
RING-LWE CRYPTOGRAPHY FOR THE NUMBER
THEORIST

YARA ELIAS, KRISTIN E. LAUTER, EKIN OZMAN, KATHERINE E. STANGE

Abstract. In this paper, we survey the status of attacks on the ring
and polynomial learning with errors problems (RLWE and PLWE). Re-
cent work on the security of these problems [EHL, ELOS] gives rise to
interesting questions about number fields. We extend these attacks and
survey related open problems in number theory, including spectral dis-
tortion of an algebraic number and its relationship to Mahler measure,
the monogenic property for the ring of integers of a number field, and
the size of elements of small order modulo q.

1. Introduction

Public key cryptography relies on the existence of hard computational
problems in mathematics: i.e., problems for which there are no known
general polynomial-time algorithms. Hard mathematical problems related
to lattices were first suggested as the basis for cryptography almost two
decades ago ([A, AD, HPS]). While other better-known problems in public
key cryptography such as factoring and the discrete logarithm problem are
closely tied to computational number theory, lattice-based cryptography
has seemed somewhat more distant. Recent developments, including the
introduction of the ring-learning with errors problem instantiated in the
ring of integers of a number field ([LPR]), have connected the area to new
questions in computational number theory.

At the same time, lattice-based cryptography has seen a dramatic surge of
activity. Since there are no known polynomial time algorithms for attacking
standard lattice problems on a quantum computer (in contrast to the case
for widely deployed cryptographic systems such as RSA, discrete log, and
elliptic curves), lattice-based cryptography is considered to be a promising
cryptographic solution in a post-quantum world.

One of the most exciting recent developments has been the construction
of fully homomorphic encryption schemes ([BV, BGV, GHS]) which allow
meaningful operations to be performed on data without decrypting it: one
can add and multiply encrypted numbers, returning the encrypted correct
result, without knowledge of the plaintext or private key. The addition and
multiplication of ciphertexts is allowed by the ring structure inherent in
the ideal lattices: these translate into AND and OR gates which can be used
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to build arbitrary circuits. Exciting applications include privacy problems
in the health sector for electronic medical records, predictive analysis and
learning from sensitive private data, and genomic computations ([LNV,
GLN, BLN, LLN]).

These new homomorphic encryption solutions are based on versions of
hard “learning problems” with security reductions to and from standard
lattice problems such as the shortest vector problem ([R]). The idea behind
the whole class of learning problems is that it is hard to “learn” a secret
vector, given only sample inner products of that vector with other random
vectors, provided these products are obscured by adding a small amount of
Gaussian noise (“errors”).

The ring version, which we call Ring-LWE or RLWE, was introduced in
[LPR], where the authors use the lattice formed by the ring of integers of
a 2-power cyclotomic number field embedded into Rn under a variant of
the Minkowski embedding. Soon after, an efficient cryptosystem allowing
for homomorphic multiplication was proposed in [BV] based on a variant of
the RLWE problem, the Polynomial Learning With Errors problem (here
denoted PLWE). Improvements to that cryptosystem (e.g. [BGV, GHS])
have followed in the same vein, with the same hardness assumption. The
reader should note that the terminology of “Ring-LWE” vs. “Poly-LWE”
is not entirely standard, and some authors use “Ring-LWE” to refer to a
larger class of problems including both.

We focus in this paper on PLWE, specified by the following choices:

(1) a polynomial ring Pq = Fq[x]/(f(x)), with f(x) a monic irreducible
polynomial of degree n over Z which splits completely over Fq,

(2) a basis for the polynomial ring, which will often be taken to be
a power basis in the monogenic case (in particular, the choice of a
basis can be used to endow the ring with the standard inner product
on the ring),

(3) and a parameter specifying the size of the Gaussian noise to be
added (the size of the “error”), spherical with respect to this inner
product.

We also focus on RLWE obtained from the same setup, but with the inner
product instead given by the Minkowski embedding of a ring of integers of
the form Z[x]/(f(x)). More general situations, including the case where the
defining polynomial for the number ring does not split modulo q, or the case
where q is composite, or the distribution is non-spherical or non-Gaussian,
are considered in the cryptographic literature, but the setup above will
suffice for our present purpose, which is to give a number theorist an entrée
into the subject.

A key point is that for cryptographic applications, the errors must be
chosen to be relatively small, to allow for correct decryption. For PLWE,
“small” refers to the coefficient size (absolute value of the smallest residue),
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where the error is a polynomial, i.e. represented according to a polynomial
basis for the ring. But to relate RLWE to other standard lattice problems,
[LPR] considers the embedding of the ring Z[x]/(f(x)) into the real vector
space Rn under the Minkowski embedding (before reduction modulo q), and
uses a Gaussian in Rn; this induces an entirely different distribution on the
error vectors for general number rings. It was shown in [LPR] and [DD]
that in the case of 2-power cyclotomic rings, the distributions are the same.
However, in [ELOS] it was shown that in general rings the distortion of the
distribution is governed by the largest singular value of the change-of-basis
matrix between the Minkowski and the polynomial basis. Thus the RLWE
and PLWE distributions are not equivalent in general rings.

Although RLWE and PLWE for two-power cyclotomics are the current
candidates for practical lattice-based homomorphic encryption with ideal
lattices, it will be important for a full study of their security to consider
the RLWE and PLWE problems for general rings. This includes studying
the two problems independently, and analysing their relationships via the
distortion of distributions just mentioned.

The RLWE and PLWE problems are formulated as either ‘search’ or
‘decision’ problems (see Section 2 below). In [EHL], an attack on PLWE
was presented in rings Pq = Fq[x]/(f(x)), where f(1) ≡ 0 (mod q). In
addition, [EHL] gives sufficient conditions on the ring so that the ‘search-to-
decision’ reduction for RLWE holds, and also that RLWE instances can be
translated into PLWE instances, so that the RLWE decision problem can be
reduced to the PLWE decision problem. Thus, if a number field K satisfies
the following six conditions simultaneously, then the results of [EHL] give
an attack on the search version of RLWE:

(1) K = Q(β) is Galois of degree n.
(2) The ideal (q) splits completely in R = OK , the ring of integers of

K, and q - [R : Z[β]].
(3) K is monogenic, i.e., the ring of integers R = OK of K is generated

by one element R = Z[β].
(4) The transformation between the canonical embedding of K and the

power basis representation of K is given by a scaled orthogonal
matrix.

(5) If f is the minimal polynomial of β, then f(1) ≡ 0 (mod q).
(6) The prime q can be chosen suitably large.

The first two conditions are sufficient for the RLWE search-to-decision re-
duction; the next two conditions are sufficient for the RLWE-to-PLWE re-
duction; and the last two conditions are sufficient for the attack on PLWE.
Unfortunately, it is difficult to construct number fields satisfying all six
conditions simultaneously. In [EHL] examples of number fields were given
which are vulnerable to the attack on PLWE.
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In [ELOS], the attack on PLWE was extended by weakening the condi-
tions on f(x) and the reduction from RLWE to PLWE was extended by
weakening condition (4). A large class of fields were constructed where
the attack on PLWE holds and RLWE samples can be converted to PLWE
samples, thus providing examples of weak instances for the RLWE problem.

Exciting number theory problems often arise from cryptographic motiva-
tions. In this paper we survey and extend the attacks to PLWE and RLWE
problems and raise associated number theoretic questions. In Section 2, we
recall the PLWE and RLWE problems. In Section 3 and Section 4 we survey
the attacks on PLWE which were introduced in [EHL, ELOS] and extend
the attacks. In Section 5, we explain the reduction between the RLWE and
PLWE problems. Finally in Section 6 we raise related questions in number
theory; in particular, we investigate the spectral distortion of an algebraic
number and its relationship to Mahler measure, the monogenic property
for the ring of integers of a number field, and the size of elements of small
order modulo q.

2. The fundamental hard problems: PLWE and RLWE

2.1. PLWE. Take f(x) ∈ Z[x] to be monic and irreducible of degree n.
Suppose q is a prime modulo which f(x) factors completely (this is not nec-
essary for the definition of the problem, but we will assume this throughout
the paper). Write

P := Z[x]/f(x), Pq := P/qP ∼= Fq[x]/f(x).

Let σ ∈ R>0. By a Gaussian distribution Gσ of parameter σ, we mean a
Gaussian of mean 0 and variance σ2 on P which is spherical with respect
to the power basis 1, x, x2, . . . , xn−1 of P . The prime q is generally assumed
to be quite large (perhaps of order 250), and σ is taken fairly small (per-
haps σ = 8), so that in practice the tails of the Gaussian will decay to
negligible size well before its variable reaches size q. Since P has integer co-
ordinates, we must ‘discretize’ the Gaussian in an appropriate fashion; the
result is simply referred to as a discretized Gaussian. We will not go into
the technical details in this paper, but instead refer the reader to [LPR].

There are two standard PLWE problems, quoted here from [BV]. The
difficulty involves determining a secret obscured by a small error drawn
from the discretized Gaussian.

Problem 2.1 (Search PLWE Problem). Let s(x) ∈ Pq be a secret. The
search PLWE problem, is to discover s(x) given access to arbitrarily many
independent samples of the form (ai(x), bi(x) := ai(x)s(x)+ei(x)) ∈ Pq×Pq,
where for each i, ei(x) is drawn from a discretized Gaussian of parameter
σ, and ai(x) is uniformly random.

The polynomial s(x) is the secret and the polynomials ei(x) are the errors.
There is a decisional version of this problem:
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Problem 2.2 (Decision PLWE Problem). Let s(x) ∈ Pq be a secret. The
decision PLWE problem is to distinguish, with non-negligible advantage, be-
tween the same number of independent samples in two distributions on Pq×
Pq. The first consists of samples of the form (a(x), b(x) := a(x)s(x) + e(x))
where e(x) is drawn from a discretized Gaussian distribution of parameter
σ, and a(x) is uniformly random. The second consists of uniformly random
and independent samples from Pq × Pq.

Search-to-decision reductions were proved for cyclotomic number fields
in [LPR] and extended to work for Galois number fields in [EHL]. Of
course, the phrase ‘to distinguish’ must be interpreted to mean that the
distinguisher’s acceptance probabilities, given PLWE samples versus uni-
form samples, differ by a non-negligible amount.

2.2. RLWE. The original formulation of the hard learning problem for
rings, RLWE, presented in [LPR], was based on R, the ring of integers
of a number field. Replacing R with P , an explicit polynomial ring, one
obtains PLWE as described above: a “variant” on RLWE stated in [LPR]
and [BV]. The two problems are, in fact, different, because for RLWE the
error is chosen according to a discretized Gaussian with respect to a special
basis of the ambient space in which R was embedded by the Minkowski
embedding, instead of with respect to the polynomial basis of one of its
polynomial representations. We will state the fundamental RLWE problems
and then discuss the relationship between the RLWE and PLWE problems.

Let K be number field of degree n with ring of integers R. Let R∨ denote
the dual of R,

R∨ = {α ∈ K : Tr(αx) ∈ Z for all x ∈ R}.
Let us write Rq := R/qR and R∨q = R∨/qR∨. We will embed K in Cn

via the usual Minkowski embedding. The vector space Cn is endowed with
a standard inner product, and we will use the spherical Gaussian with
respect to this inner product, discretized to R∨, as the discretized Gaussian
distribution. We will refer to this as the canonical discretized Gaussian.
This will not, in general, coincide with the discretized Gaussian defined in
PLWE for a P ∼= R, and this is the fundamental difference between the two
problems.

The standard RLWE problems for a canonical discretized Gaussian are
as follows.

Problem 2.3 (Search RLWE Problem [LPR]). Let s ∈ R∨q be a secret.
The search RLWE problem is to discover s given access to arbitrarily many
independent samples of the form (a, b := as+ e) where e is drawn from the
canonical discretized Gaussian and a is uniformly random.

Problem 2.4 (Decision RLWE Problem [LPR]). Let s ∈ R∨q be a secret.
The decision RLWE problem is to distinguish with non-negligible advantage
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between the same number of independent samples in two distributions on
Rq×R∨q . The first consists of samples of the form (a, b := as+e) where e is
drawn from the canonical discretized Gaussian and a is uniformly random,
and the second consists of uniformly random and independent samples from
Rq ×R∨q .

An isomorphism between R and an appropriate polynomial ring P can
be used to reduce an instance of the RLWE problem to an instance of the
PLWE problem. In particular, one requires R to be monogenic (having a
power basis). Analysing the relationship between the two problems involves
a close look at the change of basis under an isomorphism from R to the
appropriate P . We will take up this issue in Section 5.

3. Summary of Attacks

In practice today, parameters for cryptosystems based on the RLWE and
PLWE problems are set according to two known attacks, the distinguishing
attack ([MR09, RS]) and the decoding attack ([LP]). These attacks work
in general for learning-with-error problems and do not exploit the special
structure of the ring versions of the problem. In this paper, we will focus
solely on the new attacks presented in [EHL] and [ELOS] that exploit the
special number-theoretic structure of the PLWE and RLWE rings.

The attacks presented in [EHL] and [ELOS] can be described in terms of
the ring homomorphisms from Pq to smaller rings. As Pq ∼= Fnq , the only
candidates are the projections to each factor:

πα : Pq → Fq, p(x) 7→ p(α)

for each root α of f(x). In Pq, the short vectors sampled by the Gaussian
are easy to recognise since they have small coefficients. But they are hard
to tease out of b(x) = a(x)s(x) + e(x) without knowledge of s(x), and the
possibilities for s(x) are too many to examine exhaustively. By contrast, in a
small ring like Fq, it is easy to examine the possibilities for s(α) exhaustively.
And the ring homomorphism preserves the relationship of the important
players: b(α) = a(α)s(α)+e(α). Hence we can loop through the possibilities
for s(α), obtaining for each the putative value

e(α) = b(α)− a(α)s(α).

The Decision Problem for PLWE, then, is solved as soon as we can recognize
the set of e(α) that arise from the Gaussian.

Unfortunately (or fortunately), one does not expect to be able to do
this in general. Heuristically, let S ⊂ Pq denote the subset of polynomials
that are produced by the Gaussian with non-negligible probability. In Pq,
parameters are such that this is a small set. But Fq is a much smaller ring
and one expects that generically, the image of S will ‘smear’ across all of
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Fq. Something quite special must happen if we expect the image of S to
remain confined to a small subset of Fq, and hence be recognisable.

That ‘something special’ is certainly possible, however: suppose that
α = 1. The polynomials g(x) ∈ S have small coefficients, and hence have
small images g(1) in Fq. This is simply because n is much smaller than
q, so that the sum of n small coefficients is still small modulo q. More
generally, all of the attacks suggested in [EHL] and [ELOS] come down to
considering α with certain advantageous properties, so that the image of S
can be recognised.

The cyclotomic cases currently under consideration for PLWE and RLWE
are uniquely protected against this occurrence: α = 1 is never a root modulo
q of a cyclotomic polynomial of degree > 1 when q is sufficiently large.

3.1. Attacking α = 1. The approach described above and the α = 1
attack was first presented in [EHL]. The details are as follows. Suppose

f(1) ≡ 0 mod q.

We are given access to a collection of samples (ai(x), bi(x)). We wish to
determine if a sample is valid, of the form

bi(x) = s(x)ai(x) + ei(x)

for ei(x) produced by a Gaussian, or random (uniformly random). The
algorithm is as follows:
Algorithm 1:

(1) Let the set of valid guesses be S = Fq.
(2) Loop through the available samples. For each sample:

(a) Loop through guesses s ∈ S for the value of s(1). For each s:
(i) Compute ei := bi(1)− sai(1)
(ii) If ei is not small in absolute value1 modulo q, then con-

clude that the sample cannot be valid for s with non-
negligible probability, and remove s from S.

(3) If S = ∅, conclude that the sample was random. If S is non-empty,
conclude that the sample is valid.

If the guess s is correct, then ei = ei(1) =
∑n

j=1 eij where eij are chosen

from a Gaussian Gσ of parameter σ. It follows that ei(1) are approximately
sampled from a Gaussian G√nσ of parameter

√
nσ where nσ2 � q.

3.2. Attacking α of small order. The following attack described and
developed in [EHL, ELOS] requires α to have small order mod q. The
fundamental idea is the same as for the α = 1 attack, except that to discern
whether or not ei(α) is a possible image of a Gaussian-sampled error is more
complicated.

1meaning residue of smallest absolute value
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Assume that αr ≡ 1 mod q, then

e(α) =
n∑
i=1

eiα
i = (er + e2r + · · · ) + · · ·+ αr−1(er−1 + e2r−1 + · · · ).

If r is small enough, e(α) takes on only a small number of values modulo q.
This set of values may not be easy to describe, but q is small enough that
it can be enumerated and stored. The attack proceeds as for α = 1 except
that to determine if a sample is potentially valid for s in step (2)(a)(ii), we
compare to the stored list of possible values.

4. Attacking α of small residue

A third attack described in [ELOS] is based on the size of the residue
ei(α) mod q. This is more subtle. Here, the errors e(α) may potentially
take on all values modulo Fq with non-negligible probability. But it may be
possible to notice if the probability distribution across Fq is not uniform,
given enough samples.

This method of attack differs from the previous ones, but is also applica-
ble to α = 1 and α of small order, so all cases will be treated together.

Assume that

f(α) ≡ 0 mod q (1)

for some α. Let Ei be the event that

bi(α)− gai(α) mod q is in the interval [−q/4, q/4)

for some sample i and guess g for s(α) mod q. We wish to compare the
probabilities

P (Ei | D = U) and P (Ei | D = Gσ).

Here, D = U refers to the situation where bi is uniformily random, while
D = Gσ refers to the situation where bi is obtained as ais + ei for some
secret s, where ei follows a Gaussian Gσ truncated at 2σ (in practice, the
Gaussian is truncated as the tails decay to negligible values). If D = U ,
then bi(α)− gai(α) is random modulo q for all guesses g, that is,

P (Ei | D = U) =
1

2
.

If D = Gσ, then bi(α) − s(α)ai(α) = ei(α) mod q. Indeed, the terms
of bi(α) − s(α)ai(α) that are a multiple of f vanish at α modulo q by
Assumption (1). We consider

ei(α) =
n−1∑
j=0

eijα
j,

where eij is chosen according to the distribution Gσ and distinguish three
cases corresponding to

(1) α = ±1
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(2) α 6= ±1 and α has small order r modulo q
(3) α 6= ±1 and α is not of small order r modulo q

We will now drop the subscript i for simplicity. In Case (1), the error e(α)
is distributed according to Gσ̄ where

σ̄ = σ
√
n.

In Case (2), the error can be written as

e(α) =
r−1∑
i=0

eiα
i = (e0+er+· · · )+α(e1+er+1+· · · )+· · ·+αr−1(er−1+e2r−1+· · · )

where we assume that n is divisible by r for simplicity. For j = 0, · · · , r−1,
we have that

ej + ej+r + · · ·+ ej+n−r

is distributed according to Gσ̃ where

σ̃ = σ

√
n

r
.

As a consequence e(α) is sampled from Gσ̄ where

σ̄2 =
r−1∑
i=0

σ̃2α2i =
r−1∑
i=0

n

r
σ2α2i =

n

r
σ2α

2r − 1

α2 − 1
.

In Case (3), the error e(α) is distributed according to Gσ̄ where

σ̄2 =
n−1∑
i=0

σ2α2i = σ2α
2n − 1

α2 − 1
.

If
q

4
≥ 2σ̄, then errors always lie in [− q

4
, q

4
) and

P (Ei | D = Gσ) = 1.

Otherwise, assuming for simplicity that N =
2σ̄ − q/2

q
is an integer, we

have

P (Ei | D = Gσ) =

(∫ 2σ̄

0

Gσ̄
)−1

(∫ q
4

0

Gσ̄ +
N−1∑
k=0

∫ 5q
4

+kq

3q
4

+kq

Gσ̄

)
.

In the situation where this value exceeds 1/2, i.e., P (Ei | D = Gσ) =
1

2
+ ε

with ε > 0, the following algorithm attacks PLWE. Let

N =

⌈
`q + ε`

2

⌉
where ` is the number of samples observed. For each guess g mod q, we
compute bi − gai mod q for i = 1, · · · , `. We denote by C the number
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of elements obtained in the interval [−q/4, q/4). If C < N , the algorithm
outputs

D = U,

otherwise, the algorithm outputs

D = Gσ.

In the analysis of the probability of success of the algorithm, we denote by
B the binomial distribution and by F the cumulative Binomial distribution.
If D = U , the algorithm is successful with probability

P (C < N |D = U) = F (N − 1; `q,
1

2
).

If D = Gσ, we denote by Cs the number of elements of the form bi − sai
mod q in the interval [−q/4, q/4). In this case, the algorithm is successful
with probability

P (C ≥ N |D = Gσ) =
∑̀
i=0

P (C − Cs ≥ N − i)× P (Cs = i)

=
∑̀
i=0

(1− F (N − i− 1, `q − `, 1/2))×B(i, `, 1/2 + ε)

When ε > 0, the algorithm is successful since

1

2
(P (C < N |D = U) + P (C ≥ N |D = Gσ))

=
1

2
(P (C < N |D = U) + 1− P (C < N |D = Gσ))

=
1

2
+

1

2
(P (C < N |D = U)− P (C < N |D = Gσ)) >

1

2

Example 4.1. In Case (1), when n = 210, q ≈ 250, and σ = 8, we can
compute ε ≈ 0.5. Therefore, the attack is successful for any irreducible
polynomial of degree 210 and with a root 1 mod q.
In Case (2), when n = 29, q ≈ 250, σ = 8, and α = q− 1, α has order 2 and
we can compute ε ≈ 0.002. This is particularly interesting since there is
an irreducible polynomial with these properties that generates a power of
2 cyclotomic number field [ELOS]; however, it is not the usual cyclotomic
polynomial.
In Case (3), when n = 26, q ≈ 260, σ = 8, and α = 2, computations
show that ε = 0.02. Therefore, this attack is successful for any irreducible
polynomial of degree 26 with a root α = 2 modulo a prime q ≈ 260.
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5. RLWE-to-PLWE reduction

Suppose that K is a number field, and R is its ring of integers. For
technical reasons, we give a slight variant on the Minkowski embedding,
which is as follows: θ : K → Rn

θ(r) := (σ1(r), . . . , σs1(r),Re(σs1+1(r)), . . . . . . Re(σs1+s2(r)),

Im(σs1+1(r)), . . . , Im(σs1+s2(r))).

where the σi are the s1 + s2 embeddings of K, ordered so that the s1 real
embeddings are first, and the s2 complex embeddings are paired so that
σs1+k = σs1+s2+k.

A spherical Gaussian of parameter σ with respect to the usual inner
product on Rn can be discretized to the canonical discretized Gaussian on
R or its dual R∨.

Suppose R ∼= P for some polynomial ring P under a map α 7→ x for
some root α of f(x). Suppose further that R is monogenic. Then R∨ ∼= P
also as R-modules (as its different ideal is principal). For RLWE, R ⊗ R∨
is equipped with a basis bi, i = 0, . . . , n − 1 with respect to which the
Gaussian is spherical (the standard basis of Rn, pulled back by θ). For
PLWE, R⊗ P is equipped with such a basis also, i.e., the standard power
basis xi, i = 0, . . . , n− 1. To relate the two problems, one must write down
the change-of-basis matrix between them. It is the matrix

Nα := γM−1
α : R⊗R∨ → R⊗ P

where γ is such that R∨ = γR, and where Mα is the matrix with columns
[αi]b (i.e., the i-th column is the element αi represented with respect to the
basis b = {bi}).

The properties of Nα determine how much the Gaussian is distorted in
moving from one problem to the other. If it is not very distorted, then
solving one problem may solve the other.

Details are to be found in [ELOS], but in short, the normalized spectral
norm gives a good measure of ‘distortion’. This is defined for an n × n
matrix M by

||M ||2/ det(M)1/n.

6. Number Theoretical Open Problems

In this section we will describe a number of open problems in number
theory that are motivated by attacks to PLWE and RLWE, some very
speculative and some more precise.

6.1. Conditions for smearing. As described in Section 3, we are con-
cerned with the map

π : Pq → Fq, g(x) 7→ g(α).

Question 6.1. For which subsets S ⊂ Pq, is the image π(S) = Fq?
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If π(S) = Fq, we will say that S smears under π.
Partial solutions to this problem may come in a wide variety of shapes.

For example, can one prove that almost all S of a given size smear? Can
one characterise the types of situations that lead to a negative answer (e.g.
α = 1 and S consisting of polynomials of small coefficients)? What if we
restrict to the PLWE case, where S consists of polynomials with small coef-
ficients? Or the RLWE case, where S is the image of a canonical discretized
Gaussian?

6.2. The spectral distortion of algebraic numbers, and Mahler
measure. By Section 5, the normalized spectral norm of Nα is a prop-
erty of any algebraic number α for which Z[α] is a maximal order. We will
therefore denote it ρα, and call it the spectral distortion of α. It measures
the extent to which the power basis αi is distorted from the canonical basis
of the associated number field. Recall from Section 5 that for number rings
with small spectral distortion we expect to have an equivalence between the
RLWE and PLWE problems. For completeness, we state a slightly more
general definition, separate from its cryptographic origins, as follows:

Definition 6.2. Let α be an algebraic number of degree n and K = Q(α).
Let M be the matrix whose columns are given by θ(αi), where θ : K → Rn,

θ(r) = (σ1(r), . . . , σs1(r),Re(σs1+1(r)), . . . Re(σs1+s2(r)),

Im(σs1+1(r)), . . . , Im(σs1+s2(r)))

where the σi are the s1 + s2 complex embeddings of K, ordered so that the
s1 real embeddings are first, and the s2 complex embeddings are paired so
that σs1+k = σs1+s2+k. The spectral distortion of α is ||M ||2/(det(M))

1
n .

Question 6.3. What are possible spectral distortions of algebraic numbers?

It follows from the special properties of 2-power roots of unity that they
have spectral distortion equal to 1. However, even other roots of unity
do not have spectral distortion equal to 1 (and this is what necessitates
the more elaborate RLWE-to-PLWE reduction argument given in [DD] for
cyclotomic rings which are not 2-power cyclotomics).

Is the spectral distortion a continuum, or is the collection of values dis-
crete in regions of R? Does this relate to Mahler measure?

The Mahler measure of a polynomial can be defined as the product of the
absolute values of the roots which lie outside the unit circle in the complex
plane, times the absolute value of the leading coefficient. For a polynomial

f(x) = a(x− α1)(x− α2) · · · (x− αn)

the Mahler measure is

M(f) := |a|
∏
|αi|≥1

|αi|.
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The Mahler measure of an algebraic number α is defined as the Mahler
measure of its minimal polynomial.

Interestingly, polynomials which have small Mahler measure (all roots
very close to 1 in absolute value), seem to have small spectral distortion. For
example, consider “Lehmer’s polynomial”, the polynomial with the smallest
known Mahler measure greater than 1:

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

The Mahler measure is approximately 1.176, and the spectral distortion for
its roots is approximately 3.214. This spectral distortion is rather small, and
compares favorably for example with the spectral distortion for 11th roots
of unity, which is approximately 2.942. Other examples of polynomials
with small Mahler measure also have small spectral distortion: f(x) =
x3−x+ 1 has Mahler measure approximately 1.324 and spectral distortion
approximately 1.738.

To explain the phenomenon observed for polynomials with small Mahler
measure and to relate the Mahler measure to the spectral norm, we need
to have some estimate on the spectral norm in terms of the entries of the
matrix. The entries of the matrix M are powers of the roots {αj} of the
minimal polynomial. When the Mahler measure is small, the entries of
the matrix M have absolute value close to 1, since the absolute values of
the roots are as close as possible to 1. To make the connection with the
spectral norm more precise, [N] gives an improvement on Schur’s bound and
expresses the bound on the largest singular value in terms of the entries of
the matrix. Thus we can use Schur’s bound or this improvement to see that
polynomials with small Mahler measure must have relatively small spectral
norm.

It could also be interesting to look at other properties of M , such as the
entire vector of singular values of M , its conditioning number, etc.

6.3. Galois versus Monogenic. We say that K is monogenic if the ring of
integers R of K is monogenic, i.e., a simple ring extension Z[β] of Z. In this
case, K will have an integral basis of the form {1, β, β2, . . . , βn−1} which is
called a power integral basis. In this section we will focus on properties (1)
and (4) from the introduction.

Example 6.4. The following are examples of number fields that are both
Galois and monogenic:

• Cyclotomic number fields, K = Q(ζn) where ζn is a primitive nth
root of unity,
• Maximal real subfields of cyclotomic fields, K = Q(ζn + ζ−1

N ),

• Quadratic number fields K = Q(
√
d).
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Question 6.5. Are there fields of cryptographic size which are Galois and
monogenic, other than the cyclotomic number fields and their maximal real
subfields? How can one construct such fields explicitly?

The problem of characterizing all number fields which are monogenic goes
back to Hasse, however, a complete solution is not known to date. Here we
will summarize some of the known related results.

Proposition 6.6. [NS] Let p be a prime and K a Galois extension of Q of
degree n. Let e be the ramification index of p and f be the inertia degree of
p. If one of the conditions below is satisfied then K is not monogenic:

• If f = 1: ep < n
• If f ≥ 2: epf ≤ n+ e− 1

Let K be a Galois extension of prime degree `. (Such extensions are
called cyclic extensions.) The following result of Gras [G] states that cyclic
extensions are often non-monogenic.

Theorem 6.7. [G] Any cyclic extension K of prime degree ` ≥ 5 is non-
monogenic except for the maximal real subfield of the (2`+ 1)-th cyclotomic
field with prime conductor 2`+ 1.

Theorem 6.8. [G86] Let n ≥ 5 be relatively prime to 2, 3. There are only
finitely many abelian number fields of degree n that are monogenic.

For number fields of smaller degree it may be possible to give a complete
characterization. For instance, for cyclic cubic extensions K, Gras [G73]
and Archinard [Ar] gave necessary and sufficient conditions for K to be
monogenic.

Even though monogenic fields are rare in the abelian case for large de-
gree, Dummit and Kisilevsky [DK] have shown that there exist infinitely
many cyclic cubic fields which are monogenic. Also, a result of Kedlaya [K]
implies that there are infinitely many monogenic number fields of any given
signature. In fact, one can deduce that if f is an irreducible polynomial
with squarefree discriminant then the number field K obtained by adjoin-
ing a root of f to Q is monogenic. Since the probability that an arbitrary
polynomial has squarefree discriminant is π2/6, K will often be monogenic.
However, to require K to also be Galois is much more restrictive. Moreover,
for fields of cryptographic size (n ∼ 210), the discriminant of f is too large
to test for squarefreeness. Therefore testing whether an arbitrary number
field of crytographic size is monogenic is not known to be feasible in general.

6.4. Finding roots of small order mod p. We have seen that a root of
small order of f(x) modulo q provides a method of attack on the PLWE
problem in the ring Zq[x]/(f(x)). The attack is even more effective if, in
addition, this root is small as a minimal residue modulo q (‘minimal’ mean-
ing the smallest in absolute value). See Example 4.1, Case(3) in Section 4.
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Cyclotomic fields are protected against this attack by the observation that
the roots of a cyclotomic polynomial modulo q are of full order n. However
for ‘random’ polynomials, there is a priori no particular reason to expect
roots of any particular order modulo q, or to expect the roots to be small.
Motivated by these two requirements, it is natural to ask the following
question:

Question 6.9. For random polynomials f(x) and random primes q for which
f(x) has a root α modulo q, what can one say about the order of α modulo
q?

A special case of this question, for f monic of degree one, is to ask, for
a fixed a, how often is a a primitive root modulo p? A famous conjecture
of Artin states that this should happen for infinitely many p provided a is
not a perfect square or −1, and describes the density of such primes. This
has been the subject of much research, and the question above is a sort of
number field analogue. Some investigations in the direction of a number
field analogue of Artin’s conjecture exist; for a gateway to the literature,
see [MP, S].

Computationally, to locate polynomials having a small root of small or-
der, it is easiest to start with the desired order, find a suitable q, and then
build the polynomial. The algorithm is as follows:

Algorithm 2
Input: Integers r, n, q0 such that r > 2 represents the desired order,

n ≥ 1 represents the desired degree, and q0 > log2(n) represents the desired
bitsize of q.

(1) Let s be the degree of the cyclotomic polynomial Φr(x).
(2) Let a = 1 (our candidate for the element of order r mod q). Test

Φr(a) for primality. If it is a prime of approximate bitsize q0, let q
be this prime. Otherwise, increment a and try again.

(3) Once a and q are fixed, choose a set S of n elements of Z/qZ that
includes a and the other n− 1 smallest minimal residues (or choose
any other subset of residues).

(4) Choose i = 1 and increment i until the polynomial

f(x) =
∏
s∈S

(x− s) + qi

of degree n is irreducible.

Output: A monic irreducible polynomial f(x) ∈ Z[x], a prime q roughly
of size q0, and a ∈ Z/qZ such that f(a) ≡ 0 (mod q) and ar ≡ 1 (mod q).

Using this method, it is easy to find examples of (K, q) such that f(x) has
a root of small order modulo q. Among them, an example of cryptographic
size is afforded by n = 210, r = 3, a = 33554450, q = 1125901148356951
and i = 1 (the polynomial is too unwieldy to print here). Using the last two
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parts of the method, one can, in fact, easily construct polynomials having
as roots many elements of small order modulo q.

A simpler starting point is the following second question:

Question 6.10. What is the distribution of elements of small order among
residues modulo q?

There is a significant body of research on the distribution of primitive
roots (see Artin’s conjecture) and quadratic residues. More recently there
have been advances on the distribution of elements of small order. For
example, the number of elements of bounded size and specified order is
bounded above in [BKS2] for the case of small order; see also [Bour, BKS,
KS]. More useful in our present context, for the purposes of finding elements
of small order, would be a guarantee that such elements exist in some small
interval.

A more precise question is as follows:

Question 6.11. What is the smallest residue modulo a prime q which has
order exactly r ?

Let q be a prime and r > 2. Let nr,q represent the smallest residue modulo
q which has order exactly r. A first observation is the following (which
allows us to choose a more suitable starting point for a in the algorithm
above).

Proposition 6.12. Let ϕ(r) represent the Euler function, giving the num-
ber of positive integers less than and coprime to r. Then, if r has at most
two distinct prime factors, which are odd, then

|nr,q| ≥ (q/ϕ(r))1/ϕ(r)

Proof. The element nr,q is a root of the r-th cyclotomic polynomial, of
degree ϕ(r), modulo q. Since Φr(nr,q) 6= 0 as an integer relation, it must
be that |Φr(nr,q)| ≥ q. It is known that under the given hypotheses on
the factorisation of r, the coefficients of Φr are chosen from {±1, 0} ([M]).

Therefore |Φr(nr,q)| ≤ ϕ(r)|nϕ(r)
r,q | from which the result follows. �

In general, combining upper and lower bounds on nr,q would limit the
search space for an element of small order.

Remark 6.13. (1) Other restrictions on the coefficients of Φr give rise to
similar results. To derive an asymptotic statement, one could turn
to asymptotic results such as [E2].

(2) The case of r = 3, the study of n3,q gives the full story, as the cube
roots of unity are of the form

1, n3,q,−n3,q − 1.

(3) In general, the primes q such that nr,q = a for a fixed a and r are
among those dividing Φr(a), hence there are finitely many.
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(4) Elliott has some results on k-th power residues [E1].

We will call nr,q minimal if, in addition to being the smallest residue of
order r modulo q, it also satisfies Φr(nr,q) = ±q. For non-minimal nr,q, the
lower bound in Proposition 6.12 increases. A conjecture of Bouniakowski
implies that minimality happens infinitely often.

Conjecture 6.14 (Bouniakowski, [Boun]). Let f(x) ∈ Z[x] be a non-
constant irreducible polynomial such that f(x) is not identically zero modulo
any prime p. Then f(n) is prime for infinitely many n ∈ Z.

Proposition 6.15. Let r > 2. If Bouniakowski’s Conjecture holds, then
there are infinitely many primes q for which nr,q is minimal.

Proof of Prop 6.15. The cyclotomic polynomials for r > 1 satisfy the Bou-
niakowski conditions, as they are irreducible and Φr(1) 6≡ 0 (mod p) since 1
is not of exact order r modulo any p. Hence Φr(x) takes on infinitely many
prime values; for such a prime q, the smallest such x in absolute value is
nr,q and this is minimal. �

Acknowledgements. The authors thank the organizers of the research
conference Women in Numbers 3 (Rachel Pries, Ling Long and the fourth
author) and the Banff International Research Station, for making this col-
laboration possible. The authors also thank the anonymous referee for de-
tailed comments and suggestions to improve the paper, and Igor Shparlinski
for useful feedback and references.

References

[Ar] G. Archinard. Extensions cubiques cycliques de Q dont l’anneau des entiers
est monogène. Enseignement Math. (2) Vol 20, Pages 179-203 (1974)

[A] M. Ajtai. Generating hard instances of lattice problems. In Complexity of
computations and proofs, Quad. Mat. Vol 13, pages 1–32, 2004. Preliminary
version in STOC 1996.

[AD] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-
case equivalence, in Proceedings of the Twenty-ninth Annual ACM Sympo-
sium on Theory of Computing (1997), 284–293.

[Boun] V. Bouniakowski, Sur les diviseurs numériques invariables des fonctions ra-
tionelles entières, Mem. Acad. Sci. St. Petersburg 6 (1857), 305–329.

[Bour] J. Bourgain. On the distribution of the residues of small multiplicative sub-
groups of Fp. Israel J. Math. 172 (2009), 61–74.

[BKS] J. Bourgain, S.V. Konyagin and I.E. Shparlinski. Product sets of rationals,
multiplicative translates of subgroups in residue rings, and fixed points of the
discrete logarithm. Int. Math. Res. Not. (2008), 29 pp.

[BKS2] J. Bourgain, S.V. Konyagin, and I.E. Shparlinski. Distribution of elements of
cosets of small subgroups and applications. Int. Math. Res. Not. (2012), no.
9, 1968–2009.

[BLN] J. W. Bos, K. Lauter, M. Naehrig. Private Predictive Analysis on En-
crypted Medical Data, Journal of Biomedical Informatics (2014) DOI
10.1016/j.jbi.2014.04.003



18 YARA ELIAS, KRISTIN E. LAUTER, EKIN OZMAN, KATHERINE E. STANGE

[BV] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from
RLWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–
524. Springer, 2011.

[BGV] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryp-
tion without bootstrapping, Cryptology ePrint Archive, Report 2011/277,
2011, ITCS 2012.

[DD] L. Ducas, A. Durmus. RLWE in Polynomial Rings. 15th International Con-
ference on Practice and Theory in Public Key Cryptography, PKC 2012,
Fischlin, Marc, Buchmann, Johannes, Manulis, Mark (Eds.). Lecture Notes
in Computer Science, Vol. 7293,

[DK] D. S. Dummit and H. Kisilevsky. Indices in cyclic cubic fields, in Number
Theory and Algebra, Academic Press, 1977, 29–42.

[EHL] K. Eisentraeger, S. Hallgren, K. Lauter, Weak Instances of PLWE, Proceed-
ings of Selected Areas of Cryptography 2014, Springer LNCS.

[ELOS] Y. Elias, K. E. Lauter, E. Ozman, K. E. Stange, Provably Weak Instances of
RLWE, in CRYPTO 2015, to appear.

[E1] P. D. T. A. Elliott, A problem of Erdős concerning power residue sums. Acta
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