
Fast Garbling of Circuits Under Standard Assumptions∗

Shay Gueron† Yehuda Lindell‡ Ariel Nof‡ Benny Pinkas‡

July 16, 2015

Abstract

Protocols for secure computation enable mutually distrustful parties to jointly compute on
their private inputs without revealing anything but the result. Over recent years, secure com-
putation has become practical and considerable effort has been made to make it more and more
efficient. A highly important tool in the design of two-party protocols is Yao’s garbled circuit
construction (Yao 1986), and multiple optimizations on this primitive have led to performance
improvements of orders of magnitude over the last years. However, many of these improvements
come at the price of making very strong assumptions on the underlying cryptographic primitives
being used (e.g., that AES is secure for related keys, that it is circular secure, and even that
it behaves like a random permutation when keyed with a public fixed key). The justification
behind making these strong assumptions has been that otherwise it is not possible to achieve
fast garbling and thus fast secure computation. In this paper, we take a step back and examine
whether it is really the case that such strong assumptions are needed. We provide new methods
for garbling that are secure solely under the assumption that the primitive used (e.g., AES) is
a pseudorandom function. Our results show that in many cases, the penalty incurred is not
significant, and so a more conservative approach to the assumptions being used can be adopted.

1 Introduction

In the setting of secure computation, a set of parties with private inputs wish to compute a joint
function of their inputs, without revealing anything but the output. Protocols for secure compu-
tation guarantee privacy (meaning that the protocol reveals nothing but the output), correctness
(meaning that the correct function is computed), and independence of inputs (meaning that parties
are not able to make their inputs depend on the other parties’ inputs). These security guarantees
are to be provided in the presence of adversarial behavior. There are two classic adversary models
that are typically considered: semi-honest (where the adversary follows the protocol specification
but may try to learn more than is allowed from the protocol transcript) and malicious (where the
adversary can run any arbitrary polynomial-time strategy in its attempt to breach security).

Garbled circuits. One of the central tools in the construction of secure two-party protocols
is Yao’s garbled circuit [17, 21]. The basic idea behind Yao’s protocol is to provide a method of
computing a circuit so that values obtained on all wires other than circuit-output wires are never

∗This work was funded by the European Research Council under the ERC consolidators grant agreement n. 615172
(HIPS), and under the European Union’s Seventh Framework Program (FP7/2007-2013) grant agreement n. 609611
(PRACTICE).
†University of Haifa and Intel Haifa, Israel. email: shay@math.haifa.ac.il.
‡Bar-Ilan University, Israel. email: lindell@biu.ac.il, nofdinar@gmail.com, benny@pinkas.net.

1

revealed. For every wire in the circuit, two random or garbled values are specified such that one
value represents 0 and the other represents 1. For example, let i be the label of some wire. Then,
two values k0

i and k1
i are chosen, where kbi represents the bit b. An important observation here

is that even if one of the parties knows the value kbi obtained by the wire i, this does not help
it to determine whether b = 0 or b = 1 (because both k0

i and k1
i are independently distributed).

Of course, the difficulty with such an idea is that it seems to make computation of the circuit
impossible. That is, let g be a gate with incoming wires i and j and output wire `. Then, given
two random values kbi and kcj , it does not seem possible to compute the gate because b and c are
unknown. We therefore need a method of computing the value of the output wire of a gate (also a
random value k0

` or k1
`) given the value of the two input wires to that gate.

In short, this method involves providing “garbled computation tables” that map the random
input values to random output values. However, this mapping should have the property that given
two input values, it is only possible to learn the output value that corresponds to the output of
the gate (the other output value must be kept secret). This is accomplished by viewing the four
possible inputs to the gate, k0

i , k
1
i , k

0
j , and k1

j , as encryption keys. Then, the output values k0
` and

k1
` , which are also keys, are encrypted under the appropriate keys from the incoming wires. For

example, let g be an OR gate. Then, the key k1
` is encrypted under the pairs of keys associated

with the input values (1, 1), (1, 0) and (0, 1). In contrast, the key k0
` is encrypted under the pair of

keys associated with (0, 0).

Fast garbling and assumptions. Today, secure computation is fast enough to solve numerous
problems in practice. This has been achieved due to multiple significant efficiency improvements
that have been made on the protocol level, and also due to garbled circuits themselves. Many
of the optimizations to garbled circuits – described below – come at the price of assuming strong
assumptions on the security of the cryptographic primitives being used. For example, the free-XOR
technique requires assuming circular security as well as a type of correlation robustness [7], the use
of fixed-key AES requires assuming that AES behaves like an ideal cipher [5],1 reductions in the
number of encryption operations from 2 to 1 per entry in the garbled gate requires correlation
robustness (when a hash function is used) and a related-key assumption (when AES is used).

Typically, the use of less standard cryptographic assumptions is accepted where necessary, es-
pecially in areas like secure computation where the costs are in general very high. However, in
practice, solid cryptographic engineering practices dictate a more conservative approach to as-
sumptions. New types of elliptic curve groups are not adopted quickly, people shy away from
non-standard use of block ciphers, and more. This is based on sound principles, and on the under-
standing that deployed solutions are very hard to change if vulnerabilities are discovered. In the
field of secure computation, the willingness to take any assumption that enables a faster implemen-
tation stands in stark contrast to standard cryptographic practice. In this paper, we propose to
pause, take a step back, and ask the question how much do non-standard assumptions really cost
us and are they justified. We remark, for just one example, that practitioners have warned against
assuming that AES is an ideal cipher, due to related key weaknesses that have been found; see
e.g., [4, 6]. As in most situations, if the benefit is huge, then more flexibility with respect to the
assumptions is justified, whereas if the gains are smaller then a more cautious approach is taken.

The focus of this paper is to study how much is really gained by relying on non-standard

1To be more accurate, it suffices to assume that AES behaves like an ideal random permutation oracle, even when
it is keyed with a public and known fixed key. This is a weaker assumption than the full ideal-cipher assumption.
For sake of brevity, we use the term “ideal cipher” throughout, and our intention is the assumption specified here.

2

assumptions and to provide optimizations that require assuming nothing more than that AES
behaves like a pseudorandom function.

Garbled circuit optimizations. Before proceeding to describe our work, we present an overview
of the most important efficiency improvements to garbled circuits:

• Point and permute [19]: In order to prevent the garbled circuit evaluator from knowing
what it is evaluating, the original construction randomly permuted the ciphertexts in each
garbled gate. Then, when computing the garbled circuit, the evaluator tries each ciphertext
in the gate until one correctly decrypts (this requires an additional mechanism to ensure
that only one ciphertext decrypts to a valid value). On average, this means that 2.5 entries
need to be decrypted per gate (where each costs 2 decryptions). The point and permute
method assigns a random permutation or signal bit to each wire, that determines the order of
the garbled gate. Then, the encryption of a garbled value includes the bit needed to enable
direct access to the appropriate entry in the garbled table (given two garbled values and the
two associated bits). This reduces the number of entries to decrypt to 1 (and thus 2 actual
decryptions).

• Free XOR [14]: The garbled circuit construction involves carrying out encryptions at every
gate in the circuit, and storing 4 ciphertexts. The free-XOR method enables the computation
of XOR gates for free (the computation requires only computing 1-2 XORs, and no ciphertexts
need be stored). This is achieved by choosing a fixed random mask ∆ and making the garbled
values on every wire have fixed difference ∆ (i.e., for every i, the garbled values are k0

i and
k1
i = k0

i⊕∆, where k0
i is random). In many circuits, the number of XOR gates is very large and

so this significantly reduces the cost (e.g., in the AES circuit there are approximately 7,000
AND gates and 25,000 XOR gates; in a 32x32 bit multiplier circuit there are approximately
6,000 AND gates and 1,000 XOR gates [1]).

We remark that the free-XOR method is patented, and as such, its use is restricted [15].

• Reductions in garbled-circuit size [19, 20, 22]: Historically, the most expensive part
of any secure protocol was the cryptographic operations. However, significant algorithmic
improvements to secure protocols together with much faster implementations of cryptographic
primitives (e.g., due to better hardware) have considerably changed the equation. In many
cases, communication can be the bottleneck and thus reducing the size of the garbled circuit
is of great importance. In [19], a method for reducing the number of garbled entries in a
table from 4 to 3 was introduced; this is referred to as 4-to-3 garbled row reduction (or 4-3
GRR). This improvement is achieved by “forcing” the first ciphertext to be 0 (by setting
the appropriate garbled value on the output wire so that the ciphertext becomes 0). In [20],
polynomial interpolation was used to further reduce the number of ciphertexts to just 2; this
is referred to as 4-to-2 garbled row reduction (or 4-2 GRR).

Importantly, 4-3 GRR is compatible with free-XOR since only one output garbled value needs
to taken as a function of the input values (and the other garbled value can be set according
to the fixed ∆). In contrast, 4-2 GRR is not compatible with free XOR. Nevertheless, in
recent work, a new method called half gates [22] reduces the number of ciphertexts in AND
gates from 4 to 2, while maintaining compatibility with free XOR (in fact, half gates only
work with free XOR).

3

• Number of encryptions [18]: Classically, each entry in a garbled gate contains the encryp-
tion of one of the output garbled values under two input garbled values, and thus requires
two encryptions. In [18], it was proposed to use a hash function as a type of key-derivation
function, and to encrypt by hashing both input garbled values together and XORing the
result with the output garbled value. This is secure in the random-oracle model, or under
a “correlation-robustness” assumption [12]. This reduces the number of operations from 2
to 1. (Note however that two AES operations are typically much faster than a single hash
operation, especially when utilizing the AES-NI instruction.)

• Fixed-key AES and use of AES-NI [5]: AES-NI is a set of CPU instructions that are now
part of the Intel architecture. They allow AES computations to be carried out at incredibly
fast rates, especially in modes of operation that can be highly pipelined. AES-NI offers
instructions for encryption/decryption and for the AES key expansion.

However, since typical AES usages encrypt multiple blocks with a single key, the key expan-
sion instructions do not highly optimize this part of the processing, and the key schedule
generation routine is relatively expensive (compared to encryption/decryption). More im-
portantly, pipelining cannot be carried out between different keys. When computing garbled
circuits, 4 different keys are used in every gate, requiring many key schedules to be computed
and preventing the use of pipelining.

In light of this, [5] proposed a method of using AES that is secure in the ideal-cipher model
(i.e., assuming that AES for every fixed key behaves as a purely random permutation). The
method uses a fixed key for AES, applies AES on a combination of the input garbled values,
and XORs the result with appropriate output garbled value. This reduces the number of
AES computation to 4 per gate. Furthermore, since a fixed key is used, only one key schedule
needs to be computed for the entire circuit, and the encryptions within a gate can be fully
pipelined. This led to an extraordinary speedup in the computation of garbled circuits, as
demonstrated in the JustGarble implementation [5].

We stress that there have been a very large number of works that have provided highly signifi-
cant efficiency improvements to protocols that use garbled circuits. However, our focus here is on
improvements to garbled circuits themselves.

Our results. We construct fast garbling methods solely under the assumption that AES behaves
like a pseudorandom function. In particular, we do not use fixed-key AES (since this requires
assuming that AES is an ideal cipher), and we use two AES encryptions per entry in the garbled
gates (since using just one encryption requires some sort of related-key security assumption). In
addition, we do not use free-XOR (since this requires circularity). However, this does enable us to
use 4-to-2 row reduction. In brief, we construct the following:

• Fast AES-NI without fixing the key: We show that, in addition to pipelining encryptions,
it is also possible to pipeline the key schedule of AES-NI, in order to achieve very fast garbling
times without using fixed-key AES or any other non-standard AES variant. Namely, the key
schedule processing of different keys can be pipelined together, so that the amortized effect of
key scheduling on Yao garbling is greatly reduced. Our experiments (described below) show
that this and other optimizations of AES operations have become so fast that the benefits of
using fixed-key AES are almost insignificant. Thus, in contrast to current popular belief, in
most cases fixed-key AES is not necessary for achieving extremely fast garbling.

4

• Low-communication XOR gates: Over the past years, it has become apparent that in
secure protocols, communication is far more problematic than computation. The free-XOR
technique is so attractive exactly because it requires no computation but also no communica-
tion for XOR gates. We provide a new garbling method for XOR gates that requires storing
only a single ciphertext per XOR gate; our technique is inspired by the work of [13]. The
computational cost is 3 AES computations for garbling the gate, and 1-2 AES computations
for evaluating it. (This overhead is for an optimized garbling method that we show. We first
present a basic scheme requiring 4 AES computations for garbling and 2 computations for
evaluation.)

• Fast 4-2 row reduction: As we have mentioned, once we no longer use the free-XOR tech-
nique, we are able to use 4-2 GRR on the non-XOR gates. However, the method of [20] that
uses polynomial interpolation is rather complex to implement (requiring finite field operations
and precomputation of special constants to make it fast). In addition, even working in GF (2n)
Galois fields and using the PCLMULQDQ Intel instruction, the cost is still approximately
half an AES computation. We present a new method for 4-2 row reduction that uses a few
XOR operations only, and is trivial to implement.

We implemented these optimizations and compared them to JustGarble [5]. There is no doubt
that the cost of garbling and evaluation is higher using our method, since we have to run AES
key schedules, and we pay for computing XOR gates. However, we show that within protocol
executions, the difference is insignificant. We demonstrate this running Yao’s protocol for semi-
honest adversaries which has nothing but oblivious transfer (for which we use the fast OT extensions
of [2]), garbled-circuit evaluation and computation, and communication.2

Experimental results. We ran Yao’s protocol for semi-honest adversaries inside Amazon EC2.
The details of the results can be found in Section 6. The results show removing the ideal-cipher
assumption does not noticeably affect the performance of the protocol. Furthermore, in many
scenarios, such as small circuits, large inputs, or relaively slow communication channels, garbling
under the most conservative assumption (the existence of PRFs) performs on par with the most
efficient garbling methods.

Patent-free garbled circuits. Another considerable advantage of using our method for comput-
ing XOR gates with low communication is that it does not rely on the free XOR technique and thus
is not patented. Since patents in cryptography are typically an obstacle to adoption, we believe
that the search for efficient garbling techniques that are not patented is of great importance.

2 Fixed-Key AES vs. Regular AES

Background. Bellare et al. introduced the use of fixed-key AES in garbling schemes and imple-
mented the JustGarble library [5]. This significantly speeds up garbling since the AES key schedule
(which is quite expensive) need not be computed at every gate. Note that when constructing the
garbled circuit four key schedules are required for every gate, and when evaluating the circuit two

2We do not count the base OTs of the OT extension since these would outweigh everything else, and can anyway
be precomputed. Our aim here is to see the effect of the change in the garbled circuits and our tests are under optimal
conditions for JustGarble-type constructions [5]. For the same reason, we do not look at the effect inside protocols
for malicious adversaries since all of the other work will clearly outweigh any additional costs in garbling.

5

key schedules are required for every gate. This is very expensive. In addition, JustGarble utilizes
the AES-NI instruction set and pipelining, significantly reducing the cost of the AES computations.

Despite its elegance, the use of fixed-key AES requires the assumption that AES behaves like
an ideal cipher. In particular assuming that even given the secret key, AES behaves like a random
permutation. This is a very strong assumption, and one that has been brought into question
regarding AES specifically by the block-cipher research community; see, for example, [4,6]. Clearly,
the acceptance of this assumption in the context of secure computation and garbling is due to the
perceived very high cost of garbling in any other way. However, the comparisons carried out in [5]
to prior work are to Kreuter et al. [16] who use AES-256 using AES-NI without pipelining, and to
Huang et al. [11] who use a hash function only. Thus, it is unclear how much of the impressive
speedup achieved by [5] is due to the savings obtained by using fixed-key AES, and how much is
due to the other elements that they included (pipelining of the AES computations in each gate,
optimizations to the circuit representation, and more).

In this section, we show that it is possible to achieve fast garbling without using fixed-key
AES and thus without resorting to the assumption that AES is an ideal cipher. We stress that
some penalty will of course be incurred since the AES key schedule is expensive. Nevertheless, we
show that when properly implemented, in many cases the penalty is not significant and it suffices
to use regular AES. The goal is to make the performance depend on the throughput (which is
excellent when pipelining is used) and not on the latency of a single computation. This goal can
be achieved rather easily for the AES encryption alone, but we also achieve the more challenging
task of pipelining the key schedule as well as the encryption.

2.1 Pipelining the Garbling

The standard way of garbling a gate uses double encryption. Specifically, given 4 keys k0
i , k

1
i , k

0
j , k

1
j

for the input wires and 2 keys k0
` , k

1
` for the output wire, four computations of the type Ekai (Ekbj

(kc`))

are made, for varying values of a, b, c ∈ {0, 1}. Observe that since Ekbj
(kc`) must be known before

encrypting again with kai , this means that the encryptions cannot be pipelined. This makes a huge
difference when using the AES-NI chip, since the cost of 8 pipelined encryptions is only slightly
more than the cost of a single non-pipelined encryption.3 We therefore garble an AND gate in
a way that enables pipelining. This is easily achieved by applying a pseudorandom function F
(which will be instantiated as AES) to the gate index and appropriate signal/permutation bits.
This ensures independence between all values. For example, an AND gate where both signal bits
are 0 can be garbled as follows:

Fk0
i
(g‖00)⊕ Fk0

j
(g‖00)⊕ k0

` Fk0
i
(g‖01)⊕ Fk1

j
(g‖01)⊕ k0

`

Fk1
i
(g‖10)⊕ Fk0

j
(g‖10)⊕ k0

` Fk1
i
(g‖11)⊕ Fk1

j
(g‖11)⊕ k1

`

Needless to say, 4-to-3 GRR can also be carried out by setting k0
` = Fk0

i
(g‖00)⊕Fk0

j
(g‖00) meaning

that the first ciphertext equals 0 and so need not be stored. Observe here that there are 8 encryp-
tions. However, all inputs are known and therefore it is possible to pipeline these computations.

Note that it is essential to take both signal bits as part of the input of F . Otherwise, the scheme
is not secure. To understand this, assume that the gate was garbled as in the example above but

3Concretely, on a Haswell processor, 8 pipelined AES computations costs approximately 77 cycles, whereas one
non-pipelined AES computation costs approximately 70 cycles.

6

without using signal bits (e.g., the value Fk1
i
(g) is used instead of Fk1

i
(g‖10)), and assume that the

evaluator holds the keys k0
i , k

0
j . The evaluator will compute k0

` , but then it will also be able to
compute Fk1

i
(g) and Fk1

j
(g) using the second and the third garbled entries (without learning the

values of k1
j or k1

i). Now, the evaluator would be able to compute k1
` as well, using the fourth

garbled entry. Taking both signal bits as part of F ’s input prevents this from happening, as the
evaluator cannot learn Fk1

i
(g‖11) and Fk1

j
(g‖11).

2.2 Pipelining Key Schedule and Encryption

The computations that are needed for garbling and evaluating garbled circuits are as follows:

- KS4 ENC8: This consists of the computation of 4 AES key schedules from 4 different keys.
The resulting keys are then used to encrypt 8 blocks (each key is used for encrypting 2 blocks).
This is used for garbling AND (and other non-XOR) gates.

- KS2 ENC2: This consists of the computation of 2 AES key schedules from 2 different keys.
The resulting keys are then used to encrypt 2 blocks (each key is used for encrypting 1 block).
This is used for evaluating all gates.

- KS4 ENC4: This consists of the computation of 4 AES key schedules from 4 different keys.
The resulting keys are then used to encrypt 4 blocks (each key is used for encrypting 1
block). This is used for garbling XOR gates according to our new XOR-gate garbling scheme
described in Section 3.2.

A näıve software implementation approach for these computations would use the appropriate se-
quence of calls to a “key expansion” function, and to a “block encryption” function. To estimate
the performance of that approach, we use, as a comparison baseline, the OpenSSL (1.0.2) library,
running on the Haswell architecture.4

Software running on this processor can use the AES hardware support, known as AES-NI
(see [8, 9] for details). On this platform, a call (using the OpenSSL library) to an AES key expan-
sion consumes 149 CPU cycles. A call to an (ECB) encryption function to encrypt 2/4/8 blocks
consumes approximately 70+ cycles (explanation is provided below). However, OpenSSL’s API
does not support ECB encryption with multiple key schedules. For example, this implies that
KS4 ENC4 would required 4 calls to the key expansion function, followed by 4 calls to an ECB
encryption, each one applied to a single (16B) block. The resulting performance of KS4 ENC4,
KS4 ENC8, KS2 ENC2 obtained by calling OpenSSL’s functions (namely “aesni set encrypt key”
and “aesni ecb encrypt”) is summarized in middle column of Table 1 at the end of this section.

Our goal is to optimize the computations of KS4 ENC4, KS4 ENC8, KS2 ENC2, and alleviate
the overhead imposed by the frequent key replacements. We achieve our optimization by: (a)
interleaving the encryption of independent blocks; (b) optimizing the key expansion; (c) aggressive
interleaving of the operations; (d) building an API that allows for encrypting with multiple key
schedules. The details are as follows.

Interleaved encryption. AES encryption on a modern processor is accelerated by using the
AES-NI instructions (see [8, 9]). Assuming that the cipher key is expanded to a key schedule of

4Haswell (resp., Broadwell) is an Intel Architecture Codename of a recently announced 4th (resp., 5th) Generation
Intel R© CoreTM Processor. For short, we refer to them simply as Haswell (resp., Broadwell).

7

11 round keys, RK[j], j=0, . . ., 10, AES encryption of a 16 bytes block X is achieved by the code
sequence

XMM = X XOR RK [0]

for j = 1, 2, ..., 9

XMM = AESENC XMM, RK [j]

end

XMM = AESENCLAST XMM, RK [10]

output XMM

If the latency of the AESENC/AESENCLAST instructions is L cycles, then the above flow
can be completed in 1 + 10L cycles. However, if the throughput of AESENC/AESENCLAST
is 1 (i.e., pipelining can be used and the processor can dispatch AESENC/AESENCLAST every
cycle, if the data is available), and the computations encrypt more than one block, the software
can interleave the AESENC/AESENCLAST invocations. This achieves a higher computational
throughput, compared to the single block encryption. Furthermore, the AESENC/AESENCLAST
instructions can be applied to any round key, even those generated by different key schedules. For
example, 2 blocks X and Y , can be encrypted, with 2 different key schedules KS1 and KS2, by
the following code sequence:

XMM1 = X XOR RK1 [0]

XMM2 = Y XOR RK2 [0]

for j = 1, 2, ..., 9

XMM1 = AESENC XMM1, RK1 [j]

XMM2 = AESENC XMM2, RK2 [j]

end

XMM1 = AESENCLAST XMM1, RK1 [10]

XMM2 = AESENCLAST XMM2, RK2 [10]

output XMM1, XMM2

These computations can be completed within 10L + 1 cycles (the 2 XOR’s of the whitening
step can be executed in one cycle). Similarly, encrypting 4/8 blocks with an interleaved software
flow could (theoretically) terminate after (2 + 10L + 3) /(4 + 10L + 7) cycles. (This idealized
estimation assumes that the round keys are fetched from the processor’s cache, and ignores the
cost of loading/storing the input/output blocks. We point out that the code sequence indeed
closely approaches the theoretical performance, under these assumptions.) These computations are
dominated only by the throughput of AESENC/AESENCLAST. We note that L = 7 on Haswell,
and the AESENC/AESENCLAST throughput is 1. As can be seen,

Optimized key expansion. We were able to optimize the computation of AES key expansion so
that it computes (and stores) an AES128 key schedule in 96 cycles on Haswell, which is 1.55 times
faster than the code used by OpenSSL on the same platform. The details of this optimization are
quite low-level, and we provide here only some high-level details. The a full set of key expansion
code options, was contributed to the NSS open source library, and can be found in [10].

The AES-NI instruction set includes instructions that facilitate key expansion. For the encryp-
tion key schedule, the relevant instruction is AESKEYGENASSIST. However, this instruction does
not provide a throughput of 1 and is significantly slower than the AESENC and AESENCLAST
operations (the reason being that key schedules are typically run only once and so the cost involved
in optimizing this instruction was not justified). We observe that the key schedule consists of S-box

8

substitutions together with rotation and XOR operations. Likewise, the last round of AES costs
of S-box substitutions together with shift rows (and key mixing, which can be effectively cancelled
by using a round key of all-zeroes). Thus, the use of AESKEYGENASSIST can be replaced by
a combination of a shuffle followed by an AESENCLAST invocation, to isolate the S-box trans-
formation.5 The shuffle is carried out efficiently using the PSHUFB instruction which also has a
throughput of 1. We therefore obtain that the key schedule can be “simulated” using much faster
instructions. Additional optimizations can be obtained by judicious usage of the available instruc-
tions to generate efficient sequences. We give one example. Consider the following portion of the
AES key schedule flow (where RCON = Rcon[i/4]):

w[i] = w[i-4] xor Sbox(RotWord(w[i-1])) xor RCON

w[i+1] = w[i-3] xor w[i-4] xor Sbox(RotWord(w[i-1])) xor RCON

w[i+2] = w[i-2] xor w[i-3] xor w[i-4] xor Sbox(RotWord(w[i-1])) xor RCON

w[i+3] = w[i-1] xor w[i-2] xor w[i-3] xor w[i-4] xor Sbox(RotWord(w[i-1])) xor RCON

As explained above, the S-box substitution can be isolated by a shuffle followed by AESEN-
CLAST, and if we place (duplicated) RCON in the second operand of AESENCLAST, the addition
of RCON is also done by AESENCLAST. The arrangement and XOR-ing of the “words” can be
implemented by the following straightforward flow:

vpslldq $4, \reg, %xmm3

vpxor %xmm3, \reg, \reg

vpslldq $4, %xmm3, %xmm3

vpxor %xmm3, \reg, \reg

vpslldq $4, %xmm3, %xmm3

vpxor %xmm3, \reg, \reg

However, the same functionality can be achieved by a shorter, 4 instructions, flow, as follows:

vpsllq $32, \reg, %xmm3

vpxor %xmm3, \reg, \reg

vpshufb (con3), \reg, %xmm3

vpxor %xmm3, \reg, \reg

(with the value con3 = -1,-1,-1,-1,-1,-1,-1,-1,4,5,6,7,4,5,6,7)

In this way, the 3 shuffles and 3 xors of the straightforward flow, can be replaced by shorter and
faster 1 shift, 1 shuffle and 2 flows. With our optimizations, we were able to write a key expansion
code that computes and stores an AES128 key schedule in 96 cycles on Haswell (i.e., 1.55 times
faster than OpenSSL).

Multiple aggressive interleaving. A higher degree of optimization can be achieved by inter-
leaving the computations of multiple key expansions. This helps in partially alleviating the key
expansion’s dependency on the latency of AESENC. For example, our code for expanding 2 key
schedules consumes 124 cycles (on Haswell), which is significantly less than two independent (with-
out interleaving) key schedules, that are 2 × 96 cycles. We applied this technique to obtain an
optimized KS4 ENC4 and KS4 ENC8 implementation. For KS2 ENC2, optimization is achieved
by “mixed interleaving” of the key expansion and the encryptions.

5AESENCLAST is used since the last round of AES does not include the MixColumns operation, which is a part
of all other rounds and therefore run in the AESENC instruction but not in AESENCLAST.

9

The performance of the optimized KS4 ENC4, KS4 ENC8, and KS2 ENC2 is summarized in
the right column of Table 1.

Computation Näıve implementation Optimized imp.

(cycles) (cycles)

KS4 ENC4 703 240 (asm - 220)

KS4 ENC8 729 256 (asm - 248)

KS2 ENC2 338 182 (asm - 180)

Table 1: The performance (in cycles) of KS4 ENC4, KS4 ENC8 and KS2 ENC2, measured on the Haswell archi-
tecture. The näıve implementation is the result of calling the OpenSSL (1.0.2) functions for AES key expansion and
for ECB encryption. The performance of the optimized implementations is of C code (compiled using gcc), and of
hand-written assembly implementations (marked with “asm”).

2.3 Experimental Results

The results in Table 2 show the garbling and evaluation time of 1000 AES circuits, using the
free-XOR technique and 4-to-3 row reduction (as used by JustGarble, in order to make a fair
comparison). All methods use pipelining of the encryptions (the last two entries do not use a fixed
key and therefore use the encryption pipelining method described in Section 2.1). The last entry
is based on using also the key scheduling pipelining method described in Section 2.2. The table
shows the results for garbling and evaluating the circuit (with the garble time first, following by
the evaluation time). We stress that the times in Table 2 are for 1000 computations; thus, a single
garbling of the AES circuit using our pipelined key schedule takes 0.74 milliseconds only.

The results were achieved on the Amazon EC2 c4.large Linux instance (with a 2.59GHz Intel
Xeon E5-2666 v3 Haswell processor, a single thread, and 3.75GiB of RAM).

Algorithm Time

Fixed-key AES (JustGarble) 399 / 191
Regular AES, pipelined encryption 1578 / 732

Regular AES, pipelined enc. + key schedule 743 / 389

Table 2: Garbling and evaluation times for the AES circuit 1000 times (in milliseconds)

The results show that pipelining the key schedule as well as the encryptions (3rd row) reduces
time by more than 50% over pipelining the encryptions only (2nd row). Fixed-key AES (1st row)
does provide a significant improvement and the best performance. However, the gain in using
fixed-key AES is not overwhelming, since, as we will show later on, in many settings the main cost
of secure computation is no longer the garbling itself. Namely, although AES takes 86% more time
without a fixed key, the objective difference is just 0.344 milliseconds. Thus, when run in a protocol
that includes communication, this additional time makes almost no difference. We demonstrate
this in our experiments described in Section 6.

10

3 Garbling under a Pseudorandom Function Assumption Only

3.1 Background

The free-XOR technique [14] is one of the most significant optimizations of garbling. When using
this technique, the garbling and evaluation of XOR gates are essentially for free, requiring only
two XOR operations for garbling and one for evaluating. In addition, no garbled table is used,
thereby significantly reducing communication. However, the free-XOR technique also requires non-
standard assumptions. Specifically, when using this method, there is a global offset ∆, and on every
wire a single random k0

i is chosen and the other key is always set to k1
i = k0

i ⊕∆. This is secure
in the random oracle model [14] or under a circular-secure correlation robustness or related key
assumption [7] (correlation robustness is formalized for hash functions whereas related key security
is for encryption or pseudorandom functions). The need for this assumption is due to the fact that
when a global offset is used, multiple encryptions are made under related keys ka, ka⊕∆, kb, kb⊕∆,
and so on. In addition, since these keys are used to encrypt the values kc and kc⊕∆, the ciphertext
is related to the secret key which is exactly circular security. We remark that at some additional
cost, the circularity assumption can be removed using the FleXOR technique [13]. However, the
correlation robustness/related key assumption remains.6

We next show that it is possible to efficiently garble a circuit using a pseudorandom function
only. We first show a basic version of our garbling scheme, where the garbled table for a XOR gate
contains a single ciphertext and requires 4 pseudorandom function operations for garbling (instead
of 8 for an AND gate), and 2 for evaluation. We then show an optimized version that reduces the
number of PRF invocations to 3 calls for garbling, and 1-2 calls for evaluation. The overhead of
these schemes is definitely beyond that of the free XOR technique. However, as we will show, the
techniques are a considerable improvement over the naive method of computing XOR like an AND
gate, they enable the usage of 4-2 garbled row reduction (4-2 GRR), and within protocols (where
communication and other factors become the bottleneck) they perform well.

3.2 Garbled XOR With a Single Ciphertext

In order to prove security solely under the assumption that the primitive used is a pseudorandom
function, all the garbled values on all wires should be independently chosen. Thus, for all pairs
of wires i and j, the keys k0

i , k
1
i , k

0
j , k

1
j should be independent and either uniformly distributed or

pseudorandom. It will be useful to equivalently write the keys as k0
i and k1

i = k0
i ⊕∆i, and k0

j and

k1
j = k0

j ⊕∆j where ∆i,∆j are random independent strings.
We use the point-and-permute method, described briefly in the introduction. In order to avoid

confusion, we will call the bit used to determine the order of the ciphertexts in the garbling phase
the permutation bit (since it determines the random order), and we call the bit that is viewed by
the evaluator when it evaluates the circuit the signal bit (since it signals which ciphertext is to be
decrypted). We denote the permutation bit on wire i by πi, and we denote the signal bit on wire i
by λi. Observe that if the evaluator has bit vi on wire i (for which it does not know the value), then
it holds that λi = πi ⊕ vi. Thus, if πi = 0, then the evaluator will see λi = vi, and if πi = 1 then
the evaluation will see λi = vi (its complement). Since πi is random, this reveals nothing about vi
whatsoever.

6We note that garbling with hash functions is much slower than with AES, especially when an AES-NI supporting
architecture is utilized. Thus, related-key security for AES is required, which is a less than ideal assumption.

11

We now describe the basic XOR gate garbling method that uses just a single ciphertext. The
method requires 4 calls to a pseudorandom function for garbling, but as we have seen, this is inex-
pensive using AES-NI. (We remark that AND gates are garbled in the standard way, independently
of this method.) Denote the input wires to the gate by i, j and denote the output wire from the
gate by `. We therefore have input keys k0

i , k
0
i ⊕∆i and k0

j , k
0
j ⊕∆j . According to the above, we

denote by πi, πj the permutation bits on wires i and j respectively. As we will see, the keys on
the output wire will be determined as a result of the garbling method. The method for garbling a
XOR gate with index g is as follows:

- Step 1 – translate input keys on wire i: We first translate the input keys on wire i into
new keys k̃0

i , k̃
1
i by applying a pseudorandom function to the gate index. That is, we compute

k̃0
i = Fk0

i
(g) and k̃1

i = Fk1
i
(g), where g is the gate index.

- Step 2 – set offset of wire `: The offset of wire ` (the output wire) is set to be the offset
of the translated values on wire i, namely ∆` = k̃0

i ⊕ k̃1
i . (Observe that if the same wires are

input to multiple gates, independent values will be obtained since the pseudorandom function
is applied to the gate index.)

- Step 3 – translate input keys on wire j: Next, we translate the input keys on wire j so
that they too have the offset ∆` (this will enable the output key to be computed by XORing
the translated input keys, as in the free XOR technique). Thus, we set k̃

πj
j = F

k
πj
j

(g) and

k̃
π̄j
j = k̃

πj
j ⊕∆`, where πj is the random permutation bit that is associated with the bit 0 on

wire j.

- Step 4 – compute output keys on wire `: Since k̃0
i ⊕ k̃1

i = k̃0
j ⊕ k̃1

j = ∆`, we can

now use the free-XOR technique and can define k0
` = k̃0

i ⊕ k̃0
j and k1

` = k0
` ⊕ ∆`. (Observe

that k̃1
i ⊕ k̃1

j = k0
` as required, since k̃0

i ⊕ k̃1
i = k̃0

j ⊕ k̃1
j implies that k̃0

i ⊕ k̃0
j = k̃1

i ⊕ k̃1
j . In

addition, k̃0
i ⊕ k̃1

j = k̃1
i ⊕ k̃0

j = k1
` as required, since in both cases the result of the XOR is

k̃0
i ⊕ k̃0

j ⊕∆` = k0
` ⊕∆` = k1

` .)

- Step 5 – set the ciphertext: Given kai for any a ∈ {0, 1}, the evaluator can easily compute
k̃ai . In addition, if it has k

πj
j (as we show, this can be implicitly determined from the signal

bit λi), then it can compute k̃
πj
j . The only problem is that it cannot compute k

π̄j
j since it

does not know ∆` (and furthermore ∆` cannot be revealed). Thus, the ciphertext for the
gate is set to T = F

k
π̄j
j

(g) ⊕ k̃π̄jj . Now, given k
π̄j
j it is possible to compute k̃

π̄j
j as well (but

without k
π̄j
j the value remains hidden since it is masked by a pseudorandom function keyed

by k
π̄j
j).

In order to evaluate a XOR gate g with ciphertext T , given a key ki on wire i and a key kj on wire
j, the evaluator simply needs to compute k̃i = Fki(g) and either k̃j = Fkj (g) if it has signal bit 0,

or k̃j = Fkj (g) ⊕ T if it has signal bit 1. Then, the key on the output wire is obtained by finally

computing k` = k̃i ⊕ k̃j .
The computational cost of garbling the gate is 4 pseudorandom function computations, and

the computational cost of evaluating the gate is 2 pseudorandom function computations. Most
significantly, the gate table includes only a single ciphertext.

12

Reducing the number of PRF calls to 3. Observe that the pseudorandom function is used to
ensure independence of the ∆ values between different gates. If we were to just take ∆` = k0

i ⊕ k1
i ,

then the output ∆ from two different gates with the same input wire i would be the same, and once
again correlation robustness or a related key assumption would be needed. Thus, it is necessary
to compute k̃0

i = Fk0
i
(g) and k̃1

i = Fk1
i
(g). In contrast, k̃0

j can be taken to simply be k0
j and

the pseudorandom function computation is not needed. This is because ∆` is fixed independently
of wire j. Using this method, we can reduce the computational cost of garbling the XOR gate
from 4 pseudorandom function computations to 3 pseudorandom function computations (and the
computational cost of evaluating the gate is decreased from 2 to either 1 or 2 PRF computations).
The proof of security with this optimization is somewhat more involved, and we therefore prove it
separately from the basic scheme.7

Garbling NOT Gates. When using free XOR, it is possible to efficiently garble NOT gates by
simply defining them to be XOR with a fixed wire that is always given value 1. Since the XOR
gates are free, this is highly efficient. However, since we are not using free XOR, a different method
needs to be found. Fortunately, NOT gates can still be computed for free, and with no additional
assumption. In order to see this, let g be a NOT gate with input wire i and output wire j, and
let k0

i , k
1
i be the garbled values on wire i. Then, we simply define k0

j := k1
i and k1

j := k0
i . During

the garbling of the circuit, any gates receiving wire j as input will used these “reversed” values.
Furthermore, when evaluating the circuit, if the value k0

i is given on wire i, then the result of the
NOT gate is k1

j which equals k0
i . Thus, nothing needs to be done. This trivially preserves security

since no additional information is provided in the garbled circuit.

3.3 Garbling Scheme Definitions

We use the notation of Bellare et al. [3] in which a garbling scheme consists of 4 algorithms:

- Garble(1n, c) → (C, e, d) is an algorithm that takes as input a security parameter 1n and a
description of a boolean circuit c, and returns a triple (C, e, d), where C represents a garbled
circuit, e represents input encoding information (i.e., all the keys on the input wires) and d
represents output decoding information (i.e., all the keys on the output wires).

- Encode(e, x) → X is a function that takes as input encoding information e and input x and
returns garbled input (i.e., the keys on the input wires that are associated with the concrete
input x).

- Eval(C,X) → Y is a function that takes as input a garbled circuit C and garbled input X
and returns garbled output Y (i.e., the keys on the output wires that are associated with the
concrete output y = c(x)).

- Decode(Y, d)→ y is a function that takes as input decoding information d and garbled output
Y and returns the real output y of the circuit.

7It may be tempting to propose that one of k0
i , k

1
i will also remain the same; i.e., set k̃πii = kπii and k̃π̄ii = F

k
π̄i
i

(g).

However, in this case, if the evaluator happens to have kπ̄ii and k
π̄j
j then it can compute T ⊕F

k̃
π̄i
i

(g)⊕F
k̃
π̄j
j

(g). Note

that T = F
k
π̄j
j

(g) ⊕ k̃π̄jj = F
k
π̄j
j

(g) ⊕ k̃πjj ⊕ ∆` = F
k
π̄j
j

(g) ⊕ k̃πjj ⊕ k
πi
i ⊕ Fkπ̄ii (g) and so the result obtained by the

evaluator is k̃
πj
j ⊕ k

π
i = k̃

πj
j ⊕ k̃

π
i . If these keys are used in other gates, then an attacker sees the XOR of two keys

and encryptions computed with each key separately. This is once again a related-key type assumption.

13

A secure garbling scheme should satisfy three security requirements:

- Privacy: The triple (C,X, d) should not reveal any information about x that cannot be
learned directly from c(x). More formally, there exists a simulator S that receives input
(1n, c, c(x)) and outputs a simulated garbled circuit with encoding and decoding informa-
tion that is indistinguishable from (C,X, d) generated using the real garbling functions
Garble(1n, c) and Encode(e, x). Observe that S knows the output c(x) and does not know
the input x.

- Obliviousness: (C,X) should not reveal any information about x. More formally, there
exists a simulator S that receives input (1n, c) and outputs a simulated garbled circuit with
encoding information that is indistinguishable from (C,X) generated using the real garbling
functions Garble(1n, c) and Encode(e, x). Observe that S here is not even given the output.

- Authenticity: Given (C,X) as input, no adversary should be able to produce differ-
ent garbled output Ỹ that is not obtained by computing Eval(C,X). More formally, a
probabilistic-polynomial time adversary should be able to output Ỹ 6= Eval(C,X) such that
Decode(Ỹ , d) 6=⊥, with only negligible probability.

For each security definition we define an experiment that formalizes the adversary’s task. In
the following, G denotes a garbling scheme that consists of the 4 algorithms stated above, and S
denotes a simulator.

The privacy experiment Exptpriv
G,A,S(n):

1. Invoke adversary A: compute (c, x)← A(1n)
2. Choose a random β ∈ {0, 1}
3. If β = 0: compute (C, e, d)← Garble(1n, c) and X ← Encode(e, x)

Else: compute (C,X, d)← S(1n, c, c(x))
4. Give A the challenge (C,X, d) and obtain its guess: β′ ← A(C,X, d)
5. Output 1 if and only if β′ = β

The obliviousness experiment Exptoblv
G,S,A(n):

1. Invoke adversary: (c, x)← A(1n)
2. Choose a random β ∈ {0, 1}
3. If β = 0: compute (C, e, d)← Garble(1n, c) and X ← Encode(e, x)

Else: compute (C,X)← S(1n, c)
4. Give A the challenge (C,X) and obtain its guess: β′ ← A(C,X)
5. Output 1 if and only if β′ = β

The authenticity experiment Exptauth
G,A (n):

1. Invoke adversary: (c, x)← A(1n)
2. Compute (C, e, d)← Garble(1n, c) and X ← Encode(e, x)

3. Give A the challenge (C,X) and obtain its output: Ỹ ← A(C,X)

4. Output 1 if and only if Decode(Ỹ , d) /∈ {⊥, c(x)}

The basic non-triviality requirement for a garbling scheme, called correctness, is that for every
circuit c and input x ∈ {0, 1}poly(n), it holds that Decode(Eval(C,Encode(e, x), d)) = c(x) except
with negligible probability, where (C, e, d)← Garble(1n, c).

14

Definition 3.1 (Garbled Circuit Security) A garbling scheme is secure if it is correct, and
achieves privacy, obliviousness and authenticity as follows:

1. A garbling scheme G achieves privacy if for every probabilistic polynomial-time adversary A
there exists a probabilistic-polynomial time simulator S and a negligible function µ such that
for every n ∈ N:

Pr
[
Exptpriv

G,A,S(n) = 1
]
≤ 1

2
+ µ(n).

2. A garbling scheme G achieves obliviousness if for every probabilistic polynomial-time adversary
A there exists a probabilistic-polynomial time simulator S and a negligible function µ such
that for every n ∈ N:

Pr
[
Exptoblv

G,A,S(n) = 1
]
≤ 1

2
+ µ(n).

3. A garbling scheme G achieves authenticity if for every probabilistic polynomial-time adversary
A there exists a negligible function µ such that for every n ∈ N:

Pr
[
Exptauth

G,A (n) = 1
]
< µ(n)

3.4 Our Garbling Scheme in Detail

In this section, we provide a full specification of our garbling scheme. In this description, we use
the standard 4-3 row reduction technique. In later sections, we will incorporate our new 4-2 row
reduction scheme. Our garbling scheme uses a pseudorandom function that takes an n-bit key, and
has input and output of length n + 1. That is, F : {0, 1}n × {0, 1}n+1 → {0, 1}n+1 (formally, we
consider a family of functions, where for every n ∈ N the function is of this type). We denote by
Fk(x)[1..n] the first n bits of the output of Fk(x), and we denote by x‖y the concatenation of x
with y. We begin by defining the method for garbling XOR and AND gates in Figures 1 and 2 (for
simplicity we only consider XOR, AND and NOT gates; the AND gate method can be extended
to any gate type), and then proceed to the high-level garbling algorithm in Figure 3. Finally, we
describe the encoding, evaluation and decoding algorithms.

Procedure GbXOR(k0
i , k

1
i , k

0
j , k

1
j , πi, πj):

1. Set the output wire permutation bit for the bit ‘0’: π` := πi ⊕ πj

2. Compute translated keys for wire i: k̃0
i := Fk0

i
(g‖πi)[1..n] and k̃1

i := Fk1
i
(g‖πi)[1..n]

3. Compute new offset for the output wire: ∆` := k̃0
i ⊕ k̃1

i

4. Compute translated keys for wire j and the ciphertext for this gate:

(a) If πj = 0, set k̃0
j := Fk0

j
(g‖0)[1..n], k̃1

j := k̃0
j ⊕∆` and T := Fk1

j
(g‖1)[1..n]⊕ k̃1

j

(b) If πj = 1, set k̃1
j := Fk1

j
(g‖0)[1..n], k̃0

j := k̃1
j ⊕∆` and T := Fk0

j
(g‖1)[1..n]⊕ k̃0

j

5. Compute the keys for the output wire `: k0
` := k̃0

i ⊕ k̃0
j and k1

` := k0
` ⊕∆`

6. Return (k0
` , k

1
` , π`, T)

Figure 1: Garbling XOR gates

15

Procedure GbAND(k0
i , k

1
i , k

0
j , k

1
j , πi, πj):

1. Compute K0 = Fkπii
(g‖00)⊕ F

k
πj
j

(g‖00)

2. Set the output wire keys and permutation bits:

(a) If πi = πj = 1, then choose a random k0
`‖πl ← {0, 1}n+1 and set k1

` := K0[1..n]

(b) Else, set k0
`‖π` := K0 and choose a random k1

` ← {0, 1}n

Denote K0
` = k0

`‖π` and K1
` = k1

`‖π̄`.

3. Compute the gate ciphertexts: Let g(·, ·) denote the gate function. Then,

T1 = Fkπii
(g‖01)⊕ F

k
π̄j
j

(g‖01)⊕Kg(πi,π̄j)
`

T2 = Fkπ̄ii
(g‖10)⊕ F

k
πj
j

(g‖10)⊕Kg(π̄i,πj)
`

T3 = Fkπ̄ii
(g‖11)⊕ F

k
π̄j
j

(g‖11)⊕Kg(π̄i,π̄j)
`

4. Return (k0
` , k

1
` , π`, T1, T2, T3)

Figure 2: Garbling AND gates

The garbling algorithm Garble(1n, c):

1. For each input wire j in c:

(a) Choose two random keys: k0
j , k

1
j ← {0, 1}n

(b) Choose a permutation bit for the bit ‘0’: πj ← {0, 1}
(c) Prepare the encoding information: e[j, 0] := k0

j‖πj and e[j, 1] := k1
j‖πj

2. In topological order, for each gate g in circuit c:

(a) If g is a XOR gate with input wires i, j and output wire `:

i. (k0
` , k

1
` , π`, T)← GbXOR(k0

i , k
1
i , k

0
j , k

1
j , πi, πj)

ii. Set the keys on the output wire ` to be k0
` , k

1
` and the permutation bit to be π`

iii. Set the garbled table for the gate: C[g] := T

(b) If g is an AND gate with input wires i, j and output wire `:

i. (k0
` , k

1
` , π`, T1, T2, T3)← GbAND(k0

i , k
1
i , k

0
j , k

1
j , πi, πj)

ii. Set the keys on the output wire ` to be k0
` , k

1
` and the permutation bit to be π`

iii. Set the garbled table for the gate: C[g] := (T1, T2, T3)

(c) If g is a NOT gate with input wire i and output wire `:

i. Set k0
` = k1

i and k1
` = k0

i and set π` = πi

ii. There is no garbled gate

3. For each circuit-output wire j in c, prepare the decoding information: d[j, 0] := F
k
πj
j

(out‖πj) and

d[j, 1] := F
k
πj
j

(out‖πj)

4. Return (C, e, d)

Figure 3: The full garbling algorithm

16

We now proceed to describe the encoding, evaluation and decoding algorithms. The encoding
and decoding algorithms are straightforward and consist merely of mapping the plaintext bit to the
garbled value and vice versa. Observe that in the evaluation algorithm we refer to the signal bit
λi on wire i. The difference between λi here and πi used in the garbling is that λi is the “public”
signal bit that the evaluator sees. The invariant over this value is that λi always equals the XOR
of πi and the actual value on the wire (associated with the encoding X).

Procedure Encode(e, x):

1. For i=1 to |x|: X[i] := e[i, xi]

2. Return X

Figure 4: The encoding algorithm

Procedure Eval(C,X):

1. For every input wire j in c, set kj‖λj := X[j]

2. For each gate g in c, in topological order:

(a) If g is a XOR gate with input wires i, j and output wire `:

i. Compute the output wire key: k` := Fki(g‖λi)[1..n]⊕ Fkj (g‖λj)[1..n]⊕ λj · C[g]

ii. Compute the output wire signal bit: λ` := λi ⊕ λj
(b) If g is an AND gate with input wires i, j and output wire `:

i. Compute the output wire key and signal bit: k`‖λ` := T ⊕Fki(g‖λiλj)⊕Fki(g‖λiλj), where
T is the entry Tλiλj in C[g] (note that if λi = λj = 0 then implicitly we define T = 0).

(c) If g is a NOT gate with input wire i and output wire `, then set k` := ki and λ` = λi

3. For each output wire j in c, set Y [j] := Fkj (out‖λj)

4. Return Y

Figure 5: The evaluation algorithm

Procedure Decode(Y, d):

1. For i=1 to |Y |:

(a) If Y [i] = d[i, 0], then y[i] := 0

(b) Else, if Y [i] = d[i, 1], then y[i] := 1

(c) Else, return ⊥

2. Return y

Figure 6: The decoding algorithm

Correctness. We begin by demonstrating correctness. This is immediate for AND and NOT
gates; we therefore show that it also holds for XOR gates. Observe that the ciphertext in a
XOR gate with input wires i, j and output wire ` equals C[g] = F

k
πj
j

(g‖1)[1..n] ⊕ k̃πjj . However,

17

k̃
πj
j = k̃

πj
j ⊕∆` = F

k
πj
j

(g‖0)[1..n]⊕∆` and ∆` = k̃πii ⊕ k̃
πi
i = Fkπii

(g‖0)[1..n]⊕F
k
πi
i

(g‖1)[1..n]. Thus,

C[g] = Fkπii
(g‖0)[1..n]⊕ F

k
πi
i

(g‖1)[1..n]⊕ F
k
πj
j

(g‖0)[1..n]⊕ F
k
πj
j

(g‖1)[1..n] (1)

where πi, πj are the permutation bits that are associated with the bit 0 on wires i, j respectively.
Now, assume that the evaluator holds the keys kvii and k

vj
j that are associated with the (plain)

bits vi, vj . Then, according to procedure Eval, it computes: Fkvii
(g‖λi)[1..n] ⊕ F

k
vj
j

(g‖λj)[1..n] ⊕
λjC[g]. Thus, if λj = 0 then it computes

Fkvii
(g‖λi)[1..n]⊕ F

k
vj
j

(g‖0)[1..n] (2)

and if λj = 1 then it computes

Fkvii
(g‖λi)[1..n]⊕F

k
vj
j

(g‖1)[1..n]⊕Fkπii (g‖0)[1..n]⊕F
k
πi
i

(g‖1)[1..n]⊕F
k
πj
j

(g‖0)[1..n]⊕F
k
πj
j

(g‖1)[1..n]. (3)

Recall thatλj = vj ⊕ πj . Thus, if λj = 1 then vj = πj ⊕ 1 = π̄j , and if λj = 0 then vj = πj .
Likewise, for λi, vi and πi.

We first consider the case that λj = 0. Note that in wire i, we have that k̃vii = Fkvii
(g‖πi⊕vi)[1..n]

(see Step 2 in Procedure GbXOR). Thus, by the above relation between λi, vi and πi, it follows that
k̃vii = Fkvii

(g‖λ)[1..n]. Furthermore, by Step 4 in Procedure GbXOR, we have that k̃
πj
j = F

k
πj
j

(g‖0).

In this case of λj = 0 we have that vj = πj and thus k̃
vj
j = F

k
vj
j

(g‖0). Combining this with Eq. (2),

we conclude that when λj = 0, the evaluator computes

Fkvii
(g‖λi)[1..n]⊕ F

k
vj
j

(g‖0)[1..n] = k̃vii ⊕ k̃
vj
j .

Now consider λj = 1. Observe that Fkvii
(g‖λi)[1..n] ∈

{
Fkπii

(g‖0)[1..n], F
k
πi
i

(g‖1)[1..n]
}

and that

if λi = 0 then vi = πi and otherwise vi = π̄i. Thus, Fkvii
(g‖λi)[1..n] cancels out and

Fkvii
(g‖λi)[1..n]⊕ Fkπii (g‖0)[1..n]⊕ F

k
πi
i

(g‖1)[1..n] = F
k
v̄i
i

(g‖λ̄i)[1..n].

If vi = 0 then λi = πi and we have F
k
v̄i
i

(g‖λ̄i)[1..n] = Fk1
i
(g‖π̄i)[1..n], which is exactly k̃1

i ac-

cording to Step 2 of Procedure GbXOR. If vi = 1 then λi = πi and we have F
k
v̄i
i

(g‖λ̄i)[1..n] =

Fk0
i
(g‖πi)[1..n], which is exactly k̃0

i . In both cases, we receive k̃vii . Likewise F
k
vj
j

(g‖1)[1..n] =

F
k
πj
j

(g‖1)[1..n] because λj = 1 and so vj = πj . Thus, this element cancels out and

F
k
vj
j

(g‖1)[1..n]⊕ F
k
πj
j

(g‖0)[1..n]⊕ F
k
πj
j

(g‖1)[1..n] = F
k
πj
j

(g‖0)[1..n] = k̃
πj
j = k̃

vj
j .

where the second last equality is from Step 4 in Procedure GbXOR. We conclude that when λj = 1

the evaluator receives k̃vii ⊕ k̃
vj
j .

Since k̃0
i ⊕ k̃1

i = k̃0
j ⊕ k̃1

j , we conclude that the output equals k̃vii ⊕ k̃
vj
j for both values of λj .

The fact that this yields the correct output is immediate from the way the output wire values are
chosen for the gate.

18

Intuition For security. As just explained, the ciphertext in a XOR gate is the result of XORing
the four outputs of the pseudorandom function:

C[g] = Fkπii
(g‖0)[1..n]⊕ F

k
πi
i

(g‖1)[1..n]⊕ F
k
πj
j

(g‖0)[1..n]⊕ F
k
πj
j

(g‖1)[1..n]

Each one of these four computations uses a different key, from which only two keys are known to
the evaluator. Since we use the gate index as an input to the function, we are guaranteed that
when a wire enters multiple gates, the pseudorandom values we compute will be different in each
of the gates. Thus, the ciphertext looks like a random string to the evaluator. In addition, the
output-wire key values are determined by the result of the pseudorandom function computation
as well. Thus, they are new keys that do not appear elsewhere in the circuit. We stress that the
four values in the equation above are not the four new translated keys. If that was the case, then
XORing them would yield 0, because the same offset is used in both wires after the translation.
Instead, the first three values are the translated keys, but the last value is just a pseudorandom
string that is used to mask them in a “one-time pad”-like encryption.

A similar argument applies for AND gates. Since the evaluator can compute only two of the eight
PRF computations using the two keys it holds, and since the values that are used in computing the
garbled table are unique and do not appear elsewhere in the circuit (again, this is ensured by using
the gate index and the permutation bits as input to each pseudorandom function computation),
the gate ciphertexts that are not associated with the keys known to the evaluator, look random to
the evaluator.

3.5 Proof of Security

3.5.1 Preliminaries

We begin by defining an experiment based on pseudorandom functions that will be convenient for
proving security of the garbling scheme. As we have mentioned, we consider a family of functions
F = {Fn}n∈N where for every n it holds that Fn : {0, 1}n × {0, 1}n+1 → {0, 1}n+1. For clarity, we
drop the subscript and write Fk(x) where k ∈ {0, 1}n instead of Fn(k, x).

We now define the experiment, call 2PRF . In this experiment, the distinguisher/adversary
is given access to four oracles, divided into two pairs. The second and fourth oracles are always
pseudorandom functions Fk1 and Fk2 , respectively. In contrast, the first and third oracles are either
the same pseudorandom functions Fk1 and Fk2 , respectively, or independent truly random functions
f1 and f3. Clearly, if A can make the same query to the first and second oracle, or to the third and
fourth oracle, then it can easily distinguish the cases. The security requirement is that as long as it
does not make such queries, it cannot distinguish the cases. We prove that this property holds for
any pseudorandom function. The experiment is formally defined in Figure 7, and 2PRF security is
formalized in Definition 3.2.

Definition 3.2 Let F = {Fn}n∈N be an efficient family of functions where for every n, Fn :
{0, 1}n × {0, 1}n+1 → {0, 1}n+1. Family F is a 2PRF if for every probabilistic-polynomial time
adversary A there exists a negligible function µ such that for every n,∣∣Pr[Expt2PRFF ,A (n, 1) = 1]− Pr[Expt2PRFA (n, 0)] = 1

∣∣ < µ(n)

The following lemma shows that pseudorandomness of Fk is sufficient for it to be 2PRF as well.

19

Experiment Expt2PRFF ,A (n, σ) :

1. Choose random keys k1, k2 ← {0, 1}n for the pseudorandom function, and choose two truly
random functions f1, f2. If σ = 0, set (O(1),O(2),O(3),O(4)) = (Fk1 , Fk1 , Fk2 , Fk2); else, set
(O(1),O(2),O(3),O(4)) = (f1, Fk1 , f

2, Fk2)

2. The adversary A is invoked upon input 1n

3. When A makes a query (j, x) to its oracles with j ∈ {1, 2, 3, 4} and x ∈ {0, 1}n+1, answer as
follows:

• if j ∈ {1, 2} and x was already queried to {1, 2} \ j, return ⊥
• if j ∈ {3, 4} and x was already queried to {3, 4} \ j, return ⊥
• Otherwise, return O(j)(x)

4. A outputs a bit σ′, and this is the output of the experiment

Figure 7: The 2PRF experiment

Lemma 3.3 If F is a family of pseudorandom functions, then it is a 2PRF.

Proof: Assume that F is a PRF. Denote by Exptg1,g2,g3,g4

A (n) the experiment where A is given
oracle access to functions g1, g2, g3, g4 (under the input limitations outlined in the experiment).

Using this notation, we have that Expt2PRFF ,A (n, 0) = Expt
Fk1

,Fk1
,Fk2

,Fk2
A (n) and Expt2PRFF ,A (n, 1) =

Expt
f1,Fk1

,f2,Fk2
A (n).

First, a straightforward reduction to the security of the pseudorandom function (with a hybrid
for two pseudorandom functions) yields that for every probabilistic-polynomial time adversary A
there exists a negligible function µ such that for every n,∣∣∣Pr

[
Expt

Fk1
,Fk1

,Fk2
,Fk2

A (n) = 1
]
− Pr

[
Exptf

1,f1,f2,f2

A (n) = 1
]∣∣∣ ≤ µ(n).

Note that oracle access to the same random function twice or to two different random functions is
identical when there is a constraint that the same input cannot be supplied to both oracles. Thus,
for every adversary A and for every n,

Pr
[
Exptf

1,f1,f2,f2

A (n) = 1
]

= Pr
[
Exptf

1,f3,f2,f4

A (n) = 1
]
.

Next, we claim that for every probabilistic-polynomial time adversary A there exists a negligible
function µ such that for every n,∣∣∣Pr

[
Exptf

1,f3,f2,f4

A (n) = 1
]
− Pr

[
Expt

f1,Fk1
,f2,f4

A (n) = 1
]∣∣∣ ≤ µ(n).

This follows from a direct reduction to the pseudorandomness of F (the reduction simulates
f1, f3, f4 itself and uses its oracle to either have f2 or Fk1). Likewise, a direction reduction yields
that for every probabilistic-polynomial time adversary A there exists a negligible function µ such
that for every n,∣∣∣Pr

[
Expt

f1,Fk1
,f2,f4

A (n) = 1
]
− Pr

[
Expt

f1,Fk1
,f2,Fk2

A (n) = 1
]∣∣∣ ≤ µ(n).

20

Here the reduction simulates f1, Fk1 , f
2 itself. Combining all of the above, we conclude that for

every adversary A there exists a negligible function µ such that for every n,∣∣Pr
[
Expt2PRFF ,A (n, 0) = 1

]
− Pr

[
Expt2PRFF ,A (n, 1) = 1

]∣∣
=

∣∣∣Pr
[
Expt

Fk1
,Fk1

,Fk2
,Fk2

A (n) = 1
]
− Pr

[
Expt

f1,Fk1
,f2,Fk2

A (n) = 1
]∣∣∣ ≤ µ(n).

3.5.2 The Proof of Security of Our Garbling Scheme

We begin by proving that our garbling scheme achieves privacy. Let G denote our garbling scheme.

Theorem 3.4 If F is a family of pseudorandom functions, then the garbling scheme G achieves
privacy.

Proof: We begin by describing a simulator S for the Exptpriv privacy experiment. S is invoked
with input (1n, c, c(x)) and works as follows. As we will show, S will define an active key on every
wire. This key will be the one that is “obtained” in the evaluation procedure. The other key is not
active, and is actually never explicitly defined. Rather, all the ciphertexts in the gates that are not
“decrypted” in the evaluation are chosen at random.

1. For each input wire j in circuit c:

(a) Choose an active key: kj ← {0, 1}n

(b) Choose an active signal bit λj ← {0, 1}
(c) Prepare the garbled input data: X[j] = kj‖λj

2. In topological order, for each gate g in c:

(a) If g is a XOR gate with input wires i, j and output wire `:

i. Compute the active output-wire signal bit: λ` := λi ⊕ λj
ii. Compute a translated new key for wire i: k̃i := Fki(g‖λi)[1..n]

iii. Compute a translated new key for wire j, and the ciphertext for this gate:

A. If λj = 0, set k̃j := Fkj (g‖0)[1..n] and C[g]← {0, 1}n (in this case, the translated
key is obtained by computing F and so is correctly computed, but the ciphertext
is not used and so is random)

B. If λj = 1, set k̃j ← {0, 1}n and C[g] := Fkj (g‖1)[1..n] ⊕ k̃j (in this case, the
translated key is obtained via the ciphertext, and so the ciphertext is correctly
computed, but using a random key)

iv. Compute the output wire active key: k` := k̃i ⊕ k̃j
(b) If g is an AND gate with input wires i, j and output wire `:

i. Set the output-wire active key and signal bit:

A. If λi = λj = 0, set k`‖λ` := Fki(g‖00)⊕ Fkj (g‖00) (in this case, the output key
is computed via F and so must be set in this way)

21

B. Else, set k`‖λ` ← {0, 1}n+1 (in this case, the output key is computed from the
ciphertexts and is chosen at random)

ii. Compute the gate’s ciphertexts (they are random except for the one that is opened
according to the active signal bits):

A. If 2λi + λj 6= 0, then T2λi+λj := Fki(g‖λiλj)⊕ Fkj (g‖λiλj)⊕ k`‖λ`
B. For α ∈ {1, 2, 3} \ {2λi + λj} : Tα ← {0, 1}n+1

C. C[g]← T1, T2, T3

iii. If g is a NOT gate with input wire i and output wire `: set k`‖λ` = ki‖λi

3. For each output wire j in c:

(a) Prepare the decoding information: d[j, c(x)j] := Fkj (out‖λj) and d[j, c(x)j]← {0, 1}n

4. Return (C,X, d)

Note that the garbled tables in the simulator-generated garbled circuit consists of random
strings, except for the ciphertexts used in the evaluation itself. Specifically, in an AND gate all
ciphertexts are random in the case that λi = λj = 0 since none are used in evaluation; in all
other cases, the single ciphertext which is decrypted is constructed “correctly” whereas all other
are random. Likewise, in a XOR gate where λj = 0 the ciphertext is random since in this case the
ciphertext is not used in evaluation.

We now show that the simulated garbled circuit is indistinguishable from a real garbled circuit
by reduction to the 2PRF experiment, which by Lemma 3.3 follows merely from the fact that F
is a pseudorandom function. Let A be a probabilistic-polynomial time adversary for Exptpriv, and
let m denote the number of gates in the circuit. We define a hybrid distribution Hi(c, x) with
0 ≤ i ≤ m as the triple (C,X, d) generated in the following way (note that the procedure for
generating Hi(c, x) is given the circuit c and the real input x):

• Garbling of gates: The garbled circuit C is generated by garbling the first i gates in the
topological order using the simulator garbling procedure, while gates i+ 1, . . . ,m are garbled
using the real garbling scheme. Observe that the simulator generates only a single key per

wire; specifically, it generates the active key k
λj
j . The first step in the hybrid is therefore

to choose an additional key k
1−λj
j for every wire that enters or exits a gate that is garbled

according to the real scheme.

• Encoding information X: For each circuit input wire j that enters a gate g, if g is garbled
using the real scheme (i.e., the gate’s index > i), then X[j] is the garbled value that was
chosen to mask the jth bit of the input (recall that in experiment Exptpriv, the adversary
knows the input string x and so can choose the correct encoding for x). Else, if g is garbled
using the simulator procedure (i.e., the gate’s index ≤ i), then X[j] is the garbled value that
was chosen for the active key of that wire.

• Decoding information d: For each output wire j that exits from a gate g, if g was garbled
using the real scheme then there are two garbled values on wire j, and d[j, ·] is generated
exactly as in the Garble procedure. Else, if g is garbled using the simulator instructions,
then there is only one garbled value on j and d[j, ·] is generated exactly as in the simulator
procedure.

22

Note that the hybrid H0(x) is a real garbled circuit (and is distributed as (C,X, d) in Exptpriv
G,A,S

in the case that β = 0), while Hm(x) is the output of the simulator S (and is distributed as
(C,X, d) in Exptpriv

G,A,S in the case that β = 1). Next, for each 0 ≤ i ≤ m, we define Ai to be a

probabilistic-polynomial time adversary for Expt2PRFF ,Ai (n, σ) experiment. Ai is given access to four
oracles:

(O(1)(·),O(2)(·),O(3)(·),O(4)(·)) = (f1(·) or Fk1(·), Fk1(·), f2(·) or Fk2(·), Fk2(·)).

Adversary Ai runs Exptpriv with adversary A. First, it invokes A and receives (c, x). Then, as
we will see, it constructs a garbled circuit which will either be distributed according to Hi−1 or
Hi, depending on the oracles it received. Thus, as we will show, if A can succeed in Exptpriv with
probability that is non-negligibly greater than 1/2, then Ai will distinguish in the 2PRF experiment
with non-negligible probability.

Formally, adversary Ai constructs a garbled circuit by generating the first i− 1 gates in topo-
logical order using the simulator procedure, and generating the gates indexed by i+ 1, . . . ,m using
the real Garble instructions (with subroutines GbXOR and GbAND). However, for the ith gate,
Ai will use its oracles to generate a garbled table that is garbled as in the real scheme or as in
the simulator code, depending whether it received an oracle access to pseudorandom or to random
functions. Assume the input wires of the ith gate are a, b and the output wire is c. In addition,
assume that the active keys on the input wires are associated with the bits va, vb (recall that Ai
knows the input to the circuit and thus va, vb are known to it). Knowing kvaa and kvbb , adversary Ai
will (implicitly) use the secrets k1, k2 that were chosen for the pseudorandom function in Expt2PRF

as kvaa and kvbb respectively. Thus, whenever Ai needs to compute F
kvaa

(x) or F
k
vb
b

(x) for some x, it

will send x to its oracles O(1) or O(3) respectively (recall that these are either also Fk1 , Fk2 or are
random functions f1, f2). We remark that O(2) and O(4) are used to garble gates ` > i that use
wires a, b as well; this will be described after we present the method for garbling the ith gate. We
separately consider the case that the ith gate is a XOR gate and the case that it is AND gate.

Case 1 – the ith gate is a XOR gate: the keys on the input wires to this gate were generated using
the simulator procedure. Thus, Ai holds one key on each input wire a and b, denoted ka and kb,
respectively. Ai sets these keys to be kvaa and kvbb , respectively. In addition, Ai has signal bits λa, λb
that were determined on these wires. A constructs the gate as follows:

1. Ai computes the permutation bit for the output-wire c: πc := πa⊕πb = (λa⊕ va)⊕ (λb⊕ vb)

2. Ai computes new translated keys for wire a: k̃vaa := Fkvaa (g‖λa)[1..n] and k̃vaa := O(1)(g‖λa)[1..n]

(observe that if O(1) is pseudorandom then this is a “real” key value, whereas if it is a random
function then this is an independent random key)

3. Ai computes the offset of the output wire: ∆c := k̃vaa ⊕ k̃vaa
4. Ai computes new translated keys for wire b and the ciphertext:

(a) If the signal bit of kvbb is 0 (i.e., if λb = 0), set k̃vbb := Fkvbb
(g‖0)[1..n] and k̃vbb := k̃vbb ⊕∆c,

and define C[g] := O(3)(g‖1)[1..n]⊕ k̃vbb
(b) Else, if the signal bit of kvbb is 1 (i.e., if λb = 1), set k̃vbb := O(3)(g‖0)[1..n] and k̃vbb :=

k̃vbb ⊕∆c, and define C[g] := Fkvbb
(g‖1)[1..n]⊕ k̃vbb

5. Ai computes the output wire keys: k0
c := k̃0

a ⊕ k̃0
b and k1

c := k0
c ⊕∆c

23

It easy to see that when σ = 0 (and the oracle answers are pseudorandom strings), the code is
identical to the real garbling scheme. In contrast, when σ = 1 (and the oracle the answers are
random strings), then the result is exactly according to the simulator instructions. In order to see
this, observe that if λb = 0 then C[g] is random, exactly as in Step 2(a)iiiA of the simulator. This
is because O(3) is random and so the XOR with k̃vbb makes no difference. Likewise, if λb = 1 then

the active key k̃vbb is random since it is the XOR of the output of O(3) with another value, and
C[g] is the XOR of this key with the appropriate output from Fkvbb

. Thus, this is also exactly as in

Step 2(a)iiiB of the simulator.

Case 2 – the ith gate is an AND gate: As before, for wires a and b, Ai has two keys kvaa , k
vb
b , two

signal bits λa, λb and the bits va, vb that are on the wires. Then it does the following:

1. Compute the values K0, . . . ,K3:

K2λa+λb := Fkvaa (g‖λaλb)⊕ Fkvbb (g‖λaλb)

K2λa+λb
:= Fkvaa (g‖λaλb)⊕O(3)(g‖λaλb)

K2λa+λb
:= O(1)(g‖λaλb)⊕ Fkvbb (g‖λaλb)

K2λa+λb
:= O(1)(g‖λaλb)⊕O(3)(g‖λaλb)

2. Set the output wire keys and permutation bits:

(a) Compute: πa = va ⊕ λa and πb = vb ⊕ λb
(b) If πa = πb = 1, set k0

c‖πc ← {0, 1}n+1 and k1
c := K0[1..n]

(c) Else, set k0
c‖πc := K0 and k1

c ← {0, 1}n

Denote K0
c := k0

c‖πc and K1
c := k1

c‖πc

3. Compute the ciphertexts: For α ∈ {1, 2, 3},

(a) If α = 2πa + πb, then Tα := Kα ⊕K1
c

(b) Else: Tα := Kα ⊕K0
c

Set C[g]← {T1, T2, T3}

As in the previous case, when σ = 0, the code is identical to real garbling scheme. When σ = 1,
the answers of the oracles are random strings, and therefore all the rows in the garbled table are
random as well, except for the row that is pointed to by the signal bits of the active keys (the row
T2λa+λb where the adversary computes the value of K2λa+λb directly using the keys it holds). Thus,
the gate is garbled as in the simulation.

We conclude that when σ = 0, the ith gate is garbled as in the real garbling scheme, while when
σ = 1 the ith gate is garbled as in the simulator procedure. However, to complete the construction
of the garbled circuit, Ai needs to construct all the gates ` > i. For a gate ` > i with input-wires
that are output from the ith gate and greater, Ai has both keys on the wires and so can compute
the gate just like in the real garbling procedure. If a gate ` > i has an input-wire that is output from
a gate j < i that does not equal a or b, then Ai simply chooses the (inactive) key at random, like in
the hybrid definition. Finally, for a gate that has an input wire a or b, the gate is constructed used

24

oracles O(2) and O(4) and the same code for gate i (except with these oracles instead of O(1) and
O(3)). Since these oracles always use the pseudorandom functions, it follows that the computation
of the gate is always according to the real garbling method. (Note that when garbling the `th gate,
each of the queries to these oracles includes the gate’s number. Thus we are guaranteed that these
queries were not sent to O(1) and O(3) when Ai garbled the ith gate, as required in Expt2PRFF ,A (n, σ)
experiment.)

Concluding the proof, when σ = 0, Ai constructs the hybrid Hi−1(x), while when σ = 1,
Ai constructs the hybrid Hi(x). We therefore construct a single adversary A′ for 2PRF who
chooses a random i and then runs Ai with adversary A. By a standard hybrid argument, if A
succeeds with non-negligible probability in Exptpriv then A′ distinguishes between Expt2PRFF ,A (n, 0)

and Expt2PRFF ,A (n, 1), with non-negligible probability. This contradicts the assumption that F is a
family of pseudorandom functions.

Achieving obliviousness and authenticity. In order to satisfy the obliviousness requirement,
we need to construct a simulator that outputs (C,X) given only c as an input. Note that the
simulator S constructed above for the privacy requirement outputs the triple (C,X, d). However,
S uses c only for generating (C,X), and in particular the output c(x) is used only for generating
d. Thus, we can simply remove the generation of the decoding information from S’s instruction,
and we obtain a simulator that generates only (C,X) as required. Proving that this simulator’s
output is indistinguishable from (C,X) generated by the real scheme, is the same as in the proof
of privacy.8

Regarding authenticity, we need to show that a probabilistic-polynomial time adversary A that
is given (C,X) as input can output Ỹ such that Decode(Ỹ , d) /∈ {c(x),⊥} with at most negligible
probability. Note that if we give A the pair (C,X) generated by our simulator, it can succeed only
with probability at most 2−n. This is due to the fact that in the simulated garbled circuit, for each
output wire j corresponding to the jth output bit, d[j, c(x)j] is a random string. Now, if given the

real (C,X), the adversary can output such a Ỹ with non-negligible probability, then it could be used
by an adversary given (C,X, d), to break the privacy property, in contradiction to Theorem 3.4.
Observe that since the adversary in the privacy experiment is given all of the decoding information
d, it can efficiently verify if A output a Ỹ with the property that Decode(Ỹ , d) /∈ {c(x),⊥}.

3.6 XOR Gates with Only Three PRF Computations

Our garbling method requires four calls to the pseudorandom function for garbling XOR gates,
where each call uses a different key. In this section we show that it is possible to remove one of
these calls by leaving one of the input keys unchanged. Recall that our ciphertext for a XOR gate
g with input wires i, j and output wire ` is:

C[g] = Fkπii
(g‖0)[1..n]⊕ F

k
πi
i

(g‖1)[1..n]⊕ F
k
πj
j

(g‖0)[1..n]⊕ F
k
πj
j

(g‖1)[1..n] (4)

Assume the evaluator has the keys kvii , k
vj
j and the signal bits λi, λj when computing the gate.

Then, using the ciphertext C[g] it computes C[g]⊕ Fkvii (g‖λi)[1..n]⊕ F
k
vj
j

(g‖λj)[1..n] and obtains

F
k
vi
i

(g‖λi)[1..n] ⊕ F
k
vj
j

(g‖λj), which is the XOR of two pseudorandom values. If we leave, for

8Recall that in the reduction the adversary Ai knows the input x. However, in the experiment in the proof of
obliviousness, A also outputs x and so it is known. Thus, the same reduction works.

25

example, the value of k
vj
j unchanged – i.e., use it in Eq. (4) instead of F

k
vj
j

(g‖λj) – the evaluator

will be able to compute F
k
vi
i

(g‖λi)[1..n]⊕kvjj . Observe that the evaluator still cannot learn anything

since one of the two values is a new pseudorandom value that does not appear anywhere else in
the circuit (taking the gate index g as an input to F ensures that if a wire i or j enters multiple
gates, then we compute a different value for each gate). Therefore, the ciphertext is pseudorandom
as required. In addition, since the two keys on wire i are still translated to new keys, the output
wire keys, generated in the same way as before, are guaranteed to obtain new fresh values. (See
Footnote 7 as to why we cannot use the same method to remove one of the pseudorandom function
calls on wire i as well.)

The modified garbling scheme. Denote the modified scheme where only three pseudorandom
function calls are made by G′. Figure 8 presents the modifications in G′ compared to our base
scheme; only the items in GbXOR and Eval that were changed appear, and the actual changes
appear in bold. The procedure GbXOR is changed by not changing the key on wire j that represents
the bit vj when vj ⊕ πj = 0; i.e., k̃0

j is set to k0
j instead of Fk0

j
(g‖0)[1..n]. Consequently, in the Eval

procedure, the evaluator uses the signal bit it holds to decide whether to translate the key on wire
j into a new key or not.

Procedure GbXOR(k0
i , k

1
i , k

0
j , k

1
j , πi, πj):

4. Compute translated new keys for wire j and the garbled value for this gate:

(a) If πj = 0, set k̃0j := k0j , k̃1
j := k̃0

j ⊕∆`, and T := Fk1
j
(g‖1)[1..n]⊕ k̃1

j

(b) If πj = 1, set k̃1j := k1j , k̃0
j := k̃1

j ⊕∆`, and T := Fk0
j
(g‖1)[1..n]⊕ k̃0

j

Procedure Eval(C,X):

2. For each gate g in c, in topological order:

(a) If g is a XOR gate with input wires i, j and output wire `:

i. Compute the output wire key:

A. If λj = 0, set k` := Fki(g‖λi)[1..n]⊕ kj ⊕ λjC[g]

B. Else, set k` := Fki(g‖λi)[1..n]⊕ Fkj (g‖1)[1..n]⊕ λjC[g]

ii. Compute the output wire signal bit: λ` := λi ⊕ λj

Figure 8: The Improved Garbling Scheme G′

Security proof. We now prove security of the modified scheme.

Theorem 3.5 If F is a family of pseudorandom functions, then the garbling scheme G′ achieves
privacy.

Proof Sketch: The proof is very similar to the proof of Theorem 3.4 for G. We describe the main
changes that are needed in order to make the proof valid for our modified scheme G′. First, let S ′
be a simulator that is identical to the simulator S from the proof of Theorem 3.4, except that when
simulating XOR gates in step 2.(a).iii, when λj = 0, it sets k̃j = kj (instead of as Fkj (g‖0)[1..n]).
In order to prove that the output of S ′ is indistinguishable (C,X, d) generated by the garbling
scheme G′, we reduce the security to Expt2PRF , as in Theorem 3.4. Specifically, the same hybrid

26

distribution Hi(x) that was defined in the proof of theorem 3.4 is used here. Then, we define a
probabilistic-polynomial time adversary Ai for Expt2PRF .
Ai garbles the first i−1 gates using the instructions of simulator S ′. When Ai needs to construct

the ith gate with input wires a, b and output wire c, Ai holds two active keys kvaa , k
vb
b , two signal

bits λa, λb and the actual bits that are on the wire va, vb. If g is an AND gate, then Ai proceeds
exactly as in the proof of Theorem 3.4. If g is a XOR gate, then Ai proceeds differently, depending
on the value of λb. If λb = 0 (i.e, the key that Ai holds on wire b has the signal bit ‘0’), then in
order to generate the ciphertext C[g], the adversary Ai needs to use its oracle (see Step 4a of Ai in
the case that the ith gate is a XOR gate). In this case, it sets k̃vbb := kvbb and sets the other key k̃vbb
and the ciphertext C[g] exactly as in the proof of Theorem 3.4. However, if λj = 1, then Ai does

not use the oracle anymore in order to generate k̃vbb (see Step 4b of Ai in the case that the ith gate

is a XOR gate) since this value is not translated. Thus, Ai just chooses kvbb randomly and uses this
instead of the call to O(3). This is the only difference to Ai (note that when constructing gates for
` > i where b is an input wire, Ai does not use O(3) or O(4) but rather uses k̃vbb as chosen above).

The remainder of the proof is the same.

4 Simple and Fast 4-2 GRR for non-XOR gates

4.1 Overview

Abstractly, gate garbling typically works by generating four pseudorandom masks K0,K1,K2,K3,
corresponding to the four possible input combinations (in some permuted order). The evaluator of
the circuit is able to compute one of these four masks, and can also use the signal bits to identify
the index of that mask. Namely, it computes a pair (i,Ki) (but is unable to identify the real input
combination corresponding to the value that it computed).

In our base scheme described in the previous section, we garbled non-XOR gates with three
ciphertexts for each garbled gate. One of the ciphertexts was “removed” by setting one of the
keys on the output wire to actually be K0 rather than using K0 to mask the key (this is called
garbled row reduction, or GRR for short). In this section we improve on this by applying a 4-2
row reduction technique on these gates in order to remove an additional ciphertext. There are two
known such techniques: The 4-to-2 reduction technique method of [20] and the new “Half-Gates”
approach of [22]. The “Half-Gates” technique was designed to be compatible with the free-XOR
technique and actually requires free-XOR; as such, it is based on the circularity assumption and so
is not suitable for this paper. In contrast, the 4-2 GRR technique of [20] does not require free-XOR;
it has been proved relying on a standard assumption only and can be incorporated into our scheme.
However, in this technique, the generation of the garbled table by the circuit garbler, as well as
the computation of the output wire key given two ciphertexts of the gate table and the K value,
are carried out by interpolating a degree 2 polynomial. We describe here a different 4-to-2 garbling
method where the garbling and evaluation of the gate use only simple XOR operations. This is
preferable for two major reasons:

• Efficiency: Polynomial interpolation uses three finite field multiplications and two additions
(after the Lagrange coefficients are precomputed). The overhead of computing the multiplica-
tions is rather high, even when implemented in GF (2128). For example, our implementation
of this task, which used the PCLMULQDQ Intel instruction, needed about half as many
cycles as AES encryption.

27

• Simpler coding: Efficient implementation of polynomial interpolation, especially overGF (2128),
and using machine instructions rather than calling a software library, requires some expertise
and is significantly harder to code than a few XOR operations.

Gate evaluation. We first describe the process of evaluating a gate. We will then describe
the garbling procedure which enables this gate evaluation procedure. Although this is somewhat
reversed (as one would expect a description of how garbling is computed first), we present it this
way as we find it clearer.

The gate evaluator receives as input a gate table with two entries [T1, T2], an index i ∈ {0, 1, 2, 3},
and a value Ki computed from the two garbled values of the input wires (note, T1, T2,Ki are all
128 bit strings). It computes the garbled output wire key kout in the following way:

• If i = 0 then kout = K0

• If i = 1 then kout = K1 ⊕ T1

• If i = 2 then kout = K2 ⊕ T2

• If i = 3 then kout = K3 ⊕ T1 ⊕ T2

Garbling. We now show how to garble AND gates so that the evaluation described above provides
correct evaluation. Due to the random permutation applied to the rows (via the permutation bit),
the single output bit “1” of these gates might correspond to any of the masks K0,K1,K2,K3.
Denote the index of that mask as s ∈ {0, 1, 2, 3}, and denote by k0

out, k
1
out the output wire keys. We

need to design a method for computing the garbled output key from the garbled table of this gate
and the Ki values, such that

• The method applied toKs outputs k1
out, and when applied to any otherK value it outputs k0

out.

• Given Ks and the gate table, the value k0
out pseudorandom. Similarly, given any other K

value and the gate table, k1
out value is pseudorandom.

Our starting point is the basic garbled gate procedure without row reduction, and so with a
gate table of four entries [T0, T1, T2, T3]. We denote the garbled value associated with the ith entry
of the table with kout,i (it holds that one kout,i value is equal to k1

out, and the other three kout,i
values are equal to k0

out). The table contains the four entries Ti = Ki ⊕ kout,i.
In the 4-to-3 garble the gate entry T0 is always 0, and therefore (1) there is no need to store and

communicate that entry, and (2) it always holds that kout,0 = K0. If kout,0 = k0
out then k1

out can be
defined arbitrarily, whereas if kout,0 = k1

out then k0
out can be defined arbitrarily. (If the free-XOR

method is used then the output wire key different than kout,0 must be set to kout,0 ⊕∆ where ∆ is
constant for all gates, and cannot be set arbitrarily.)

In our new garbling method we use the freedom in choosing the second output wire key to
always set it to K1 ⊕K2 ⊕K3. As a result, and as will be explained below, the garbled table will
have the property that entry T3 of the table satisfies T3 = T1 ⊕ T2. Therefore T3 can be computed
in run-time by the evaluator and need not be stored or sent. In summary, garbling is carried out
as follows:

• If kout,0 = k0
out then k0

out = K0 and k1
out = K1 ⊕K2 ⊕K3

28

• Else, k1
out = K0 and k0

out = K1 ⊕K2 ⊕K3

This fully defines the garbled table, as follows:

• If kout,1 = k0
out = K0 then T1 = K0 ⊕ K1 (since K0 = kout = K1 ⊕ T1). Else, we have

kout,1 = K1 ⊕K2 ⊕K3 implying that T1 = K2 ⊕K3.

• If kout,2 = k0
out = K0 then T2 = K0 ⊕ K2 (since K0 = kout = K2 ⊕ T2). Else, we have

kout,2 = K1 ⊕K2 ⊕K3 implying that T2 = K1 ⊕K3.

See Table 3 for the full definition of the garbled table [T1, T2] and the definition of the output wires,
depending on the permutation (recall that s is the index such that Ks = k1

out). It is easy to verify
correctness by tracing the computation in each case according to the table.

s truth T1 T2 k0
out k1

out
table

3 0001 K0 ⊕K1 K0 ⊕K2 K0 K1 ⊕K2 ⊕K3

2 0010 K0 ⊕K1 K1 ⊕K3 K0 K1 ⊕K2 ⊕K3

1 0100 K2 ⊕K3 K0 ⊕K2 K0 K1 ⊕K2 ⊕K3

0 1000 K2 ⊕K3 K1 ⊕K3 K1 ⊕K2 ⊕K3 K0

Table 3: Garbling the gate table

An alternative way to verify that the new scheme is correct is to observe that the output wire
key computed for K3 is always

kout,3 = K3 ⊕ T1 ⊕ T2

= K3 ⊕ (kout,1 ⊕K1)⊕ (kout,2 ⊕K2)

= K1 ⊕K2 ⊕K3 ⊕ kout,1 ⊕ kout,2

If kout,1 6= kout,2 then kout,1 ⊕ kout,2 = K0 ⊕ (K1 ⊕ K2 ⊕ K3). In this case, kout,3 should
equal K0 (since one of kout,1, kout,2 equals k1

out and thus k3
out = k0

out), and this indeed follows from
the equation.

If kout,1 = kout,2, then by the equation we have that kout,3 = K1⊕K2⊕K3. If kout,3 = k1
out then

this is correct since k0
out = K0. Furthermore, if kout,3 = k0

out then since kout,1 = kout,2 they both
also equal k0

out. This implies that kout,0 = k1
out = K0 and so kout,3 = K1 ⊕K2 ⊕K3, as required.

Intuitively, the first case (where kout,3 = k1
out) corresponds to the case that the 0-key is K0 and the

1-key is K1 ⊕K2 ⊕K3, whereas the second case (where kout,3 = k0
out) corresponds to the case that

the 0-key is K1 ⊕ k2 ⊕K3 and the 1-key is K0.

Encoding the permutation bits. The permutation bits can be encoded in a similar way to
that suggested in [20]. Two changes are applied to the basic garbling scheme:

• The garbled values are only n − 1 bits long, whereas the values Ki are still n bits long
(concretely here, we use n = 128). Therefore, the function used for generating the Ki inputs
has n − 1-bit inputs and an n-bit output. We denote the least significant bit of Ki by mi.
Only n − 1 bits of Ki are used for computing the garbled key of the output wire, using the
procedure described above. Consequently, the values T1, T2 of the garbled table are also only
n− 1 bits long.

• We add 4 bits to the table. The ith of these bits is the XOR of mi with the permutation bit
of the corresponding output value.

29

The total length of a gate table is now 2(n − 1) + 4 = 2n + 2 bits (concretely 258 bits). The
evaluation of a gate is performed by computing Ki; using its most significant n−1 bits for computing
the corresponding garbled output value; and using its least significant bit mi for computing the
corresponding signal bit.

As for security, note that the mi bits are pseudorandom, and are used only for the encryption
of the permutation/signal values.

Intuition for Security. Recall that the 4-to-3 garbled row reduction scheme enables an arbitrary
choice of the output wire key that is not kout,0. The new 4-to-2 garbled row reduction scheme that
we present is a special case, where we define that output wire key to be equal to K1 ⊕K2 ⊕K3.
Note that the evaluator can compute one of the Ki values using the two keys it holds, and can
obtain two of the other three using T1, T2. However, in order to learn the other output wire key it
needs the one Ki value that it cannot compute. Thus, from the point of view of the evaluator, the
other output wire key, is a random string as required.

4.2 The Garbling Scheme

The changes need to be made at the Garble and Eval procedures in order to incorporate our 4-2
GRR technique are presented in Figure 9. We denote the improved scheme by G′′.

4.3 Proof of Security

Next, we prove that the G′′ satisfies the privacy requirement. As before, we present the modifica-
tions needed to the proof of Theorem 3.4.

Theorem 4.1 If F is a family of pseudorandom functions, then the garbling scheme G′′ achieves
privacy.

Proof Sketch: Let S ′′ be a simulator that is identical to the simulator S from the proof of
Theorem 3.4 (or to S ′ from Theorem 3.5 if the XOR gates are computed as in G′), except that
when S ′′ needs to simulate the garbling of an AND gate, holding the active keys ki, kj and signal
bits λi, λj , it does the following:

1. S ′′ computes K||m := Fki(g||λiλj)⊕ Fkj (g||λiλj)

2. S ′′ sets the output wire active key and signal bit:

(a) λ` ← {0, 1}
(b) If 2λi + λj = 0, then set k` := K

(c) Else, set k` ∈ {0, 1}n

3. Set T1, T2:

(a) If 2λi + λj = 0, set T1, T2 ← {0, 1}n

(b) If 2λi + λj = 1, set T1 := K ⊕ k` and T2 ← {0, 1}n

(c) If 2λi + λj = 2, set T1 ← {0, 1}n and T2 := K ⊕ k`
(d) If 2λi + λj = 3, set T1 ← {0, 1}n and T2 := K ⊕ k` ⊕ T1

30

4. Compute the additional 4 bits: set t2λi+λj := m⊕ λ`, and for α ∈ {0, 1, 2, 3} \ (2λi + λj) set
tα ← {0, 1}

5. Set C[g]← T1, T2, t0, t1, t2, t3

Note that in the AND gates generated by S ′′ code, the ciphertexts are computed so that the
result of Eval will always be k`. (For example, according to Eval, if 2λi+λj = 1 then k` is computed
as K⊕T1. In such a case, S ′′ sets T1 := K⊕k` and thus indeed K⊕T1 = k`.) Beyond this constraint,
the values are uniformly random. In particular, if 2λi + λj = 0 then both ciphertexts are random,
and otherwise the single ciphertext not used in Eval is random. In addition, the 4 bits that mask
the output wire permutation bits are chosen randomly except for the the bit that is pointed to by
the input wire’s active signal bits.

We now define a hybrid Hi as in the proof of Theorem 3.4, and construct an adversary Ai for
the experiment Expt2PRF . Adversary Ai garbles the first i− 1 gates in topological order using the
instructions of S ′′. When Ai reaches the ith gate with input wires a, b and output wire c, it holds
two active keys kvaa , k

vb
b , two signal bits λa, λb and the actual bits that are on the wire va, vb. Now,

if g is a XOR gate, the Ai garbled the gate exactly as in the proof of Theorem 3.4 (or Theorem 3.5).
If g is an AND gate, then Ai works as follows:

1. Ai computes:
K2λa+λb ||m2λa+λb := Fkvaa (g||λaλb)⊕ Fkvbb (g||λaλb)

K2λa+λb
||m2λa+λb

:= Fkvaa (g||λaλb)⊕O(3)(g||λaλb)

K2λa+λb
||m2λa+λb

:= O(1)(g||λaλb)⊕ Fkvbb (g||λaλb)

K2λa+λb
||m2λa+λb

:= O(1)(g||λaλb)⊕O(3)(g||λaλb)

2. Ai computes the location of ‘1’ in the truth table: s := 2πa + πb = 2(va ⊕ λa) + (va ⊕ λa)

3. Ai runs steps (3)–(5) from procedure GbAND in G′′

4. Ai outputs the garbled table C[g]← T1, T2, t0, t1, t2, t3

It clear that when σ = 0 in Expt2PRF , the result is identical to the real scheme G′′. In contrast,
when σ = 1, the answers of the oracles are random strings, and we have that all of the K values
are independent random strings except for the value of K2λa+λb which Ai computes by itself using
the keys it holds. (Observe that in each of the K values except for K2λa+λb , oracles O(3) and O(1)

are invoked on different inputs, resulting in independent random outputs.)
The output from the garbling of the gate by S ′′ is kc, λc (the active key used in garbling gates

with wire c along with its signal) and the garbled table T1, T2, t0, t1, t2, t3. In contrast, the output of
Ai is k0

c , k
1
c , πc along with T1, T2, t0, t1, t2, t3. Since the actual value vc on the output wire is given,

we can compute the actual signal bit λc (which equals πc ⊕ vc) and the active wire kvcc . Thus, we
need to show that the joint distribution over (kc, λc, T1, T2, t0, t1, t2, t3) generated by S ′′ in this case
of σ = 1 is identical to the joint distribution over (kvcc , λc, T1, T2, t0, t1, t2, t3) generated by Ai. In
order to understand the following, we remark that given 2λa +λb (the row pointed to by the signal
bits) and s (the row in which the ‘1’-key is “encrypted”), the active key on the output wire can be
determined. This is because if s = 2λa + λb then the active key on the output wire is k1

c (since the
signal bits point to the 1-key), and otherwise it is k0

c (since the signal bits point to the 0-key).

31

Garble(1n, c):

Procedure GbAND(k0
i , k

1
i , k

0
j , k

1
j , πi, πj):

1. Compute: K0||m0 := Fkπii
(g||00)⊕ F

k
πj
j

(g||00) K2||m2 := F
k
πi
i

(g||10)⊕ F
k
πj
j

(g||01)

K1||m1 := Fkπii
(g||01)⊕ F

k
πj
j

(g||01) K3||m3 := F
k
πi
i

(g||11)⊕ F
k
πj
j

(g||11)

2. Compute the location of ‘1’ in the truth table: s := 2πi + πj

3. Set the output wire keys and permutation bits:

(a) Choose the permutation bit for the wire: π` ← {0, 1}
(b) If s 6= 0, set k0

` := K0 and k1
` := K1 ⊕K2 ⊕K3

(c) Else, (if s = 0), set k0
` := K1 ⊕K2 ⊕K3 and k1

` := K0

4. Compute T1, T2:

(a) If s = 3, set T1 := K0 ⊕K1 and T2 := K0 ⊕K2

(b) If s = 2, set T1 := K0 ⊕K1 and T2 := K1 ⊕K3

(c) If s = 1, set T1 := K2 ⊕K3 and T2 := K0 ⊕K2

(d) If s = 0, set T1 := K2 ⊕K3 and T2 := K1 ⊕K3

5. Compute the additional 4 bits: set ts := ms ⊕ π`, and for α ∈ {0, 1, 2, 3} \ {s} set tα := mα ⊕ π`
6. Return (k0

` , k
1
` , π`, T1, T2, t0, t1, t2, t3)

Note that GbAND returns 2 ciphertexts and 4 bits (instead of 3 ciphertexts as in G).

Procedure Eval(C,X):

2. (b) If g is an AND gate with inputs wires i, j and output wire ` (and table T1, T2, t0, t1, t2, t3):

i. Compute: K||m := Fki(g||λiλj)⊕ Fkj (g||λiλj)
ii. Compute the output wire key:

A. If 2λi + λj = 0, set k` := K

B. If 2λi + λj = 1, set k` := K ⊕ T1

C. If 2λi + λj = 2, set k` := K ⊕ T2

D. If 2λi + λj = 3, set k` := K ⊕ T1 ⊕ T2

iii. Compute the output wire signal bit: λ` := m⊕ t2λi+λj

Figure 9: The Improved Garbling Scheme G′′

We consider four cases:

1. Case 1 – 2λa + λb = 0: In this case, Ai computes K0 using keys kvaa , k
vb
b whereas K1,K2,K3

are independent random strings. Now, in this case, S ′′ sets kc := K where K is computed
exactly like K0 by Ai. In addition, S ′′ chooses T1, T2 ← {0, 1}n at random. Since K1,K2,K3

are independent and random, it follows that all four ways of setting T1, T2 depending on s
that are described in Step 4 of GbAND of G′′ yield two independent keys. Thus, K0, T1, T2

generated by Ai are distributed identically to K0, T1, T2 generated by S ′′. Now, if s 6= 0, then
Ai sets k0

c = K0 while if s = 0 then Ai sets k1
c = K0. Since 2λa + λb = 0 it follows that if

s 6= 0 then the active key is k0
c and if s = 0 then the active key is k1

c . Thus, in both cases the
active output key is K0, exactly like S ′′.

32

2. Case 2 – 2λa + λb = 1: In this case, Ai computes K1 using keys kvaa , k
vb
b whereas K0,K2,K3

are independent random strings. When s ∈ {2, 3}, the active key k0
c on the output wire is set

by Ai in Step 3 to be equal to K0, and T1 = K0⊕K1. When s ∈ {0, 1} the active key on the
output wire equals K1⊕K2⊕K3 (because when s = 0, the active key is k0

c := K1⊕K2⊕K3

while when s = 1, the active key is k1
c := K1 ⊕K2 ⊕K3), and T1 = K2 ⊕K3. In both cases,

we have that K1 ⊕ T1 equals the active key on the output wire. In addition, in all cases
T2 is computed by Ai by XORing two strings, of which at least one of them is random and
independent of T1 and K1. (To be exact, T2 is actually the XOR of one of the output-wire
keys with K2. However, since K2 is random, and since there is at least one random string that
appears in T1 or T2 but not in both, we have that T2 is completely independent of all other
values.) In summary, kc, T1, T2 are all random strings under the constraint that kc = T1⊕K1.

In contrast, S ′′ sets kc to be random, sets T1 = K ⊕ kc and T2 to be random. Thus, K ⊕ T1

equals the active key on the output wire, and we have that kc, T1, T2 are also all random
under the constraint that kc = T1 ⊕K. Thus, the distributions are identical.

3. Case 3 – 2λa + λb = 2: In this case, Ai computes K2 using keys kvaa , k
vb
b whereas K0,K1,K3

are independent random strings. Using the same analysis as the previous case, we obtain that
when s ∈ {0, 2} the active key on the output wire is set by Ai to be K1 ⊕K2 ⊕K3 (because
when s = 2, the active key is k1

c , while when s = 0 the active key is k0
c ; in both cases it equals

K1 ⊕K2 ⊕K3), and T2 = K1 ⊕K3. In contrast, when s ∈ {1, 3}, the active key k0
c on the

output wire is set to be K0, and T2 = K0⊕K2. Denoting the active key by kc in all cases, we
have that kc and T2 are random under the constraint that kc ⊕ T2 = K2. In all cases, as in
the previous case with T2, ciphertext T1 is random and independent of kc, T2 since it involves
an independent random value each time (K0, K1 or K3). Thus, kc, T1, T2 are independent
random strings, under the constraint that kc ⊕ T2 = K2.

Regarding S ′′, it chooses kc and T1 uniformly at random, and sets T2 = K ⊕ kc. Thus,
kc, T1, T2 have exactly the same distribution as that generated by Ai.

4. Case 4 – 2λa + λb = 3: In this case, Ai computes K3 using keys kvaa , k
vb
b whereas K0,K1,K2

are independent random strings. In this case, if s ∈ {0, 3} then the active key kc on the
output wire is set by Ai to be K1 ⊕K2 ⊕K3 (since if s = 0 the active key is k0

c whereas if
s = 3 the active key is k1

c), and T1 ⊕ T2 = K1 ⊕K2 (see Step 4 in GbAND). Furthermore, if
s ∈ {1, 2} then the active key kc on the output wire is K0 and T1 ⊕ T2 = K0 ⊕K3. In both
cases, kc ⊕ T1 ⊕ T2 = K3. Apart from this constraint, the values are random. Thus, we have
that kc, T1, T2 are random under the constraint that kc ⊕ T1 ⊕ T2 = K3.

Regarding S ′′, in this case it chooses kc and T1 independently at random and sets T2 =
K⊕kc⊕T1. Thus, as above, kc, T1, T2 are random under the constraint that kc⊕T1⊕T2 = K3.

We conclude that kc, T1, T2 is identically distributed when generated by the adversary Ai in the
case of σ = 1 and when generated by the simulator S ′′ (note that K2λa+λb is always the exact same
value since it is fixed by the incoming keys). In addition, in Ai’s code all of the m values, except
for the value of m2λa+λb are random. Thus, the bits t1, t2, t3, t4 are random except for t2λa+λb , and
the distribution over their values is the same as when they are generated by S ′′. We conclude that
when σ = 1, adversary Ai constructs gate i exactly according to S ′′.

The remaining gates j > i are garbled using the real garbling scheme G′′, with Ai using its
oracles O(2), O(4) to garble the other gates which wires a and b enters. We conclude that when

33

σ = 0, adversary Ai constructs the Hi−1 hybrid, while when σ = 1 it constructs the Hi hybrid.
The rest of the proof is the same as the proof of Theorem 3.4.

5 Garbling With Related-key Security

5.1 Background

When using the free-XOR technique, a constant difference is used between the garbled values on
every wire (i.e., there exists a random ∆ such that for every wire i, k0

i ⊕ k1
i = ∆). As a result,

the keys used for encryption in non-XOR gates are correlated with each other, and also with the
plaintext that they encrypt (observe that ∆ appears in the garbled values on both the input and
output wires). Thus, a strong circularity related-key assumption is needed for proving that the
technique is secure. As we have seen, if we want to rely on a pseudorandom function assumption
only, then the keys on the wires have to be uniformly and independently chosen. In this section,
we consider garbling schemes that rely on related keys, but do not require the stronger circularity
assumption. In order to achieve this, keys on the input wires of each gate are allowed to be related,
but no relation is allowed between input wire keys and the output wire keys they encrypt. This
relaxation allows us to garble some of the XOR gates for free, and yields results that are better
than when garbling under a pseudorandom function assumption only, but worse than garbling all
the XOR gates for free which requires circularity. The work in this section builds strongly on the
fleXOR technique of [13], and provides a more complete picture regarding the trade-off between
efficiency and the security assumptions used in circuit garbling. (Specifically, we consider the cost
of garbling under the hierarchy of assumptions, from ideal-cipher to circular related-key security
to related-key security to a pseudorandom function assumption).

In the work of [13], they showed that in order to avoid circularity it suffices to apply a monotone
rule on the wire ordering of the circuit. This monotone rule states that when a certain difference
value ∆ is used on the input wires to a non-XOR gate, then the ∆ on the output wire must be
different (actually, it has to be a ∆ that has not appeared previously in the garbling of gates that
are in the path to the current gate). Denote L different difference values by ∆1, ...,∆L. Then, a
wire ordering is defined to be a function φ that takes a wire as its input and returns an element
of the group {1, .., L} (with the interpretation that on wire i, the difference between the garbled
values is φ(i)). We formally define a monotone ordering as follows.

Definition 5.1 Let C be a garbled circuit, and let I be the set of circuit wires. A wire ordering
function φ : I → {1, .., L} is called monotone if:

1. For every non-XOR gate with input wires i, j and output wire `: φ(`) > max(φ(i), φ(j))

2. For every XOR gate with input wires i, j and output wire `: φ(`) ≥ max(φ(i), φ(j))

Now, assume that a wire ordering was fixed, and consider a XOR gate g. If φ(`) = φ(i) = φ(j)
then the gate is garbled and computed using the free-XOR technique. However, if φ(`) 6= φ(i)
(or likewise if φ(`) 6= φ(j)) then wire i’s keys are translated into new keys k̃0

i , k̃
1
i such that k̃0

i =

Fk0
i
(g) and k̃1

i = k̃0
i ⊕ ∆φ(`), yielding a garbled gate entry Fk1

i
(g) ⊕ k̃1

i (to be more exact, the

way of computing k̃0
i , k̃

1
i can be reversed, depending on the permutation bit). Once the input

and output wires all have difference ∆φ(`), the free XOR technique can once again be used. It

34

follows that a translation from ∆input wire to ∆output wire can be carried out with one ciphertext
and two encryptions. Thus XOR gates can be garbled using 0, 1 or 2 ciphertexts and using 0, 2
or 4 encryptions (for the cases where no translation is needed, where one translation is needed and
where two translations are needed, in respectively), depending on the wire ordering that was chosen
for the circuit. This is a “flexible approach” since many different wire orderings can be chosen, and
hence its name “fleXOR”.9 Since the specific ordering determines the cost, this introduces a new
algorithmic goal which is to find a monotone wire ordering that is optimal; i.e., that minimizes the
size of the circuit while satisfying the monotone property.

Unfortunately, it is NP-hard to find an optimal monotone wire ordering [13]. Thus, [13] de-
scribed heuristic techniques for finding a good monotone ordering. Briefly, their heuristic is based
on the observation that only non-XOR gates increase the wire ordering number. They therefore
define the non-XOR-depth of a wire i to be the maximum number of non-XOR gates on all directed
paths from i to an output wire. Then, they set the wire ordering so that φ(i)+non-XOR-depth(i) is
constant for all wires. Algorithmically, they set the wire ordering value of each XOR gate’s output
wire to be equal to the maximal ordering value of its input wires, and they make the wire ordering
value of each AND gate’s output to equal a value that maintains the constant. For more details,
see [13].

5.2 Safe and Monotone Wire Orderings

The goal of constructing a good monotone wire ordering is to assign, whenever possible, the same
wire ordering number to input wires and output wires of XOR gates, so that the communication
and computation cost at XOR gates will be minimized. However, such a strategy is not compatible
with 4-2 row reduction techniques (the technique in this paper and in [20] require that both output
values be arbitrary unlike here, and the half-gates method of [22] works only under a circularity
assumption which is exactly what we are trying to avoid here). Thus, an optimized monotone wire
ordering may result in most AND gates being garbled with 3 ciphertexts (4-2 row reduction could
be used in AND gates where the difference on the output wire is “new”). In circuits with many
XOR gates relative to AND gates, such a strategy may be worthwhile. However, in circuits where
there are more AND gates than XOR gates (like the SHA256 circuit), the result may be a larger
circuit than that obtained by using our scheme based on pseudorandom functions alone that costs
2 ciphertexts per AND gate and 1 ciphertext per XOR gate.

This motivates the search for wire orderings that enable 4-2 row reduction in AND gates. Such
a wire ordering is called safe and was defined by [13] for this purpose; intuitively, a wire ordering
is safe if the values on the output wires of AND gates can be determined arbitrarily. Formally, we
require that the ∆ in the output of a non-XOR gate different to all previous gates, implying that
it is not yet determined:

Definition 5.2 Let C be a garbled circuit, and let I be the set of circuit wires. A wire ordering
function φ : I → {1, .., L} is called safe if for every non-XOR gate g with output wire `, it holds
that for every wire i that precedes it in the topological order of the circuit φ(i) < φ(`).

9This is the real difference between the fleXOR approach and our standard assumption based scheme: our scheme
is not flexible; all XOR gates are garbled in the same way such that for each wire there will be an independent new
offset that is set pseudorandomly when garbling each gate, and not in advance as in the fleXOR approach. As a
result, our scheme requires 4 (or 3) encryptions even though only one ciphertext is required.

35

Note that a wire ordering that is safe does not necessarily avoid circularity; thus free-XOR
together with half-gates will always be preferable (note that the notion of a safe ordering was intro-
duced before the half-gates construction was discovered, and this made it redundant). Nevertheless,
in order to both avoid circularity and potentially reduce the number of ciphertexts in AND gates,
we are interested in wire orderings that are simultaneously safe and monotone. Such wire orderings
were not considered in the work of [13], and we will dedicate the rest of this section to introducing
two simple heuristics that satisfy these two properties.10

Safe and monotone heuristics. Our goal is to find a “good” safe and monotone wire ordering
heuristic that will allow us to garble AND gates using our 4-2 row-reduction technique, and to
garble XOR gates using the fleXOR approach. When we say a “good” heuristic, we mean that it
minimizes the average number of ciphertexts per XOR gate. Recall that in the fleXOR approach,
XOR gates are garbled using 0,1 or 2 ciphertexts. Thus, a wire ordering will only be reasonable
if the average number of ciphertexts per XOR gate is lower than 1; otherwise, it is better to use
the scheme presented earlier that garbles XOR gates with 1 ciphertext and under a pseudorandom
function assumption only.

Observe that in a safe and monotone wire ordering, if there are L non-XOR gates in the circuit
then there are L+ 1 different delta values {∆0,∆1, ..,∆L}, where ∆0 is a random value that is set
at the beginning of the garbling process and is assigned to the input wires of the circuit, and the
rest of the ∆ values are assigned to each non-XOR gate in topological order as determined by the
garbling row-reduction method in the associated gate. We define two variables φmini , φmaxi for every
wire i in the circuit, where φmini (resp., φmaxi) is the minimal (resp., maximal) value that φ(i) can
have in any safe and monotone wire ordering in the circuit. In Figure 10 we present an algorithm
that computes the exact value of φmini and φmaxi for each wire.

Initialization algorithm:

1. Initialize AND index := 0

2. For every input wire i, set: φmini = φmaxi := 0

3. For every gate g in topological order (with input wires i, j and output wire `):

(a) If g is an AND gate:

i. Set gate index := AND index+ 1

ii. Set φmin` = φmax` := AND index

(b) If g is a XOR gate:

i. Set φmin` := max{φmini , φminj }
ii. Set φmax` := AND index

Figure 10: Initialization algorithm for the safe and monotone wire ordering heuristic

To understand why the algorithm computes φmini and φmaxi correctly, recall that for each AND
gate the wire ordering number is fixed in a safe wire ordering, and is equal to its index in the order
of AND gates in the circuit. Thus, φmin` = φmax` := AND index as set in step 3(a). For XOR

10We remark that the proof of [13] that the problem of finding an optimal monotone ordering is NP-hard does not
go through for monotone and safe. We do not know if the problem of finding an optimal safe and monotone ordering
is NP hard.

36

gates, note that in our algorithm, setting the value of φmin` for each XOR gate’s output wire to
be the maximum φ of its inputs, means that it is increased only by AND gates that are in a path
from a circuit input wire to the gate. Therefore, if there exists a wire ordering that assigns φmin`

a smaller value than our algorithm, it will assign it a wire ordering number that is smaller than
a wire ordering number of an AND gate’s output wire that is in a path that leads to it, thereby
breaking monotonicity (as in Definition 5.1). In addition, since we cannot assign a wire with a ∆
whose value will be determined at a later stage (due to the safe condition), the highest possible
wire-ordering value that a XOR gate’s output wire ` can have equals the number of AND gates
that appears before it in the topological order of the circuit. This maximum value is exactly the
value of the variable AND index in the algorithm, which is assigned to φmax` in step 3(b).

Next, observe that a heuristic that assigns each wire the value φmini , as well as a heuristic that
assigns each wire the value φmaxi , both yield valid safe and monotone wire orderings. Moreover,
taking φmini at every gate ensures that each XOR gate will have at most one ciphertext (because
the output-wire value equals at least one of the input-wire values). Thus, this heuristic – that we
call the pure min-heuristic – guarantees that the average number of ciphertexts per XOR gate is
less than or equal to 1.11 This means that, not surprisingly, heuristics that yield a more efficient
garbling scheme than our scheme based only on a pseudorandom function assumption do exist.
However, our aim is to do better than the pure min-heuristic, and we suggest two heuristics that
use φmini and φmaxi as initialization values for the wire ordering values, and then improve upon
them by traversing the circuit gate by gate from the output to the input, and setting the value of
each gate-output wire based on the existing values given so far.

The idea behind both heuristics is that, starting with the output wires and going backwards, we
try to group as many wires as possible to have the same wire ordering number. We do this by trying
to assign a wire i the same value as one of the output wires of a gate that it enter (specifically,
we try give it the minimal value among all the values on the output wires that it enter; taking
the minimal ensures monotonicity). When this fails – measured by the fact this yields a value
not between φmini and φmaxi – we set its wire ordering number to be the maximum between the
initialization values of its input wires.

In the first heuristic, called SafeMon1, each wire i is given the initial ordering value φ(i) =
φmini . Then, starting with the circuit’s output wires and going backwards in reverse topological
order, we compute for every wire i that is not a circuit-output wire:

φi := min
{
φ(k) | ∃ gate g with input wire i and output wire k

}
This value is in fact the maximal value φ(i) can have without breaking monotonicity since the
input wire i to a gate cannot have a higher value than its output wire `. Then, we set φ(i) = φi if
φi ≤ φmaxi , and set φ(i) = φmini if φi > φmaxi (this ensures that we don’t break the safe property).

The second heuristic, called SafeMon2, works in the same way except that the wires are
initialized with φmaxi instead of φmini . (Observe that in the initialization, φmin` = max(φmini , φminj

and thus in SafeMon1 setting φ` = φmin` is the same as setting it to be max{φmini , φminj } as in
SafeMon2.) The full description of the heuristic appears in Figure 11.

11Note that taking φmaxi at every gate does not guarantee at most 1 ciphertext per XOR gate.

37

1. Run the initialization heuristic to obtain for each wire i the values φmini , φmaxi

2. For every circuit output wire i set: φ(i) :=

{
φmini for SafeMon1
φmaxi for SafeMon2

3. For every wire g in reverse topological order (with input wires i, j and output wire `):
If ` is not a circuit output wire, then:

(a) Compute φ` := min
{
φ(k) | ∃ gate g with input wire ` and output wire k

}
(b) If φ` ≤ φmax` then, set: φ(`) := φ`

Else, set: φ(`) :=

{
φmin` for SafeMon1
max

{
φmaxi , φmaxj

}
for SafeMon2

Figure 11: Heuristics for finding safe and monotone wire orderings

5.3 Choosing the Best Heuristic

We have described three heuristics for generating wire orderings that yield garbled circuits that are
secure based on a related-key assumption and without circularity (the monotone heuristic from [13]
and two new heuristic SafeMon1 and SafeMon2). We ran these heuristics on three different
circuits, and compared the results with our garbling scheme based only on pseudorandom functions
and with the monotone heuristic of [13]. The circuits we tested the heuristics on are AES, SHA-256
and Min-Cut 250,000. The circuits have 6,800, 90,825 and 999,960 AND gates, respectively, and
25,124, 42,029 and 2,524,920 XOR gates, respectively [1]. The performance of each heuristic was
measured by the size of the circuit it yields. Table 4 shows the results of the comparison. It can
be seen that the monotone heuristic of [13] gives the best result for the AES circuit, while the
SafeMon2 heuristic yields the smallest garbled circuit for the SHA-256 and Min-Cut circuits.
Observe that in the SHA-256 circuit, which has a high percentage of AND gates, all the heuristics
fail to significantly reduce the size of the garbled circuit, relative to the size of the circuit constructed
under the pseudorandom function assumption only. This is due to the fact that in such circuits the
high amount of AND gates impose many constraints on the wire ordering, and so we are forced to
have many different deltas that are “spread” between a small amount of XOR gates. In such cases,
not much is gained by using a related-key assumption, versus pseudorandom functions only.

As we described above, safe and monotone heuristics are expected to beat the pure monotone
heuristic of [13] only when there are more AND gates than XOR gates. Indeed, if we measure only
the effect on XOR gates (see the numbers in the parentheses in Table 4), then the monotone-only
heuristic always results in less ciphertexts on average for the XOR gates. This is because it imposes
less constraints on the wire ordering and focuses only on the XOR gates. In the AES circuit, where
there are only 6800 AND gates and 25124 XOR gates, the average number of ciphertexts per XOR
gates is only 0.15 (which is very impressive). Thus, even though the AND gates require 3 ciphertexts
each, the overall result is the best. The safe and monotone heuristics that we present here also
take into consideration the cost of AND gates (at the expense of XOR gates), and so achieve better
results when there is a higher percentage of AND gates.

In Table 5, we show the computation cost of garbling XOR gates (number of pseudorandom
function computations) when using the wire orderings that each heuristic generated. We only
consider XOR gates in this computation, since all the methods used for garbling AND gates require
the same computational work. Recall that in the fleXOR method, garbling XOR gates may need
0, 2 or 4 calls to the pseudorandom function. Thus, the computation cost is measured by the

38

AES SHA-256 Min-Cut

PRF only 1.21 (1) 1.68 (1) 1.28 (1)

Monotone [13] 0.76 (0.15) 2.26 (0.76) 1.13 (0.4)

SafeMon1 0.93 (0.64) 1.64 (0.97) 1.19 (0.87)

SafeMon2 1.19 (0.97) 1.53 (0.86) 1.07 (0.7)

Table 4: Comparison of the size of the garbled circuit that each heuristic generated (including a
base comparison to the cost under a pseudorandom function assumption only). The main number
in each cell shows the average number of ciphertexts per gate. The number in the parentheses
shows the average ciphertexts per XOR gate only. The best result for each circuit is bolded.

average number of calls to the encryption function per XOR gate. Observe that for this measure,
all heuristics are considerably better than the scheme relying only on a pseudorandom function
assumption. This is because in the fleXOR approach, only two calls to the pseudorandom function
are needed when garbling a XOR gate with one ciphertext, in contrast to three in the scheme based
only on pseudorandom functions. However, we remark that when using AES-NI and pipelining,
this actually makes little difference to the overall time. Also, observe that the monotone heuristic
is better than the other heuristics when comparing computational cost. As explained before, this
is because the monotone heuristic focuses solely on minimizing the cost at XOR gates, rather than
minimizing the cost for the entire circuit, thus achieving better results when measuring the effect
on XOR gates only.

AES SHA-256 Min-Cut

PRF only 3 3 3

Monotone [13] 0.31 1.55 0.79

SafeMon1 1.29 1.95 1.75

SafeMon2 1.96 1.73 1.41

Table 5: Comparison of the average number of calls to the pseudorandom function per XOR gate,
for each heuristic

We conclude that in circuits with many XOR gates relative to AND gates, the use of a related-
key assumption yields an improvement over the scheme relying on pseudorandom functions only.
For example, in the AES circuit the smallest result is 24% smaller, and in the min-cut circuit the
size of the circuit is approximately 16% smaller.

Optimal algorithms. We stress that we did not prove anything regarding the optimality of the
heuristics we described. Indeed, adding the requirement that the ordering be safe is just a way to
force the heuristic to take AND gates into account. However, it is possible that a better result can
be achieved with an ordering that is not safe. However, as we have mentioned, finding an optimal
monotone ordering is NP-hard. Thus, finding better heuristics or optimization algorithms is left
for future work.

39

6 Experimental Results and Discussion

In the previous sections, we presented four tools that can optimize the performance of garbled
circuits without relying on any additional cryptographic assumption beyond the existence of pseu-
dorandom functions: (1) pipelined garbling ; (2) pipelined key-scheduling ; (3) XOR gates with one
ciphertext and three encryptions; and (4) improved 4-2 GRR for AND gates. In this section, we
present the results of an experimental evaluation of these methods – together and separately – and
compare their performance to that of other garbling methods.

Table 6 shows the time it takes to run the full Yao semi-honest protocol [17, 21] on three
different circuits of interest: AES, SHA-256 and Min-Cut 250,000. The circuits have 6,800, 90,825
and 999,960 AND gates, respectively, and 25,124, 42,029 and 2,524,920 XOR gates, respectively.
The number of input bits for which OTs are performed are 128, 256 and 250,000, respectively [1].
We remark that our implementation of the semi-honest protocol of Yao utilizes the highly optimized
OT extension protocol of [2].

We examined eight different schemes, described using the following notation: [pipe-garble]
for the pipelined garbling method; [pipe-garble+KS] for pipelined garbling and pipelined key-
scheduling; [fixed-key] where all PRF evaluations were performed using the fixed-key technique de-
scribed in [5]; [XOR-3] where XOR gates were garbled using a simple 4-3 GRR method; [XOR-1]
where XOR gates were garbled using our method of garbling with one ciphertext; [free-XOR]
where the free-XOR technique was used; [AND-3] where AND gates were garbled using simple 4-3
GRR; [AND-2] where our 4-2 GRR method was used to garble AND gates; and finally, [AND-
HalfGates] where the “half-gates” technique of [22] was used to garble AND gates. Note that the
half-gates method is only used in conjunction with free-XOR since this is a requirement.

The first scheme in Table 6 is the most “näıve”, where a simple 4-3 GRR was used for both
AND and XOR gates and the garbling was pipelined but not the key-scheduling. In contrast, the
last scheme is the most efficient as it uses fast fixed-key encryption and the half-gates approach to
achieve two ciphertexts per AND gates and none for XOR gates. However, this scheme is based
on the strongest assumption, that AES behaves like an “ideal-cipher”, or to be more exact, like a
“random permutation” with a fixed key. The third scheme in the table uses all our optimizations
together, and thus it is the most efficient scheme that is based on a standard PRF assumption.
The sixth scheme in the table shows the best that can be achieved while assuming circularity and
related key security, but without resorting to the ideal cipher.

The experiments were performed on Amazon’s c4.8xlarge compute-optimized machines (with

Assumption Scheme
AES SHA-256 Min-Cut

VA-VA VA-IRE VA-VA VA-IRE VA-VA

PRF
1 Pipe-garbl; XOR-3; AND-3 (näıve) 20 203 68 303 1947
2 Pipe-garbl+KS; XOR-1; AND-3 16 200 54 236 1195
3 Pipe-garbl+KS; XOR-1; AND-2 16 200 50 229 1047

Circularity
4 Pipe-garbl; free-XOR; AND-3 16 198 45 222 753
5 Pipe-garbl+KS; free-XOR; AND-3 16 198 36 221 701
6 Pipe-garbl+KS; free-XOR; HalfGates 16 196 27 206 546

Ideal Cipher
7 Fixed-key; free-XOR; AND-3 16 196 27 214 596
8 Fixed-key; free-XOR; Halfgates 16 195 20 199 460

Table 6: Summary of experimental results (times are for a full semi-honest execution in milliseconds). The
first row is for näıve garbling. Rows 2,3,5 and 6 are based on our improvements. The rows marked in boldface
highlight the best schemes under each set of assumptions.

40

Intel Xeon E5-2666 v3 Haswell processors) running Windows. The measurements include the time
it takes to garble the circuit, send it to the evaluator and compute the output. Since communication
is also involved, this measures improvements both in the encryption technique and in the size of
circuit. Each scheme was tested on the three circuits in two different settings: the Virginia-Virginia
(VA-VA) setting where the two parties running the protocol are located at the same data center,
and the Virginia-Ireland (VA-IRE) setting where the physical distance between the parties is large.
(We omitted the results of running the large min-cut circuit in the VA-IRE setting as they were
not consistent and had a high variability.) Each number in the table is an average of 20 executions
of the indicated specific scenario.

The table rows marked in boldface highlight the best schemes under each set of assumptions.
Looking at the results, we derive the following observations:

• Best efficiency: As predicted, the fixed key + half-gates implementation (8) is the fastest
and most efficient in all scenarios. (This seems trivial, but when using fixed-key AES, the
Eval procedure at AND gates requires one more encryption than in a simple 4-3 GRR. Thus,
this confirms the hypothesis that the communication saved is far more significant than an
additional encryption, that is anyway pipelined.)

• Small circuits: In small circuits (e.g., AES) the running time is almost identical in all
schemes and in both communication settings. In particular, using our optimizations (3) yields
the same performance result as that of the most efficient scheme (8), in both the VA-VA and
VA-IRE settings. This is due to the fact that in small circuits, running the OT protocol is the
bottleneck of the protocol (even if, as in our experiments, optimize OT-extension [2] is used).
This means that for small circuits there is no reason to rely on a non-standard cryptographic
assumption.

• Medium circuits: In the larger SHA-256 circuit, where the majority of the gates are AND
gates, there was a difference between the results in the two communication settings. In the
VA-VA setting the best scheme based on PRF alone (3) has performance that is closer to that
of the näıve scheme (1) than to that of the schemes based on the circularity or the ideal cipher
assumptions (schemes 6 and 8). In contrast, in the VA-IRE setting the PRF based scheme
performs close to schemes 6 and 8. This is explained by observing that when the parties are
closely located, communication is less dominant and garbling becomes a bigger factor. Thus,
garbling XOR gates for free improves the performance of the protocol. In contrast, when
the parties are far from each other, communication becomes the bottleneck, thus the PRF
based scheme (3) yields a significant improvement compared to the näıve case (1) and its
performance is not much worse than that of the best fixed-key based scheme (and since there
are fewer XOR gates, the overhead of an additional ciphertext per gate is reasonable).

• Large circuits: In the large Min-Cut circuit, the run time of our best PRF based scheme (3)
is closer to the best result (8) than to the näıve result (1). This is explained by the fact that
the circuit is very large and so bandwidth is very significant. This is especially true since the
majority of gates are XOR gates, and so the reduction from 3 ciphertexts to 1 ciphertext per
XOR gate has a big influence. (Observe that the number of ciphertexts sent in (8) is 2,000,000,
the number of ciphertexts sent in (3) is 4,500,000, while the number of ciphertexts sent in (1)
is 11,500,000.) Observe that schemes (6) and (8) have the same bandwidth; the difference in
cost is therefore due to the additional cost of the AES key schedules and encryptions. Note,

41

however, that despite the fact that there are 1,000,000 AND gates, the difference between the
running-times is 15%, which is not negligible but also not overwhelming.

• Removing the ideal cipher assumption: Comparing scheme (8), which is the most
efficient, to scheme (6) which is the most efficient scheme that does not depend on the ideal
cipher assumption, shows that in all scenarios removing the fixed-key technique causes only
a minor increase in running time.

We conclude that strengthening security by removing the ideal-cipher assumption does not no-
ticeably affect the performance of the protocol. Thus, in many cases, two-party secure computation
protocols does not need to use the fixed-key method. Further security strengthening by not de-
pending on a circularity assumption (i.e., “paying” for XOR gates) does come with a cost. Yet,
in scenarios where garbling time is not the bottleneck (e.g.,, small circuits, large inputs, commu-
nication constraints), one should consider using a more conservative approach as suggested in this
work. In any case, we believe that our ideas should encourage future research on achieving faster
and more efficient secure two-party computation based on standard cryptographic assumptions.

Acknowledgements

We express our deepest gratitudes to Meital Levy for her great efforts in implementing the different
methods and running the experiments.

References

[1] Circuits of Basic Functions Suitable For MPC and FHE, http://www.cs.bris.ac.uk/

Research/CryptographySecurity/MPC.

[2] G. Asharov, Y. Lindell, T. Schneier and M. Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In the 20th ACM Conference on Computer and
Communications Security (ACM CCS), pages 535–548, 2013.

[3] M. Bellare, V.T. Hoang and P. Rogaway. Foundations of garbled circuits. In the 19th ACM
Conference on Computer and Communications Security (ACM CCS0, pages 784–796, 2012.

[4] J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash
Function. In FSE 2006, Springer (LNCS 4047), pages 328–340, 2006.

[5] M. Bellare, V.T. Hoang, S. Keelveedhi and P. Rogaway. Efficient Garbling from a Fixed-Key
Blockcipher. In the IEEE Symposium on Security and Privacy 2013, pages 478–492, 2013.

[6] A. Biryukov, D. Khovratovich and I. Nikolic. Distinguisher and Related-Key Attack on the
Full AES-256. In CRYPTO 2009, Springer (LNCS 5677), pages 231–249, 2009.

[7] S.G. Choi, J. Katz, R. Kumaresan and H. Zhou. On the Security of the “Free-XOR” Tech-
nique. In the 9th TCC, Springer (LNCS 7194), pages 39–53, 2012.

[8] S. Gueron. Intel Advanced Encryption Standard (AES) Instructions Set, Rev 3.01.
(2012) https://software.intel.com/en-us/articles/intel-advanced-encryption-

standard-aes-instructions-set

42

[9] S. Gueron. Intel’s New AES Instructions for Enhanced Performance and Security. In the
16th FSE (FSE 2009), Springer (LNCS 5665), pages 51–66, 2009.

[10] S. Gueron. Optimized implementation of AES 128/192/256 key expansion. Software patch
in https://bugzilla.mozilla.org/show bug.cgi?id=1122903 (2015).

[11] Y. Huang, D. Evans, J. Katz and L. Malka. Faster Secure Two-Party Computation Using
Garbled Circuits. In the 20th USENIX Security Symposium, 2011.

[12] Y. Ishai, J. Kilian, K. Nissim and E. Petrank. Extending Oblivious Transfer Efficiently. In
CRYPTO 2003, Springer (LNCS 2729), pages 145–161, 2003.

[13] V. Kolesnikov, P. Mohassel and M. Rosulek. FleXOR: Flexible Garbling for XOR Gates
That Beats Free-XOR. In CRYPTO 2014, Springer (LNCS 8617), pages 440–457, 2014.

[14] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applica-
tions. In the 35th ICALP, Springer (LNCS 5126), pages 486–498, 2008.

[15] V. Kolesnikov and T. Schneider. Secure Function Evaluation Techniques For Circuits Con-
taining XOR Gates With Applications To Universal Circuits. Patent No. US 8,443,205 B2,
2013.

[16] B. Kreuter, A.Shelat, and C. Shen. Billion-Gate Secure Computation with Malicious Ad-
versaries. In the 21st USENIX Security Symposium, 2012.

[17] Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation.
In the Journal of Cryptology, 22(2):161–188, 2009.

[18] Y. Lindell, B. Pinkas and N. Smart. Implementing Two-Party Computation Efficiently with
Security Against Malicious Adversaries. In the 6th Conference on Security and Cryptography
for Networks, Springer (LNCS 5229), pages 2–20, 2008.

[19] M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and Mechanism Design.
In the ACM Conference on Electronic Commerce, pages 129–139, 1999.

[20] B. Pinkas, T. Schneider, N.P. Smart and S.C. Williams. Secure Two-Party Computation Is
Practical. In ASIACRYPT 2009, Springer (LNCS 5912), pages 250–267, 2009.

[21] A. Yao. How to Generate and Exchange Secrets. In the 27th FOCS, pages 162–167, 1986.

[22] S. Zahur, M. Rosulek and D. Evans. Two Halves Make a Whole - Reducing Data Trans-
fer in Garbled Circuits Using Half Gates. In EUROCRYPT 2015, Springer (LNCS 9057),
pages220–250, 2015. pages 220–250, 2015.

43

