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Abstract

We prove that there is no black-box construction of a one-way permutation family from a
one-way function and an indistinguishability obfuscator for the class of all oracle-aided circuits,
where the construction is “domain invariant” (i.e., where each permutation may have its own
domain, but these domains are independent of the underlying building blocks).

Following the framework of Asharov and Segev (FOCS ’15), by considering indistinguisha-
bility obfuscation for oracle-aided circuits we capture the common techniques that have been
used so far in constructions based on indistinguishability obfuscation. These include, in particu-
lar, non-black-box techniques such as the punctured programming approach of Sahai and Waters
(STOC ’14) and its variants, as well as sub-exponential security assumptions. For example, we
fully capture the construction of a trapdoor permutation family from a one-way function and an
indistinguishability obfuscator due to Bitansky, Paneth and Wichs (ePrint ’15). Their construc-
tion is not domain invariant and our result shows that this, somewhat undesirable property, is
unavoidable using the common techniques.

In fact, we observe that constructions which are not domain invariant circumvent all known
negative results for constructing one-way permutations based on one-way functions, starting with
Rudich’s seminal work (PhD thesis ’88). We revisit this classic and fundamental problem, and
resolve this somewhat surprising gap by ruling out all such black-box constructions – even those
that are not domain invariant.
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1 Introduction

One-way permutations are among the most fundamental primitives in cryptography, enabling elegant
constructions of a wide variety of central cryptographic primitives. Although various primitives, such
as universal one-way hash functions and pseudorandom generators, can be constructed based on any
one-way function [Rom90, HIL+99], their constructions based on one-way permutations are much
simpler and significantly more efficient [BM84, NY89].

Despite the key role of one-way permutations in the foundations of cryptography, only very
few candidates have been suggested over the years. Whereas one-way functions can be based on
an extremely wide variety of assumptions, candidate one-way permutations are significantly more
scarce. Up until recently, one-way permutations were known to exist only based on the hardness
of problems related to discrete logarithms and factoring [RSA78, Rab79]. Moreover, the seminal
work by Rudich [Rud88], within the framework of Impagliazzo and Rudich [IR89], initiated a line
of research showing that a one-way permutation cannot be constructed in a black-box manner from
a one-way function or from various other cryptographic primitives [CHL06, KSS11, MM11, Mat14].

Very recently, a one-way (trapdoor!) permutation family was constructed by Bitansky, Paneth
and Wichs [BPW15] based on indistinguishability obfuscation [BGI+12, GGH+13] and one-way
functions. Their breakthrough result provides the first trapdoor permutation family that is not
based on the hardness of factoring, and motivates the task of studying the extent to which indistin-
guishability obfuscation can be used for constructing one-way permutations. Specifically, their work
leaves completely unresolved the following question, representing to a large extent the “holy grail”
of constructing one-way permutations:

Is there a construction of a one-way permutation over {0, 1}n
based on indistinguishability obfuscation and one-way functions?

While exploring this intriguing question, one immediately identifies two somewhat undesirable
properties in the construction of Bitansky, Paneth and Wichs:

• Even when not aiming for trapdoor invertibility, their approach seems limited to providing a
family of permutations instead of a single permutation1.

• Their construction provides permutations that are defined over domains which both depend
on the underlying building blocks and are extremely sparse2.

From the theoretical perspective, one-way permutation families with these two properties are typ-
ically still useful for most constructions that are based on one-way permutations. However, such
families lack the elegant structure that makes constructions based on one-way permutations more
simple and significantly more efficient when compared to constructions based on one-way functions.

1.1 Our Contributions

Motivated by the recent construction of Bitansky et al. [BPW15], we study the limitations of using
indistinguishability obfuscation for constructing one-way permutations. Following the framework
of Asharov and Segev [AS15], we consider indistinguishability obfuscation for oracle-aided circuits,

1Moreover, Bitansky et al. note that their permutations do not seem certifiable. That is, they were not able to
provide an efficient method for certifying that a key is well-formed and describes a valid permutation. In contrast, a
single permutation is certifiable by its nature.

2Each permutation in their construction is defined over a domain of elements of the form (x,PRFK(x)), where PRF
is a pseudorandom function, and each permutation is associated with a different key K. This domain depends on the
underlying building block, i.e., the pseudorandom function (equivalently, one-way function).
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and thus capture the common techniques that have been used so far in constructions based on
indistinguishability obfuscation. These include, in particular, non-black-box techniques such as the
punctured programming approach of Sahai and Waters [SW14] and its variants, as well as sub-
exponential security assumptions. For example, we fully capture the construction of a trapdoor
permutation family from a one-way function and an indistinguishability obfuscator due to Bitansky
et al. [BPW15]. We refer the reader to Section 1.3.1 for an overview of our framework and of the
type of constructions that it captures.

Our work considers three progressively weaker one-way permutation primitives: (1) a domain-
invariant one-way permutation, (2) a domain-invariant one-way permutation family, and (3) a one-
way permutation family (which may or may not be domain invariant). Roughly speaking, we say
that a construction of a one-way permutation (or a one-way permutation family) is domain invariant
if the domain of the permutation is independent of the underlying building blocks (in the case of a
permutation family we allow each permutation to have its own domain, but these domains have to
be independent of the underlying building blocks).

Within our framework we prove the following two impossibility results, providing a tight char-
acterization of the feasibility of constructing these three progressively weaker one-way permutation
primitives based on one-way functions and indistinguishability obfuscation using the common tech-
niques (we summarize this characterization in Figure 1).

iO + OWF 6⇒ domain-invariant OWP family. Bitansky et al. [BPW15] showed that any
sub-exponentially-secure indistinguishability obfuscator and one-way function imply a one-way per-
mutation family which is not domain invariant. We show that using the common techniques (as
discussed above) one cannot construct the stronger primitive of a domain-invariant one-way per-
mutation family (even when assuming sub-exponential security). In particular, we show that the
above-described undesirable properties of their construction are unavoidable unless new non-black-
box techniques are introduced.

Theorem 1.1. There is no fully black-box construction of a domain-invariant one-way permutation
family from a one-way function f and an indistinguishability obfuscator for the class of all oracle-
aided circuits Cf .

OWF 6⇒ OWP family. In fact, we observe that constructions which are not domain invariant
circumvent the known negative results for constructing one-way permutations based on one-way
functions, starting with Rudich’s seminal work [Rud88, KSS11, MM11, PTV11]. We revisit this
classic and fundamental problem, and resolve this surprising gap by ruling out all black-box con-
structions of one-way permutation families from one-way functions – even those that are not domain
invariant.

Theorem 1.2. There is no fully black-box construction of a one-way permutation family (even a
non-domain-invariant one) from a one-way function.

1.2 Related Work

The recent line of research focusing on new constructions based on indistinguishability obfuscation
has been extremely fruitful so far (see, for example, [GGH+13, BST14, BCC+14, BCT+14, BZ14,
BR14, CLP14, GGG+14, GGH+14, CGP15, DKR15, GP15, HSW14, KMN+14, SW14, ABS+15,
AJ15, BP15, BPW15, BPR15, BV15, CTP15, CLT+15, Wat15] and the references therein). How-
ever, the extent to which indistinguishability obfuscation can be used as a building block has been
insufficiently explored. Our approach for proving meaningful impossibility results for constructions

2



OWF iO + OWF

Domain-invariant 

OWP

Domain-invariant 

OWP family
OWP family

[BPW15][Rud88,…] Thm. 1.1Thm. 1.2

Figure 1: A dashed arrow from a primitive A to a primitive B indicates that A implies B by definition.
Bitansky et al. [BPW15] showed that any sub-exponentially-secure indistinguishability obfuscator and one-
way function imply a one-way permutation family (which is not domain invariant), and we show that one
cannot construct the stronger primitive of a domain-invariant one-way permutation family unless new non-
black-box techniques are introduced (even when assuming sub-exponential security).
The line of research starting with Rudich [Rud88] showed that one cannot construct a domain-invariant one-
way permutation from a one-way function in a black-box manner. We improve this result, showing that one
cannot construct the weaker primitive of a one-way permutation family (even one that is not domain invariant)
from a one-way function in a black-box manner (again, even when assuming sub-exponential security).

based on indistinguishability obfuscation is based on that of Asharov and Segev [AS15] (which, in
turn, was inspired by that of Brakerski, Katz, Segev and Yerukhimovich [BKS+11]). They showed
that the common techniques (including non-black-box ones) that are used in constructions based
on indistinguishability obfuscation can be captured by considering the stronger notion of indis-
tinguishability obfuscation for oracle-aided circuits (see Section 1.3.1 for an elaborate discussion).
Generalizing the work of Simon [Sim98] and Haitner et al. [HHR+15], they showed that using these
common techniques one cannot construct a collision-resistant hash function family from a general-
purpose indistinguishability obfuscator (even when assuming sub-exponential security). In addition,
generalizing the work of Impagliazzo and Rudich [IR89] and Brakerski et al. [BKS+11], they showed
a similar result from constructing a perfectly-complete key-agreement protocol from a private-key
functional encryption scheme (again, even when assuming sub-exponential security).

It is far beyond the scope of this paper to provide an overview of the lines of research on black-
box impossibility results in cryptography (see, for example, [IR89, Sim98, GMR01, HR04, RTV04,
GGK+05, GMM07, Wee07, BM09, DLM+11, MP12, BBF13, CLM+13, DMM14, MMP14, BB15,
BFM15] and the references therein). Impossibility results for constructing one-way permutations
start with the seminal work of Rudich [Rud88]. This line of research has successfully shown that
one-way permutations cannot be based on a variety of fundamental cryptographic primitives (e.g.,
[CHL06, KSS11, MM11, Mat14]). However, these impossibility results capture only constructions of
a single permutation that is domain invariant, and do not seem to capture more general constructions
(such as the construction of Bitansky et al. [BPW15] producing a permutation family which is not
domain invariant).

1.3 Overview of Our Results

In this section we provide a high-level overview of our two results. First, in Section 1.3.1 we
describe the framework that enables us to prove a meaningful impossibility result for constructions
that are based on indistinguishability obfuscation. Next, in Section 1.3.2 we describe Rudich’s
attack for inverting any domain-invariant permutation relative to a random oracle. Extending
Rudich’s approach, we then discuss the main technical ideas underlying our results: In Section
1.3.3 we present an attack on any domain-invariant permutation family relative to our, significantly
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more structured, oracle, and in Section 1.3.4 we generalize Rudich’s attack to non-domain-invariant
permutation families in the random-oracle model.

1.3.1 Capturing Non-Black-Box Constructions via iO for Oracle-Aided Circuits

The fact that constructions that are based on indistinguishability obfuscation are almost always
non-black-box makes it extremely challenging to prove any impossibility results. For example, a
typical such construction would apply the obfuscator to a function that uses the evaluation circuit
of a pseudorandom generator or a pseudorandom function, and this requires specific implementations
of its underlying building blocks.

However, as observed by [AS15], most of the non-black-box techniques that are used on such
constructions have essentially the same flavor: The obfuscator is applied to functions that can be
constructed in a fully black-box manner from a low-level primitive, such as a one-way function. In
particular, the vast majority of constructions rely on the obfuscator itself in a black-box manner.
By considering the stronger primitive of an indistinguishability obfuscator for oracle-aided circuits
(see Definition 2.4), [AS15] showed that such non-black-box techniques in fact directly translate
into black-box ones. These include, in particular, non-black-box techniques such as the punctured
programming approach of Sahai and Waters [SW14] and its variants (as well as sub-exponential
security assumptions – which are already captured by most frameworks for black-box impossibility
results).

Example: The Sahai-Waters approach. Consider, for example, the construction of a public-
key encryption scheme from a one-way function and a general-purpose indistinguishability obfuscator
by Sahai and Waters [SW14]. Their construction relies on the underlying one-way function in
a non-black-box manner. However, relative to an oracle that allows the existence of a one-way
function f and indistinguishability obfuscation iO for oracle-aided circuits, it is in fact a fully black-
box construction. Specifically, Sahai and Waters use the underlying indistinguishability obfuscator
for obfuscating a circuit that invokes a puncturable pseudorandom function and a pseudorandom
generator as sub-routines. Given that puncturable pseudorandom functions and pseudorandom
generators can be based on any one-way function in a fully black-box manner, from our perspective
such a circuit is a polynomial-size oracle-aided circuit Cf – which can be obfuscated using iO (we
refer to reader to [AS15, Sec. 4.6] for an in-depth technical treatment).

This reasoning extends to various variants of the punctured programming approach by Sahai
and Waters [SW14], and in particular fully captures the construction of a trapdoor permutation
family from a one-way function and an indistinguishability obfuscator due to Bitansky, Paneth
and Wichs [BPW15]. As noted in [AS15], this approach does not capture constructions that rely
on the obfuscator itself in a non-black-box manner (e.g., [BP15])3, or constructions that rely on
zero-knowledge techniques and require using NP reductions4.

The oracle. Our first result is obtained by presenting an oracle Γ relative to which the following
two properties hold: (1) there is no domain-invariant one-way permutation family, and (2) there
exist an exponentially-secure one-way function f and an exponentially-secure indistinguishability
obfuscator iO for the class of all polynomial-size oracle-aided circuits Cf . Our oracle is quite
intuitive and consists of three functions: (1) a random function f that will serve as the one-way

3With the exception of obfuscating a function that may invoke an indistinguishability obfuscator in a black-box
manner. This is captured by our approach – see [AS15, Sec. 3.1].

4Such techniques are captured by the work of Brakerski et al. [BKS+11], and we leave it as an intriguing open
problem to see whether the two approaches for capturing non-black-box techniques can be unified.
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function, (2) a random injective length-increasing function O that will serve as the obfuscator (an
obfuscation of an oracle-aided circuit C is a “handle” O(C, r) for a uniformly-chosen string r), and
(3) a function Eval that enables evaluations of obfuscated circuits (Eval has access to both f and
O): Given a handle O(C, r) and an input x, it “finds” C and returns Cf (x). We refer the reader to
Section 3.2 for more details.

The vast majority of our effort is in showing that relative to Γ there is no domain-invariant one-
way permutation family. Specifically, as for the second part, our oracle Γ is somewhat similar to the
oracle introduced by [AS15], relative to which they proved the existence of an exponentially-secure
one-way function and an exponentially-secure indistinguishability obfuscator (see Section 3.2 for the
differences between the oracles).

In the remainder of this section we first provide a high-level overview of Rudich’s attack on any
single domain-invariant permutation in the random-oracle model. Inspired by this attack, in Sections
1.3.3 and 1.3.4 we explain the main challenges in extending Rudich’s attack to domain invariant
constructions relative to our oracle, and to non-domain invariant constructions in the random-oracle
model. We again refer the reader to Figure 1 which summarizes our characterization of the feasible
constructions.

1.3.2 Warm-up: Rudich’s Attack in the Random-Oracle Model

Following [Rud88, KSS11, MM11] we show that for any oracle-aided polynomial-time algorithm P ,
if P f implements a permutation over the same domain D for all functions f (i.e., P is domain
invariant), then there exists an oracle-aided algorithm A that for any function f inverts P f with
probability 1 by querying f for only a polynomial number of times. The algorithm A is given
some string y∗ ∈ D and oracle access to f , and is required to find the unique x∗ ∈ D such that
P f (x∗) = y∗. It first initializes a set of queries/answers Q, which will contain the actual queries
made by A to the true oracle f . It repeats the following steps polynomially many times:

1. Simulation: A finds an input x′ ∈ D and a set of oracle queries/answers f ′ that is consistent
with Q (i.e., f ′(w) = f(w) for every w ∈ Q) such that P f

′
(x′) = y∗.

2. Evaluation: A evaluates P f (x′) (i.e., evaluation with respect to the true oracle f). If the
output is y∗, it terminates and outputs x′.

3. Update: A asks f for all queries in f ′ that are not in Q, and updates the set Q.

The proof relies on the following observation: In each iteration, either (1) A finds the pre-image
x∗ such that P f (x∗) = y∗ or (2) in the update phase, A queries f with at least one new query that
is also made by P during the computation of P f (x∗) = y∗.

Intuitively, if neither of the above holds, then we can construct a “hybrid” oracle f̃ that behaves
like f in the evaluation of P f (x∗) = y∗ and behaves like f ′ in the evaluation of P f

′
(x′) = y∗.

This hybrid oracle can be constructed since the two evaluations P f
′
(x′) and P f (x∗) have no further

intersection queries rather than the queries which are already in Q. According to this hybrid oracle

f̃ it holds that P f̃ (x′) = P f̃ (x∗) = y∗ but yet x∗ 6=x′, and thus relative to f̃ the value y∗ has two
pre-images, in contradiction to the fact that P always implements a permutation. Using this claim,
since there are only polynomially many f -queries in the evaluation of P f (x∗) = y∗, the algorithm
A must output x∗ after a polynomial number of iterations (more specifically, after at most q + 1
iterations, where q is the number of oracle gates in the circuit P ).

1.3.3 Attacking Domain-Invariant Permutation Families Relative to Our Oracle

We extend the attack described above in two different aspects. First, we rule out constructions
of domain-invariant permutation families and not just a single permutation. Second, we extend
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the attack to work relative to our oracle, which is a significantly more structured oracle than a
random oracle and therefore raises new technical challenges. Indeed, by the discussion in Section
1.3.1, relative to our oracle there exists a non-domain-invariant construction of one-way permutation
family [BPW15]. This mere fact represents the subtleties we have to deal with in our setting. In
the following overview we focus our attention on the challenges that arise due to the structure of
our oracle, as these are the most important and technically challenging ones.

Recall that our oracle Γ consists of three different oracles: A length-preserving function f , an
injective length-increasing function O, and an “evaluation” oracle Eval that depends on both f
and O. We now sketch the challenges that these oracles introduce. The first challenge is that
the evaluation oracle Eval is not just a “simple” function. This oracle performs (by definition)
exponential time computations (e.g., an exponential number of queries to f and O) which may give
immense power to the construction P . Specifically, unlike in Rudich’s case, here it is no longer true
that the computation PΓ(x∗) performs a polynomial number of oracle queries (although P itself is
of polynomial size). The second challenge is that since the oracle Eval depends on both f and O,
each query to Eval determines many other queries to f and O implicitly, which we need to make
sure that they are considered in the attack. Specifically, given the structured dependencies between
f , O and Eval, in some cases it may not be possible to construct a hybrid oracle even if there are
no more intersection queries (in Rudich’s case a hybrid oracle always exists).

Finally, the third challenge is the fact that O is injective, which causes the following problem
(somewhat similar to [MM11]). In our case, we are forced to assume that PΓ is a permutation only
when O is an injective length-increasing function and not just any arbitrary function as in Rudich’s
case (as otherwise our obfuscator may not preserve functionality). Therefore, when constructing the
hybrid oracle Õ, we must ensure that it is also injective in order to reach a contradiction. However,
the hybrid oracle Õ might be non-injective when there is some overlap between the images of the
true oracle O and the sampled oracle O′ on elements that are not in Q.

We revise the attack and its analysis to deal with the above obstacles. As in Rudich’s attack, the
algorithm A considers the collection of all oracles that are consistent with Q. However, for dealing
with the third challenge, it then chooses one of these oracles uniformly at random and does not pick
just an arbitrarily one as in Rudich’s attack. We then show that with all but an exponentially-small
probability, there is no overlap between the range of the sampled oracle O′ and the true oracle
O, and therefore the hybrid oracle Õ can almost always be constructed in an injective manner.
Then, dealing with the first challenge, we show that Eval does not give P a significant capability
as one may imagine. Intuitively, this is due to the fact that O is length increasing, and therefore
its range is very sparse. As a result, it is hard to sample a valid image of O without first querying
it, and almost any Eval query can be simulated by the construction P itself. Finally, due to the
dependencies between the oracles, for dealing with the second challenge, the algorithm A will have
to sample additional, carefully-chosen, queries that do not necessarily appear in the evaluations
PΓ(x∗) = y∗ or PΓ′(x′) = y∗, but are related to the set of queries that appears in these evaluations.
This results in a rather involved proof, where we carefully define this set of queries, and extend the
analysis accordingly.

1.3.4 Attacking Non-Domain-Invariant Permutation Families in the Random-Oracle
Model

At a first sight, it seems that a natural approach towards ruling out non-domain-invariant families
relative to a random oracle, is to reduce them to the case a single permutation. That is, the
adversary receives some index α of some permutation in the family, together with the challenge
element y∗ ∈ Dfα which it needs to invert (note that now the respective domain Dfα may depend on
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both f and α). A natural approach is to apply Rudich’s attack to the single permutation P f (α, ·).
However, this approach seems somewhat insufficient due to the following reasons. First, since the

construction is not domain invariant, the set of valid indices depends on the underlying primitive,
and the set of valid indices for the true oracle f may be completely different than the set of valid
indices for the oracle f ′ that will be sampled by A in each iteration (e.g., α might even not be a
valid index with respect to the sampled f ′).

Second, when A inverts y∗ relative to f ′, it may be that the pre-image x′ that it finds is not
even in the domain Dfα of the permutation P f (α, ·) that it needs to invert. That is, it may be that
even when the index α is valid relatively to both f and f ′, the domain of the permutation indexed
by α relative to f is completely different than the domain relative to f ′. One can try restricting A
to sampling x′ from the domain Dfα, but conditioning on P f

′
(α, x′) = y∗ it is not clear that such an

x′ even exists (and, even if it exists, A would typically need an exponential number of queries to f

for finding it – since A has no “simple” representation of the sets Dfα and Df
′
α ).

Finally, even when x′ is the pre-image of y∗ relative to f ′ and x∗ is the pre-image of y∗ relative
to f , we have no guarantee that neither x′ or x∗ are even in the domain of the permutation indexed
by α when considering the hybrid oracle f̃ . Therefore, the fact that P f (α, x∗) = P f

′
(α, x′) and

x∗ 6= x′ may not indicate any contradiction.
In Section 4 we show how to overcome these obstacles. Intuitively, when sampling some function

f ′ and the element x′, the algorithm A samples in addition two “certificates” that ensure that α is
a valid index relative to f ′, and that x′ is in the respective domain. We later use these certificates
when defining the hybrid function f̃ , and thus ensure that α is a valid index relative to f̃ and that x′

is in the respective domain. Similarly, relative to the true oracle f , there exist some other certificates
(which are unknown to A), that ensure that α and x∗ are valid, and are considered as well when
defining the hybrid f̃ . Only then we can conclude the desired contradiction.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the cryptographic
primitives under consideration in this paper, oracle-aided one-way permutation families and indis-
tinguishability obfuscation for oracle-aided circuits, as well as some standard notation. In Section 3
we present our negative result for constructing domain-invariant one-way permutation families from
indistinguishability obfuscation and one-way functions. Then, in Section 4 we present our negative
result for constructing one-way permutation families from one-way functions.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function negl :
N→ R+ is negligible if for every constant c > 0 there exists an integer Nc such that negl(n) < n−c

for all n > Nc. Throughout the paper, we denote by n the security parameter.

2.1 Oracle-Aided One-Way Permutation Families

We consider the standard notion of a one-way permutation family (see, for example, [Gol01]) when
naturally generalized to the setting of oracle-aided algorithms (as required within the context of
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black-box reductions [IR89, RTV04]). We start by formalizing the notion of an oracle-aided permu-
tation family, and then introduce the standard one-wayness requirement.

Definition 2.1. Let (Gen,Samp,P) be a triplet of oracle-aided polynomial-time algorithms. We
say that (Gen, Samp,P) is an oracle-aided permutation family relative to an oracle Γ if the following
properties are satisfied:

• Index sampling: GenΓ(·) is a probabilistic algorithm that takes as input the security param-
eter 1n and produces a distribution over indices α. For every n ∈ N we denote by IΓ

n the

support of the distribution GenΓ(1n), and we let IΓ def
=
⋃
n∈N IΓ

n .

• Input sampling: SampΓ(·) is a probabilistic algorithm that takes as input an index α ∈ IΓ,
and produces a uniform distribution over a set denoted DΓ

α.

• Permutation evaluation: For any index α ∈ IΓ, PΓ(α, ·) is a deterministic algorithm that
computes a permutation over the set DΓ

α.

Definition 2.2. An oracle-aided permutation family (Gen, Samp,P) is one way relative to an oracle
Γ if for any probabilistic polynomial-time algorithm A there exists a negligible function negl(·) such
that

Pr
[
AΓ(α,PΓ(α, x)) = x

]
≤ negl(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of α ← GenΓ(1n),
x← SampΓ(α), and over the internal randomness of A.

2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits

We consider the standard notion of indistinguishability obfuscation [BGI+12, GGH+13] when nat-
urally generalized to oracle-aided circuits (i.e., circuits that may contain oracle gates in addition to
standard gates). We first define the notion of functional equivalence relative to a specific function
(provided as an oracle), and then we define the notion of an indistinguishability obfuscation for a
class of oracle-aided circuits. In what follows, when considering a class C = {Cn}n∈N of oracle-aided
circuits, we assume that each Cn consists of circuits of size at most n.

Definition 2.3. Let C0 and C1 be two oracle-aided circuits, and let f be a function. We say that
C0 and C1 are functionally equivalent relative to f , denoted Cf0 ≡ C

f
1 , if for any input x it holds that

Cf0 (x) = Cf1 (x).

Definition 2.4. A probabilistic polynomial-time algorithm iO is an indistinguishability obfuscator
relative to an oracle Γ for a class C = {Cn}n∈N of oracle-aided circuits if the following conditions
are satisfied:

• Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ(1n, C)

]
= 1.

• Indistinguishability. For any probabilistic polynomial-time distinguisher D = (D1, D2) there
exists a negligible function negl(·) such that

AdviOΓ,iO,D,C(n)
def
=

∣∣∣∣Pr
[
ExpiOΓ,iO,D,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpiOΓ,iO,D,C(n) is defined via the
following experiment:
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1. b← {0, 1}.
2. (C0, C1, state)← DΓ

1 (1n) where C0, C1 ∈ Cn and CΓ
0 ≡ CΓ

1 .

3. Ĉ ← iOΓ(1n, Cb).

4. b′ ← DΓ
2 (state, Ĉ).

5. If b′ = b then output 1, and otherwise output 0.

3 Impossibility for Constructions Based on iO and One-Way Functions

In this section we present our negative result for domain-invariant constructions of a one-way permu-
tation family from from a one-way function and an indistinguishability obfuscator. In section 3.1 we
formally define the class of constructions to which our negative result applies. Then, in section 3.2
we present the structure of our proof, which is provided in Sections 3.3–3.5.

3.1 The Class of Constructions

We consider fully black-box constructions of a one-way permutation family from a one-way func-
tion f and an indistinguishability obfuscator for all oracle-aided circuits Cf . Following [AS15],
we model these primitives as two independent building blocks due to the following reasons. First,
although indistinguishability obfuscation is known to imply one-way functions under reasonable
assumptions [KMN+14], this enables us to prove an unconditional result. Second, and more impor-
tantly, this enables us to capture the common techniques that have been used so far in constructions
based on indistinguishability obfuscation. As discussed in Section 1.3.1, these include, in particular,
non-black-box techniques such as the punctured programming approach of Sahai and Waters [SW14]
and its variants.

We now formally define the class of constructions considered in this section, tailoring our defi-
nitions to the specific primitives under consideration. We remind the reader that two oracle-aided
circuits, C0 and C1, are functionally equivalent relative to a function f , denoted Cf0 ≡ C

f
1 , if for any

input x it holds that Cf0 (x) = Cf1 (x) (see Definition 2.3). The following definition is based on those
of [AS15] (which, in turn, are motivated by [Lub96, Gol00, RTV04]).

Definition 3.1. A fully black-box construction of a one-way permutation family from a one-way
function and an indistinguishability obfuscator for the class C = {Cn}n∈N of all polynomial-size
oracle-aided circuits, consists of a triplet of oracle-aided probabilistic polynomial-time algorithms
(Gen, Samp,P), an oracle-aided algorithm M that runs in time TM (·), and functions εM,1(·) and
εM,2(·), such that the following conditions hold:

• Correctness: For any function f and for any function iO such that iO(C; r)f ≡ Cf for all
C ∈ C and r ∈ {0, 1}∗, the triplet (Gen,Samp,P) is a permutation family relative to the oracle
(f, iO) (as in Definition 2.1).

• Black-box proof of security: For any function f , for any function iO such that iO(C; r)f ≡
Cf for all C ∈ C and r ∈ {0, 1}∗, for any oracle-aided algorithm A that runs in time TA =
TA(n), and for any function εA = εA(n), if

Pr
[
Af,iO(α,Pf,iO(α, x)) = x

]
≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of α ←
Genf,iO(1n), x← Sampf,iO(α), and over the internal randomness of A, then either

Pr
[
MA,f,iO (f (x)) ∈ f−1(f(x))

]
≥ εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n)
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for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M , or∣∣∣∣Pr

[
ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n)

for infinitely many values of n ∈ N (see Definition 2.4 for the description of the experiment
ExpiO(f,iO),iO,MA,C(n)).

The “security loss” functions. Black-box constructions are typically formulated with a reduc-
tion algorithm M that runs in polynomial time and offers a polynomial security loss. In our setting,
as we are interested in capturing constructions that may be based on super-polynomial security
assumptions, we allow the algorithm M to run in arbitrary time TM (n) and to have an arbitrary
security loss.

In general, the security loss of a reduction is a function of the adversary’s running time TA(n),
of its success probability εA(n), and of the security parameter n ∈ N. Following Luby [Lub96]
and Goldreich [Gol00], we simplify the presentation by considering Levin’s unified security measure
TA(n) · ε−1

A (n). Specifically, our definition captures the security loss of a reduction by considering an
“adversary-dependent” security loss εM,1(TA(n) · ε−1

A (n)), and an “adversary-independent” security
loss εM,2(n). By considering arbitrary security loss functions, we are indeed able to capture construc-
tions that rely on super-polynomial security assumptions. For example, in the recent construction
of Bitansky et al. [BPW15] (and in various other recent constructions based on indistinguishability
obfuscation), the adversary-dependent loss is polynomial whereas the adversary-independent loss is
sub-exponential5.

Domain-invariant constructions. We now define the notion of domain invariance which allows
us to refine the above class of constructions. Recall that for an oracle-aided permutation family
(Gen,Samp,P) and for any oracle Γ, we denote by IΓ

n the support of the distribution GenΓ(1n) for

every n ∈ N, and we let IΓ def
=
⋃
n∈N IΓ

n (i.e., IΓ is the set of all permutation indices). In addition,
for any permutation index α ∈ IΓ we denote by DΓ

α the domain of the permutation PΓ(α, ·).

Definition 3.2. An oracle-aided one-way permutation family (Gen,Samp,P) is domain invariant
relative to a set S of oracles if there exist sequences {In}n∈N and {Dα}α∈I such that for every oracle
Γ ∈ S the following conditions hold:

1. IΓ
n = In for every n ∈ N (i.e., a permutation index α is either valid with respect to all oracles

in S or invalid with respect to all oracles in S).

2. DΓ
α = Dα for every α ∈

⋃
n∈N In (i.e., the domain of PΓ(α, ·) is the same for all Γ ∈ S).

3.2 Proof Overview and the Oracle Γ

Our result in this section is obtained by presenting a distribution over oracles Γ relative to which
the following two properties hold: (1) there is no domain-invariant one-way permutation family
(Gen, Samp,P), and (2) there exist an exponentially-secure one-way function f and an exponentially-
secure indistinguishability obfuscator iO for the class of all polynomial-size oracle-aided circuits
Cf . Equipped with the notation and terminology introduced in Section 3.1, we prove the following
theorem:

5This is also the situation, for example, when using “complexity leveraging” for arguing that any selectively-secure
identity-based encryption scheme is in fact adaptively secure.
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Theorem 3.3. Let (Gen,Samp,P,M, TM , εM,1, εM,2) be a fully black-box domain-invariant construc-
tion of a one-way permutation family from a one-way function f and an indistinguishability obfus-
cator for the class of all polynomial-size oracle-aided circuits Cf . Then, at least one of the following
propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/4 for some constant c > 1 (i.e., the security loss is exponential).

In particular, the theorem implies that if the running time TM (·) of the reduction is sub-
exponential and the adversary-dependent security loss εM,1(·) is polynomial as in the vast majority
of constructions (and, in particular, as in the construction of Bitansky et al. [BPW15]), then the
adversary-independent security loss εM,2(·) must be exponential (thus ruling out even constructions
that rely on sub-exponential security assumptions – as discussed in Section 3.1).

In what follows we describe the oracle Γ (more accurately, the distribution over such oracles),
and then explain the structure of our proof.

The oracle Γ. The oracle Γ is a triplet
(
f,O,Evalf,O

)
that is sampled from a distribution S

defined as follows:

• The function f = {fn}n∈N. For every n ∈ N, the function fn is a uniformly chosen function
fn : {0, 1}n → {0, 1}n.
Looking ahead, we will prove that f is a one-way function relative to Γ.

• The functions O = {On}n∈N and Evalf,O = {Evalf,On }n∈N. For every n ∈ N the function
On is an injective function On : {0, 1}2n → {0, 1}10n chosen uniformly at random. The function
Evalf,On on input (Ĉ, x) ∈ {0, 1}10n × {0, 1}n finds the unique pair (C, r) ∈ {0, 1}n × {0, 1}n
such that On(C, r) = Ĉ, where C is an oracle-aided circuit and r is a string (uniqueness is
guaranteed since On is injective). If such a pair exists, it evaluates and outputs Cf (x), and
otherwise it outputs ⊥.
Looking ahead, we will use O and Eval for realizing an indistinguishability obfuscator iO
relative to Γ for the class of all polynomial-size oracle-aided circuits Cf .

The structure of our proof. Our proof consists of two parts: (1) showing that relative to Γ
there is no domain-invariant one-way permutation family, and (2) showing that relative to Γ the
function f is an exponentially-secure one-way function and that the pair (O,Eval) can be used for
implementing an exponentially-secure indistinguishability obfuscator for oracle-aided circuits Cf .

The vast majority of our effort in this proof is in showing that relative to Γ there is no domain-
invariant one-way permutation family. Specifically, as for the second part, our oracle Γ is some-
what similar to the oracle introduced by [AS15], relative to which they proved the existence of
an exponentially-secure one-way function and an exponentially-secure indistinguishability obfusca-
tor. The main difference between the oracles is that the function O in their case is a permutation,
whereas in our case it is an injective length-increasing function. Since our aim here is to rule out
constructions of one-way permutations, then clearly we cannot allow O to be a permutation. This
requires us to revisit the proof of [AS15] and generalize it to the case where O is injective and length
increasing.

In what follows, we say that an algorithm A that has oracle access to Γ is a q-query algorithm if
it makes at most q queries to Γ, and each of its queries to Eval consists of a circuit of size at most
q (see Definition 3.12).
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Part 1: Inverting any domain-invariant construction. Building upon and generalizing the
work of Rudich [Rud88], we show that relative to the oracle Γ there are no domain-invariant one-way
permutations families. As discussed in Section 1.3.2, Rudich presented an attacker that inverts any
single domain-invariant permutation that has oracle access to a random function. Here we need
to deal with constructions that have oracle access to a significantly more structured functionality6,
and that are permutation families. Nevertheless, inspired by the main ideas underlying Rudich’s
attacker we prove the following theorem in Section 3.3:

Theorem 3.4 (simplified). Let (Gen, Samp,P) be an oracle-aided domain-invariant permutation
family. Then, there exist a polynomial q(·) and a q-query algorithm A such that

Pr
[
AΓ(α,PΓ(α, x)) = x

]
≥ 1− 2−10

for any n ∈ N, where the probability is taken over the choice of Γ ← S, α ← GenΓ(1n), x ←
SampΓ(α), and over the internal randomness of A. Moreover, the algorithm A can be implemented
in polynomial time given access to a PSPACE-complete oracle.

Part 2: The existence of a one-way function and an indistinguishability obfuscator. As
discussed above, by refining the proof of [AS15] we prove that f is an exponentially-secure one-way
function relative to Γ, and we construct an exponentially-secure indistinguishability obfuscator iO.
Our obfuscator is defined as follows: For obfuscating an oracle-aided circuit C ∈ {0, 1}n (i.e., we
denote by n = n(C) the bit length of C’s representation), the obfuscator iO samples r ← {0, 1}n
uniformly at random, computes Ĉ = On(C, r), and outputs the circuit Eval(Ĉ, ·). That is, the
obfuscated circuit consists of a single Eval gate with hardwired input Ĉ. We prove the following
theorem in Sections 3.4 and 3.5:

Theorem 3.5 (simplified). For any oracle-aided 2n/4-query algorithm A it hold that

Pr
[
AΓ(f(x)) ∈ f−1(f(x))

]
≤ 2−n/2 and

∣∣∣∣Pr
[
ExpiOΓ,iO,A,C(n) = 1

]
= 1− 1

2

∣∣∣∣ ≤ 2−n/4

for all sufficiently large n ∈ N, where the probability is taken over the choice of Γ← S and internal
randomness of A for both cases, in addition to the choice of x← {0, 1}n in the former case and to
the internal randomness of the challenger in the latter case.

3.3 Attacking Domain-Invariant Permutation Families Relative to Γ

We show that relative to the oracle Γ there are no domain-invariant one-way permutations families.
As discussed in Section 1.3.2, Rudich presented an attacker that inverts any single domain-invariant
permutation that has oracle access to a random function. Here we need to deal with constructions
that have oracle access to a significantly more structured functionality. We prove the following
theorem:

Theorem 3.6. Let (Gen, Samp,P) be an oracle-aided permutation family that is domain invariant
relative to the support of the distribution S. Then, there exist a polynomial q(·) and a q-query
algorithm A such that

Pr
[
AΓ(α,PΓ(α, x∗)) = x∗

]
≥ 1− 2−10

6For example, there are dependencies between O, Eval and f which allow Eval to query O for a exponential number
of times.
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for any n ∈ N, where the probability is taken over the choice of Γ ← S, α ← GenΓ(1n), x∗ ←
SampΓ(α), and over the internal randomness of A. Moreover, the algorithm A can be implemented
in polynomial time given access to a PSPACE-complete oracle.

We first provide additional notation definitions that we require for the proof of the above theorem,
and then we provide its formal proof.

The event spoof. The event spoof will help up show that the oracle Eval does not provide the
construction with any significant capabilities. We formally define this event and then state an
important claim that will help up to prove our theorem.

Definition 3.7. For any oracle-aided algorithm M , consider the following event spoofn that may
occur during an execution of MΓ(1n): The algorithm makes a query Evaln(Ĉ, a) with |Ĉ| = 10n
whose output is not ⊥, yet Ĉ was not an output of a previous On-query.

In Section 3.5 we prove the following claim:

Claim 3.8. For any n ∈ N, for any f and O−n = {Om}m∈N,m 6=nm and for any q-query algorithm
M , the probability that spoofn occurs in an execution of MΓ(1n) satisfies

Pr
On

[ spoofn ] ≤ q · 2−8n .

Notation. Denote by T the support of the distribution S from which our oracle Γ = (f,O,Evalf,O)
is sampled. Note that the oracle Eval is fully determined given f and O, and therefore it is enough
to consider the choice of the latter only. For every n ∈ N we let In denote the support of GenΓ(1n),
which is the same for every Γ ∈ T due to the domain invariant assumption, and we let I =

⋃
n∈N In.

In addition, we let D = {Dα}α∈I be the set of domains (which is again to same for any Γ ∈ T .
We let Partial(Γ′) denote the set of oracle queries that our adversary A will sample in each

iteration. We let Q denote the set of actual queries that made by A to the true oracle Γ. We write,
e.g., [On(C, r) = Ĉ] ∈ Q to denote that Q contains an On-query with input (C, r) and output Ĉ.
Likewise, [fn(x) = y] ∈ Partial(Γ′) denotes that there is some fn query in Partial(Γ′) with input x and
output y. We also use the symbol ? to indicate an arbitrary value, for instance [Eval(Ĉ, a) = ?] ∈ Q
denotes that A made an Eval call to Γ on the pair (Ĉ, a), but we are not interested in the value that
was returned by the oracle.

The set of queries/answers that the adversary samples. Our adversary A will sample in
each iteration some oracle queries/answers Partial(Γ′) = (f ′,O′,Eval′) that are consistent with the
actual queries Q it made so far. However, since the oracles (f,O,Eval) have some dependencies, we
want that these dependencies will appear explicitly in the set of queries/answers that the adversary
samples (looking ahead, by doing so, we will be able to construct a hybrid oracle Γ̃). Formally, we
define:

Definition 3.9 (Consistent oracle queries/answers). Let Partial(Γ′) = (f ′,O′,Eval′) be a set of
queries/answers. We say it is consistent if for every m ∈ N it holds that:

1. For every query
[
Evalm(Ĉ, ?) = ?

]
∈ Eval′, there exists a query

[
Om(?) = Ĉ

]
∈ O′.

2. For every query
[
Evalm(Ĉ, a) = β

]
∈ Eval′ with |Ĉ| = 10m and |a| = m, let

[
Om(C, r) =

Ĉ
]
∈ O′ that is guaranteed to exist by the previous requirement. Then, the oracle f ′ contains

also queries/answers sufficient for the evaluation of Cf
′
(a), and the value of this evaluation

is indeed β.
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Augmented oracle queries. For the analysis, we consider the queries that are associated with
the execution of PΓ(α, x∗) = y∗, for some α ∈ I. In fact, the set that we consider may contain
some additional queries that do not necessarily appear in the execution of PΓ(α, x∗), but are still
associated with this execution. Let RealQ(Π,Γ, α, x∗) denote the set of actual queries to Γ in the
evaluation of PΓ(α, x∗). We define:

Definition 3.10 (Augmented oracle queries). The set of extended queries, denoted AugQ(Π,Γ, x∗),
consists of the following queries:

1. All the queries in RealQ(Π,Γ, α, x∗).

2. For every query [Evalm(Ĉ, a) = β] ∈ RealQ(Π,Γ, α, x∗) with |Ĉ| = 10m, |a| = m and b 6= ⊥,
let C, r ∈ {0, 1}m be the unique pair such that Om(C, r) = Ĉ. Then, the set AugQ(Π,Γ, x∗)
contains all the f -queries/answers sufficient to for the evaluation of Cf (a).

Note that these additional queries correspond to the consistent oracle queries/answers that
the adversary samples in the attack, as in Definition 3.9. We do not explicitly require the first
requirement of Definition 3.9 here. This is because our analysis focuses on the case where there is
no Eval query on an obfuscated circuit Ĉ that is not an output of a previous O-query.

Looking ahead, all the circuits that will be evaluated by the oracle Eval are of some polynomial
size in the security parameter,and therefore each evaluation adds some polynomial number of oracle
queries to f . Therefore, the overall size of AugQ(Π,Γ, x∗) is some polynomial. Let ` = `(n) > n be
an upper bound of |AugQ(P, Γ̃, x)| for all possible Γ̃ ∈ T and all x ∈ Dα.

Equipped with the above notation and definitions, we are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Let Π = (Gen,Samp,P) be an oracle-aided permutation family that is
domain invariant relative to the support of the distribution S. Consider the following oracle-aided
algorithm A:

The algorithm A.

• Input: An index α ∈ I and a value y∗ ∈ Dα.

• Oracle access: The oracle Γ.

• The algorithm:

1. Initialize an empty list Q of oracle queries/answers to Γ (looking ahead, the list Q will
always be consistent with the true oracle Γ).

2. Avoiding spoofm for small m. Let t = log(16`). The adversary A queries the oracle
fm on all inputs |x| = m for all m ≤ t. It queries Om(C, r) for all |C| = |r| = m ≤ t;
and queries Evalm(Ĉ, a) on all m ≤ t with |Ĉ| = m/10 and |a| = m. Denote this set of
queries by Q∗.

3. Run the following for `+ 1 iterations:
(a) Simulation phase: A finds a value x′ ∈ Dα and a set Partial(Γ′) of consistent

oracle queries/answers that is consistent with the list of queries/answers Q, such
that PPartial(Γ′)(α, x′) = y∗ as follows: 7

i. A samples an oracle Γ′ = (f ′,O′,Eval′) uniformly at random from the set of all
oracles that are consistent with Q. That is, f ′ and O′ are sampled uniformly at
random conditioned on Q, and then Eval′ is defined accordingly.

7Note that the set of queries/answers Partial(Γ′) may be inconsistent with the true oracle Γ on all queries Partial(Γ′)\
Q.
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ii. A inverts y∗ relative to Γ′. Specifically, A enumerates over Dα and find the
unique input x′ ∈ Dα for which PΓ′(α, x′) = y∗.

iii. A sets Partial(Γ′) to be all the queries in Q, and all the queries included in the
evaluation of PΓ′(α, x′).

(b) Evaluation phase: The adversary evaluates PΓ(α, x′). If the output of the evalua-
tion is y∗, it halts and outputs x′.

(c) Update phase: Otherwise, A makes all the queries in Partial(Γ′) \ Q to the true
oracle Γ, and continues to the next iteration.

4. In case the adversary has not halted yet, it outputs ⊥.

Analysis. We show that in each iteration the adversary either finds x∗ or learns some query
associated with the evaluation PΓ(α, x∗). We now define these two “bad” events and show that they
occur with small probability. We then proceed to the analysis conditioned that these two bad events
do not occur.

The event spoof. For any m ∈ N, define spoofm to be the event where[
Evalm(Ĉ, a) 6= ⊥

]
∈ AugQ(Π,Γ, x∗), but

[
Om(?, ?) = Ĉ

]
6∈ AugQ(Π,Γ, x∗) ∪Q∗ .

Let spoofΓ =
∨
m spoofm. By construction, Q∗ contains all possible Om-queries for every m ≤ t,

and therefore spoofm cannot occur for m ≤ t. Moreover, by Claim 3.8, we have that

Pr [ spoofΓ ] ≤ Pr
[ ∨

mspoofm
]
≤
∞∑
m=t

Pr [ spoofm ] ≤
∞∑

m=log 16`

` · 2−8m ≤ 2 · ` · 2−8 log 16` ≤ 2−31 .

Let spoof ′m be the event where the adversaryA queries the real oracle Γ some query [Evalm(Ĉ, ?)],
receives a value differ than ⊥, but Ĉ was not an output of Γ on some previous query of A to Om.
Let spoofA =

∨
m spoof ′m. Similarly to the above, the probability of spoofA is bounded by 2−31.

Finally, we let spoof = spoofΓ ∨ spoofA, and this probability is bounded by 2−30.

The event fail. The second bad event that we consider is the event fail. This event occurs
whenever A samples an oracle Γ′ that has some contradiction with the oracle Γ, and therefore the
hybrid oracle Γ̃ cannot be constructed.

Let T (Q) be the set of all oracles Γ′ that are consistent with Q (namely, each query in Q is
answered the same for all Γ′ ∈ T (Q), with the same answer as Γ). In each iteration, the adversary A
samples the oracle Γ′ which is consistent with the true oracle queries Q. Let T -admissible denote the
set of “valid” oracles that A may sample; the set T -admissible contains all oracles Γ′ = (f ′,O′,Eval′)
such that:

• Γ′ is consistent with Q.

• Γ′ avoids the outputs of O. For every m ∈ N, the true oracle Om and the sampled oracle
O′m should have disjoint outputs (except for the queries in Q). Formally, let QOm = {x ∈
{0, 1}2m | [Om(x) = ?] ∈ Q}. Then, we require that for every x, y 6∈ QOm it holds that
Om(x) 6= O′m(y).

• Γ′ avoids invalid Eval-queries. That is, for every
[
Evalm(Ĉ, a) = ⊥

]
∈ AugQ(Π,Γ, x∗), with

|Ĉ| = 10m, for every C, r ∈ {0, 1}m it holds that O′m(C, r) 6= Ĉ.
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Notice that the first two conditions relate to the set of queries Q, whereas the third condition relates
to the set AugQ(Π,Γ, x∗). Moreover, note that the second condition defines 22m − |Q| outputs of
O′m that are invalid, and the third condition defines at most q invalid outputs. Therefore, there are
overall at most 22m outputs of O′m that are invalid.

Note that between iterations, the set Q varies. We define by Invalid-Im
(i)
m the set of all invalid

outputs for O′m, in the ith iteration. In all iterations, the set Invalid-Im
(i)
m is bounded by 22m.

Let fail
(i)
m denote the event where A samples an invalid oracle O′m in some iteration i. Let

fail(i) =
∨
m fail

(i)
m , and let fail =

∨
i fail

(i). For every m, we have that:

Pr
O′m

[
fail(i)m

]
= Pr

O′m

[
∃x ∈ {0, 1}2m s.t. O′m(x) ∈ Invalid-Im(i)

m

]
≤ 22m

210m − 22m −
∣∣∣Invalid-Im(i)

m

∣∣∣ ≤ 2−7m .

As a result, we get that the probability that sampling O fails for some length m > t is bounded by

Pr
O′

[
fail(i)

]
≤
∞∑
m=t

2−7m ≤ 2 · 2−7t .

We therefore conclude that the probability that in some of the ` + 1 iterations, the adversary A
samples some oracle Γ′ 6∈ T -admissible is bounded by

Pr [ fail ] ≤
`+1∑
i=1

Pr
[
fail(i)

]
≤ (`+ 1) · 2 · 2−7t = 2(`+ 1) ·

(
2−4 · `−1

)7 ≤ 2−20 .

We are now ready for the main claim of the analysis.

Claim 3.11. Assume that fail and spoof do not occur. Then, in every iteration at least one of the
following occurs:

1. A finds the pre-image x∗ such that PΓ(α, x∗) = y∗.

2. During the update phase A queries Γ with at least one of the queries in AugQ(Π,Γ, x∗).

Proof. Assume that neither one of the above conditions hold. Then, we show that there exists an

oracle Γ̃ ∈ T that behaves like the true oracle Γ on PΓ̃(α, x∗) = PΓ(α, x∗) = y∗, and on the other

hand, it behaves like Γ′ in the evaluation of PΓ̃(α, x′) = PPartial(Γ′)(α, x′) = y∗. According to this
oracle Γ̃, the following hold:

1. Since Π is a domain-invariant construction, and since Γ̃ ∈ T , there exists some randomness

r ∈ {0, 1}∗ such that GenΓ̃(1n; r) = α.

2. Since Π is a domain-invariant construction, it holds that Im(SampΓ̃(α)) = Im(SampΓ(α)) =
Im(SampPartial(Γ

′)(α)) = Dα. As a result, there exists some randomness r′ ∈ {0, 1}∗ such that

SampΓ̃(α; r′) = x′ and SampΓ̃(α; r∗) = x∗.

3. As mentioned above, PΓ̃(α, x′) = y∗ and PΓ̃(α, x∗) = y∗.

Since the first condition in the statement does not hold, we conclude that x′ 6= x∗ but still PΓ̃(α, x′) =

PΓ̃(α, x∗), in contradiction to the assumption that PΓ̃(α, ·) defines a permutation.

We now show that the oracle Γ̃ = (f̃ , Õ, Ẽval) as above can be constructed. Recall that we assume
that the both conditions of the statement of the claim do not hold, and therefore in particular it
holds that AugQ(Π,Γ, x∗) ∩ Partial(Γ′) ⊆ Q.
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The oracle f̃ . Note that for every m ≤ t, the set of queries Q∗ contains all the functions
{fm}m≤t and thus agrees completely with f (i.e., also with f ′). We therefore set f̃m = fm.

For every m > t, we define the function f̃m as follows. For every x such that [fm(x) = y′] ∈
AugQ(Π,Γ, x∗), we set f̃m(x) = y′. For every [fm(x) = y] ∈ Partial(Γ′), we set f̃m(x) = y. Since
AugQ(Π,Γ, x∗) ∩ Partial(Γ′) ⊆ Q, we have that there is no contradiction, i.e, there are no input x
and outputs y, y′ such that y 6=y′ and [fm(x) = y′] ∈ f ′ and [fm(x) = y] ∈ AugQ(Π,Γ, x∗). For any
other value x 6∈ Partial(Γ′) ∩ AugQ(Π,Γ, x∗), we set f̃m(x) = 0m.

Before we continue to define the oracle Õ, we first define some set of output values that Õ
will have to avoid. For every m > t, we define the set avoid-Om as

avoid-Om =
{
Ĉ ∈ {0, 1}10m | ∃ [Evalm(Ĉ, ?) = ?] ∈ AugQ(Π,Γ, x∗) ∪ Partial(Γ′)

}
.

The oracle Õ. The oracle is already defined for every m ≤ t. For every m > t, we define the
function Õm as follows. For every [Om(x) = y] ∈ AugQ(Π,Γ, x∗), we set Õm(x) = y. Likewise, for
every [Om(x) = y] ∈ Partial(Γ′), we set Õm(x) = y. Since AugQ(Π,Γ, x∗)∩ Partial(Γ′) ⊆ Q, we have
that there is no contradiction, that is, there is no pre-image that has two possible outputs. Moreover,
since fail does not occur, it holds that Γ′ ∈ T -admissible, the two functions Om and (the partially
defined function) O′m do not evaluate to the same output, and so the partially defined function Õm
is injective. We continue to define Õm on the additional values, such that Om is injective and avoids
the set avoid-Om.

The oracle Ẽval. We define the oracle Ẽval using the oracles f̃ and Õ exactly as the true
oracle Eval is defined using the true oracles f and O. We now show that Ẽval is consistent with
AugQ(Π,Γ, x∗) and Partial(Γ′). That is, that every query [Evalm(?, ?)] ∈ AugQ(Π,Γ, x∗)∪Partial(Γ′)
has the same answer with Ẽval, and therefore PΓ(α, x∗) = PΓ̃(α, x∗) and PΓ′(xα, x′) = PΓ̃(α, x′).
We have:

1. Assume that there exists [Eval(Ĉ, a) = β] ∈ Eval′ for some β 6= ⊥. Since the oracle Partial(Γ′) =
(f ′,O′,Eval′) is consistent (recall Definition 3.9), then there exists a query

[
Om(C, r) = Ĉ

]
∈

Partial(Γ′) and f ′ contains all the necessary queries/answers for the evaluation of Cf
′
(a), and

it also holds that Cf
′
(a) = β. However, since any (f ′,O′)-queries in Partial(Γ′) has the exact

same answer with (f̃ , Õ), it holds that C f̃ (a) = β and Õ(C, r) = Ĉ, and so, from the definition

of Ẽval it holds that Ẽval(Ĉ, a) = β as well.

2. Assume that there exists [Eval(Ĉ, a) = β] ∈ AugQ(Π,Γ, x∗) for some β 6= ⊥. Since spoof does
not occur, there exists a query [O(C, r) = Ĉ] ∈ AugQ(Π,Γ, x∗) as well, and AugQ(Π,Γ, x∗)
contains also all the f -queries necessary for the evaluation Cf (a). Since these queries appear in

AugQ(Π,Γ, x∗), it holds that f̃ and Õ agree on the same queries, and therefore Ẽval(Ĉ, a) = β,
as well.

3. For every query [Eval(Ĉ, a) = ⊥] ∈ Partial(Γ′) ∪ AugQ(Π,Γ, x∗) we show that Ẽval(Ĉ, a) = ⊥
as well. Specifically, it suffices to show that there do not exist C and r for which Õ(C, r) = Ĉ.
Assume towards a contradiction that there exist such C and r, then there is inconsistency only
if Õ(C, r) = Ĉ but [Eval(Ĉ, a) = ⊥] ∈ Partial(Γ′)∪AugQ(Π,Γ, x∗). However, this cannot occur
since the oracles O and O′ do not contradict, and Õ avoids all Eval-queries in both Partial(Γ′)
and AugQ(Π,Γ, x∗), since it avoids the set avoid-O.

This completes the proof of claim 3.11.
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From the previous claim we conclude that:

Pr
Γ←S

α←GenΓ(1n)

x∗←SampΓ(α)

[
AΓ(α,PΓ(α, x∗)) = x∗ | fail ∧ spoof

]
= 1 .

Since Pr [ fail ] + Pr [ spoof ] ≤ 2−10, it holds that:

Pr
Γ←S

α←GenΓ(1n)

x∗←SampΓ(α)

[
AΓ(α,PΓ(α, x∗)) = x∗

]
≥ 1− 2−10.

Finally, we observe that A makes at most a polynomial number of oracle queries to Γ, and all other
computations that are done by A can be done using a polynomial number of queries to a PSPACE-
complete oracle (as in the work of Impagliazzo and Rudich [IR89]): In each iteration, sampling x′

and Partial(Γ′) can be done in polynomial space, requires access only to Q which is of polynomial
size, and does not require access to Γ.

3.4 f is a One-Way Function Relative to Γ

In this section we prove that f is one way relative to the oracle Γ. This is a rather standard proof,
relying on the fact that each query to Eval leads to a bounded number of queries to f . We first define
the notion of a q-query algorithm, and then prove that f is one way relative to Γ for q(n) = 2Ω(n).

Definition 3.12. Let A be an oracle-aided algorithm that interacts with the oracle Γ. Then A is a
(qf , qO, qEval)-query algorithm if for every n ∈ N and for every input y ∈ {0, 1}n, the algorithm A(y)
makes at most qf (n) ,qO(n) and qEval(n) queries to the oracle f , O and Eval, respectively, and its
queries to Eval are with circuits of size at most qEval(n). In addition, A is a q-query algorithm if it
is (q, q, q)-query algorithm.

Claim 3.13. For any q-query algorithm A it holds that:

Pr
[
AΓ(fn(x)) ∈ f−1

n (fn(x))
]
≤ q(n)2

2n

for any n ∈ N, where the probability is taken over the choice of Γ ← S, x ← {0, 1}n, and over the
internal randomness of A.

Proof. We show that the claim in fact holds for any fixing of O and f−n = {fm}m∈N,m 6=n, where
the probability is taken over the choice of fn : {0, 1}n ← {0, 1}n and over the internal randomness
of A. An execution of a q-query algorithm A can be simulated using an adversary B that makes at
most q(n)2 oracle queries to fn, an unlimited number of queries to f−n and O, and no oracle queries
to Eval. Specifically, B follows the computation of AΓ(fn(x)) and responds to its oracle queries as
follows:

• Whenever A queries f or O, the algorithm B simply forwards the query and delivers back the
result.

• Whenever A queries Eval with some input (Ĉ, a) ∈ {0, 1}10m × {0, 1}m, for some m ∈ N, the
algorithm B enumerates over all possible pair (C, r) ∈ {0, 1}2m and check whether Om(C, r) =
Ĉ. If so, it evaluates the circuit Cf (a), which may lead to at most additional q queries to f
and returns the result to A. Otherwise, it returns ⊥ to A.

Since A is a q(n)-query algorithm, it makes (by definition) at most q(n) queries to fn and to Eval,
and each Eval query is bounded to circuits of size at most q(n). Therefore, B makes at most q(n)2

queries to fn. Since fn is a random function, any such B can outputs an inverse of fn(x) with
probability at most q(n)2/2n.
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3.5 iO is an Indistinguishability Obfuscator Relative to Γ

In this section we show that relative to Γ there exists an exponentially-secure indistinguishability
obfuscator iO for the class C of all polynomial-time oracle-aided circuits Cf . We first formally
describe the construction of the obfuscator, and then prove its security relative to Γ.

Construction 3.14. The (randomized) algorithm iO(C) is given as input an oracle-aided circuit
C (represented as n-bit string for some n ∈ N), chooses a random r ← {0, 1}n, and computes
On(C, r) = Ĉ. Then, it outputs the oracle-aided circuit Eval(Ĉ, ·).

Functionality. From the fact that O is an injective function, it is easy to see that the construction
always preserves the functionality of the underlying circuit C. That is, for any oracle-aided circuit
C and for any r ∈ {0, 1}∗ it holds that C and iO(C; r) are functionally equivalent with respect to
any function f .

Indistinguishability. Since the output of iO is a circuit consists of a single Eval-gate with some
hardwired value Ĉ, when proving indistinguishability of two obfuscated circuits, we show indistin-
guishability of these two hardwired values and ignore the wrapping Eval-gate (i.e., the wrapping
circuits). We prove the following theorem:

Theorem 3.15. For every n ∈ N and for every 2n/4-query algorithm A it holds that∣∣∣∣Pr
[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ 2−n/4,

where the probability is taken over the choice of Γ← S.

In fact, we show that the above holds for any fixing of the functions f and O−n = {Om}m∈N,m 6=n.
From this point and forward, we fix n ∈ N and the functions f,O−n.

The proof of Theorem 3.15 consists of two somewhat independent parts. First, in Section 3.5.1 we
show that the evaluation oracle Eval does not provide the adversary with any significant capabilities,
and it can almost always be simulated by the adversary itself. Specifically, since the output space
of the function On is much larger than its input space, the adversary should not be able to find a
valid output of On without querying it beforehand. As a result, with an overwhelming probability,
all queries to Eval on values that were not obtained from previous queries to On can be replied to
with ⊥.

Then, in Section 3.5.2, we show that the only way in which an adversary can obtain any advantage
in the experiment ExpiOΓ,iO,A,C(n) without accessing the evaluation oracle Eval is by “hitting” the
randomness r∗ used for generating the challenge obfuscated circuit in one of its O-queries. We then
show that since the adversary makes a bounded number of such queries (specifically, at most 2n/4),
the probability of hitting r∗ is very small.

3.5.1 Simulating the Evaluation Oracle Eval

The event spoof will help up show that the oracle Eval can be simulated by the adversary itself. We
formally define this event and then show that it occurs with very small probability. We have:

Definition 3.16. For any oracle-aided algorithm M , consider the following event spoofn that may
occur during an execution of MΓ(1n): The algorithm makes a query Evaln(Ĉ, a) with |Ĉ| = 10n
whose output is not ⊥, yet Ĉ was not an output of a previous On-query.
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We prove that for any q-query algorithm (recall Definition 3.12), the event spoofn occurs with
probability that in linear in q and inverse exponential in n.

Claim 3.17. For any n ∈ N, for any f and O−n = {Om}m∈N,m 6=n and for any q-query algorithm
M , the probability that spoofn occurs in an execution of MΓ(1n) satisfies

Pr
On

[ spoofn ] ≤ q · 2−8n .

Proof. Fix M,n, f and O−n. The input space of On is of size 22n whereas its output space is 210n.
Since On is chosen uniformly at random, there are at most 22n elements in the range On and these
are distributed uniformly in a space of size 210n. Any query to On reveals one point in the range of
On, but gives no information about other points in the range. Similarly, any Eval query may give
information regarding one point in the range of On, but nothing else. Therefore, the oracle queries
do not given significant information regarding the range of O, and an adversary cannot hit points
in the range without previous queries to O.

Formally, we follow the computation of MΓ(1n). During this computation, we store a table T of
oracle queries and answers for On, initialized to ∅. We now show that the oracle On can be chosen
during the computation of MΓ, where we reply to M ’s queries as follows:

• Each fn-query of M can be answered since this oracle is fixed and this does not trigger the
event spoofn.

• With each On query on some input (C, r) ∈ {0, 1}2n, we first check in T whether (C, r) was
queries before. If so - we answer the stored value in T . Otherwise, we choose a random output
Ĉ ∈ {0, 1}10n that does not appear in T .

• With each Evaln-query (Ĉ, a), with |Ĉ| = 10n and |a| = n, we check whether there exists a
valid pair ((C, r), Ĉ) ∈ T with (C, r) ∈ {0, 1}n × {0, 1}n, or an invalid pair (⊥, Ĉ) ∈ T .
If there does not exist such pairs, then we toss a coin α with probability pj = (22n − j)/210n

to be 1, where j is the number of valid pairs in T . If α = 1, we choose a uniformly random
(C, r) ∈ {0, 1}n×{0, 1}n such that (C, r) 6∈ T and add it to T . Otherwise, we store (⊥, Ĉ) ∈ T .
Now, in T there is a pre-image of Ĉ. If this pre-image is ⊥, we reply ⊥ to the adversary.
Otherwise, let (C, r) be the valid pre-image, and return the evaluation Cf (a) to the adversary.

Note that spoofn occurs whenever α = 1. With each Evaln query, this coin may be tossed at most
once. Since there are at most q queries overall, using union bound the probability that in one of the
queries α = 1 is bounded by:

Pr
On

[ spoofn ] ≤ q

28n
.

In what follows, recall that ExpiOΓ,iO,B,C(n) denotes the indistinguishability experiment associated

with the obfuscator iO and a distinguisher B (see Definition 2.4). We denote by ExpiOΓ,iO,B,C(n; b, r∗)
this experiment when using specific values b and r∗, where b is the bit chosen in step 1 of the
experiment, and r∗ is the randomness used by the algorithm iO to obfuscating the challenge circuit
in step 3.

In addition, we denote by Ẽxp
iO

Γ,iO,B,C(n; b, r∗) an execution of the experiment, where the distin-
guisher B has an oracle access to f ,O and Eval−n, but has no access to the oracle Evaln. We show
that if there exists an algorithm A that its advantage in the experiment ExpiOΓ,iO,A,C(n; b, r∗) is ε,
then there exists an algorithm B that does not use the oracle Evaln at all, and its advantage in the

experiment Ẽxp
iO

Γ,iO,B,C(n; b, r∗) is very close to ε.
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Claim 3.18. For every n ∈ N, if there exists a q-query algorithm A with q(n) ≤ 2n/2 such that∣∣∣∣∣ Pr
On,(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r∗) = 1

]
− 1

2

∣∣∣∣∣ > ε ,

then there exists a q2-query algorithm B that does not make any queries to Evaln, such that∣∣∣∣∣ Pr
On,(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1
]
− 1

2

∣∣∣∣∣ > ε− 2−7n .

Proof. Fix n. Given the algorithm A, we build an algorithm B that makes no oracle queries to
Evaln. As long as spoofn does not occur, all oracle queries to Evaln can be answered by the previous
queries to On and some additional fn-queries. We proceed with a formal description of B.

The algorithm B = (B1,B2). We show how to construct the algorithm B = (B1,B2) using
the algorithm A = (A1,A2). Recall that B1 participates in the experiment in Step 2 (before
the algorithm receives challenge), and B2 participates in the experiment in Step 4 (i.e., after the
algorithm receives the challenge).

The algorithm B1 is invoked on a security parameter 1n, it invokes A1 on the same input and
simulates all its oracle-queries as follows:

• Whenever A1 queries its f,O−n,Eval−n oracles, B1 just submits theses queries to its respective
own oracle and gives A the result.

• Whenever A1 makes an On query, B1 submits the query to its own On query, but sores the
query and the response.

• Whenever A1 makes an Evaln query (Ĉ, a) with |Ĉ| = 10n, the algorithm B1 looks whether
there was a previous query of On with output Ĉ. If there was such a query, let (C, r) be the
pre-image of On. It evaluates Cf (a) and replies A1 with the result (note that in order to
evaluate this circuit, B1 may perform some additional queries to f). If there was no such a
pair, then it replies with ⊥.

Whenever A1 outputs a pair of circuits (C0, C1) and state, the algorithm B1 outputs these same
values. When B2 receives the challenge obfuscated circuit Ĉ (and state), it submits them to the
algorithm A2, and continues to simulate its oracle queries as B1 answers A1 as above with the
following modification:

• Whenever A2 makes an Evaln query (Ĉ, a) where Ĉ is the challenge obfuscated circuit that

B has receives, the algorithm B2 evaluates Cf0 (a) and replies with this result. This is correct
since A is a valid algorithm that outputs two circuits C0, C1 that are functionally-equivalent.

When A2 outputs a bit b′, B2 outputs the same bit and halts.

Analysis. Clearly, the algorithm B makes no oracle queries to Evaln. Moreover, it makes the same
amount of oracle queries to On as A, but may make at most q2 queries to fn. Therefore, B is a
q2-query algorithm.

Assume that the event spoofn does not occur (where the machine M that we consider includes
the challenger and the algorithm A). Then, assuming that spoofn does not occur, an execution of B

21



without the oracle Evaln is equivalent to an execution of A with the oracle, where both adversaries
also have accesses to f,O−n,Eval−n. That is:

Pr
On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1 ∧ spoofn

]
= Pr

On

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r∗) = 1 ∧ spoofn

]

Moreover, we have that

Pr
[
ExpiOΓ,iO,A,C(n; b, r∗) = 1

]
≤ Pr

[
ExpiOΓ,iO,A,C(n; b, r∗) = 1 ∧ spoofn

]
+ Pr [ spoofn ] .

where the probability is taken over On and the choice (b, r∗) ← {0, 1}n+1. Since A makes at most
q(n) < 2n/2 oracle queries, from Claim 3.17 it holds that Pr [ spoofn ] ≤ 2−7n. We conclude:∣∣∣∣∣∣∣ Pr

On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > ε− 2−7n .

3.5.2 From Distinguishing to Hitting

In this section we show that an algorithm can gain an advantage in the indistinguishability experi-
ment only if it “hits” the randomness r∗ which is used in the encryption of the challenge message.
We then show that the probability of hitting r∗ using its oracles is very small. Formally:

Definition 3.19. For a given n ∈ N and an oracle-aided algorithm B = (B1,B2), we consider the

following events that may occur during the execution of Ẽxp
iO

Γ,iO,B,C(n; b, r∗).

1. Denote by initialHit the event where B1 makes some On query of the form (C, r∗) for some
circuit C ∈ C.

2. Let C0, C1 be the two circuits that B1 outputs in step 2 of the experiment. Denote by hit the
event in which B2 makes On-query with input (C0, r

∗) or (C1, r
∗).

Claim 3.20. For every n ∈ N, q-query algorithm B with q(n) < 2n/2 that does not make any Evaln
queries, if ∣∣∣∣∣∣∣ Pr

On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > ε ,

then
Pr
On

(b,r∗)←{0,1}n+1

[ initialHit ∨ hit ] > ε .

22



Proof. Note that

Pr
On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1
]

≤ Pr
On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1 | initialHit ∧ hit
]

+ Pr
On

(b,r∗)←{0,1}n+1

[ initialHit ∨ hit ] .

We prove the claim by showing that

Pr
On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1 | initialHit ∧ hit
]

=
1

2
.

In order to show this, fix the entire probability space except for the oracle On on all the values
On \ On(·; r∗), that is, we fix everything except for the answers to the oracle queries On(C, r∗) for
any C ∈ {0, 1}n. We now show that giving this fixing, and assuming that initialHit does not occur,
the two circuits C0, C1 and the state state that the algorithm B1 outputs in step 2 in the experiment

Ẽxp
iO

Γ,iO,B,C(n; b, r∗) are fully-determined. In particular, we show that all the oracle queries that B1

may produce can be answered. Specifically:

• The oracle f,O−n,Eval−n are fully determined.

• On an oracle query to On can be answered. This is because initialHit does not occur, and
therefore B never makes a query (·, r∗) to On.

• Recall that B never makes an Evaln-query.

As a result, the two circuits C0, C1 that B1 outputs at step 2 of the experiment and the state
state are fully determined. We now proceed with fixing the oracle On(·; r∗) on all values except for
On(C0, r

∗) and On(C1, r
∗). Choose two random values t, t′ ∈ {0, 1}10n for which there does not exist

some s ∈ {0, 1}2n for which On(s) = t and On(s) = t′. We now consider two cases, one corresponds
to b = 0, where we set On(C0, r

∗) to t (and On(C1, r
∗) to t′), and the other case, corresponds to

b = 1, where we assign the opposite values (i.e., On(C0, r
∗) = t′ and On(C1, r

∗) = t). In both cases
we give B2 the value t. The two cases are equally likely, but yield different values to b. We show
that if B2 makes no hit, then its view is independent of b and it must output the same value in the

two cases. In particular, we show that all queries B2 may query in step 4 of Ẽxp
iO

Γ,iO,B,C(n; b, r∗) can
be answered. Specifically:

• The oracle f,O−n,Eval−n are fully determined.

• All oracle queries to On can be answered, since hit does not occur, and so B2 never queries
On(C0, r

∗) or On(C1, r
∗). We recall that all other queries to On are fully determined.

• Recall that B2 never makes an Evaln query.

We now show that the probability that initialHit or hit occur is small. That is:

Lemma 3.21. For every n ∈ N and for every q-query algorithm B that does not make any Evaln
queries, it holds that

Pr
On

(b,r∗)←{0,1}n+1

[ initialHit ∨ hit ] ≤ q(n)

2n − q(n)
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Proof. Fix the entire probability space except for On and r∗. The view of the algorithm B1, i.e.,
the view of B prior to the challenge phase, is completely independent of r∗. Moreover, it makes
at most q(n)-oracle queries to On and the responses to these queries are distributed uniformly in
{0, 1}10n. Similarly, after receiving the obfuscated circuit Ĉ, the algorithm B2 (who does not have an
oracle-access to Evaln) receives with each oracle-query to On a uniformly chosen value in {0, 1}10n.
These values do not provide any information regarding r∗, unless a direct query to r∗ is performed.

Since r∗ is distributed uniformly in {0, 1}n, the probability that the ith query hits r∗, both by

B1 or by B2, is 1/(2n − i). Thus, the success probability of B is bounded by q(n)
2n−q(n) .

3.5.3 Concluding the proof

We are now ready for the proof of Theorem 3.15.

Proof of Theorem 3.15. Assume towards a contradiction that there exists a q-query algorithm
A with q(n) < 2n/4 queries, such that:∣∣∣∣∣∣∣ Pr

On

(b,r∗)←{0,1}n+1

[
ExpiOΓ,iO,A,C(n; b, r∗) = 1

]
− 1

2

∣∣∣∣∣∣∣ > 2−n/4

for infinitely many n’s. By Claim 3.18, this implies the existence of a Q-query algorithm B with
Q(n) = q(n)2 < 2n/2, that does not make any Evaln-query for which∣∣∣∣∣∣∣ Pr

On

(b,r∗)←{0,1}n+1

[
Ẽxp

iO

Γ,iO,B,C(n; b, r∗) = 1
]
− 1

2

∣∣∣∣∣∣∣ > 2−n/4 − 2−7n

By Claim 3.20, this implies that∣∣∣∣∣∣∣ Pr
On

(b,r∗)←{0,1}n+1

[ initialHit ∨ hit ]− 1

2

∣∣∣∣∣∣∣ > 2−n/4 − 2−7n > 2−n/4+1 .

However, this is in contradiction to Lemma 3.21, which shows that this probability is bounded by

Q(n)

2n −Q(n)
≤ 2n/2

2n − 2n/2
=

1

2n/2 − 1
≤ 2−n/4+1 .

3.6 Proof of Theorem 3.3

Equipped with the proofs of Theorems 3.4 and 3.5, we are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let (Gen, Samp,P,M, TM , εM,1, εM,2) be a fully black-box construction of
a domain-invariant one-way permutation family from a one-way function f and an indistinguishabil-
ity obfuscator iO for the class C of all oracle-aided polynomial-size circuits Cf (recall Definition 3.2).
Theorem 3.4 guarantees the existence of an oracle-aided algorithm A that runs in polynomial time
TA(n) such that

Pr
[
APSPACE,Γ(α,PΓ(α, x)) = x

]
≥ εA(n)
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for any n ∈ N, where εA(n) = 1 − 2−10, and the probability is taken over the choice of Γ ← S,
α ← GenΓ(1n), x ← SampΓ(α), and over the internal randomness of A. Definition 3.1 then states
that there are two possible cases to consider: A can be used either for inverting the one-way
permutation f or for breaking the indistinguishability obfuscator iO.

In the first case we obtain from Definition 3.1 that

Pr
[
MA

PSPACE,Γ (f (x)) ∈ f−1(f(x))
]
≥ εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n and
over the internal randomness of M . The algorithm M may invoke A on various security parameters
(i.e., in general M is not restricted to invoking A only on security parameter n), and we denote by
`(n) the maximal security parameter on which M invokes A (when M itself is invoked on security
parameter n). Thus, viewing MA as a single oracle-aided algorithm that has access to a PSPACE-
complete oracle and to Γ, its running time TMA(n) satisfies TMA(n) ≤ TM (n) ·TA(`(n)) (this follows
since M may invoke A at most TM (n) times, and the running time of A on each such invocation is

at most TA(`(n))). In particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that

has oracle access to Γ, implies that M ′ is a q-query algorithm where q(n) = TMA(n).8 Theorem 3.5
then implies that either 2n/4 ≤ q(n) or εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n) ≤ 2−n/2. In the first sub-case,

noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-complete oracle) is
some fixed polynomial in n, and therefore TM (n) ≥ 2ζn for some constant ζ > 0. In the second
sub-case, we have that εM,1 (TA(n)) · εM,2(n) ≤ 2−n/2, and since TA(n) is some fixed polynomial in
n (and εA(n) is a constant) we obtain that εM,1(nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1.

In the second case we obtain from Definition 3.1 that∣∣∣∣Pr
[
ExpiO

Γ,iO,MAPSPACE ,C(n) = 1
]
− 1

2

∣∣∣∣ ≥ εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n)

for infinitely many values of n ∈ N, where Γ← S. As in the first case, viewing M ′
def
= MA

PSPACE
as a

single oracle-aided algorithm that has oracle access to Γ, implies thatM ′ is a q-query algorithm where
q(n) = TMA(n). Theorem 3.5 then implies that either 2n/4 ≤ q(n) or εM,1

(
TA(n) · ε−1

A (n)
)
·εM,2(n) ≤

2−n/4. As in the first case, this implies that either TM (n) ≥ 2ζn for some constant ζ > 0, or
εM,1(nc) · εM,2(n) ≤ 2−n/4 for some constant c > 1.

4 Impossibility for Constructions Based on One-Way Functions

As discussed in Section 1.3.4, the known impossibility results for constructing one-way permutations
based on one-way functions [Rud88, KSS11, MM11] fall short in two aspects. First, these results
rule out constructions of a single one-way permutation, and do not rule out constructions of a one-
way permutation family. Second, these results rule out constructions that are domain invariant
(recall Definition 3.2), and do not rule out constructions that are not domain invariant (such as the
construction of Bitansky et al. [BPW15]).

In this section we resolve this surprising gap by ruling out all fully black-box constructions of
one-way permutation families from one-way functions – even constructions that are not domain

8Recall that an algorithm that has oracle access to Γ is a q-query algorithm if it makes at most q queries to Γ, and
each of its queries to Eval consists of a circuit of size at most q.
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invariant. In what follows we first formally define this class of reductions, and then state and prove
our result.

Definition 4.1. A fully black-box construction of a one-way permutation family from a one-way
function consists of a triplet of oracle-aided probabilistic polynomial-time algorithms (Gen, Samp,P),
an oracle-aided algorithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·), such that
the following conditions hold:

• Correctness: For any function f the triplet (Gen, Samp,P) is a permutation family relative
to f (as in Definition 2.1).

• Black-box proof of security: For any function f , for any oracle-aided algorithm A that
runs in time TA = TA(n), and for any function εA = εA(n), if

Pr
[
Af (α,Pf (α, x)) = x

]
≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of α ←
Genf (1n), x← Sampf (α), and over the internal randomness of A, then

Pr
[
Mf,A (f (x)) ∈ f−1(f(x))

]
≥ εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M .

The above definition clearly captures constructions that are not domain invariant. First, it allows
the support of the distribution Genf (1n) to depend on f . Second, for each permutation index α that
is produced by Genf (1n), it allows the domain of the permutation Pf (α, ·) to depend on f . For this
general class of reductions we prove the following theorem:

Theorem 4.2. Let (Gen,Samp,P,M, TM , εM,1, εM,2) be a fully black-box construction of a one-way
permutation family from a one-way function. Then, at least one of the following propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(nc) · εM,2(n) ≤ 2−βn for some constants c > 1 and β > 0 (i.e., the security loss is
exponential).9

4.1 Attacking Non-Domain-Invariant Permutation Families in the Random-Oracle
Model

Towards proving Theorem 4.2 we generalize the attack presented in Section 1.3.2 from inverting any
single oracle-aided domain-invariant permutation to inverting any oracle-aided one-way permutation
family – even such families that are not domain invariant. We prove the following theorem:

Theorem 4.3. Let (Gen, Samp,P) be a triplet of oracle-aided probabilistic polynomial-time algo-
rithms that is a permutation family relative to any oracle f . Then, there exists an oracle-aided
algorithm A that makes a polynomial number of oracle queries such that for any function f it holds
that

Pr
[
Af (α,Pf (α, x)) = x

]
= 1

9In particular, if the adversary-dependent security loss εM,1(·) is polynomial, then the adversary-independent
security loss εM,2(·) is exponential.
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for any n ∈ N, where the probability is taken over the choice of α ← Genf (1n) and x← Sampf (α),
and over the internal randomness of A. Moreover, the algorithm A can be implemented in polynomial
time given access to a PSPACE-complete oracle.

At a first sight, it seems that a natural approach towards proving above theorem would be to fix
some α, and then apply Rudich’s attack on the single permutation Pf (α, ·). That is, the adversary
A is invoked on some index α and a value y∗ = P(α, x∗), chooses in each iteration a set of oracle
queries f ′ and an input x′ such that Pf

′
(α, x′) = y∗, and updates its set of oracle queries Q similarly

to the original proof.
However, this approach seems somewhat insufficient due to the following reasons. First, A may

sample a function f ′ for which it may be that α is not in the support of Genf
′
(1n), and therefore

Pf
′
(α, ·) might not be a permutation. Second, when A inverts y∗ relative to some function f ′, it

may be that two domains of the permutations Pf (α, ·) and Pf
′
(α, ·) are completely different (maybe

except for y∗), and therefore it is unclear what guarantee we have when considering the hybrid
function f̃ . Specifically, given that x∗ is in the domain of the permutation Pf (α, ·) and x′ is in the
domain of the permutation Pf

′
(α, ·), we have no guarantee that neither x∗ nor x′ are in the domain

of the permutation Pf̃ (α, ·). We therefore revisit the attack and its analysis.

Proof of Theorem 4.3. Let (Gen,Samp,P) be a triplet of oracle-aided probabilistic polynomial-
time algorithms that is a permutation family relative to any oracle f . Recall that for any oracle
f and for every n ∈ N we denote by Ifn the support of the distribution Genf (1n), and we let

If def
=
⋃
n∈N I

f
n . In addition, for any index α ∈ If we denote by Dfα the domain of the permutation

Pf (α, ·). We proceed to a formal description of the adversary A.

The adversary A.

• Input: An index α ∈ Ifn and an element y∗ ∈ Df
α.

• Oracle access: The function f .

• The algorithm:

1. Initialize an empty list Q of query/answers to f .

2. Run the following for q + 1 iterations (where q denotes the total number of oracle gates
in the circuits Gen, Samp and P):
(a) Simulation phase: A finds values (r′1, r

′
2, x
′) and a set of queries/answers f ′ that

is consistent with Q such that:

Genf
′
(1n; r′1) = α, Sampf

′
(α; r′2) = x′ and Pf

′
(α, x′) = y∗ .

(b) Evaluation phase: The adversary evaluates Genf (r1), if the output of this evalua-
tion is α, then it proceeds to evaluate Sampf (α; r′2) and Pf (α,Sampf (α; r′2)). If the
output of this latter evaluation is y∗, then it outputs Sampf (α; r′2) and halts.

(c) Update phase: Otherwise, A makes all the queries in f ′ \Q to the true oracle f ,
and continues to the next iteration.

3. In case the adversary has not halted yet, it aborts and outputs ⊥.

We first observe that A makes at most a polynomial number of oracle queries to f , and all other
computations that are done by A are clearly polynomial time computations. Therefore, as in the
work of Impagliazzo and Rudich [IR89], the algorithm A can be implemented in polynomial time
given access to a PSPACE-complete oracle: Sampling f ′ can be done in polynomial space, requires
access only to Q which is of polynomial size, and does not require access to f .
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We now claim that after at most q+ 1 iterations, the algorithm A is always successful in finding
the pre-image x∗ of y∗. This is a direct consequence of the following claim.

Claim 4.4. In each iteration of A’s execution, at least one of the following occurs:

1. A outputs the pre-image x∗ such that Pf (α, x∗) = y∗.

2. During the update phase, A makes at least one of the f -queries that are made during the
following computations:

Genf (1n; r1), Sampf (α; r2), or Pf (α, x∗),

where Genf (1n; r1) = α, Sampf (α, r2) = x∗ and Pf (α, x∗) = y∗.

Proof. Assume that there exists an iteration in which neither one of the above events occur.
We show that this contradicts the correctness of (Gen, Samp,P). Specifically, when neither one of
the above events occur, then there exists a function f̃ that is consistent with f in the computa-
tions Genf (1n; r1), Sampf (α; r2), and Pf (α, x∗), and is consistent with f ′ in the computations of
Genf

′
(1n; r′1), Sampf

′
(α; r′2) and Pf

′
(α, x′). According to this oracle f̃ , the following hold:

1. α = Genf̃ (1n; r1) = Genf̃ (1n; r′1). Therefore, α ∈ I f̃n . That is, α is a valid index with respect

to f̃ (and not only with respect to f and f ′).

2. x∗ = Sampf̃ (α; r2) and x′ = Sampf̃ (α; r′2). As a result, x∗, x′ ∈ Df̃α. That is, both x∗ and x′

are in the domain of the permutation Pf̃ (α, ·).
3. Pf̃ (α, x′) = y∗ and Pf̃ (α, x∗) = y∗.

Moreover, assuming that Condition 1 in the claim does not occur, we conclude that x∗ 6= x′. As

a result, the element y∗ has two pre-images in the domain Df̃α, in contradiction to the assumption

that Pf̃ (α, ·) is a permutation over Df̃α.
The function f̃ can be constructed as follows:

• For every input w of f that appears in one of the evaluations Genf (1n; r1) = α, Sampf (α; r2)
= x∗, or Pf (α, x∗) = y∗, set f̃(w) = f(w).

• For every input w of f ′ that appears in one of the evaluations Genf
′
(1n; r′1) = α, Sampf

′
(α, r′2)

= x′, or Pf
′
(α, x′) = y∗, set f̃(w) = f(w).

• For every other input w, set f̃(w) arbitrarily (say, to 0).

The above is well defined since f ′ and f agree on all the queries Q that were made so far, and
from the fact that Condition 2 in the statement does not hold, there are no further intersection
queries between these two sets of evaluations.

This completes the proof of Theorem 4.3.

4.2 Proof of Theorem 4.2

Equipped with the proof of Theorem 4.3, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let (Gen, Samp,P,M, TM , εM,1, εM,2) be a fully black-box construction of
a one-way permutation family from a one-way function. Theorem 4.3 guarantees the existence of an
oracle-aided algorithm A that runs in polynomial time TA(n), such that for any function f it holds
that

Pr
[
APSPACE,f (α,Pf (α, x)) = x

]
= εA(n)
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for any n ∈ N, where εA(n) = 1, and the probability is taken over the choice of α ← Genf (1n),
x ← Sampf (α), and over the internal randomness of A. Definition 4.1 then states that for any
function f it holds that

Pr
[(
MA

)PSPACE,f
(f (x)) ∈ f−1(f(x))

]
≥ εM,1 (TA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of x ← {0, 1}n
and over the internal randomness of M . This holds, in particular, when the function f = {fn}n∈N
is chosen uniformly at random (i.e., for each n ∈ N we sample fn : {0, 1}n → {0, 1}n uniformly at
random).

The algorithmM may invokeA on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as
a single algorithm, its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA(`(n)) (this follows since
M may invoke A at most TM (n) times, and the running time of A on each such invocation is
at most TA(`(n))). Since we now consider the task of inverting a random function relative to a
PSPACE-complete oracle, it holds that either 2βn ≤ TMA(n) or εM,1 (TA(n)) · εM,2(n) ≤ 2−βn for
some constant β > 0 (see, for example, [IR89])10.

In the first case, noting that `(n) ≤ TM (n), we obtain that

2βn ≤ TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A is some fixed polynomial in n, and therefore TM (n) ≥ 2ζn

for some constant ζ > 0. In the second case, we have that εM,1 (TA(n)) · εM,2(n) ≤ 2−βn, and since
TA(n) is some fixed polynomial in n we obtain that εM,1(nc) · εM,2(n) ≤ 2−βn for some constant
c > 1.
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