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Abstract. Most stream ciphers used in practice are vulnerable against generic collision at-
tacks, which allow to compute the secret initial state on the basis of O(2n/2) keystream bits in
time and space O(2n/2), where n denotes the inner state length of the underlying keystream
generator. This implies the well-known rule that for reaching n-bit security, the inner state
length should be at least 2n. Corresponding to this, the inner state length of recent proposals
for practically used stream ciphers is quite large (e.g., n = 288 for Trivium and n = 160 for
Grain v1).
In this paper, we suggest a simple stream cipher operation mode, respectively a simple way
how to modify existing operation modes like that in the Bluetooth system, which provides
provable security near 22n/3 against generic collision attacks. Our suggestion refers to stream
ciphers (like E0 in Bluetooth) which generate keystreams that are partitioned into packets
and where the initial states for each packet are computed from a packet-IV and the secret
session key using a resynchronization algorithm.
Our security analysis is based on modeling the resynchronization algorithm in terms of the
FP (1)-construction E(x, k) = F (P (x ⊕ k) ⊕ k), where k denotes an n-bit secret key (corre-
sponding to the symmetric session key), F denotes a publicly known n-bit function (corre-
sponding to the output function of the underlying keystream generator), P denotes a publicly
known n-bit permutation (corresponding to the iterated state update function of the gener-
ator), and the input x is a public initial value. Our security bounds follow from the results
presented in [12], where a tight 2

3
n security bound for the FP (1)-construction in the random

oracle model was proved.
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1 Introduction

During the last decades, many stream ciphers for practical use have been suggested and many dif-
ferent techniques for cryptanalyzing them have been developed (correlation attacks, fast correlation
attacks, guess-and-verify attacks, BDD-attacks, time-memory-data tradeoff attacks etc.). The typi-
cal aim of these attacks is to gain some nontrivial information about the inner state of the underlying
keystream generator (KSG) from a given piece of keystream.

While most attacks try to exploit structural weaknesses specific to the respective ciphers (e.g.,
of their KSG state transition and output function), generic collision attacks represent an inherent
weakness of almost all existing practical stream ciphers. More precisely, time-memory-data tradeoff
attacks like those of Babbage [2] and Biryukov and Shamir [5] allow to compute the secret initial
state on the basis of O(2n/2) keystream bits in time and space O(2n/2), where n denotes the inner
state length of the used KSG. This yields the well-known rule that for achieving n-bit security by
a stream cipher (in standard operation mode), one has to choose an inner state length of at least
2n for the underlying KSG, which has the implication that modern practical stream ciphers have
comparatively large inner state lengths (e.g., 288 bit for Trivium [7] or 160 bit for Grain v1 [11]).
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Based on the results in [12], our research shows a way to reduce the size of the inner state by using
operation modes which yield provable security beyond the birthday bound against time-memory-
data tradeoff attacks. The stream cipher operation modes presented in this paper refer to the packet
mode, used, e.g., with the E0 cipher in the Bluetooth system [15], where the keystream is generated
packet-wise, i.e., as a sequence of packets of moderate packet length R (e.g., at most 2790 bits for
the basic rate of Bluetooth, cf. [15]), and the initial state for each keystream packet i is computed
from a secret session key k and a public initial value IV i by using a state initialization algorithm.
The packet mode can be seen as a compromise between the one-stream mode (used, e.g., by Trivium
and Grain v1), which has minimal initialization effort per keystream bit but also minimal security
w.r.t. generic time-memory-data tradeoff attacks, and block cipher-based modes (used, e.g., by the
GSM standard A5/3), which have maximal security w.r.t. time-memory-data treadeoff attacks but
also maximal initialization effort per keystream bit.

Our security results for packet modes are based on modeling the process of state initialization
and keystream generation through FP-constructions, which were first introduced in [12]. This is
done by identifying n with the inner state length of the KSG. The function P corresponds to
stepping the KSG a certain number of times without producing output, an operation which is used
in most state initialization algorithms of practical stream ciphers and can often be described by an
efficiently invertible permutation. F corresponds to the function which assigns to each x ∈ {0, 1}n
the block F (x) of the first n keystream bits generated on the initial inner state x. Standard security
assumptions on keystream generators imply that F must be a cryptographically strong one-way
function.

A first consequence of this approach is that the initialization and keystream generation algorithm
used in the Bluetooth cipher E0 corresponds to the F (0)-construction F (x⊕k) and allows to recover
the secret session key on the basis of 2n/2 packets. However, a slight change in this algorithm, namely
adding the session key twice in the initialization phase, raises the security w.r.t. to time-memory-
data tradeoff attacks from n/2 to 2/3 · n, where n denotes the KSG’s inner state length (which is
132 bit in the case of E0).

A state initialization algorithm corresponding directly to the FP (1)-construction F (P (x⊕k)⊕k)
refers to a KSG with non-linear state update function and would execute the following three steps:
Given a secret key k ∈ {0, 1}n and an initial value IV i ∈ {0, 1}n, load IV i⊕k into the n inner state
register cells, then iterate the KSG a certain number of times without producing output, then add
k bitwise to the resulting inner state and start to produce the i-th keystream packet. The block of
the first n keystream bits then corresponds to E(IV i, k) := F (P (IV i ⊕ k)⊕ k).

The paper is structured as follows. In section 2, we provide an overview of the basic properties
of stream ciphers and introduce the terminology used subsequently. In particular, we describe the
typical components of stream ciphers employed in practice and distinguish between two different
operation modes. In section 3, we then go into details about the inner workings of some prominent
stream ciphers, with a focus on their respective state initialization algorithms and how they are
operated. Following this, in section 4, we introduce a way of modeling the state initialization and
keystream generation of stream ciphers and exemplify this model using the ciphers described in
section 3. The resulting insights will finally allow us in section 5 to compare the security (w.r.t.
generic collision attacks) of existing approaches for operating stream ciphers to the security of our
new design paradigm.

2 Operation Modes of Stream Ciphers

Stream ciphers are symmetric encryption algorithms intended for encrypting, in an online manner,
plaintext bit streams X, which have to pass an insecure channel. The encryption is done by adding
bitwise a keystream S which is generated in dependence of a secret session key k. The legal recipient,



who also knows k, decrypts the encrypted bitstream Y = X ⊕ S by generating S and computing
X = Y ⊕ S.

Typically, a stream cipher is defined by the following three components:

– A session key generation protocol, which defines how Alice and Bob generate a common sym-
metric session key k.

– A keystream generator (KSG), which generates a keystream S(q1) in dependence of an initial
state q1.

– A state initialization algorithm StateInit, which defines how to compute the initial KSG-state
q1 = StateInit(IV, k) for the KSG from a (public) initial value IV and the secret session key k.

In our context, we focus on the KSG and the state initialization algorithm. KSGs are clockwise
working devices which can be formally specified by finite automata, defined by an inner state length
n, the set of inner states {0, 1}n, a state update function δ : {0, 1}n −→ {0, 1}n and an output
function out : {0, 1}n −→ {0, 1}∗. Starting from an initial state q1, in each clock cycle i ≥ 1, the
KSG produces a piece of keystream zi = out(qi) (as a rule, one bit long) and changes the inner state
according to qi+1 = δ(qi). The output bitstream S(q1) is defined by concatenating all the outputs
z1z2z3 · · · .

Typically, the KSG is not only used for the keystream generation but also for performing the
state initialization. In section 3, the specifications of the StateInit-algorithms and the KSGs for
various practically used stream ciphers like Trivium, Grain v1, the Bluetooth cipher E0 etc. are
listed.

Among stream cipher operation modes, we distinguish one-stream modes and packet modes. In
a one-stream mode, the whole plaintext stream of the session is encrypted by a sufficiently long
prefix of the keystream S(q1), whereas in a packet mode, the plaintext X is partitioned into packets
X = X1X2X3 · · · of a moderate maximum packet length R (e.g., at most 2790 bits for the basic rate
of Bluetooth, cf. [15]), and separate pieces of keystream Si = S(qi1) are produced for each packet.
Here, in the packet mode, the initial packet states qi1 will be computed via

qi1 = StateInit(IV i, k),

in dependence of the secret session key k and a separate public initial value IV i for each packet.

3 Some Stream Cipher Examples

This section provides an overview of some prominent stream ciphers, with a focus on their respective
state initialization algorithms and operation modes. It includes E0 (used in Bluetooth) and A5/1
(used in GSM) as well as the eSTREAM [14] hardware portfolio members Trivium and Grain v1. In
section 4, we will see how the state initialization algorithms and the keystream generation of these
stream ciphers can be modeled in relation to the FP-construction. Please observe in the following
that E0 in Bluetooth and A5/1 in GSM are both operated in packet modes in the sense that each
packet in a session is encrypted under the same session key but using different, publicly known IVs
as described in section 2.

3.1 E0 (used in Bluetooth)

The classical way of ensuring data confidentiality for Bluetooth connections between a master device
A and a slave device B utilizes stream cipher-based encryption on a per-packet basis. More precisely,
when encryption is activated, the payload of each packet (at most 2790 bits for the so-called basic
rate [15]) is encrypted under a separate payload key using the algorithm E0, which produces a
keystream of appropriate length that is XORed to the plaintext in a bitwise fashion. By payload



key, we refer to the initial state of the KSG just before the first keystream bit for the packet is
produced (i.e., in terms of this paper, to the output of the state initialization algorithm StateInit).
It is derived on the basis of the current 128-bit encryption key Kc, the 48-bit Bluetooth address
ADR of the master, and 26 bits CL0, . . . , CL25 of the master’s clock (to which both devices are
synchronized) at the time of the first transmission slot of the packet.1 Before we continue with the
respective details, please note that the encryption key Kc corresponds to a session key, i.e., Kc

is constant for a potentially very large number of successive packets. Consequently, the difference
between the payload keys of different packets during such a session solely arises from the difference
of the corresponding, publicly known clock values at the time of encryption.

In the following, we will describe how the individual payload key for a packet is generated by
E0 based on the inputs Kc, ADR, and CL0, . . . , CL25.

The general structure of the encryption engine of E0 is depicted in figure 1.
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t denote the output bits of the four LFSRs, respectively, in step t.

(cf. [15], p. 1323)

The internal state of the four linear feedback shift registers (LFSRs) has a total size of 128 bits
and the respective feedback polynomials are all primitive (cf. [15], p. 1322). Figure 2 shows the
positions of the feedback taps. For further details like the exact definition of the blender finite state
machine (4 bits), we refer the reader to the official Bluetooth specification ([15], p. 1322–1324). In
our context, it is sufficient to understand that the inputs Kc, ADR, and CL0, . . . , CL25 are split
up and, together with the two 3-bit constants 111 and 001, arranged as depicted in figure 2 prior to
payload key generation, which then works as follows (cf. [15], p. 1325–1326):

1 Unlike the symmetric encryption key Kc, the values ADR and CL0, . . . , CL25 are considered to be public.
For more details on the generation of Kc please see appendix A.
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Fig. 2. Initializing the E0 LFSRs. ADR[i], Kc[i], and CL[i] denote the bytes of ADR, Kc, and CL, respec-
tively. (cf. [15], p. 1327)

1. Disable the feedback switches of the four LFSRs and set their contents to zero. (time t = 0)
2. Shift Kc, ADR, CL0, . . . , CL25, and the bits 111 and 001 into the registers of the four LFSRs

as depicted in figure 2 (e.g., at t = 1, CL24 is shifted into LFSR1, 1 into LFSR2, CL25 into
LFSR3 and 1 into LFSR4). For each LFSR, once the first input bit has reached the rightmost
cell, close the feedback switch.

3. When the switch of the last LFSR (i.e., LFSR4) is closed (t = 39), reset the blender registers (4
bits) to zero.

4. Shift in the rest of the input bits while starting to produce output bits which are not used as
keystream.

5. Once all all input bits have been shifted in (at this point, LFSR1 has been clocked 30 times with
closed switches, LFSR2 24 times, LFSR3 22 times, LFSR4 16 times), keep on clocking until 200
bits in total (including those in the previous step) have been produced. (t = 239)

The last 128 bits which were generated are then loaded in parallel (i.e., copied) into the registers
of the four LFSRs as their new initial state at t = 240 (for details, again, see [15]). The values of
the blender registers are kept. At this point, the assignments to the registers of the four LFSRs as
well as to the registers of the blender represent what was previously referred to as the payload key
(132 bits in total). Based on this initial state, the encryption engine is then further clocked and its
output bits serve as keystream bits for the encryption of the current payload.

If another packet needs to be encrypted, the whole initialization process of the cipher is repeated
with a new clock value as the input of the E0 algorithm, leading to a different payload key.

3.2 A5/1 (used in GSM)

Though considered outdated for security reasons (see, e.g., [3] or the time-memory-data tradeoff
attack using the FPGA cluster COPACOBANA in [10]), the stream cipher A5/1 is still widely used
to encrypt GSM communication. Upon connection establishment, the mobile device is authenticated
and a 64-bit symmetric session key Kc is generated using one of the COMP128 algorithms, which
take a publicly known 128-bit challenge (i.e., a random number produced by the authentication
center of the network) and a common secret 128-bit key (stored on the SIM card and known to the
authentication center) as inputs. Based on this 64-bit session key Kc and an additional IV, data
frames of 114 downlink bits and 114 uplink bits are protected using the A5/1 algorithm, whose basic
structure is depicted in figure 3.

The LFSRs in A5/1 are either clocked all three in parallel or in so-called majority mode, where,
at each clock cycle, the majority function over the three majority bits in figure 3 is computed and
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Fig. 3. Structure of A5/1, which consists of three LFSRs of total state length 64 bit. The blue register cells
denote the feedback taps of the LFSRs, the red cells denote their majority bits.

each LFSR is clocked if and only if its majority bit equals the output of the majority function. Please
note that the feedback polynomials of the three LFSRs are all primitive (cf. [4]). The corresponding
feedback taps are depicted in figure 3.

Let Kc := (K63, . . . ,K0) denote the secret session key and let F := (F21, . . . , F0) denote the
22-bit representation of the publicly known frame number. The 228 keystream bits, which will be
XORed to the corresponding 114 downlink bits and 114 uplink bits, respectively, are generated as
follows (cf. [4]).

1. Set all register cells of the three LFSRs to 0.
2. For i = 0 to 63 do

2.1 LFSR1[0] = LFSR1[0] +Ki

LFSR2[0] = LFSR2[0] +Ki

LFSR3[0] = LFSR3[0] +Ki

2.2 Clock all three LFSRs (i.e., no majority clocking).
3. For i = 0 to 21 do

3.1 LFSR1[0] = LFSR1[0] + Fi
LFSR2[0] = LFSR2[0] + Fi
LFSR3[0] = LFSR3[0] + Fi

3.2 Clock all three LFSRs (i.e., no majority clocking).
4. Clock the KSG 100 times using majority clocking and discard the output bits, which are each

computed as the XOR of the three bits LFSR1[18], LFSR2[21], and LFSR3[22] as depicted in
figure 3.

5. Generate 114 keystream bits for downlink encryption clocking the KSG 114 times (using majority
clocking).

6. Generate 114 keystream bits for uplink encryption clocking the KSG 114 times (using majority
clocking).

For the enrcyption of the next frame, the above process is repeated with the same session key
Kc but a different frame number F .

Please note that the state of the LFSRs after step 4 (i.e., right before the first keystream bit is
produced) corresponds to what was called the payload key in the case of Bluetooth (cf. section 3.1)
or, in terms of the abstract model introduced in section 2, to the output of the StateInit-algorithm.

3.3 Trivium

Trivium [7] is a synchronous stream cipher and one of the three members of the eSTREAM hardware
portfolio. It is designed to produce a keystream of up to 264 bits based on an 80-bit symmetric key
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Fig. 4. Structure of Trivium (total state length 288 bit). zi denotes the output bit in step i. (cf. [7])

and a 64-bit IV as inputs. Its inner structure consists of three shift registers of total length 288 bit,
which are interwoven non-linearly as depicted in figure 4. Each keystream bit is computed as the
XOR of six bits from the current internal state, two from each shift register.

Before the first keystream bit is output, the following initialization procedure is performed based
on an 80-bit key K := (K80, . . . ,K1) and an 80-bit initial value IV := (IV80, . . . , IV1) (cf. [7]):

1. (s1, s2, . . . , s93)← (K80, . . . ,K1, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV80, . . . , IV1, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

2. For i = 1 to 4 · 288 do

2.1 t1 ← s66 + s91 · s92 + s93 + s171
t2 ← s162 + s175 · s176 + s177 + s264
t3 ← s243 + s286 · s287 + s288 + s69

2.2 (s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

In terms of our model (cf. section 2), the 288-bit state s1, . . . , s288 of the three shift registers
right after step 2 has been completed corresponds to the output of the StateInit-algorithm.

Based on this internal state, the KSG is then clocked using the same operations as in step 2
of the initialization procedure with the only difference that in each clock cycle, the keystream bit
s66 + s93 + s162 + s177 + s243 + s288 is output in order to encrypt one bit of plaintext via XORing.



Please observe that the state update of Trivium is reversible (see also [7]), as this will be of
importance when we model the state initialization of Trivium in terms of our FP-construction in
section 4.

3.4 Grain v1

In the following, we will describe the 80-bit version of the stream cipher Grain v1 [11], which, like
Trivium, is a member of the eSTREAM hardware portfolio. It takes an 80-bit key and a 64-bit
IV as inputs and is composed of two shift registers, one an 80-bit non-linear feedback shift register
(NFSR) and one an 80-bit linear feedback shift register (LFSR), which are connected as depicted in
figure 5.

NFSR LFSR

h

g f

Fig. 5. Structure of Grain v1 (keystream generation phase). f denotes the linear feedback function of the
LFSR, g denotes the non-linear feedback function of the NFSR. (cf. [11])

Let us denote the 80-bit state of the NFSR by (n80, . . . , n1) and the 80-bit state of the LFSR by
(l80, . . . , l1). Then the state update of the NFSR is defined by n′i := ni−1, i = {80, . . . , 2}, and

n′1 = n59n52n47n43n35n28

+ n71n65n59n52n47 + n43n35n28n20n17

+ n65n59n20n17 + n47n43n28n20 + n71n52n35n17

+ n59n52n47 + n35n28n20

+ n71n65 + n47n43 + n20n17

+ n80 + n71 + n66 + n59 + n52 + n47 + n43 + n35 + n28 + n20 + n18

+ l80,

where (n′80, . . . , n
′
1) denotes the new state of the NFSR.

Analogously, the state update of the LFSR, whose feedback polynomial is primitive, can be
defined by l′i := li−1, i = {80, . . . , 2}, and

l′1 := l80 + l67 + l57 + l42 + l29 + l18,

where (l′80, . . . , l
′
1) denotes the new state of the LFSR.

The result of the non-linear function h, which takes l77, l55, l34, l16, and n17 as inputs, is XORed
with the NFSR bits n79, n78, n76, n70, n49, n37, n24 to produce the output of the cipher. For the exact
specification of h, we refer the reader to, e.g., [11]. In the context of this paper, it is sufficient to



observe that neither l80 nor n80 are among the inputs of h, as this implies that the state update is
not only reversible during the keystream generation phase2 depicted in figure 5, but also during the
initialization phase, which is depicted in figure 6 and will now be described in further detail.

NFSR LFSR

h

g f

Fig. 6. Structure of Grain v1 (initialization phase). (cf. [11])

At the beginning of the initialization phase, the 80-bit key is parallel loaded (i.e., copied) to the
80-bit NFSR register and the 64-bit IV is parallel loaded to the first 64 register cells of the LFSR
(for an exact specification of indices, again, see [11]). The 16 remaining LFSR register cells are filled
with ones. After this, the cipher is clocked 160 times but instead of producing keystream, the output
is XORed to the state update for the register cells n1 and l1, as depicted in figure 6.

Here, the state of the two shift registers (160 bit in total) after the initialization phase corresponds
to the output of the StateInit-algorithm in our model (cf. section 2).

3.5 Block Cipher-based Constructions

Before we move on to section 4, where we will see how the state initialization algorithms and the
keystream generation of the stream ciphers described in subsections 3.1–3.4 can be modeled in
relation to the FP-construction, we will briefly discuss another way how to realize stream ciphers,
which might seem rather different at first but, in fact, is also connected to our model.

Instead of designing a KSG from scratch, stream ciphers can also be built on the basis of block
ciphers, e.g., by using them in counter mode as depicted in figure 7.

Notably, “one of the requirements imposed on all eSTREAM stream cipher submissions was that
they should demonstrate the potential to be superior to the AES in at least one significant aspect”
[13] and the respective testing framework included AES in counter mode.

Please observe that using a block cipher in counter mode to generate a keystream as shown in
figure 7 can also be interpreted as a kind of packet mode, similar to what we described for E0 and
A5/1. In this case, however, the packet size is not determined by the underlying technology (i.e.,
the maximum payload size for Bluetooth packets or the fixed frame size in case of GSM) but by
the block size of the used block cipher instead. Concretely, the concatenation IV ||Ctri used as the
input for the block cipher in figure 7 can be interpreted as a publicly known initial value IV i on
the basis of which the keystream Keystreami (i.e., Si in terms of section 2) for the packet i, whose
size equals the block length of the underlying cipher, is generated.

2 The LFSR state update is trivially reversible and the NFSR update function contains n80 only as a linear
term.
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Fig. 7. Example of block cipher-based keystream generation using counter mode. IV ||Ctri denotes the
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4 Modeling the State Initialization and Keystream Generation of
Stream Ciphers

In this section, we are now going to introduce a way of modeling the state initialization and keystream
generation of stream ciphers and exemplify this model using the ciphers described in section 3. The
resulting insights will then allow us in section 5 to compare the security of existing approaches for
operating stream ciphers to the security of our new design paradigm.

During the last decades, many KSGs for practical use have been suggested and many different
techniques for cryptanalyzing stream ciphers have been developed (correlation attacks, fast correla-
tion attacks, guess-and-verify attacks, BDD-attacks, time-memory-data tradeoff attacks etc.). The
typical aim of these attacks is to gain some nontrivial information about the underlying inner state
of the KSG from a given piece of keystream. To achieve this goal, most attacks exploit structural
weaknesses of the KSG state transition and output function.

In this work, we discuss the security of stream ciphers with respect to generic collision attacks.
More precisely, we address time-memory-data tradeoff attacks, which were first described in papers
of Babbage [2]: Let q1 ∈ {0, 1}n be the n-bit inner state of the keystream generator right before the
first output bit is produced (i.e., q1 is the result of the StateInit-procedure as described in section 2)
and let F : {0, 1}n → {0, 1}n denote a public, efficiently computable function, where F (q) is defined
as the first n keystream bits generated on some inner state q ∈ {0, 1}n. Suppose further that Eve
knows a prefix of length D + n − 1 of the full keystream S(q1). Then, with high probability, after
sampling 2n/D times a random state q ∈ {0, 1}n and computing F (q), Eve finds some inner state q∗

such that F (q∗) is a substring of S(q1), which allows to compute q1 from q∗ if the state transition is
efficiently invertible (as, e.g., in the case of Trivium and Grain v1). This yields a time-memory-data
tradeoff of O(2n/2). The vulnerability of stream ciphers against this simple type of attack, which
even works if the KSG is ideally designed, is one main reason for the rule that an inner state length of
2n has to be invested for reaching n bit security. Many practical stream cipher designs like Trivium
(288-bit internal state) or Grain v1 (160-bit internal state) were influenced by this principle, as we
have already seen in section 3.

Note that the main security requirement for keystream generators is that it should be hard to
distinguish a bitstream S(q1), generated by the KSG on a secret initial state q1 ∈ {0, 1}n, from a
truly random bitstream. Clearly, this implies that it should be impossible to compute q1 from a
prefix of length n of S(q1), i.e., F should be a cryptographically hard one-way function.

Having defined the initial state q1 ∈ {0, 1}n as the output of the StateInit-procedure in section
2, we saw in section 3 that a typical subroutine of StateInit is to clock the respective KSG a certain
number of times without producing output. In practical stream ciphers, the state transition function
δ is often bijective (see, e.g., the corresponding remarks for Trivium and Grain v1 in sections 3.3 and
3.4, respectively) and efficiently invertible in the sense that it is possible to efficiently compute pre-



images. In the following, we will identify this operation by an efficiently invertible, public function
P : {0, 1}n −→ {0, 1}n, which, as in the case of Trivium and Grain v1, is often a permutation or, as
in the case of the Bluetooth cipher E0, very “close”3 to being one.

We now present some examples how the state initialization algorithms and the keystream gen-
eration of the practical stream ciphers described in section 3 can be modeled by using functions F
and P as describe above. Given some IV x and a secret session key k, q1(x, k) denotes the initial
state produced by the StateInit-procedure of the respective stream cipher and E(x, k) denotes the
first n keystream bits generated (i.e., E(x, k) = F (q1(x, k)).4

E0 in Bluetooth (cf. sec. 3.1): The way x (80 bit) and k (128 bit) are loaded into the
four LFSRs at the beginning of the initialization procedure is completely GF (2)-linear. Hence, the
combined state of the four LFSRs right after x and k have been shifted in completely (i.e., at t = 55)

can be described as f(x) ⊕ g(k), where f : {0, 1}80 −→ {0, 1}128 and g : {0, 1}128 −→ {0, 1}128 are
GF (2)-linear functions. Note, however, that, at this point in time, 32 bits of the secret session key
k have been shifted into LFSR1 (and nowhere else), which is only 25 bits wide (see figure 2 in
section 3.1). Consequently, a time-memory-data tradeoff attack recovering f(x)⊕ g(k) (see section
5.2) will “only” reveal a linear combination with reduced information about k, which may induce
further effort, e.g., by requiring to search for the right 4-bit state of the blender engine, when
trying to decrypt other packets encrypted under the same session key. The 4-bit state h(x, k) of the

blender registers at t = 55 is determined by a non-linear function h : {0, 1}80×{0, 1}128 −→ {0, 1}4
depending on the 80-bit IV x and the 128-bit key k.

Based on f(x), g(k), and h(x, k), we can now denote the full inner state of the Bluetooth cipher
E0 at t = 55 as ((f(x)⊕ g(k)) ||h(x, k)). As pointed out previously, the state transition of E0 can
be described by an efficiently invertible and “nearly” bijective function. Hence, we will describe the
phase between t = 56 and t = 111, during which, as part of the state initialization, the cipher is
clocked and its output is discarded, using an efficiently invertible and “nearly” bijective function
P : {0, 1}132 −→ {0, 1}132. A distinctive property of the E0 cipher in Bluetooth is that, as the
final step of the state initialization algorithm, 128 output bits are produced (between t = 112 and
t = 239) which are not used as keystream (i.e., they are kept internal) but instead, at t = 240, are
parallel loaded to the registers of the four LFSRs. We will describe this step between t = 112 and
t = 240 using the function F ′ : {0, 1}132 −→ {0, 1}132, where, given a 132-bit state y ∈ {0, 1}132 at
t = 111, F ′(y) denotes the concatenation of the first 128 bits of F (y) and the 4-bit state h′(y) of
the blender engine at t = 239.5 Subsequently, after t = 240, the keystream for the corresponding
Bluetooth packet (of length at most 2790 bits) is produced based on the initial state q1(x, k) =
F ′ (P (((f(x)⊕ g(k)) ||h(x, k)))).

In summary, the way the Bluetooth cipher E0 generates the first 132 keystream bits in depen-
dence of the secret session key k and the initial value x can be modeled as

E(x, k) = F (F ′ (P (((f(x)⊕ g(k)) ||h(x, k))))) .

A5/1 in GSM (cf. sec. 3.2): The way the secret session key k and the IV x are loaded to
the LFSRs of the A5/1 engine is rather similar to the Bluetooth cipher E0. A major difference,
however, is that, during the first 64 clock cycles of the StateInit-procedure, each of the 64 key bits
is introduced in a GF (2)-linear way to each of the three LFSRs of total size 64 bit. The way we

3 In E0, the state update of the four LFSRs (128 bit) is fully bijective as they are completely independent
of each other and the blender engine. Only the state update of the blender registers (4 bit) possibly isn’t.

4 For the sake of simplicity, we denote any combination of publicly known nonces and constants used as
inputs for the state initialization by a single IV x.

5 The 4-bit state of the blender engine doesn’t change during the parallel loading of the first 128 bits of
F (y) to the LFSRs at t = 240.



model A5/1 in terms of F and P is based on the following two “key ideas” from [6] by Biryukov,
Shamir, and Wagner :

– “Key idea 3: A5/1 can be efficiently inverted”,

– “Key idea 4: The key can be extracted from the initial state of any frame”6.

As in the case of the Bluetooth cipher E0, the way x (22 bit) and k (64 bit) are loaded into the
three LFSRs at the beginning of the initialization procedure is completely GF (2)-linear. Hence, the
combined state of the LFSRs right after x and k have been shifted in completely (i.e., at the end of

step 3 of the algorithm in section 3.2) can be described as f(x)⊕g(k), where f : {0, 1}22 −→ {0, 1}64

and g : {0, 1}64 −→ {0, 1}64 are GF (2)-linear functions. Due to “key idea 4” of Biryukov, Shamir,
and Wagner, the subsequent stepping of the KSG for 100 times using majority clocking (step 4 of

the algorithm in section 3.2) can be described by an efficiently invertible function P : {0, 1}64 −→
{0, 1}64. Finally, based on the initial state q1(x, k) = P (f(x)⊕ g(k)) after step 4, the 228 keystream
bits for the corresponding frame are then produced. Hence, the way A5/1 generates the first 64
keystream bits in dependence of the secret session key k and the initial value x can be modeled as

E(x, k) = F (P (f(x)⊕ g(k))) .

Trivium (cf. sec. 3.3): For Trivium, the way the IV x (208 bits including constants) and the
secret key k (80 bits) are introduced to the state registers of total length 288 bits of the KSG is even
simpler than in the case of E0 or A5/1 as the respective values are simply parallel loaded (see step 1 of
the state initialization algorithm in section 3.3). As pointed out previously, the subsequent clocking
of the Trivium engine without producing output (step 2 of the state initialization algorithm) is easily
reversible. Thus, we can describe this step (comprising 4 ·288 clock cycles) by an efficiently invertible

permutation P : {0, 1}288 −→ {0, 1}288. Based on the resulting initial state q1(x, k) = P (k||x), the
first 288 keystream bits produced in dependence of the secret session key k and the initial value x
can then be modeled as

E(x, k) = F (P (k||x)) .

Grain v1 (cf. sec. 3.4): The state initialization of Grain v1 works similar to the one of Trivium.
Once the secret key k (80 bits) and the IV x (80 bits including constants) have been parallel loaded
to the registers of the NFSR and the LFSR, respectively, the cipher is clocked 160 times without
producing keystream. Even though the output of the non-linear function h is fed back to both shift
registers during this phase, we have seen in section 3.4 that the state update of Grain v1 is still
straightforwardly reversible. In terms of our model, we can describe it using an efficiently invertible
permutation P : {0, 1}160 −→ {0, 1}160. Just like in the case of Trivium, the resulting initial state
can be modeled as q1(x, k) = P (k||x). Consequently,

E(x, k) = F (P (k||x))

describes how the first 160 keystream bits are produced in dependence of the secret session key k
and the initial value x.

6 Note that Biryukov, Shamir, and Wagner refer to the state of the LFSRs right after the frame counter has
been introduced (i.e., after step 3 of the algorithm in section 3.2) as the “initial state” whereas we denote
by initial state the output of the StateInit-procedure (i.e., the state at the end of step 4 of the algorithm
in section 3.2). This, however, does not harm our argumentation as “key idea 4” can be combined with
“key idea 3”.



5 Analyzing and Improving the Security of Stream Ciphers against
Time-Memory-Data Tradeoff Attacks

In section 4, we have seen how to model the state initialization and keystream generation of promi-
nent practical stream ciphers using the functions F and P . In this section, we are now going to
describe the general concept of FP-constructions along with sharp security bounds for two special
instances, namingly, the F (0)-construction and the FP (1)-construction (subsection 5.1). Moreover,
we will show how the stream ciphers modeled in section 4 fit into this concept and how this allows to
straightforwardly derive information about their security against time-memory-data tradeoff attacks
(subsection 5.2). Finally, we will introduce the FP (1)-mode as a new design principle for stream
ciphers, which provably allows to raise the security against time-memory-data tradeoff attacks from
n/2 to 2/3 · n.

5.1 FP-Constructions and their Security Bounds

The concept of FP-constructions was introduced in [12]. The underlying motivation was to extend
the focus of key alternating ciphers (like Even-Mansour ciphers [8]) through studying similar generic
constructions for pseudorandom functions (PRFs), where, besides public permutations, a publicly
known one-way function F : {0, 1}n −→ {0, 1}n is allowed as a possible additional component.

Let x ∈ {0, 1}n denote some publicly known value and let k ∈ {0, 1}n be the secret n-bit key. The
simplest FP-construction is the F (0)-construction F (x⊕k), for which a sharp n/2-security bound in
the so-called random oracle model was already shown in [9] (see also [12] for a complete proof). The
main result in [12] was a sharp 2/3 · n-security bound for the FP (1)-construction F (P (x⊕ k)⊕ k)
depicted in figure 8, where P denotes a public permutation over {0, 1}n.

P F
x

k k

Fig. 8. The FP (1)-construction. (cf. [12])

In the random oracle model, the adversary tries to recover the secret key k on the basis of oracle
queries to a P/P−1-oracle, to an F -oracle and to an E-oracle, where queries to the E-oracle will be
answered according to F (P (x⊕ k)⊕ k). A sharp 2/3n-security bound means that, on the one hand,
there is a successful key recovery attack of running time O(22/3·n) using O(22/3·n) oracle queries,
and that, on the other hand, for all α < 2/3 any attack making only O(2α·n) oracle queries has an
only exponentially small (in n) success probability to recover the secret key. Note that this adversary
model corresponds exactly to the generic time-memory-data tradeoff attacks against stream ciphers
in [2] and [5].

5.2 Stream Ciphers corresponding to the F (0)-Construction

We will now see that the practical stream cipher examples described in section 3 and modeled in
terms of F and P in section 4 all provide only n/2-security against time-memory-data tradeoff
attacks. Please note that none of the results in this subsection are surprising or new. Instead, they
are meant to exemplify the way FP-constructions can serve to analyze the security of stream ciphers
against generic collision attacks and, more importantly, also provide hints on how to modify the



respective ciphers and operation modes in order to achieve 2/3 · n-security as will be described in
subsection 5.3.

E0 in Bluetooth (cf. sec. 3.1 and sec. 4): In section 4, we have seen that the way the
Bluetooth cipher E0 generates the first 132 keystream bits in dependence of the 128-bit secret
session key k and the 80-bit initial value x can be modeled as

E(x, k) = F (F ′ (P (((f(x)⊕ g(k)) ||h(x, k))))) ,

where f and g are GF (2)-linear functions and h is non-linear.
Note that, in our model for E0, P was only “nearly” a bijection and, more importantly, the

StateInit-procedure was not efficently invertible as it contained the one-way function F ′. In conse-
quence, a time-memory-data tradeoff attack (of complexity 266) recovering the initial state

q1(x, k) = F ′ (P (((f(x)⊕ g(k)) ||h(x, k)))) ,

as described in section 4, would not yield the secret session key k but instead only allow the attacker
to decrypt the single packet whose IV was x.

For a successful attack against all the other packets, one has to recover the secret session key k. In
order to do so, we define the one-way function F̃ := F ◦F ′ ◦P for E0 and consider a slightly different
attack scenario, i.e., we study the complexity of a session key recovery attack in dependence
of the number of known (or partially known) keystream packets. It is easy to see that,
now, the 132-bit input q0 := (f(x)⊕ g(k)) ||h(x, k) of F̃ can be recovered using a time-memory-data
tradeoff attack with time and memory complexity 266 on the basis of 266 keystream packets. Due
to the non-linearly derived 4-bit suffix h(x, k) of the intermediary state q0 (at t = 55) and the fact
that g(k) will only reveal a linear combination in k (cf. section 4), the Bluetooth cipher E0 doesn’t
perfectly (but very closely) map to the F (0)-construction. However, the design principle suggested
by the FP (1)-mode in section 5.3 will still apply.

A5/1 in GSM (cf. sec. 3.2 and sec. 4): We have seen in section 4 that the way A5/1
generates the first 64 keystream bits in dependence of the secret session key k and the initial value
x can be modeled as

E(x, k) = F (P (f(x)⊕ g(k))) .

Here, as in the case of E0, P is efficiently invertible but not a bijection. However, in contrast to E0,
the StateInit-procedure of A5/1 does not contain any one-way components. Thus, recovering some
state δj (q1(x, k)), where δ denotes the state transition function and q1(x, k) = P (f(x)⊕g(k)) is the
initial state of the corresponding packet, using a time-memory-data tradeoff attack with time and
space complexity 232 on the basis of about 232 keystream bits, as described in section 4, will reveal
q1(x, k) and, hence, g(k) to an attacker.7 This, in turn, will allow him to decrypt all packets which
were encrypted under the session key k. (For improved time-memory-data tradeoff attacks on A5/1
see, e.g., [6].)

Trivium (cf. sec. 3.3 and sec. 4): Trivium, which is operated in a one-stream mode, maps
perfectly to the FP-construction, i.e., the way the first 288 keystream bits are produced based on
the 80-bit secret session key k and the 208-bit (including constants) initial value x can be described
as

E(x, k) = F (P (k||x)) ,

where F denotes a public one-way function and P is a public, efficiently invertible permutation
(see section 4). Using the conventional time-memory-data tradeoff attack with time and memory

7 We suppose that the attacker sees at least 64 subsequent keystream bits per packet. Moreover, it is obvious
that the attack on A5/1 would also work for F̃ := F ◦ P when given 232 keystream packets, i.e., in a
similar F (0)-like scenario as described for the Bluetooth cipher E0.



complexity 2144 on the basis of 2144 keystream bits, some internal state δj (q1(x, k)) can be recovered
with high probability and the corresponding initial state q1(x, k) = P (k||x) can be computed as the
state transition function δ is efficiently invertible (see section 3.3). Clocking back the cipher even
further, k||x and, hence, the secret key k is revealed. Again, as for A5/1, Trivium could also be
modeled in terms of the F (0)-construction by setting F̃ := F ◦ P and supposing F̃ to be a one-way
function. A corresponding time-memory-data tradeoff attack with time and space complexity 2144

would require the cipher to be operated in packet mode with 2144 packets available to the attacker.

Grain v1 (cf. sec. 3.4 and sec. 4): In section 4, we have seen that Grain v1 can be modeled
in exactly the same way as Trivium. Consequently, the same arguments apply with respect to time-
memory-data tradeoff attacks when the cipher is used in one-stream or in packet mode (attack
complexity 280).

5.3 The FP (1)-Mode for Stream Cipher-based Encryption

A more promising approach is to use a state initialization algorithm which mimics the FP (1)-
construction. Given a secret session key k ∈ {0, 1}n, we use the term FP (1)-mode to refer to the
following generic encryption scheme, which operates on packets of polynomially bounded length R.
For each packet, do:

– Fix a public initial value x ∈ {0, 1}n.
– Load x⊕ k into the inner state registers.
– Run the KSG (which is supposed to have a bijective, efficiently invertible but nonlinear state

update function) for a certain number of clock cycles without producing output. (We denote
this step by P : {0, 1}n −→ {0, 1}n.)

– Add k to the resulting inner state P (x⊕ k).
– Generate the keystream on the resulting inner state P (x⊕ k)⊕ k, which implies that the block

of the first n keystream bits equals F (P (x⊕ k)⊕ k).

For a convincing application of the previously described, sharp 2/3 · n security bound for the
FP (1)-construction to this kind of stream cipher operation mode, one has to strengthen the original
lower bound argument by considering stronger adversaries. This is because, for efficiency reasons,
the packet length R should be allowed to be larger than the inner state length n. In consequence,
with each packet, the adversary gets not only F (P (x ⊕ k) ⊕ k) (which corresponds to the first n
bits of the keystream packet) but even all values F (δj(P (x⊕ k)⊕ k)) for j = 0, · · · , R− n, where δ
denotes the KSG state update function and F (δj(P (x⊕ k)⊕ k)) corresponds to the keystream bits
j + 1, · · · , j + n of the packet.

In [12], Krause shows that if the packet length R is polynomially bounded in n, the lower bound
for the FP (1)-construction holds even in an extended random oracle model, where the adversary
is allowed to ask an additional kind of oracle queries, which cover his potential knowledge of the
complete packet keystream. Consequently, the FP (1)-mode is provably 2/3 · n-secure w.r.t. time-
memory-data tradeoff attacks.

Recalling that the Bluetooth cipher E0 also works in packet mode, naturally the question arises
whether the ideas underlying the FP (1)-mode could be used to increase the security of E0. And, in
fact, adding the key in a bitwise fashion after the parallel loading of the value of F ′ (i.e., right after
t = 240) to the registers of the four LFSRs would raise the security from n/2 to about 2/3 · n.

As a final remark, we would like to stress that XORing the same key k to the same registers
at two different points in the course of an algorithm can be realized rather efficiently in hardware,
as many components like multiplexors (in the case of serialized key addition) or an array of XOR
gates (in the case of parallel key addition) can simply be reused. The remaining small area overhead
induced by the second key addition is easily compensated for by the saving in registers (e.g., an
internal state of length 120 bit would already provide 80-bit security against time-memory-data



tradeoff attacks), which are a major cost driver when designing cryptographic protocols for ultra-
constrained application-specific integrated circuits (ASICs) as described, e.g., in [1]. Consequently,
our construction principle seems to be particularly interesting for lightweight applications.

6 Conclusion

In this work, we presented a simple stream cipher operation mode, respectively a simple way how to
modify existing operation modes (like that of E0 in the Bluetooth system), which provides provable
security near 22n/3 against generic collision attacks, where n denotes the size of the internal state of
the underlying KSG. Our suggestion refers to stream ciphers with packet-wise keystream generation,
where, for each packet of polynomially bounded length R, the initial state is computed from an
individual packet-IV and the secret session key using a resynchronization algorithm.

For the security analysis, we made use of the concept of FP-constructions, which was introduced
in [12]. Our results were twofold: On the one hand, we saw for several prominent stream cipher
examples that each of them can be modeled in terms of the F (0)-construction and, hence, succumbs
to time-memory-data tradeoff attacks of complexity O(2n/2). On the other hand, the tight 2

3n-
security bound for the FP (1)-construction F (P (x⊕ k)⊕ k) in the (extended) random oracle model
proved in [12] allowed us to straightforwardly conclude the 2

3n-security of our FP (1)-mode against
such generic collision attacks.

A natural topic for future research is the development of a concrete instantiation of a stream
cipher using the FP (1)-mode. An interesting question closely related to this would be how to safely
shrink the inner state of existing stream ciphers like Trivium or Grain v1 based on the FP (1)-mode
without making them vulnerable to other types of attacks.
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Appendix

A Bluetooth: Generating the Encryption Key Kc

When two Bluetooth devices connect for the first time (pairing), an initialization key Kinit is
computed based on a common PIN, the Bluetooth address of one of the devices, and some 128-bit
random number using the algorithm E22. Subsequently, Kinit is used together with two random
128-bit values and the 48-bit Bluetooth addresses of both devices to create the the so-called link
key (or combination key) Kab using the algorithm E21. This link key is sometimes also referred
to as the authentication key, as it is used together with some (changing) 128-bit random number
during the subsequent authentications of the respective devices using the algorithm E1. As a result
of such an authentication during connection establishment, a 32-bit authentication token SRES and
a 96-bit value called ACO (Authenticated Ciphering Offset) are produced. If authentication has
been successful (i.e., the authentication tokens match), a new encryption key Kc will be generated
each time encryption is enabled by the communicating parties.8 The generation of Kc is performed
using the algorithm E3, which is based on a hash function with the following inputs: the link key
Kab, a 128-bit random number EN RAND, and the 96-bit ACO generated during authentication.
To account for legal export restrictions, the Bluetooth specification provides means of shortening
the effective key length of Kc to less than 128 bits. The resulting keys are often referred to as K ′c.
However, as the absolute key length will still be 128 bits and as we are aiming for the highest possible
security here, we omit this shortening step for the sake of clarity and simply talk of the encryption
key Kc when describing packet encryption using the algorithm E0 in section 3.1.

8 According to the official Bluetooth specification ([15], p. 1308), when using E0 encryption, “the encryption
keys shall be refreshed by the Link Manager at least once every 228 Bluetooth Clocks (about 23.3 hours)”.
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