}(s,b)∈C ⊆ [2N]. Moreover, we are given that the probabilities underlying the different oracles
are very close.

Definition 3.9. The (N, r, q, δ, ε) generalized jump finding problem is the following. There is a set C ⊆
[1, N] of q unknown tuples (s, b1, . . . , br) ∈ [N] × {0, 1}r such that the s are distinct. Let Ci be the set of
points 2s− bi for tuples in C. For each pair (i, x) ∈ [1, r]× [0, 2N] there is a probability pi,x ∈ [0, 1]R with
the properties that:

• pi,0 = pi′,0 for all i, i′ ∈ [m]. Similarly, pi,N = pi′,N for all i, i′ ∈ [r]. Define p0 = pi,0 and
pN = pi,N .
• |pN − p0| > ε
• For any pair of pairs of the form (i, 2x), (j, 2x) ∈ [1, r]× [0, 2N], |pi,2x − pj,2x| < δ
• For any pair of pairs of the form (i, x), (i, y) ∈ [1, r] × [0, 2N] such that the interval (x, y] does not

contain any points in Ci (that is, (x, y] ∩ Ci = ∅), then |pi,x − pi,y| < δ.

We are now presented with one of two oracles, depending on the version of the problem:

• In the noiseless version, we are given an oracle for the px: we are given oracle access to the function
P : [0, N]→ [0, 1]R such that P (x) = px.
• In the noisy version, we are given a randomized oracle Q with domain [0, N] that, on input x, outputs

1 with probability px. Repeated calls to Q on the same x yield a fresh bit sampled independently.

Our goal is to output some element in C.

A pictorial representation of the generalized jump finding problem is given in Figure 2.

Theorem 3.10. There is are algorithms PTrace′P (N, r, q, δ) and QTrace′Q(N, r, q, δ, λ) for the noiseless
and noisy versions of the (N, r, q, δ, ε) generalized jump finding problem that run in time poly(logN, r, q, 1/δ)
and poly(logN, r, q, 1/δ, λ), respectively, and output an element in C with overwhelming probability, pro-
vided ε > δ(4 + 2(dlogNe − 1)q) (for the noiseless case), or ε > δ(9 + 4(dlogNe − 1)q) (for the noisy
case).

This theorem is proved analogously to Theorems 3.2 and 3.8, and appears in below. Again, PTrace′,QTrace′
work even if the oracle P is “cheating”, as long as the requirements on P hold for all points queried by
PTrace′ or QTrace′.

16

0" 2N"

1"

r"

Figure 2: Example probabilities pi,x when C contains 4 items, r = 7, and N = 15. The dots represent the
various probabilities pi,x, where rows are indexed by i ∈ [r] and columns are indexed by x ∈ [0, 2N]. The
shade of the dot at position (i, x) indicates the value of pi,x, with darker shade indicating higher pi,x. The
elements in C describe curves from the top of the grid to the bottom, which are indicated in red in the figure.
Notice (1) that the curves in C oscillate around odd columns of dots, and (2) that they never intersect, and
(3) that the values of the pi,x only vary minimally between the curves in C, and can only have large changes
when crossing the curves.

Proof. We prove the noiseless version, extending to the noisy version is a simple extension of Theorem 3.8.
PTrace′P (N, r, q, δ) works as follows:

• Let P ′(x) = P (1, 2x). Notice that |P ′(N)− P ′(0)| = |pN − p0| > ε. Moreover, for intervals (x, y]
that do not contain any of the s, |P ′(y) − P ′(x)| < δ ≤ 2δ. Therefore, P ′ is an instance of the
(N, q, 2δ, ε) problem for ε > 2δ(2 + (n− 1)q). Therefore, we run PTraceP ′(N, q, δ′) to obtain a list
T of s values, with the property that |P (1, 2x)− P (1, 2x− 2)| = |P ′(s)− P ′(s− 1)| ≥ 2δ for each
s ∈ T .

• For each s ∈ T , and for each i ∈ [n], let bs,i = 1 if |P (i, 2s− 2)− P (i, 2s− 1)| > |P (i, 2s− 1)−
P (i, 2s)|, and bs,i = 0 otherwise. Let (s, b1, . . . , br) ∈ C be the tuple corresponding to s. Then the set
Ci contains 2s− bi, but does not contain 2s− 1 + bi, since there is no collision between the s values.
Therefore, |P (2s−1+bi)−P (2s−2+bi)| < δ, which means that |P (2s−bi)−P (2s−1−bi)| > δ.
Therefore bs,i = bi

• Output the tuples (s, bs,1, . . . , bs,r).

By the analysis above, since PTrace never outputs a value outside of C, PTrace′ will never output a
tuple corresponding to an identity outside of C. Moreover, if ε > δ(4+2(n−1)q), then PTrace′ will output
at least one tuple in C. Finally, PTrace′ runs in time only slightly worse than PTrace, and is therefore still
polynomial time.

4 Tracing with Flexible Identities

Let (Setup,KeyGen,Enc,Dec) be a secure private linear broadcast scheme for identity space ID = [2n].
We now show that such a private broadcast scheme is sufficient for flexible traitor tracing. The Setup,KeyGen,Enc,
and Dec algorithms are as follows:

17

• Setup,KeyGen are inherited from the private broadcast scheme.
• To encrypt a message m, run Enc(mpk, S = ID,m). Call this algorithm EncTT .
• To decrypt a ciphertext c, run Dec(skid, c). Call this algorithm DecTT

Theorem 4.1. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme for identity space
[2n] and private class S = {[u]}u∈[0,2n]. Then there is a polynomial time algorithm Trace such that
(Setup,KeyGen,EncTT ,DecTT ,Trace) as defined above is a flexible traitor tracing algorithm.

Proof. Boneh, Sahai, and Waters [BSW06] prove this theorem for the case of logarithmic n and for the
weaker notion of tracing where the pirate decoder is required to decrypt a random message, as opposed
to distinguish between two specific messages. Their tracing algorithm gets black-box access to a pirate
decoder and does the following: it runs the decoder on encryptions to all sets [u] for u = 0, . . . , 2n and
determines the success probability of the decoder for each u. It outputs an index u such that there is a
“large” gap between the probabilities for [u− 1] and [u] as the identity of the traced traitor. In the analysis,
[BSW06] shows that, provided the adversary does not control the identity u, the pirate succeeds with similar
probabilities for [u − 1] and [u]. To prove this, they run the adversary, answering its secret key queries by
making secret key queries to the PLBE challenger. When the adversary outputs a pirate decoder D, they
make a PLBE challenge on a random messagem and sets [u] and [u−1]. Then they run the pirate decoder on
the resulting ciphertext, and test whether it decrypts successfully: if yes, then they guess that the ciphertext
was encrypted to [u], and guess [u − 1] otherwise. The advantage of this PLBE adversary is exactly the
difference in probabilities for decrypting [u − 1] and [u]. The security of the PLBE scheme shows that this
difference must be negligible.

Now, a useful pirate decoder will succeed with high probability on [2n], and with negligible probability
on [0], so there must be some “gap” in probabilities. The above analysis shows that (1) the tracer will find a
gap, and (2) that the gap must occur at an identity under the adversary’s control.

There are two problems with generalizing to our setting:

• The running time of the tracing algorithm in [BSW06] grows with 2n as opposed to n, resulting in an
exponential-time tracing algorithm when using flexibly-large identities. This is because their tracing
algorithm checks the pirate decoder an all identities. We therefore need a tracing algorithm that tests
the decoder on a polynomial number of identities. To accomplish this, show that tracing amounts to
solving the jump-finding problem in Section 3, and we can therefore use our efficient algorithm for
the jump-finding problem to trace.

• Since we only ask that the pirate decoder can distinguish two messages, we need to reason about the
decoder’s “advantage” (decryption probability minus 1/2) instead of its decryption probability. In the
analysis above, since probabilities are always positive, any “useful” decoder will contribute positively
to the PLBE advantage, whereas a “useless” decoder will not detract. However, this crucially relies
on the fact that probabilities are positive. In our setting, the advantage is signed and can be both
positive and negative, and the contribution of decoders to the PLBE adversary’s advantage can cancel
out if they have different sign. Thus there is no guarantee that the obtained PLBE adversary has any
advantage. To get around this issue, we essentially have our reduction estimate the signed advantage
of the pirate decoder, and reject all decoders with negative advantage. The result is that the advantage
of all non-rejected decoders is non-negative, and so all decoders contribute positively to the PLBE
adversary’s advantage.

We now give our proof. Let A be a potential adversary, let C be the set of colluding parties for which
A obtained secret keys, and q = |C|. A produces a pirate decoder D and messages m0,m1 such that D can

18

distinguish encryptions of m0 from encryptions of m1. Define the quantities

pid = Pr[D(c) = b : b← {0, 1}, c← EncTT (mpk, id,mb)]

for id ∈ S. We first will prove two lemmas:

Lemma 4.2. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ. Suppose an
interval (idL, idR] is chosen adversarially after seeing the set C, the adversary’s secret keys, the pirate
decoder D, and even the internal state of A, and suppose that C ∩ (idL, idR] = ∅ (that is, there are no
colluding users in (idL, idR]). Then, except with negligible probability, |pidR

− pidL
| < δ.

Proof. We will prove that pidR
− pidL

< δ with overwhelming probability, as proving pidL
− pidR

< δ is
almost identical. Suppose towards contradiction that, with non-negligible probability ε, pidR

−pidL
≥ δ. We

then describe an adversary for (Setup,KeyGen,Enc,Dec) that works as follows:

• RunA on input mpk. WheneverAmakes a keygen query on identity id, make the same keygen query.
A outputs a pirate decoder D.
• Compute estimates ˆpidR

, ˆpidL
for the probabilities pidL

and pidR
, respectively. To compute p̂id, do

the following. Take O(λ/δ2) samples of D(c) ⊕ b where b ← {0, 1} and c ← Enc(mpk, id,mb),
and then output the fraction of those samples that result in 0. Notice that with probability 1 − 2−λ,
|p̂id − pid| ≤ δ/4.
• If ˆpidR

− ˆpidL
< 1

2δ, output a random bit and abort. Notice that, with overwhelming probability,∣∣(ˆpidR
− ˆpidL

)− (pidR
− pidL

)
∣∣ < δ/2. Therefore, with overwhelming probability, if we do not abort,

pidR
− pidL

> 0. Moreover, if pidR
− pidL

> δ, with overwhelming probability we do not abort.
• Now choose a random bit b, and make a challenge query on S∗0 = [idL], S∗1 = [idR], and messages
m∗0 = m∗1 = mb.
• Upon receiving the challenge ciphertext c∗, compute b′ = D(c∗). Output 1 if b′ = b and 0 otherwise.

Conditioned on no aborts, in the case the challenge ciphertext is encrypted to idL (resp. idR), our
adversary will output 1 with probability pidL

(resp. pidR
), so our adversary will “win” with probability 1

2 +
(pidR

−pidL
)/2 in this case. Otherwise, during an abort, our adversary wins with probability 1/2. Moreover,

with overwhelming probability, if we abort pidR
− pidL

> 0, and with probability at least ε− negl, we have
pidR
− pidL

> δ/2. Therefore, a simple computation shows that the adversary “wins” with probability at
least 1

2 + (ε− negl)(δ/4− negl), which gives a non-negligible advantage.

Lemma 4.3. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ. Then, except with
negligible probability, |p0 − 1

2 | < δ.

Proof. The proof is similar to the proof of Lemma 4.2. We will prove that p0 − 1
2 < δ with overwhelming

probability, the case p0 − 1
2 > −δ is almost identical. Suppose towards contradiction that, with non-

negligible probability ε, p0 − 1
2 ≥ δ. An adversary for (Setup,KeyGen,Enc,Dec) works as follows:

• RunA on input mpk. WheneverAmakes a keygen query on identity id, make the same keygen query.
A outputs a pirate decoder D.
• Compute estimate p̂0 for p0 using the algorithm from Lemma 4.2, so that except with probability 2−λ,
|p̂0 − p0| < δ/2.
• If p̂0 − 1

2 <
1
2δ, output a random bit and abort. Notice that, with overwhelming probability,

∣∣(p̂0 −
1
2) − (p0 − 1

2)
∣∣ < δ/2. Therefore, with overwhelming probability, if we do not abort, p0 − 1

2 > 0.
Moreover, if p0 − 1

2 > δ, with overwhelming probability we do not abort.
• Now make a challenge query on S∗0 = S∗1 = [0] = {}, and messages m∗0 = m0,m

∗
1 = m1.

19

• Upon receiving the challenge ciphertext c∗, compute b = D(c∗). Output b

Conditioned on no aborts, our adversary will “win” with probability p0 in this case. Otherwise, during
an abort, our adversary wins with probability 1/2. Moreover, with overwhelming probability, if we abort
p0 − 1

2 > 0, and with probability at least ε− negl, we have p0 − 1
2 > δ/2. Therefore, a simple computation

shows that the adversary has non-negligible advantage (ε− negl)(δ/2− negl).

Now we define our tracing algorithm TraceD(mpk,m0,m1, q, ε). Trace sets δ = ε/2(5+4(n−2)q), and
then runs QTraceQ(2n, q, δ, λ) where QTrace is the algorithm from Theorem 3.8. Whenever QTrace makes
a query toQ on identity id, Trace chooses a random bit b, computes the encryption c← Enc(mpk, id,mb) of
mb to the set [id], runs b′ ← D(c), and responds with 1 if any only if b = b′. Define pid to be the probability
that Q(id) outputs 1. We now would like to show that Q is an instance of the (N, q, δ, ε) noisy jump finding
problem, where the set of jumps is the set C. For this it suffices to show that P (id) = pid is an instance of
the (N, q, δ, ε) noiseless jump finding problem. By Lemma 4.3, we have that with overwhelming probability
useful D have |p2n − p0| ≥ |ε− δ| > ε/2. Moreover, we have that (ε/2) = δ(5 + 4(n− 2)q).

Now we would hope that for any (idL, idR] that do not contain one of the adversary’s points, |pidR
−

pidL
| < δ. This would seem to follow from Lemma 4.2. However, we only have this property for idL, idR

that can be efficiently computed. Therefore, P (id) is potentially a cheating oracle. However, since our
tracing algorithm is efficient, any query it makes can be efficiently computed, and therefore |pidR

−pidL
| < δ

holds (with overwhelming probability) for all queried points such that (idL, idR] does not contain any of the
identities in C. Therefore, following Remark 3.6, we can still invoke Theorem 3.8, which shows that the
following hold:

• QTrace, and hence Trace, runs in polynomial time.
• QTrace, and hence Trace, will with overwhelming probability not output an identity outside S.
• If D is ε-useful, then QTrace, and hence Trace, will output some element in S (w.h.p.).

Construction. As observed by Garg et al. [GGH+13], FE immediately gives a PLBE scheme. Let F be
the set of functions fid : S ×M → (M∪ {⊥}) where fid(S,m) outputs m if m ∈ S and ⊥ if m /∈ S.
Let (SetupFE ,KeyGenFE ,EncFE ,DecFE) be a FE scheme for this class of functions. The plaintext space
S ×M has size 2λ×|M|, and the function space admits circuits of size O(λ). We then immediately obtain
a PLBE scheme: to encrypt a message to a set S, simply encrypt the pair (S,m). The secret key for identity
id is the secret key for function fid. We use an adaptively secure scheme [GGH+13, ABSV14, Wat14].

Parameter Sizes. In the above conversion, the PLBE scheme inherits the parameter sizes of the functional
encryption scheme. Using functional encryption for general circuits, the secret size is poly(n) and the
ciphertext size will similarly grow as poly(n, |m|). We can make the ciphertext size |m|+poly(n) by turning
the PLBE into a key encapsulation protocol where we use the PLBE to encrypt the key for a symmetric
cipher, and then encrypt m using the symmetric cipher. We note that it is inherent that the secret keys and
ciphertexts of a PLBE scheme grow with the identity bit length n, as both terms must encode a complete
identity. Therefore we obtain a PLBE scheme with essentially optimal parameters:

Corollary 4.4. Assuming the existence of iO and OWF, then there exists an adaptively secure traitor tracing
scheme whose master key is size is O(1), secret key size is poly(n), and ciphertext size is |m|+ poly(n).

Note, however, that the obtained traitor tracing scheme is not optimal, as there is no reason ciphertexts
in a traitor tracing scheme need to grow with the identity bit-length. The large ciphertexts are inherent to the

20

PLBE approach to traitor tracing, so obtaining smaller ciphertexts necessarily requires a different strategy.
In Section 5, we give an alternate route to obtaining traitor tracing that does not suffer this limitation, and
we are therefore able to obtain an optimal traitor tracing system.

On Bounded Collusions. If we relax the security to bounded-collusion security, then the assumption can
be relaxed to PKE using the q-bounded collusion FE scheme of [GVW12].

Corollary 4.5. Assume the existence of secure PKE, then there exists a q-bounded collusion-resistant adap-
tively secure traitor tracing scheme whose master key and secret key sizes are O(n)poly(q) and ciphertext
size is |m|+O(n)poly(q).

5 Flexible Traitor Tracing with Short Ciphertexts

We now discuss how to achieve traitor tracing with small ciphertexts that do not grow with the identity size.
As noted in the previous section, the approach based on private linear broadcast is insufficient due to having
ciphertexts that inherently grow with the identity bit-length. We note that for traitor tracing, secret keys must
encode the identities anyway, so they will always be as long as the identities. Therefore the focus here is
just on obtaining short ciphertexts. To that end, we introduce a generalization of private linear broadcast that
does not suffer from the limitations of the private linear broadcast approach; in particular, the information
contained in the ciphertext is much shorter than the identities.

Let ID0 = [2r+1] be the set of identity “blocks”, and the total identity space ID = (ID0)n be the
set of n-block tuples. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme for ID, and the
secret class S defined as follows: each set Si,u ∈ S is labeled by an index i ∈ [n] and “identity block”
u ∈ ID0 ∪ {0}. Si,u is the set of tuples id = (id1, . . . , idn) where idi ≤ u. We call such a private broadcast
scheme a private block linear broadcast encryption (PBLBE) scheme.

Ideally, we would like to simply add a tracing algorithm on top of (Setup,KeyGen,Enc,Dec) as we
did in the previous section. The tracing algorithm would run the tracing algorithm from Section 4 on each
identity block. For each i ∈ [n], this gives a list of, say, Ti identity blocks idj,i ∈ ID0 for j ∈ [Ti], where
each of the idj,i is the ith block of some identity owned by the adversary. Repeating this for every i gives
a collection of identity blocks for every block number. However, it is not clear how to use these blocks to
construct a complete identity in ID. There are two problems:

• How do we argue that the blocks obtained for each index i come from the same set of identities? It
may be that, for example when n = 2, that the adversary has identities (id1,1, id1,2) and (id2,1, id2,2),
but tracing for i = 1 yields id1,1 whereas tracing i = 2 yields id2,2. While we have obtained two of
the adversary’s blocks, there may not even be a complete identity among the blocks.
• Even if we resolve the issue above, and show that tracing each block number yields blocks from the

same set of identities, there is another issue. How to we match up the partial identity blocks? For
example, in the case n = 2, we may obtain blocks id1,1, id2,1, id1,2, id2,2. However, we have no way
of telling if the adversary’s identities were (id1,1, id1,2) and (id2,1, id2,2), or if they were (id1,1, id2,2)
and (id2,1, id1,2). Therefore, while we can obtain the adversary’s blocks for the adversary’s identities,
we cannot actually reconstruct the adversary’s identities themselves.

We will now explain a slightly modified scheme and tracing algorithm to rectify the issues above. First,
by including a fixed tag τ inside every block of id, we can now identify which blocks belong together simply
by matching tags. This resolves the second point above, but still leaves the first. For this, we give a modified
tracing algorithm that we can prove always outputs a complete collection of blocks.

21

We now give the scheme. Let ID′ = {0, 1}n be the traitor tracing identity space, and set r = λ.

• Setup is again inherited from the private broadcast scheme.
• To generate the secret key for an identity id′ ∈ ID′, write id′ = (id′1, . . . , id′n) where id′i ∈ {0, 1}.

Choose a random s ∈ [2λ], and define the identity id = (id1, . . . , idn) ∈ ID where idi = 2s − id′i ∈
ID0. Run the private broadcast keygen algorithm on id, and output the resulting secret key. Call this
algorithm KeyGenTT
• Enc,Dec are identical to the basic tracing scheme, except that Dec now uses the derived user secret

key as defined above. Call these algorithms EncTT ,DecTT .

Theorem 5.1. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme for identity space ID
and private class S, where ID,S are defined as above. Then there is an efficient algorithm Trace such that
(Setup,KeyGen,EncTT ,DecTT ,Trace) as defined above is a flexible traitor tracing algorithm.

We prove Theorem 5.1 using similar techniques as in the proof of Theorem 4.1, except that the jump
finding problem in Section 3 does not quite capture the functionality we need. Instead, in Section 3.1, we
define a generalized jump finding problem, and show how to solve it. We then use the solution for the
generalized jump finding problem to trace our scheme above.

Proof. We will take an approach very similar to the proof of Theorem 4.1. We will use a pirate decoderD to
create an oracle Q as in the generalized jump finding problem. Then we run the tracing algorithm QTrace′
on this Q, which will output the identities of some the colluders.

DefineQ(i, u) to be the randomized procedure that does the following: sample a random bit b, computes
the encryption c ← Enc(mpk, (i, u),mb) of mb to the set indexed by (i, u), runs b′ ← D(c), and outputs 1
if and only if b = b′. Define pi,u to be the probability that Q(i, u) outputs 1. We now need to show that if D
is useful, then Q satisfies the conditions of Theorem 3.10.

First, notice that pi,0 = pi′,0 for all i, i′ ∈ [n], since the set indexed by (i, 0) is just the empty set,
independent of i. Define p0 = pi,0. Similarly, pi,2n+1 = p2n+1 , independent of i, as the set indexed by
(i, 2n+1) is the complete set.

Next, notice that if D is useful, we have |p2n+1 − p0| > ε/2, as in Theorem 4.1. Now set δ = ε/(9 +
4(n− 1)q). We have the following:

Lemma 5.2. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ. Suppose two
pairs (i, 2x), (j, 2x) ∈ [1, n] × [0, 2N] are chosen adversarially after seeing the set C, the adversary’s
secret keys, the pirate decoder D, and even the internal state of A. Then, except with negligible probability
|pi,2x − pj,2x| < δ

Proof. Let id′ be an identity the adversary queries on, with associated tag s. Let id = (id1, . . . , idn) ∈ ID
where idi = 2s − id′i ∈ ID0 as above. It suffices to show that the set id ∈ Si,2x if and only if id ∈ Sj,2x.
This is equivalent to the requirement that 2s− id′i ≤ 2x if and only if 2s− id′j ≤ 2x. Since id′i, id′j are binary,
this is true. The lemma then follows from the security of the private block linear broadcast scheme.

Next, define Ci to be the set of values 2s − id′i for identities id′ queried by the adversary. Equivalently,
Ci is the set of ith blocks of the corresponding identities id. The following also easily follows from the
security of the private block linear broadcast scheme:

Lemma 5.3. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ. Suppose two pairs
(i, x), (i, y) ∈ [1, n] × [0, 2N] are chosen adversarially after seeing the set C, the adversary’s secret keys,
the pirate decoder D, and even the internal state of A, such that the interval (x, y] does not contain any
points in Ci. Then |pi,x − pi,y| < δ.

22

Similar to the basic tracing algorithm, the pirate decoder may cheat, and the lemmas above may not
hold for all possible points. However, they hold for efficiently computable points, and in particular must
hold for the points queried by QTrace′. Thus, following Remark 3.6, we can invoke Theorem 3.10, so
QTrace′ will produce a list L of tuples (s, id′1, . . . , id′n), where id′ is an identity queries by the adversary
with corresponding tag s. This completes the theorem.

Construction and Parameter sizes. Similar to the case of PLBE, it is straightforward to construct pri-
vate block linear broadcast encryption from functional encryption, and the PBLBE scheme will inherit the
parameter sizes from the FE scheme. We will use r = λ-bit blocks and n-bit identities. The circuit size
needed for the functional encryption scheme is therefore poly(n), and the plaintext size is |m|+ poly(logn)
(ignoring the security parameter).

Some functional encryption schemes are non-compact, meaning the ciphertext size grows with both the
plaintext size and the function size, in which case our ciphertexts will be |m| + poly(n), no better than
the basic tracing system. Instead, we require compact functional encryption, where the ciphertext size is
independent of the function size. The original functional encryption scheme of Garg et al. [GGH+13] has
this property. However, they only obtain static security, and adaptive security is only obtained through com-
plexity leveraging. In a very recent work, Ananth and Sahai [AS15] show how to obtain adaptively secure
functional encryption for Turing machines, and in particular obtain adaptively secure functional encryption
that meets our requirements for optimal ciphertext and secret key sizes.

Corollary 5.4. Assuming the existence of iO and OWF, there exists an adaptively secure traitor trac-
ing scheme whose master key size is poly(logn), secret key size is poly(n), and ciphertext size is |m| +
poly(logn).

On Bounded Collusions. If we relax security to bounded-collusion security, then the underlying assump-
tion can be relaxed to the (sub-exponential) LWE assumption using the succinct FE scheme of [GKP+13],
which can be made adaptively secure through complexity leveraging.

Corollary 5.5. Assume the sub-exponential hardness of the LWE problem with a sub-exponential factor,
then there exists a q-bounded collusion-resistant adaptively secure traitor tracing scheme whose master key
size is poly(logn, q) and secret key size is poly(n, q) and ciphertext size is |m|+ poly(logn, q).

6 A Flexible Trace and Revoke Scheme

In this section, we propose a flexible trace and revoke scheme with short ciphertexts. We can construct it
from PBE with revocation and short ciphertexts as the flexible traitor tracing scheme from PBE. To achieve
PBE with revocation and short ciphertexts, we introduce a notion of revocable functional encryption and
propose a construction based on functional encryption and indistinguishability obfuscation.

6.1 Revocable Functional Encryption

We start with the definition of a revocable functional encryption scheme. As with functional encryption, this
scheme can be used to give out secret keys for various functions f , but we now also bind each secret key to
some (short) label lb, denoted by sklb,f . During the encryption of a message m, the user can also specify a
list L of revoked labels. The decryption procedure using sklb,f should recover f(m) if lb 6∈ L. On the other

23

hand, if lb ∈ L, then the key sklb,f should not provide any additional information. We sketch the definition
below.

Definition 6.1. LetM be some message space, Y the output space, F be a class of functions f :M→ Y ,
and L be a label space. A Revocable Functional Encryption (revFE) scheme forM,Y,F ,L is a tuple of
algorithms (Setup,KeyGen,Enc,Dec) where:

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, lb, f) takes as input the master secret msk, a label lb ∈ L and a function f ∈ F . It
outputs a secret key sklb,f for f .

• Enc(mpk,m,L) takes as input the master public key mpk, a message m ∈ M and a revocation list
L ⊆ L. Outputs a ciphertext c.

• Dec(sklb,f , L, lb, c) takes as input the secret key sklb,f and a ciphertext c, and outputs some y ∈ Y , or
⊥.

• Correctness. For any message m ∈ M, any set L ⊆ L, any lb 6∈ L and any function f ∈ F and we
have that

Pr
[

Dec(sklb,f , L, lb, c) = f(m) : (msk,mpk)← Setup(),
sklb,f ← KeyGen(msk, lb, f), c← Enc(mpk,m,L)

]
= 1

• Security. Intuitively, we ask that the adversary, given secret keys f1, . . . , fn for labels lb1, . . . , lbn
learns fi(m) for each i such that lbi 6∈ L, but nothing else about m. Although the challenge message
and the secret key queries are all adaptive, our security definition requires that the revoke set S is
specified before secret key queries. Security is formalized by the following experiment between an
adversary A and challenger:

1. The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

2. The attacker A specifies a “revoke set” L ⊆ L.

3. A is allowed to make arbitrary key queries, where it sends a pair (lb, f) ∈ (L,F) to the chal-
lenger, and the challenger responds with sklb,f ← KeyGen(msk, lb, f). The challenger also
records the pair (lb, f) in a listR and checks that each query has a fresh lb.

4. At some point, A makes a single challenge query, where it submits two messages m∗0,m
∗
1. The

challenger checks that f(m∗0) = f(m∗1) for all pairs (f, lb) ∈ R such that lb 6∈ L. If the
check fails then the challenger outputs a random bit and aborts. Otherwise, the challenger flips
a random bit b ∈ {0, 1}, and responds with the ciphertext c∗ ← Enc(mpk,m∗b , L).

5. A is allowed to make additional keygen queries for functions (lb, f) ∈ F , subject to the con-
straint that either lb ∈ L or f(m∗0) = f(m∗1). As before, the challenger also records the pair
(lb, f) in a listR and checks that each query has a fresh lb.

6. Finally, A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the functional encryption scheme is secure if, for all PPT adversaries A, the
advantage of A is negligible.

24

• Ciphertext size. We will consider a scheme to have optimal ciphertext size if |c| ≤ poly(λ, log |M|)
and independent of L.4.

• Secret key size. The secret key must information-theoretically encode the entire function f , so
|skf | ← log |F|. However, because we are interested in efficient algorithms, we cannot necessar-
ily represent functions f using log |F| bits, and may therefore need larger keys. Generally, f will be a
circuit of a certain size, say s. We will say a scheme has optimal secret key size if |skf | ≤ poly(λ, s).

• Master key size. The master public and secret keys do not necessarily encode any information, and
therefore could be as short as O(λ). We will say the master key sizes are optimal if |msk|, |mpk| ≤
poly(λ).

Remark 6.2. If ciphertext size can grow with size of revoke list L, then there is a simple construction
of revocable FE from standard FE. The revocable key-generation procedure for (lb, f) would run the key-
generation procedure of the standard FE scheme with the function flb(m,L) defined as flb(m,L) = f(m)
if lb 6∈ L and ⊥ otherwise. The revocable encryption procedure would just encrypt the pair (m,L). Our
goal will be to remove the dependence on the size of the revoke list.

6.2 Tool for Revocable FE: SSB hash on Sets

Definition 6.3. A Somehwere Statistically Binding (SSB) Hash on Sets H consists of four PPT algorithms
H = (Gen, H,Open,Verify) an output size `(·, ·) and an opening size p(·, ·). The algorithms have the
following syntax:

• hk← Gen(1λ, 1s, i): Takes as input a security parameter λ an element-size s and an index i ∈ {0, 1}s
and outputs a public hashing key hk. The output size is defined by some fixed polynomial ` = `(λ, s).

• Hhk : Powerset({0, 1}s) → {0, 1}`: A deterministic poly-time algorithm that takes as input S ⊆
{0, 1}s and outputs Hhk(S) ∈ {0, 1}`.

• π ← Open(hk, S, j): Given the hash key hk, S ⊆ {0, 1}s and an index j ∈ {0, 1}s, creates an
opening π ∈ {0, 1}p that certifies whether or not j ∈ S. The opening size p = p(λ, s) is some fixed
polynomial in λ, s.

• Verify(hk, y, j, b, π): Given a hash key hk a hash output y ∈ {0, 1}`, an index j ∈ {0, 1}s, a bit b
and an opening π ∈ {0, 1}p, outputs a decision ∈ {accept, reject}. This is intended to verify that
y = Hhk(S) correspond to a set S that either has j ∈ S if b = 1 or not if b = 0.

We require the following three additional properties.

Correctness of Opening: For any parameters s and any indices i, j ∈ {0, 1}s, any hk ← Gen(1λ, 1s, i),
S ⊆ {0, 1}s, π ← Open(hk, S, j): we have Verify(hk, Hhk(S), j, b, π) = accept where b = 1 if
j ∈ S and 0 otherwise.

Index Hiding: We consider the following experiment between an adversary A and challenger:

1. A chooses an element-size s and two indices i0, i1 ∈ {0, 1}s and send them to the challenger.

2. The challenger chooses a bit b← {0, 1} and generates hk← Gen(1λ, 1s, ib).

4This property has been referred to as “compactness” [AJ15, BV15].

25

3. A is given hk and outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the SSB hash is index hiding if, for all PPT adversaries A, the advantage of A is
negligible.

Somewhere Statistically Binding w.r.t. Opening: We say that hk is statistically binding w.r.t opening for
an index i if there do not exist y, π, π′ such that Verify(hk, y, i, 1, π) = Verify(hk, y, i, 0, π′) =
accept. We require that for any parameters s, L and any index i ∈ {0, 1}s

Pr[hk is statistically binding w.r.t. opening for index i : hk← Gen(1λ, 1s, i)] ≥ 1− negl(λ).

We say that the hash is perfectly binding w.r.t. opening if the above probability is 1.

Construction. We can easily adapt the SSB hash of [HW15] to the above setting. The main difference is
that, instead of hashing a polynomial-sized string, we now need to hash a polynomial-sized subset S of an
exponential universe S ⊆ {0, 1}s. We can think of S as being represented by a sparse string wS of length
|wS | = 2s that has a 1 for each element in S and a 0 otherwise. The SSB hash of [HW15] allows us to
hash such exponential sized sparse strings. It follows a Merkle-Tree structure where the leaves correspond
to the bits of the hashed string and the value associated with each node is computed inductively as some
function of the values associated with its children - the output of the hash is the value associated with the
root. We can use this structure to efficiently hash an exponentially long sparse string wS by simply thinking
of an exponentially large tree of height s but “pruning out” all sub-trees that just have 0’s under them – the
root of any such sub-tree now becomes a leaf with the value 0. The pruned tree is now an unbalanced tree
of height s and polynomial size. All procedures of [HW15] can be adapted to work with such unbalanced
Merkle-Trees.

6.3 Constructing Revocable FE

We show how to construct revocable FE scheme F ′ = (Setup′,KeyGen′,Enc′,Dec′). We rely on an
adaptively secure FE scheme F = (Setup,KeyGen,Enc,Dec) (See Definition 2.5), an SSB hash H =
(Gen, H,Open,Verify), a secure symmetric-key encryption with pseudorandom ciphertexts scheme E =
(SymGen,SymEnc,SymDec), a puncturable PRF G and iO scheme O. We use an extension of Trojan
method [ABSV14].

• Setup′() is the same as Setup.

• KeyGen(msk, lb, f): Define the functions lock and wrap as shown.

lock[hk, y, lb, z](π): Output z if Verify(hk, y, lb, 0, π) = accept and ⊥ otherwise.

26

wrap[lb, f, csym](hk, y, r,m, flag, aux = (i,m′, r′, k′, v))
if flag = 0 then . Real branch

Output O(lock[hk, y, lb, f(m)]; Fr(lb));
else . Trojan branches

Compute (j, brev, bpre, w)← SymDeck′(csym);
if bpre = 0 then

Output w; . Trojan branch (1)
else if j > i then

Output O(lock[hk, y, lb, f(m)]; Fr(lb)) ; . Trojan branch (2)
else if j < i and brev = 0 then

Output O(lock[hk, y, lb, f(m′)]; Fr′(lb)); . Trojan branch (3)
else if j < i and brev = 1 then

Output O(lock[hk, y, lb,⊥]; Fr′(lb)); . Trojan branch (4)
else if j = i then

Output v; . Trojan branch (5)
end if

end if

Compute csym, as random symmetric key ciphertexts of the appropriate size and output sklb,f ←
KeyGen′(msk,wrap[lb, f, csym]).

• Enc(mpk,m,L): Choose hk← Gen(1λ, 1s, 0) and compute y = Hhk(L). Compute cpub ← Enc′(mpk,
(hk, y, r,m, flag = 0, aux)) where aux = ⊥ is a “garbage” string of appropriate size. Output
c = (hk, cpub).

• Dec(sklb,f , L, lb, c): Parse c = (hk, cpub). Run sklb,f on cpub to recover an obfuscated program l̃ock.
Compute π ← Open(hk, S, lb) and output z = l̃ock(π).

Parameter sizes. This scheme inherits the parameter sizes from the underlying FE scheme since labels are
short and a revocation set L is hashed by the SSB hash. Recently, Ananth and Sahai proposed an adaptively
secure FE for Turing machines whose ciphertext, secret key, and master key sizes are optimal [AS15].

Theorem 6.4. Assuming that O,G,F , E , and H are secure in the sense of Definition 2.3, 2.4, 2.5, 2.7, and
6.3 respectively, the above scheme is a secure revocable FE in the sense of Definition 6.1.

Proof. We do a sequence of hybrids, where the initial hybrid game corresponds to the revocable FE security
game. We let the set L denote the revoked set chosen by the adversary after mpk is given and let m0,m1
denote the two messages chosen by the adversary in the challenge message phase. Let b denote the bit
chosen by the the challenger. We use red boxes to highlight changes in hybrid games.

• Hybrid 0: revocable FE security game.

• Hybrid 1: Change how secret key queries (lb, f) are answered: initially we choose a key k ←
SymGen() for the symmetric key encryption scheme. For the j’th secret key query, instead of choosing
csym at random, we compute csym ← SymEnck(j, brev, bpre, w) where:

– brev = 1 if lb ∈ S and brev = 0 otherwise (“revoke bit”)

– If the j’th secret key query occurs before the challenge ciphertext, set bpre = 1 (“pre-challenge
bit”) and set w = ⊥ to be a garbage string of appropriate size.

27

– If the j’th secret key query occurs after the challenge ciphertext, set bpre = 0 and w =
O(lock[hk, y, lb, f(mb)];Fr(lb)) where m0,m1 are the challenge messages and hk, y, r are the
values used to compute the challenge ciphertext.

Hybrids 0 and 1 are indistinguishable by the pseudorandom ciphertexts security of the symmetric-key
encryption.

• Hybrids 2: In this hybrid, we change how the challenge ciphertext is computed by setting cpub ←
Enc′(mpk, (hk, y,m = mb, r, flag, aux)) where flag = 1 and aux = (i,m′, r′, k′, v) is now se-

lected with i := 0, m′ := m0, r′ a random PRF key, k′ = k matches the key used in hybrid 1 to cre-
ate the ciphertexts csym, and v = ⊥ is a garbage string of appropriate size.

Hybrids 1 and 2 are indistinguishable by FE security. In this hybrid, the modified ciphertext triggers:

– Trojan branch (1) of each secret key created post-challenge. In this case, the output is the value
w which is hard-coded in the key and exactly matches the value that is output in the real branch.

– Trojan branch (2) of each secret key created pre-challenge. In this case, the output is the same
as in the real branch.

• Hybrid 3: Let qpre denotes the number of secret key queries that the adversary makes prior to the
challenge message phase. In Hybrid 3 we change how the the encryption is computed to cpub ←
Enc′(mpk, (hk, y,m = mb, r, flag = 1, aux)) where we now set aux = (i,m′, r′, k′, v) with with
i := qpre + 1 , m′ := m0, r′ a random PRF key, k′ = k and v = ⊥. This is the same as in hybrid 2

except that i := qpre + 1. We also choose hk← Gen(1λ, 1s, lbqpre) to be binding on lbqpre .

To go from Hybrid 2 to 3 we need to define several intermediate hybrids. For 0 ≤ j ≤ qpre we define
Hybrids 2.j.` with ` = 1, . . . , 6.

– Hybrid 2.j.1: Change the encryption to cpub ← Enc′(mpk, (hk, y,m = mb, r, flag = 1, aux))
where we now set aux = (i,m′, r′, k′, v) with i := j , m′ := m0, r′ a random PRF key, k′ = k

and v = O(lock[hk, y, lbj , fj(mb)];Fr(lbj)) where (lbj , fj) corresponds to the value that was
queried in the j’th secret-key query (which was made prior to the challenge ciphertext and is
therefore known at this point).
Hybrid 2.1.1 is indistinguishable from Hybrid 2 by FE security. In hybrid 2.1.1 the ciphertext
triggers Trojan branch (1) in all post-challenge keys, and Trojan branch (2) in all pre-challenge
keys except for the first key (j = 1) where it triggers Trojan branch (5). But branches (5) and
(2) in key j = 1 are identical because of the way that v is chosen.

– Hybrid 2.j.2: Change the encryption to cpub ← Enc′(mpk, (hk, y,m = mb, r{lbj} , flag =

1, aux)) where aux = (i,m′, r′{lbj} , k′, v) and the PRF keys r{lbj}, r′{lbj} are punctured at
lbj and otherwise everything is the same as in Hybrid 2.j.1. In particular, obfuscated program
v = O(lock[hk, y, lbj , fj(mb)];Fr(lbj)) is still generated by using pPRF.
Hybrid 2.j.2 is indistinguishable from Hybrid 2.j.1 by correctness of puncturable PRF and FE
security.

28

– Hybrid 2.j.3: We now change to choosing v ← O(lock[hk, y, lbj , fj(mb)]; U) using true
randomness U rather than the PRF key. Hereafter, we omit U when we use true randomness to
generate obfuscated circuits.
Hybrid 2.j.3 is indistinguishable from Hybrid 2.j.2 by pseudoranomness at punctured points.

– Hybrid 2.j.4: Choose hk← Gen(1λ, 1s, lbj).

Hybrid 2.j.4 is indistinguishable from Hybrid 2.j.3 by SSB hash index hiding.

– Hybrid 2.j.5: If lbj ∈ S then set z := ⊥ else z := fj(m0). Change v ← O(lock[hk, y, lbj , z]).
Hybrid 2.j.5 is indistinguishable from Hybrid 2.j.6 by iO security and statistical binding of SSB
hash. For lbj /∈ L, we have fj(m0) = fj(m1). For lbj ∈ L, there is no proof π′ such that
O(lock[hk, y, lbj , z])(π′) outputs z due to the somewhere statistically binding property. Thus,
the functional equivalence holds and we can apply iO.

– Hybrid 2.j.6: Change to v = O(lock[hk, y, lbj , z]; Fr′(lbj)).

Hybrid 2.j.6 is indistinguishable from Hybrid 2.j.5 by pseudoranomness at punctured points.
Hybrid 2.j.6 is indistinguishable from Hybrid 2.(j + 1).1 for j < qpre by FE security.
Hybrid 2.qpre.6 is indistinguishable from Hybrid 3 by FE security.

Together, the above hybrids prove the indistinguishability of hybrids 2 and 3.

• Hybrid 4: This is the same as Hybrid 3 but we now set cpub ← Enc′(mpk, (hk, y, m = ⊥, r = ⊥ , flag =
1, aux)) where aux = (i,m′, r′, k′, v) with with i := qpre+1,m′ := m0, r′ a random PRF key, k′ = k
and v = ⊥. In particular, the only difference is that we remove the valuesmb and r from the challenge
ciphertext. Note that the values mb, r are still used to answer secret key queries, and in particular to
compute the ciphertexts csym, as defined in Hybrid 1.

Hybrid 3 and 4 indistinguishable by FE security. In both hybrids, the ciphertext triggers Trojan branch
1 in all post-challenge keys and branches 3,4 in all pre-challenge keys. Either way, the values r,m
specified by the challenge ciphertext are never used in these branches.

• Hybrid 5: In this hybrid, we change how key queries are answered. In particular, for any secret
key query that occurs after the challenge ciphertext we now set csym ← SymEnck(j, brev, bpre, w)
with all values chosen as before except that w ← O(lock[hk, y, lb, f(mb)]) is obfuscated using true
randomness (rather than using the PRF output Fr(lb) as the randomness for obfuscation).

Hybrids 4 and 5 are indistinguishable by pseudorandomness at punctured points. Note that the PRF
key r does not appear anywhere else in these hybrids other than in computing the values w.

• Hybrid 6: In this hybrid, we change how key queries are answered. In particular, for any secret key
query that occurs after the challenge ciphertext we now set csym ← SymEnck(j, brev, bpre, w) where
w ← O(lock[hk, y, lb, f(m0)]) if lb 6∈ L and w ← O(lock[hk, y, lb, ⊥]) if lb ∈ L . Note that for
the queries where lb 6∈ L, we have f(m0) = f(mb) and therefore these are answered identically in
Hybrids 5 and 6, but when lb ∈ L the queries are answered differently.

Let s = |S| denote the number of revoked identities, and let’s order them as lb1, . . . , lbs. To show the
indistinguishability of Hybrids 5 and 6 we define intermediate Hybrids 5.j.1, 5.j.2 for j = 1, . . . , s as
follows:

29

– Hybrid 5.j.1 In this hybrid, we choose hk← Gen(1λ, 1s, lbj). Furthermore, for any key-query
with identity lb = lbi ∈ L,

* if i ≥ j then answer the query as in hybrid 5 and

* if i < j then answer as in hybrid 6 .

Hybrid 5.j.1 is indistinguishable from Hybrid 5 by SSB hash index hiding.

– Hybrid 5.j.2 In this hybrid, we choose hk ← Gen(1λ, 1s, lbj). Furthermore, for any key-query
with identity lb = lbi ∈ L,

* if i > j then answer the query as in hybrid 5 and

* if i ≤ j then answer as in hybrid 6 (this differs from hybrid 5.j.1 when i = j).

Hybrid 5.j.2 is indistinguishable from Hybrid 5.j.1 by iO security and the statistical binding
property of the SSB hash. In particular the programs lock[hk, y, lb, f(mb)] and lock[hk, y, lb,⊥]
are functionally equivalent when hk is binding on lb and lb ∈ L.
Hybrid 5.s.2 is identical to Hybrid 6.

Together, this shows that Hybrid 5 is indistinguishable from Hybrid 6.

Finally, we notice that in Hybrid 6, the challenge bit b is not used anywhere at all. Therefore, the
probability of the adversary guessing b correctly is exactly 1

2 in Hybrid 6. By the indistinguishability of
Hybrids 0 and 6, the probability that the adversary guesses b correctly in the real game is at most negligibly
close to 1

2 as we wanted to show.

6.4 Trace and Revoke with Flexible Identities from Revocable FE

In this section, we give an outline to construct flexible trace and revoke schemes from revocable FE schemes.

6.4.1 PBE with revocation from Revocable FE

First, we show how to construct PBE with revocation schemes from revocable FE schemes. The definition
of PBE with revocation is as follows.

Definition 6.5. Let ID be the set of identities. Let S be a collection of subsets of ID. LetM be a message
space and L a label space. A Private Broadcast Encryption with Revocation scheme is a tuple of algorithms
(Setup,KeyGen,Enc,Dec) where:

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, lb, id) takes as input the master secret msk, a (short) label lb ∈ L, and a user identity
id ∈ ID. It outputs a secret key sklb,id for (lb, id).

• Enc(mpk, S, L,m) takes as input the master public key mpk, a secret set S ∈ S, a (public) revocation
set L, and a message m ∈M. It outputs a ciphertext c.

• Dec(sklb,id, L, lb, c) takes as input the secret key sklb,id for a user id whose label lb, a revocation set
L, and a ciphertext c. It outputs a message m ∈M or a special symbol ⊥.

30

• Correctness. For any secret set S ∈ S, revocation list L ⊆ L, pair of label and identity (lb, id) such
that (lb /∈ L) ∧ (id ∈ S), any pair of label and identity (lb′, id′) such that (lb′ ∈ L) ∨ (id′ /∈ S), any
message m ∈M, we have that

Pr
[

Dec(sklb,id, L, lb, c) = m : (msk,mpk)← Setup(),
sklb,id ← KeyGen(msk, lb, id), c← Enc(mpk, S, L,m)

]
= 1

Pr
[

Dec(sklb′,id′ , L, lb′, c) = ⊥ : (msk,mpk)← Setup(),
sklb′,id′ ← KeyGen(msk, lb′, id′), c← Enc(mpk, S, L,m)

]
= 1

• Message and Set Hiding. Intuitively, we ask that for id that are not explicitly allowed to decrypt
a ciphertext c or are in a revocation list, that the message is hidden. We also ask that nothing is
learned about the secret set S, except for what can be learned by attempting decryption with various
skid available to the adversary. These two requirements are formalized by the following experiment
between an adversary A and challenger:

– The challenger runs (msk,mpk)← Setup(), and gives mpk to A.
– The attacker A specifies a “revoke set” L∗ ⊆ L.
– A is allowed to make arbitrary keygen queries, where it sends a pair of label and identity

(lb, id) ∈ L×ID to the challenger, and the challenger responds with sklb,id ← KeyGen(msk, lb, id).
The challenger also records (lb, id) in a listR.

– At some point, A makes a single challenge query, where is submits two secret sets S∗0 , S
∗
1 ∈ S ,

and two messages m∗0,m
∗
1. The challenger flips a random bit b ∈ {0, 1}, and computes the

encryption ofm∗b relative to the secret set S∗b : c∗ ← Enc(mpk, S∗b , L∗,m∗b). Then, the challenger
makes the following checks, which ensure that the adversary cannot trivially determine b from
c∗:

* If m∗0 6= m∗1, then successful decryption of the challenge ciphertext would allow determin-
ing b. Therefore, for any (lb, id) ∈ R, (id /∈ S∗0) ∧ (id /∈ S∗1) or lb ∈ L∗.

* If S∗0 6= S∗1 , then successful decryption for S∗b but not for S∗1−b would allow for determining
b (even if m∗0 = m∗1). Therefore, for any (lb, id) ∈ R, id /∈ S∗0∆S∗1 or lb ∈ L∗, where ∆
denotes the symmetric difference operator. Notice that this check is redundant if m∗0 6= m∗1.

If either check fails, the challenger outputs a random bit and aborts the game. Otherwise, the
challenger sends c∗ to A.

– A is allowed to make additional keygen queries for arbitrary pairs of label and identity (lb, id),
subject to the constraint that (lb, id) must satisfy the same checks as above: if m∗0 6= m∗1, then
(id /∈ S∗0)∧ (id /∈ S∗1) or lb ∈ L∗, and if S∗0 6= S∗1 , then id /∈ S∗0∆S∗1 or lb ∈ L∗. If the adversary
tries to query in a (lb, id) that fails the check, the challenger outputs a random bit and aborts the
game.

– Finally, A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the advantage ofA as the absolute difference between 1/2 and the probability the challenger
outputs 1. We say the private broadcast encryption with revocation is secure if, for all PPT adversaries
A, the advantage of A is negligible.

In our revocable FE security game, a challenge revocation set is determined before secret queries, but
a challenge message is adaptively chosen. This means a private set S in PBE is adaptively chosen in the
security game of PBE. Thus, we can construct adaptively secure PBE schemes.

31

Construction. Let (revFE.Setup, revFE.KeyGen, revFE.Enc, revFE.Dec) be a secure revocable functional
encryption scheme for label space L, function setF is the set of function fid that is defined in the description
of the algorithm KeyGen, and message spaceM′ = S ×M where S is a collection of subsets of ID in
PBE with revocation andM is the plaintext space of PBE with revocation.

The Setup,KeyGen,Enc, and Dec algorithms are as follows:

Setup(): This is the same as revFE.Setup().

KeyGen(msk, lb, id): To generate a secret key for (lb, id), run revFE.KeyGen(msk, lb, fid) where

fid(S,m) =
{
m if id ∈ S
⊥ if id /∈ S

Enc(mpk, S, L,m): To encrypt a messagemwith a secret set S and a revocation listL, run revFE.Enc(mpk,m′ =
(S,m), L).

Dec(sklb,id, L, lb, c): To decrypt a ciphertext c, run revFE.Dec(sklb,id, L, lb, c).

This scheme inherits the parameter sizes from the underlying revocable FE scheme.

Theorem 6.6. If (revFE.Setup, revFE.KeyGen, revFE.Enc, revFE.Dec) is a secure revocable FE scheme in
the sense of Definition 6.1, then (Setup,KeyGen,Enc,Dec) is a secure PBE with revocation scheme in the
sense of Definition 6.5.

This holds since revocable FE is a generalization of PBE with revocation.

6.4.2 Trace and Revoke with Flexible Identities from PBE with Revocation

We show how to construct flexible trace and revoke schemes from PBE with revocation schemes. The
definition of flexible trace and revoke is as follows.

Definition 6.7. Let ID be some collection of identities, L a label space, andM a message space. A flexible
trace and revoke scheme forM,L, ID is a tuple of algorithms (Setup,KeyGen,Enc,Dec,Trace) where:

• Setup() is a randomized procedure with no input (except the security parameter) that outputs a master
secret key msk and a master public key mpk.

• KeyGen(msk, lb, id) takes as input the master secret msk, a label lb ∈ L, and an identity id ∈ ID, and
outputs a secret key sklb,id for (lb, id).

• Enc(mpk, S, L,m) takes as input the master public key mpk, a broadcast set S, a revocation list L,
and a message m ∈M, and outputs a ciphertext c.

• Dec(sklb,id, L, lb, c) takes as input the secret key sklb,id for a label lb, an identity id, a revocation list
L, a label lb, and a ciphertext c, and outputs a message m.

• TraceD(mpk,m0,m1, q, ε) takes as input the master public key mpk, two messages m0,m1, and a
parameter q, ε, and has oracle access to a decoder algorithm D. It produces an identity id ∈ ID, or
outputs ⊥.

32

• Correctness. For any message m ∈ M, list S ⊆ ID and L ⊆ L, and pair of label and identity
(lb, id) ∈ L × ID and (lb′, id′) ∈ L × ID such that (id ∈ S ∧ lb /∈ L) and (id /∈ S ∨ lb′ ∈ L), we
have that

Pr
[

Dec(sklb,id, L, lb, c) = m : (msk,mpk)← Setup(),
sklb,id ← KeyGen(msk, lb, id), c← Enc(mpk, S, L,m)

]
= 1

Pr
[

Dec(sklb′,id′ , L, lb′, c) = ⊥ : (msk,mpk)← Setup(),
sklb′,id′ ← KeyGen(msk, lb′, id′), c← Enc(mpk, S, L,m)

]
= 1

• Semantic security. Informally, we ask that an adversary that does not hold any secret keys that are
not in a revocation list cannot learn the plaintext m. This is formalized by the following experiment
between an adversary A and challenger:

1. The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

2. The attacker A specifies a “revoke set” L∗ ⊆ L.

3. A is allowed to make key queries, where it sends a pair (lb, id) ∈ L × ID to the challenger,
and the challenger responds with sklb,id ← KeyGen(msk, lb, id). The challenger also records the
pair (lb, id) in a listR.

4. A makes a challenge query where it submits a set S∗ and two messages m∗0,m
∗
1 such that for

any (lb, id) ∈ R, id /∈ S∗ or lb ∈ L∗. The challenger chooses a random bit b, and responds with
the encryption of m∗b : c

∗ ← Enc(mpk, S∗, L∗,m∗b).

5. Again, A is allowed to make key queries under the condition above.

6. A produces a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.

We define the semantic security advantage of A as the absolute difference between 1/2 and the prob-
ability the challenger outputs 1. We say the public key encryption scheme is semantically secure if,
for all PPT adversaries A, the advantage of A is negligible.

• Traceability. Consider a subset of colluding users that pool their secret keys and produce a “pirate
decoder” that can decrypt ciphertexts. Call a pirate decoder D “useful” for messages m0,m1 if D
can distinguish encryptions of m0 from m1 with noticeable advantage. Then we require that such a
decoder can be traced using Trace to one of the identities in the collusion. This is formalized using the
following game between an adversary A and challenger, parameterized by a non-negligible function
ε:

– The challenger runs (msk,mpk)← Setup() and gives mpk to A.

– A is allowed to make arbitrary keygen queries, where is sends a pair of label and identity
(lb, id) ∈ L×ID to the challenger, and the challenger responds with sklb,id ← KeyGen(msk, lb, id).
The challenger also records the identities queries in a listR (In this case, no need record labels).

– A then produces a pirate decoder D, two messages m∗0,m
∗
1, and a non-negligible value ε. Let

q be the number of keygen queries made (that is, q = |R|). The challenger computes T ←
TraceD(mpk,m∗0,m∗1, q, ε) as the set of accused users. The challenger says that the adversary
“wins” one of the following holds:

* T contains any identity outside ofR. That is, T \ R 6= ∅ or

33

* Both of the following hold:
· D is ε-useful, meaning Pr[D(c) = m∗b : b ← {0, 1}, c ← Enc(mpk, S = ID, L =
∅,m∗b)] ≥ 1

2 + ε5.
· T does not contain at least one user insideR. That is, T ∩ R = ∅.

The challenger then outputs 1 if the adversary wins, and zero otherwise.

We define the tracing advantage of A as the probability the challenger outputs 1. We say the public
key encryption scheme is traceable if, for all PPT adversariesA and all non-negligible ε, the advantage
of A is negligible.

Again, a secret set S is adaptively chosen by adversaries in the security game of PBE and the flexible
trace and revoke scheme is adaptively secure.

Construction. Let (PBE.Setup,PBE.KeyGen,PBE.Enc,PBE.Dec) be a secure private broadcast encryp-
tion with revocation scheme for label space L = [Q] where Q is a polynomial in λ, identity space ID =
[r]× [2λ+1]. We construct a flexible trace and revoke scheme for an identity space ID′ = {0, 1}r.

Setup(): This is the same as PBE.Setup().

KeyGen(msk, lb, id′): To generate the secret key for an identity id′ ∈ ID′, write id′ = (id′1, . . . , id′r) where
id′i ∈ {0, 1}. Choose a random s ∈ [2λ], and define the identity id = (id1, . . . , idr) ∈ ID where
idi = 2s− id′i ∈ ID0. Run PBE.KeyGen(msk, lb, id), and output the resulting secret key.

Enc(mpk, S, L,m): Run PBE.Enc(mpk, S, L,m).

Dec(sklb,id, L, lb, c): Run PBE.Dec(sklb,id, L, lb, c).

TraceD(mpk,m0,m1, q, ε): We can similarly construct this algorithm using QTrace′ as that in Section 4
and 5 except that, for generation of ciphertexts, we run Enc(mpk, S = ID, L = ∅,mb).

This scheme inherits the parameter sizes from the underlying PBE with revocation.

Theorem 6.8. If (PBE.Setup,PBE.KeyGen,PBE.Enc,PBE.Dec) is a secure PBE with revocation scheme
in the sense of Definition 6.5 for identity space ID and private class S, where ID is defined as above,
then there is an efficient algorithm Trace such that (Setup,KeyGen,Enc,Dec,Trace) as defined above is a
secure flexible trace and revoke scheme in the sense of Definition 6.7.

We can prove this in a similar way as that of flexible traitor tracing from PBE in Section 5.

5Checking the “winning” condition requires computing the probabilities a procedure outputs a particular value, which is in
general an inefficient procedure. Thus our challenger as described is not an efficient challenger. However, it is possible to efficiently
estimate these probabilities by running the procedure many times, and reporting the fraction of the time the particular value is
produce. We could have instead defined our challenger to estimate probabilities instead of determine them exactly, in which case
the challenger would be efficient. The resulting security definition would be equivalent.

34

Parameter sizes. The trace and revoke system inherits the parameter sizes from the underlying FE scheme.
(Note that the ciphertext size of our revocable FE is independent of the size of revocation lists.) Therefore,
using a compact functional encryption scheme [AS15], we obtain a trace and revoke system where cipher-
texts have size |m|+poly(λ) and secret keys have size poly(λ, r), which is optimal as explained in Section 5.

Remark 6.9. Someone may think revocation lists are redundant to achieve trace and revoke schemes since
we can revoke users by eliminating users identities from the set S. However, in some settings (e.g., anony-
mous setting), we would like to hide identities that includes sensitive information and reveal only short
random labels. When such secret identities are unknown, then we cannot revoke users by changing a set S.
We can revoke users by using a revoke set L that includes only public labels.

References

[ABSV14] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. Cryptology ePrint Archive, Report 2014/917, 2014.
http://eprint.iacr.org/2014/917.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. Cryptology ePrint Archive, Report 2015/173, 2015. http://eprint.iacr.
org/2015/173.

[AS15] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. Cryptology
ePrint Archive, Report 2015/776, 2015. http://eprint.iacr.org/2015/776.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lec-
ture Notes in Computer Science, pages 52–73, San Diego, CA, USA, February 24–26, 2014.
Springer, Berlin, Germany.

[BF99] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture
Notes in Computer Science, pages 338–353, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Berlin, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances in
Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Berlin, Germany.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6,
2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory and
Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science,
pages 501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Berlin, Germany.

35

http://eprint.iacr.org/2014/917
http://eprint.iacr.org/2015/173
http://eprint.iacr.org/2015/173
http://eprint.iacr.org/2015/776

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 573–592, St. Peters-
burg, Russia, May 28 – June 1, 2006. Springer, Berlin, Germany.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. Cryptology ePrint Archive, Report 2015/163, 2015. http://eprint.iacr.org/
2015/163.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke system.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
06: 13th Conference on Computer and Communications Security, pages 211–220, Alexandria,
Virginia, USA, October 30 – November 3, 2006. ACM Press.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India, Decem-
ber 1–5, 2013. Springer, Berlin, Germany.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages
480–499, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Germany.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor, Advances in
Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 257–270,
Santa Barbara, CA, USA, August 21–25, 1994. Springer, Berlin, Germany.

[CFNP00] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Transactions
on Information Theory, 46(3):893–910, 2000.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable software water-
marking. Cryptology ePrint Archive, Report 2015/373, 2015. http://eprint.iacr.org/
2015/373.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor tracing
schemes. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 542–558, Aarhus, Denmark, May 22–26, 2005.
Springer, Berlin, Germany.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers. In
Joan Feigenbaum, editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised Papers, volume
2696 of Lecture Notes in Computer Science, pages 61–80. Springer, 2002.

[DF03] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop on
Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer
Science, pages 100–115, Miami, USA, January 6–8, 2003. Springer, Berlin, Germany.

36

http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2015/373
http://eprint.iacr.org/2015/373

[DFKY05] Yevgeniy Dodis, Nelly Fazio, Aggelos Kiayias, and Moti Yung. Scalable public-key tracing
and revoking. Distributed Computing, 17(4):323–347, 2005.

[FT99] Amos Fiat and Tamir Tassa. Dynamic traitor training. In Michael J. Wiener, editor, Advances in
Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 354–371,
Santa Barbara, CA, USA, August 15–19, 1999. Springer, Berlin, Germany.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014. http://eprint.
iacr.org/2014/666.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Com-
puting, pages 555–564, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[GST04] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-based revoca-
tion in groups of low-state devices. In Matthew Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 511–527, Santa
Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

[GSY99] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating traceability
and broadcast encryption. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 372–387, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Berlin, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 162–179, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Ger-
many.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 47–60, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function eval-
uation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Innovations in Theoret-
ical Computer Science, pages 163–172, Rehovot, Israel, January 11–13, 2015. Association for
Computing Machinery.

37

http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/666

[KD98] Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asymmetric schemes. In Kaisa
Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pages 145–157, Espoo, Finland, May 31 – June 4, 1998. Springer, Berlin,
Germany.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 13: 20th Conference on Computer and Communications
Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press.

[KY02] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 450–465, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Berlin, Germany.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless
receivers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 41–62, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Berlin, Germany.

[NP98] Moni Naor and Benny Pinkas. Threshold traitor tracing. In Hugo Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 502–
517, Santa Barbara, CA, USA, August 23–27, 1998. Springer, Berlin, Germany.

[NP01] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Yair Frankel, editor,
FC 2000: 4th International Conference on Financial Cryptography, volume 1962 of Lecture
Notes in Computer Science, pages 1–20, Anguilla, British West Indies, February 20–24, 2001.
Springer, Berlin, Germany.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against arbitrary
removal strategies. Cryptology ePrint Archive, Report 2015/344, 2015. http://eprint.
iacr.org/2015/344.

[SSW01] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing algorithms using
list decoding. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, pages 175–192, Gold Coast, Australia, December 9–13,
2001. Springer, Berlin, Germany.

[SW00] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Mihir Bellare, editor,
Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 316–332, Santa Barbara, CA, USA, August 20–24, 2000. Springer, Berlin, Germany.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

[TT01] Wen-Guey Tzeng and Zhi-Jia Tzeng. A public-key traitor tracing scheme with revocation using
dynamic shares. In Kwangjo Kim, editor, PKC 2001: 4th International Workshop on Theory
and Practice in Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science,
pages 207–224, Cheju Island, South Korea, February 13–15, 2001. Springer, Berlin, Germany.

38

http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/344

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional encryption.
Cryptology ePrint Archive, Report 2014/588, 2014. http://eprint.iacr.org/2014/588.

[Zha14] Mark Zhandry. Adaptively secure broadcast encryption with small system parameters. Cryp-
tology ePrint Archive, Report 2014/757, 2014. http://eprint.iacr.org/2014/757.

39

http://eprint.iacr.org/2014/588
http://eprint.iacr.org/2014/757

	Introduction
	Prior Work
	Our Results
	Our Techniques
	Outline

	Preliminaries
	Notations
	Traitor Tracing with Flexible Identities
	Private Broadcast Encryption
	Obfuscation
	Functional Encryption
	Symmetric Key Encryption with Pseudorandom Ciphertexts

	An Oracle Problem
	The Generalized Jump Finding Problem

	Tracing with Flexible Identities
	Flexible Traitor Tracing with Short Ciphertexts
	A Flexible Trace and Revoke Scheme
	Revocable Functional Encryption
	Tool for Revocable FE: SSB hash on Sets
	Constructing Revocable FE
	Trace and Revoke with Flexible Identities from Revocable FE
	PBE with revocation from Revocable FE
	Trace and Revoke with Flexible Identities from PBE with Revocation

