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Abstract—As part of the revelations about the NSA activities,
the notion of interdiction has become known to the public:
the interception of deliveries to manipulate hardware in a way
that backdoors are introduced. Manipulations can occur on
the firmware or at hardware level. With respect to hardware,
FPGAs are particular interesting targets as they can be altered
by manipulating the corresponding bitstream which configures
the device. In this paper, we demonstrate the first successful
real-world FPGA hardware Trojan insertion into a commercial
product. On the target device, a FIPS-140-2 level 2 certified USB
flash drive from Kingston, the user data is encrypted using AES-
256 in XTS mode, and the encryption/decryption is processed by
an off-the-shelf SRAM-based FPGA. Our investigation required
two reverse-engineering steps, related to the proprietary FPGA
bitstream and to the firmware of the underlying ARM CPU. In
our Trojan insertion scenario the targeted USB flash drive is
intercepted before being delivered to the victim. The physical
Trojan insertion requires the manipulation of the SPI flash
memory content, which contains the FPGA bitstream as well
as the ARM CPU code. The FPGA bitstream manipulation
alters the exploited AES-256 algorithm in a way that it turns
into a linear function which can be broken with 32 known
plaintext-ciphertext pairs. After the manipulated USB flash drive
has been used by the victim, the attacker is able to obtain all
user data from the ciphertexts. Our work indeed highlights the
security risks and especially the practical relevance of bitstream
modification attacks that became realistic due to FPGA bitstream
manipulations.

I. INTRODUCTION

In this section we provide an overview of our research and
related previous works in the area of hardware Trojans and
Field Programmable Gate Array (FPGA) security.

A. Motivation
As a part of the revelations by Edward Snowden, it became

known that the National Security Agency (NSA) allegedly
intercepts communication equipment during shipment in order
to install backdoors [1]. For instance, Glenn Greenwald claims
that firmware modifications have been made in Cisco routers
[2], [3], [4]. Related attacks can also be launched in “weaker”
settings, for instance, by an adversary that replaces existing
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equipment with one that is backdoor-equipped or by exploiting
reprogramming / updatability features to implant a backdoor.
Other related attacks are hardware Trojans installed by OEMs.
It can be argued that such attacks are particular worrisome
because the entire arsenal of security mechanism available to
us, ranging from cryptographic primitives over protocols to
sophisticated access control and anti-malware measures, can
be invalidated if the underlying hardware is manipulated in a
targeted way. Despite the extensive public discussions about
alleged manipulations by British, US, and other intelligence
agencies, the technical details and feasibilities of the required
manipulations are very much unclear. Even in the research
literature most hardware Trojans are implemented on high level
(e.g., King et al. [5]) and thus assume an attacker at the system
design phase [6], [7].

B. Contribution
The goal of the contribution at hand is to provide a case

study on how a commercial product, which supposedly pro-
vides high security, can be weakened by meaningful low-
level manipulations of an existing FPGA design. To the best
of our knowledge, this is the first time that it is being
demonstrated that a bitstream modification of an FPGA can
have severe impacts on the system security of a real-world
product. We manipulated the unknown and proprietary Xilinx
FPGA bitstream of a FIPS-140-2 level 2 certified device.
This required several steps including the bitstream file format
reverse-engineering, Intellectual Property (IP) core analysis,
and a meaningful modification of the hardware configuration.

Our target device is a Data Traveler 5000, an overall FIPS-
140-2 level 2 certified1 Universal Serial Bus (USB) flash
drive from Kingston. It utilizes a Xilinx FPGA for high-speed
encryption and decryption of the stored user data. As indicated
before, we implant a hardware Trojan through manipulating the
proprietary bitstream of the FPGA resulting in a maliciously
altered Advanced Encryption Standard (AES)-256 IP core that
is susceptible to cryptanalysis.

By the underlying adversary model it is assumed that the
adversary can provide a manipulated USB flash drive to the
victim. For accessing the (seemingly strongly encrypted) user
data, the adversary can obtain the device by stealing it from the
victim. Alternatively, it is also imaginable that a covert, remote
channel can be implanted in the target system. Due to our

1Many categories even fulfill the qualitative security level 3, cf. [8]
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manipulations, the adversary can easily recover all data from
the flash drive. It seems highly likely that the attack remains
undetected, because the cryptographic layer is entirely hidden
from the user. Similar attacks are possible in all settings where
encryption and decryption are performed by the same entity,
e.g., hard disk encryption or encryption in the cloud.

We hope that our contribution closes an important gap in
the research literature between the (hardware-design oriented)
FPGA Trojan community and insertions in real-world settings.
Moreover, we believe our case study will be of interest to the
security community at large with respect to the feasibility of
low-level hardware manipulations. On a more technical level,
our contribution demonstrates that FPGAs with unprotected (or
poorly protected) bitstreams can pose a considerably security
risk. In principle, the general attack vector is applicable against
many other FPGA-equipped devices that perform security
functions, e.g., routers or military equipments.

C. Related Work

Two lines of research, which have been treated mainly
separately so far, are particularly relevant to our contribu-
tion, i.e., FPGA security and hardware Trojans. FPGAs are
reprogrammable hardware devices which are used in a wide
spectrum of applications, e.g., network routers, data centers,
automotive systems as well as consumer electronics and secu-
rity systems. In 2010 more than 4 billion devices were shipped
world-wide [9]. Surprisingly many of these applications are se-
curity sensitive, thus modifications of designs exhibit a crucial
threat to real-world systems. Despite the large body of FPGA
security research over the past two decades, cf. [10], the issue
of maliciously manipulating a commercial and proprietary
third-party FPGA design — with the goal of implanting a
Trojan that weakens the system security of a commercial high-
security device — has never been addressed to the best of our
knowledge. SRAM-based FPGAs, for which the configuration
bitstream is stored in external (flash) memory, dominate the
industry. Due to its volatility, SRAM-based FPGAs have to be
re-configured at every power-up. Hence, in a scenario where
an adversary can make changes to the external memory chip,
the insertion of hardware Trojans becomes a possible attack
vector. It is known for long time that an FPGA bitstream
manipulation is applicable, but the complexity of maliciously
altering the given hardware resources of a third-party FPGA
configuration has not been addressed in practice. However,
from an attacker’s point of view, the malicious manipulation of
a third-party FPGA bitstream offers several practical hurdles
that must be overcome. Amongst the main problems is the
proprietary bitstream format that obfuscates the encoding of
the FPGA configuration: there is no support for parsing the
bitstream file to a human-readable netlist, i.e., the internal
FPGA configuration cannot be explored. However, previous
works have shown that Xilinx’ proprietary bitstream file format
can be reverse-engineered back to the netlist representation up
to a certain extent [11], [12], [13]. In general, it seems to
be a safe assumption that a determined attacker can reverse-
engineer all (or at least the relevant) parts of the netlist from
a given third-party bitstream. As the next crucial steps, the

adversary must detect and manipulate the hardware design. To
the best of our knowledge, the only publicly reported detec-
tion and malicious manipulation of cryptographic algorithms
targeting a third-party bitstream is by Swierczynski et al. [14],
which is also the basis of our work.
The related work by Chakraborty et al. [15] demonstrated the
accelerated aging process of an FPGA by merging a ring-
oscillator circuitry into an existing bitstream. Furthermore, the
presented attack cannot change the existing parts (described
as “Type 1 Trojan” in their work, e.g., the relevant parts of
a cryptographic algorithm or access control mechanism) and
hence is not applicable to undermine the system security of
our targeted device. Thus, we cover and demonstrate the theo-
retically described “Type 2 Trojan” defined by Charkaborty et
al. [15]. Such Trojans are able to alter the existing hardware
resources and expectedly require more analysis of the design.

Another related work was done by Aldaya et al. [16]. The
authors demonstrated a key recovery attack for all AES key
sizes by tampering T-boxes which are stored in the Block-Ram
(BRAM) of Xilinx FPGAs. It is a ciphertext-only attack and
it was demonstrated that various previously proposed FPGA-
based AES implementations are vulnerable to their proposed
method.

One other practical hurdle for injecting a Trojan into an
FPGA bitstream is an encrypted bitstream that ensures the
integrity and confidentially of a design. The two market
leaders Xilinx and Altera both provide bitstream encryption
schemes to prevent IP theft and the manipulation of the
proprietary bitstream. Nevertheless, it has been shown that
those encryption schemes can be broken by means of side-
channel analysis with moderate efforts [17], [18], [19]. In
these attacks, the power consumption can be exploited during
the encryption/decryption process to reveal the cryptographic
keys under which the bitstream is encrypted. Subsequently,
the bitstream can be decrypted, modified, and re-encrypted.
Thus, current bitstream encryption mechanisms only provide
moderate additional security against a determined adversary
and would not hinder us to perform our presented bitstream
modification attack for the most available FPGA device
families.

Another relevant strand of research is the hardware Trojan.
Malicious hardware manipulations, aka Trojans, have come
in the spotlight of the scientific community after a report
by the US DoD in 2005 [20]. A general taxonomy for
Trojan insertion, functionality, and activation was introduced
by Karri et al. [6]. Besides theoretical descriptions of hardware
Trojans, the majority of research focused on the detection of
malicious circuits. An overview of hardware Trojan detection
approaches and their inherent problem of coverage is presented
by Narasimhan et al. [7]. There are only very few research
reports that address the design and implementation aspects of
hardware Trojans. Most hardware Trojans (FPGAs and ASICs)
from the academic literature are implemented using high-level
(register transfer level) tools and hence assume a different,
and considerably stronger attacker model — namely Trojan
insertion during system design — compared to our low-level
Trojan insertion.
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In the area of hardware Trojans, FPGAs constitute an
interesting special case because an attacker can accomplish
a hardware modification by altering the deployed bitstream
prior to the FPGA power-up. The bitstream contains the
configuration rules for programmable logic components and
programmable interconnections. One can agree that it is
arguable whether FPGA Trojans are “true” hardware Trojans.
On the other hand, the bitstream controls the configuration
of all hardware elements inside the FPGA, and attacks as
shown in this paper lead to an actual change of the hardware
configuration. Thus, even though they represent a corner
case, we believe it is justified to classify FPGA Trojans as
hardware Trojans.

It should be noted that our strategy is considerably different
when compared to the BadUSB attack presented by Nohl et
al. [21]. In our settings we needed to bypass the security
mechanisms of a protected and special-purpose high-security
USB flash drive to be able to alter the existing cryptographic
circuitry of a proprietary third-party FPGA design. Compared
to our contribution, the BadUSB attack mainly targets the
reprogramming of unprotected low-cost USB peripherals that
can distribute software-based malware, e.g., by emulating a
keyboard device. Hence, the BadUSB attack is not related to
the given and less explored threats of FPGA hardware Trojans.

II. PROCEEDING OF INSERTING AN FPGA TROJAN

In the following we assume that the attacker is able to
intercept a device during the shipping delivery before it arrives
at the actual end user. As indicated before, this is not an imagi-
nary scenario as according to the Edward Snowden documents
it is known as interdiction [1]. Subsequently, we present a
method of how to explore third-party FPGA bitstreams.

A. Attack Scenario: Interdiction
The process of interdiction is illustrated by Fig. 1. Ordered

products (e.g., an USB flash drive) of an end user are secretly
intercepted by an intelligence service during the shipment.
The target device is modified or replaced by a malicious
version, e.g., one with a backdoor. The compromised device
is then delivered to the end user. Intelligence agencies can
subsequently exploit the firmware or hardware manipulation.

According to the Snowden revelations, hardware Trojans
are placed, e.g., in monitor or keyboard cables with hidden
wireless transmitters, allowing for video and key logging
[1]. Also, it can be assumed that a Personal Computer (PC)
malware can be distributed with the help of a compromised
firmware of an embedded device as recently demonstrated by
Nohl et al. [21]. This can have severe impacts such as an
unwanted secret remote access by a malicious third party or
decryption of user data on physical access.
It is relatively easy to alter the firmware of micro-controllers,
ARM CPUs, or other similar platforms if no read-out protec-
tion is given or no self-tests are utilized.

In contrast, altering hardware such as an Application Spe-
cific Integrated Circuit (ASIC) is a highly complex procedure.
Recently, Becker et al. [22] demonstrated how a malicious

Normal Shipment

Intercepted Shipment

Order

End 
User

Fig. 1: Interdiction attack conducted by intelligence services

factory can insert a hardware Trojan by changing the dopant
polarity of existing transistors in an ASIC. However, this
requires a different and considerably stronger attacker scenario
than the one shown in Fig. 1, because the modification
takes place during the manufacturing process. This is a time-
consuming, difficult, and expensive task and therefore less
practical.

On the contrary, at first glance, attacking an FPGA also
seems to be similarly challenging because the bitstream file
is proprietary and no tools are publicly available that convert
the bitstream back to a netlist (for a recent scientific work
see [23]). However, the recent work [14] has shown that
a bitstream modification attack may indeed be successfully
conducted with moderate efforts depending on the realization
of the FPGA design.

In our case we conducted the scenario of Fig. 1 by manip-
ulating the bitstream of an FPGA contained in a high-security
USB flash drive that utilizes strong cryptography to protect
user data. After the manipulated USB flash drive has been
forwarded to and utilized for a certain amount of time by the
end user, the attacker is able to obtain all user data.

B. Attack Scenario: Exploitation and Reconfigurability
We want to highlight that interdiction is not the only realistic

scenario for implanting an FPGA hardware Trojan. Modern
embedded systems provide a remote firmware update mecha-
nism to allow changes and improvements after the development
phase. Such functionality exhibits an attractive target for an
attacker to undermine the system security by means of exploits
or logical flaws in the update mechanism. Thus, an attacker
may remotely implant an FPGA hardware Trojan. To sum
up, in several settings an attacker must not necessarily have
physical access to the target device.

C. Exploring Third-Party FPGA Designs
One major hurdle of altering third-party FPGA designs is

due to the proprietary bitstream file. Without any knowledge
of the bitstream encoding, an adversary cannot analyze a third-
party FPGA bitstream as the hardware configuration remains
a black box for him/her. Therefore, the adversary is not able
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to replace the configuration of any hardware components
in a meaningful way. Thus, the first important prerequisite
is to learn the configuration from the proprietary bitstream.
As mentioned above, previous works [11], [12], [13] have
shown that the bitstream encoding of several Xilinx FPGAs
can be (partially) reverse-engineered. Once the meaning of
the bitstream encoding is revealed, an attacker can trans-
late the bitstream to a human-readable netlist that serves
for further analysis. This netlist contains all information of
how Configurable Logic Blocks (CLBs), Input Output Blocks
(IOBs), Digital Signal Processings (DSPs), or BRAMs are
configured and interconnected. Roughly speaking, a bitstream
file configures all the presented blocks in Fig. 2.

I/O CLB BRAM CLB DSP CLB I/O

I/O CLB BRAM CLB DSP CLB I/O

I/O CLB BRAM CLB DSP CLB I/O

I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O

Fig. 2: FPGA grid overview

The second challenging hurdle is the detection of (com-
binatorial) logic within a large and complex circuitry. The
detection is conducted at a very low level since the circuitry
can be build by thousands of Look-up tables (LUTs) or Flip
Flops (FFs), etc., which are interconnected by millions of
wires along the FPGA grid. As long as it is unclear to the
adversary how all those low-level elements (LUTs, FFs, wires,
etc.) construct a circuitry and as long as he/she has no access
to more information (e.g., the corresponding VHDL file), it is
unlikely that he/she can successfully detect and replace parts
of the logic. During a profiling phase, which only needs to
be conducted once per FPGA device, the adversary creates
and observes different variants of how specific functions are
commonly synthesized, placed, and routed in the target FPGA
grid (low-level device description).
Once this investigation is conducted, the adversary knows how
to detect specific circuitry from a given hardware configura-
tion. If the relevant bitstream encoding part is unknown to
the adversary, he/she can learn the bitstream encoding of a
reference circuitry by creating and comparing the correspond-
ing bitstreams of all possible configurations. This strategy is
illustrated in Fig. 3.

In this work, we have practically verified the feasibility of
our approach to implant the first practical hardware Trojan
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Fig. 3: Strategy of partially replacing an FPGA configuration

in the bitstream of a third-party design of a Xilinx Spartan-3E
FPGA. The main strength of our presented attack vector is that
it is practically possible to apply the presented modifications
to a broader class of Static Random Access Memory (SRAM)-
based FPGA devices. The attack itself can be performed in a
short period of time (within one day) and thus is applicable in
our presented interdiction scenario. This further emphasizes the
attack’s practical relevance and its impacts regarding additional
targets using an FPGA as a security device or trust anchor.

III. REAL-WORLD TARGET DEVICE

To demonstrate our FPGA Trojan insertion, we selected the
Kingston DataTraveler 5000 [24] as the target, which is a
publicly available commercial USB flash drive with strong
focus on data security. This target device is overall FIPS-
140-2 level 2 certified [8]. It uses Suite B [25] cryptographic
algorithms, in particular AES-256, SHA-384, and Elliptic
Curve Cryptography (ECC). All user data on our targeted USB
drive is protected by an AES-256 in XEX-based Tweaked-
codebook with ciphertext Stealing (XTS) mode. A PC software
establishes a secured communication channel to the USB flash
drive and enforces strong user passwords.

Due to the FIPS-140 level 2 certification, the device has
to fulfill certain requirements of tamper resistance on the
physical, hardware and software levels as well as on detecting
physical alterations. The Printed Circuit Board (PCB) of the
Kingston DataTraveler 5000 is protected with a titanium-
coated, stainless-steel casing and is surrounded by epoxy
resin to prevent the undesired access to its internal hardware
components.
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A. Initial Steps and Authentication Process
When plugging the USB flash drive into a USB port for the

first time, an unprotected partition drive is mounted making the
vendor’s PC software available to the user. Meanwhile, in the
background, this software is copied (only once) to a temporary
path from which it is always executed, c.f., the upper part of
Fig. 7.

In an initial step, the end user needs to set a password.
Afterwards, the user must be authenticated to the device using
the previously-set password. This means that the key materials
must be somewhere securely stored, which is commonly a
multiple-hashed and salted password.

On every successful user authentication (mainly performed
by the ARM CPU and the PC software), the protected partition
drive is mounted allowing access to the user data. Any data
written to the unlocked partition is encrypted with AES by the
Xilinx FPGA and the corresponding ciphertexts are written
into the sectors of the micro SD card as indicated in Fig. 7.

When unplugging the USB flash drive and for the case that
an adversary has stolen this device, he/she is not able to access
the user data without the knowledge of the corresponding pass-
word. According to [24], after 10 wrong password attempts,
the user data is irrevocably erased to prevent an attacker from
conducting successful brute-force attempts.

B. Physical Attack — Revealing the FPGA Bitstream
To conduct an FPGA hardware Trojan insertion, we need to

have access to the bitstream. Thus, in the first step we were
able to remove the epoxy resin. Indeed, this procedure was
much easier than expected. We locally heated up the epoxy
resin to 200◦C (by a hot-air soldering station) turning it to a
soft cover and removed the desired parts by means of a sharp
instrument, e.g., a tiny screwdriver (see Fig. 4).

Fig. 4: Epoxy removal of
Kingston DT 5000 with
screwdriver

Fig. 5: Eavesdropping the
bitstream of Kingston DT
5000 with opened case

By soldering out all the components, exploring the double-
sided PCB and tracing the wires, we detected that an ARM
CPU configures the Xilinx FPGA through an 8-bit bus. We also
identified certain points on the PCB by which we can access

each bit of the aforementioned configuration bus. Therefore,
we partially removed the epoxy resin of another operating
identical target (USB flash drive) to access these points and
then monitored this 8-bit bus during the power-up (by plugging
the target into a PC USB port) and recorded the bitstream sent
by the ARM CPU, cf., Fig. 5. Note that SRAM-based FPGAs
must be configured at each power-up. By repeating the same
process on several power-ups as well as on other identical
targets, we could confirm the validity of the revealed bitstream
and its consistency for all targets. We should emphasize that
the header of the bitstream identified the type and the part
number of the underlying FPGA matched with the soldered-
out component.

We also identified an Serial Peripheral Interface Bus (SPI)
flash amongst the components of the PCB. As we have
soldered out all the components, we could easily read out the
content of the SPI flash. Since such components are commonly
used as standalone non-volatile memory, no read-out protection
is usually integrated. At first glance it became clear that the
SPI flash contains the main ARM firmware (2nd ARM image).
We also found another image (1st ARM image) initializing
the necessary peripherals of the microcontroller. Furthermore,
we identified that the bitstream, which we have revealed by
monitoring the configuration bus, has been stored in the SPI
flash, cf., Fig. 6.

Unused
0xFF ... FF

Unencrypted
FPGA Bitstream

Testvectors

Security Header Fields

2nd ARM Image

Unused
0xFF ... FF

1st ARM Image

0xFFFFF

0x6FA00

0x2A400

0x28B78

0x2A200

0x10000

0x048C0

0x00000

Fig. 6: Address space layout of the SPI flash

Motivated by these findings we continued to analyze all
other components of the USB flash drive and thus describe
our results in the following.

C. Overview and Component Details

Based on our accomplishments described above, we could
identify the following main components placed on the double-
sided PCB:
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• NXP LPC3131 with embedded ARM926EJ-S CPU op-
erating at 180 MHz

• Xilinx Spartan-3E (XC3S500E) FPGA
• HSM from SPYRUS (Rosetta Micro Series II) providing

ECDH, DSA, RSA, DES, 3-DES, AES, SHA-1, etc.
• 2 GB Transcend Micro SD card (larger versions also

available)
• 1 MB (AT26DF081A) SPI flash
We revealed the layout of the circuit through reverse-

engineering. The whole circuit is depicted in Fig. 7. This
step was conducted by tracing the data buses of the PCB
and by decompiling the PC software as well as the identified
ARM firmware. Both executables were decompiled with Hex-
Rays [26]. The resulting source code served for further reverse-
engineering.

The main task of the identified ARM CPU (master device) is
to handle the user authentication, while the Xilinx FPGA (slave
device) is mainly responsible for the user data encryption and
decryption. It should be noted that the FPGA is also partially
involved in the authentication process and exhibits our main
target for manipulation. We could not confirm the key storage
location, but we assume that the key materials are securely
stored in the Hardware Security Module (HSM), c.f., Fig. 7.
As we demonstrate in this paper, we need neither any access
to the key materials nor any knowledge of the key derivation
function to be able to decrypt sensitive user data.

As stated before, both images (ARM CPU code and FPGA
bitstream) were discovered in the SPI flash that are loaded and
executed during the power-up of the USB flash drive.

FPGA
device

ARM
ProcessorSPI flash

PCB

ARM code

FPGA 
bitstream

Micro SD
Card (2GB)

1 MB

HSM

Configuration Encrypt/Decrypt

SPI
r/w

Self-
tests

Secure 
USB

channel

PC Software

DLL file

encrypted

User
Password

AES

AES

AES

Fig. 7: Overview of revealed circuit of our target device

D. Unlinking FPGA Trojan from the Authentication Process

During our FPGA Trojan insertion, we identified several
AES cores, as shown in Fig. 7:

1) AES core in the PC Software: used during user authen-
tication.

2) AES core in the ARM code: used during user authenti-
cation.

3) AES core in the FPGA: used during user authentication
(partially) as well as for encrypting user data at high
speed (main purpose).

If only the functionality of the FPGA AES core is manipulated,
the target device would not operate properly anymore because
all three AES cores need to be consistent due to the identified
authentication dependencies. To be more precise, all three AES
cores are involved in the same authentication process.

As our goal is to insert a hardware Trojan by manipulating
the AES core of the FPGA, we first needed to unlink the
dependency (of the AES cores) between the ARM CPU and
the Xilinx FPGA, cf., Fig. 8. Therefore, we eliminated this
dependency by altering parts of the ARM firmware, but we
realized that any modification is detected by an integrity check.
We identified several self-tests that are conducted – by the
ARM CPU – on every power-up of the USB flash drive.

Further analyses revealed the presence of test-vectors. They
are used to validate the correctness of the utilized cryptography
within the system. The utilized self-tests are explained in
Section VI-A in more detail. In Section VI-B, we demonstrate
how to disable them and how to unlink the aforementioned
dependencies.

To sum up, our intended attack is performed using the
following steps:

1) Identify and disable the self-tests,
2) Unlink the AES dependency between the ARM and

FPGA, and
3) Patch (reprogram) the FPGA bitstream meaningfully.
Fig. 8 and Fig. 9 illustrate the impact of these steps. As can

be seen, canceling the dependency allows us to alter the AES
core and add an FPGA Trojan. The details of how we could

DLL

FPGA

ARM

AES

AES

AES
User
data

DLL

FPGA
Trojan

ARM

AES

AES

AES
User
data

Fig. 8: User authentica-
tion (dashed) and user data
(solid) dependencies before
modification

DLL

FPGA

ARM

AES

AES

AES
User
data

DLL

FPGA
Trojan

ARM

AES

AES

AES
User
data

Fig. 9: User authentication
(dashed) and data (solid) de-
pendencies after modifica-
tion

successfully alter the FPGA bitstream to realize a hardware
Trojan are presented in Section IV. Below, we discuss why
modifying a bitstream is more elegant for planting an FPGA
Trojan than replacing the whole bitstream.

E. Modifying Bitstream vs. Replacing Whole Bitstream

We want to pinpoint that replacing the complete FPGA
design to insert a Trojan does not necessarily mean that an
attack is less complicated to be performed. Replacing the
whole FPGA bitstream by a completely new design is a more
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challenging task. The attacker would need to further reverse-
engineer and fully understand the whole FPGA environment
(ARM code, data buses, protocols, etc.) and re-implement all
functions to ensure the system’s compatibility. It even turned
out to be the easier and faster approach, since we were able
to modify this third-party IP core without the need to reverse-
engineer or modify any part of the routing.

Thus, we only focus on detecting and replacing the relevant
parts of the utilized FPGA design. By doing so, we secretly
insert a stealth FPGA Trojan that turns the AES encryption and
decryption modules into certain compatible weak functions,
c.f., Section V.

F. Manipulation – Master vs. Slave

To be fair, on one hand the Kingston DataTraveler 5000 is
not the best target device to demonstrate an FPGA hardware
Trojan insertion because the embedded ARM CPU acts as
the master device containing all control logic. The FPGA is
merely used as an accelerator for cryptographic algorithms. In
order to preserve the functionality of the USB flash drive with
an active FPGA hardware Trojan the ARM CPU firmware –
as previously explained – has to be customized too, i.e., the
integrity check of the ARM CPU code needs to be disabled
(explained in Section VI). At this point, the attacker can alter
the firmware to not encrypt the user data at all, turning the
device into a non-secure drive accessible to everyone. As
another option, the attacker can secretly store the encryption
key which would result in a conventional software-based
embedded Trojan.

On the other hand, there are solutions which contain only an
FPGA used as the master device [27]. Conventional software-
based embedded Trojans are not applicable in those systems.
Our attack is a proof of concept that FPGA hardware Trojans
are practical threats for the FPGA-based systems where no
software Trojan can be inserted. Our attack also highlights the
necessity of embedded countermeasures on such systems to
detect and defeat FPGA hardware Trojans.

IV. BUILDING THE FPGA TROJAN

In this section we shortly introduce the most common
implementation styles to realize an AES encryption/decryption
module. In addition, we present the information which can
be extracted from the given bitstream file followed by our
conducted modification on the AES-256 core. The impact
of this modification – considering the utilized XTS mode of
operation – is described in Section V.

A. Processing Methods of AES SubBytes

The SubBytes layer [28] of AES can be realized by various
methods either in software or hardware. With respect to an
FPGA we shortly explain the three most common schemes as
they play an important role for our conducted manipulation:

1) Precomputation of S-box: Two 256-byte substitution
tables denoted by S (AES S-box) and S−1 (inverse
AES S-box) are precomputed. These tables can be

either stored in the LUTs or in the block RAM of the
FPGA.

2) On-the-fly computation: For a value x ∈ GF (28),
the multiplicative inverse over GF (28) is derived and
followed by the affine transformation to construct the
S-box output S(x). A relatively small circuitry, e.g., the
one proposed by Canright [29] can be used to realize
an efficient and compact design.

3) Precomputation of T-boxes: S-box and MixColumns
can be merged to build four T-box tables, each with 8-
bit input and 32-bit output width [30]. These precom-
puted tables are denoted by T0, T1, T2, and T3, which
considerably accelerate the encryption and decryption
processes. To implement T-boxes, usually 28 × 32 bits
(i.e., 1024 bytes) need to store one out of four T-boxes.
Note that T-boxes are computed for x ∈ {0, 1, ..., 255}
as follows.

T0(x) = 02 ◦ S(x)||01 ◦ S(x)||01 ◦ S(x)||03 ◦ S(x)

T1(x) = 03 ◦ S(x)||02 ◦ S(x)||01 ◦ S(x)||01 ◦ S(x)

T2(x) = 01 ◦ S(x)||03 ◦ S(x)||02 ◦ S(x)||01 ◦ S(x)

T3(x) = 01 ◦ S(x)||01 ◦ S(x)||03 ◦ S(x)||02 ◦ S(x),

where ◦ denotes multiplication in GF (28) using the
AES polynomial P (x) = x8 + x4 + x3 + x+ 1 and ||
represents the concatenation. T-boxes are usually stored
in block RAMs of the FPGA to achieve a compact and
efficient implementation.

B. Analysis of the Extracted Bitstream
Based on the method presented in Section II, we could

dump and analyze the initial memory configuration of each
block RAM of the extracted bitstream. The Spartan-3E FPGA
contains up to 20 block RAMs. We figured out that only 10
out of 20 block RAMs are used by the extracted FPGA design.
We observed that the block RAMs are organized in a byte-wise
manner fitting well to the structure of the AES state.

Our analysis revealed the presence of multiple instances of
certain precomputed substitution tables. After investigating the
extracted data in more detail, we obtained a structure for each
table. We refer to the four identified tables whose details are
depicted in Table I. Each substitution table stores 256 entries
that can be accessed using the input x ∈ {0, 1, ..., 255}. Our
analysis revealed that the following precomputed substitution
tables are stored in several block RAMs:

T̃ (x) = 01 ◦ S(x)||01 ◦ S−1(x)||02 ◦ S(x)||03 ◦ S(x)
MC−1(x) = 09 ◦ x||11 ◦ x||13 ◦ x||14 ◦ x

S(x) = S(x)
S−1(x) = S−1(x)

In other words, we identified the tables which realize the
inverse MixColumns transformation (MC−1(·)), the SubBytes
and inverse SubBytes (S(·) and S−1(·)). However, T̃ (·) is
not equivalent to any T-box (T0, . . . , T3), but exhibits a very
similar structure: one entry includes the S-box, the inverse S-
box, and the S-box multiplied by two and three (02 ◦ S(·)
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Detected tables Identified block RAM Data
000: S(00)||S−1(00)||02 ◦ S(00)||03 ◦ S(00)

16 T̃ (x) instances 001: S(01)||S−1(01)||02 ◦ S(01)||03 ◦ S(01)
(1024 bytes each) . . .

0FF: S(FF)||S−1(FF)||02 ◦ S(FF)||03 ◦ S(FF)
000: 09 ◦ 00||11 ◦ 00||13 ◦ 00||14 ◦ 00

16 MC−1(x) instances 001: 09 ◦ 01||11 ◦ 01||13 ◦ 01||14 ◦ 01
(1024 bytes each) . . .

0FF: 09 ◦ FF||11 ◦ FF||13 ◦ FF||14 ◦ FF
000: S(00)

4 S(x) instances 001: S(01)
(256 bytes each) . . .

0FF: S(FF)
000: S−1(00)

4 S−1(x) instances 001: S−1(01)
(256 bytes each) . . .

0FF: S−1(FF)

TABLE I: Identified substitution tables stored in block RAM

and 03 ◦ S(·)). In particular T̃ (·) combines the SubBytes and
MixColumns transformations, and thus has the same purpose
as one T-box, but one remarkable difference is the storage of
the inverse S-box S−1(·). Note that all four T-boxes T0, . . . , T3
can be easily derived from T̃ .

C. Modifying the Third-Party FPGA Design
Our main goal is to replace all AES S-boxes to the identity

function, cf., Section V. For this purpose, we have to replace
all identified look-up table instances of Table I. We need to
replace all S-box values such that S(x) := x and the inverse
S-box to S−1(x) := x. This is essential in order to synchronize
the encryption and decryption functions. Hence, it leads to the
following precomputation rules for x ∈ {0, 1, ..., 255}:

T̃ (x) = 01 ◦ x||01 ◦ x||02 ◦ x||03 ◦ x
MC−1(x) = 09 ◦ x||11 ◦ x||13 ◦ x||14 ◦ x

S(x) = x
S−1(x) = x

Note that the modifications must be applied on all detected
instances of the look-up tables in the bitstream file, c.f., Table I.

Another requirement is to deal with the internal Cyclic
Redundancy Check (CRC) of the FPGA that is performed
during configuration. Since such a CRC is optional and is
specified by a certain bit in the header of the bitstream, we
easily made sure that such a bit is set thereby instructing the
FPGA to skip the CRC during the configuration. It should
be noted that another option is to re-compute and replace the
CRC checksum of the modified bitstream. This might be for
example relevant if the header part cannot be altered for any
reason by an adversary and thus this CRC cannot be disabled.

In the next step we updated the SPI flash with this new
malicious bitstream and powered up the USB flash drive by
plugging it into the PC. We could observe that the FPGA
modification is successful as the encryption and decryption
still work. This is true only when all instances of the relevant
substitution tables (S-box and its inverse) are modified appro-
priately. It should be noted that this statement only considers
the aspects of the FPGA modification.

From now on we consider that the malicious AES core is
running on the FPGA. To emphasize the practical relevance
of our attack, we explain in the next section how this Trojan
insertion can be exploited even though a complex mode of
operation (AES-256 in XTS mode) is used by our altered
FPGA design.

V. XTS-AES MANIPULATION AND PLAINTEXT
RECOVERY

In this section the cryptographic block cipher mode of
operation XTS is presented. As already indicated in the
previous sections, our target device uses a sector-based disk
encryption of user data. Subsequently, the modification of
the underlying AES is described. We also express how this
malicious modification can be exploited to recover sensitive
user data encrypted by the weakened XTS-AES mode.

The tweakable block cipher XTS-AES is standardized in
IEEE 1619-2007 [31] and used by several disk-encryption
tools, e.g., TrueCrypt and dm-crypt as well as commercial
devices like our targeted USB flash drive. Before describing the
details of the algorithm, general remarks regarding the memory
organization are given in the following.

Each sector (usually 512 bytes of memory) is assigned
consecutively to a number, called tweak and denoted by i in
the following, starting from an arbitrary non-negative integer.
Also, each data unit (128-bit in case of XTS-AES) in a sector
is sequentially numbered, starting from zero and denoted by
j. This pair (i, j) is used for encryption and decryption of
each data unit’s content. In general, XTS-AES uses two keys
(k1, k2). The first key k1 is used for the plaintext encryption
and the second key k2 for the tweak encryption. The XTS-
AES encryption diagram is depicted in Fig. 10. After the tweak
encryption, the output is multiplied by αj in the Galois field
GF(2128), where α is a primitive element, e.g., α = x and
j is the data unit position in the sector i. This result is then
XOR-ed before and after encryption of the plaintext block p.
The encryption of one 16-byte plaintext can be described as

c = (AESk2
(i)⊗ αj)⊕AESk1

(AESk2
(i)⊗ αj ⊕ p),

while the decryption is computed as follows

p = (AESk2
(i)⊗ αj)⊕AES−1k1

(AESk2
(i)⊗ αj ⊕ c).

In the following we present the impact of our FPGA
bitstream manipulations (expressed in Section IV-C) on the
AES in XTS mode.

A. AES SubBytes Layer Manipulation
To understand the impacts of manipulation of the AES

algorithm, the internal transformations are briefly described
in this section.

a) Brief Recap of AES: AES is based on the symmetric
block cipher Rijndael. Its operations consist of four transfor-
mations, which all operate on a block size of 128 bits. The state
is arranged in a 4×4 matrix consisting of elements in GF(28).
Furthermore, AES supports three key sizes (128, 192 and 256
bits) corresponding to a different number of rounds (10, 12,
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AES ENC
⊗

AES ENC

⊕

⊕

k2

i αj p

k1

c

Fig. 10: XTS-AES encryption block digram overview

and 14, respectively) denoted by Nr. The AES encryption
diagram is depicted on the left side of Fig. 11. In the following
we present how to turn the AES cryptosystem into a weak
block cipher whose plaintexts can be easily recovered from
phony ciphertexts.

b) SubBytes Layer Manipulation: The SubBytes trans-
formation is amongst the most important part of the AES
algorithm. It adds non-linearity to the cipher state. We intend to
cancel the SubBytes layer as this makes the whole encryption
scheme vulnerable to cryptanalysis. The corresponding AES
SubBytes manipulation is an extension of the recent work [14].
The manipulation impacts are shortly described for the XTS-
AES mode.

The main idea behind the SubBytes modification is to
transform the AES into a linear function. Having altered the
normal and inverse AES S-box to the identity function, the
whole algorithm can be expressed as a linear equation. Hence,
we updated all identified S-box and inverse S-box instances in
the FPGA bitstream to the identity function S(x) = x. Due to
the linearity of ShiftRows SR(·) and MixColumns MC(·), the
modified AES (denoted by ÃES) can be described as follows:

ÃESk(p) = SR(MC(· · ·MC(SR(p) · · · )
⊕ (k̃0 ⊕ k̃1 ⊕ k̃2 ⊕ ...⊕ k̃Nr

)

:=MS(p)⊕ K̃.

The impact of this alteration is illustrated by Fig. 11. The
plaintext p is processed by several MixColumns and ShiftRows
transformations, Nr−1 and Nr times respectively. This round-
dependent process is denoted by MS(·). The constant K̃
represents the XOR sum of the round keys which have also
been preprocessed by certain number of the MixColumns and
ShiftRows transformations.

Therefore, with only one known plaintext-ciphertext pair
(p, ÃESk(p)), the constant K̃ can be determined. Thus, all
further phony ciphertexts, that are encrypted by ÃESk, can
be decrypted without any knowledge about the actual key. For
more detailed information we refer the interested reader to the

p

AddRoundKey

ShiftRows

MixColumns

AddRoundKey

ShiftRows

AddRoundKey

c

N
r

-
1

p

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

c

N
r

-
1

Fig. 11: Comparison between AES (left) and modified ÃES
(right)

work of Swierczynski et al. [14]. In the following, we extend
this approach to the XTS mode.

B. Manipulation Impact for XTS-AES
With the presented AES SubBytes manipulation, an XTS-

AES ciphertext can be described as a linear equation too:

c = (ÃESk2(i)⊗ αj)⊕ ÃESk1((ÃESk2(i)⊗ αj)⊕ p)

= (MS(i)⊕ K̃2)⊗ αj ⊕MS((MS(i)⊕ K̃2)⊗ αj ⊕ p)⊕ K̃1

= (MS(i)⊗ αj)⊕MS(MS(i)⊗ αj)︸ ︷︷ ︸
TWi,j

⊕MS(p)

⊕ (K̃2 ⊗ αj)⊕MS(K̃2 ⊗ αj)⊕ K̃1︸ ︷︷ ︸
CKj

(1)

Note that MS(·) is a linear function, and thus the tweak part
TWi,j , the plaintext-related part MS(p), and the key-related
part CKj could be separated. Every plaintext p is encrypted
in this way by the FPGA hardware Trojan of our target device.

C. Plaintext Recovery of Encrypted XTS-AES Ciphertexts
To recover the plaintexts from the weakly encrypted XTS-

AES ciphertexts, the attacker has to obtain two sets of infor-
mation:
• 32 plaintext-ciphertext pairs (pi, ci), i ∈ {0, ..., 31} of

one sector (512-byte wide), and
• knowledge about the tweak values i and the data unit

position j of the ciphertexts within a sector.
Due to the combination of the data unit’s position j and the key
k2 (through Galois field multiplication by αj), each position
j in a sector has its own constant key-related part CKj .
Further, CKj is constant for every sector of the memory as
it is independent of i. Hence, the attack requires only all 32
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plaintext-ciphertext pairs of one arbitrary sector to generate all
CKj values. To obtain the tweak values TWi,j , the attacker
needs to obtain the starting value of i identifying the first
sector (as explained before, i indicates the sector number and
starts from an arbitrary non-negative integer). Generally, this
can be achieved through reverse-engineering (ARM code), cf.,
Section VI.

With this data the attacker can compute the tweak and the
key-related parts of Eq. (1). Afterwards, by inverting the MS(·)
function the plaintexts p can be revealed. MS−1(·) can be
determined by applying the inverse MixColumns and inverse
ShiftRows transformations (dependent on the underlying AES
key size).

It is worth mentioning that the produced ciphertext still
appears to be random for a victim, who visually inspects the
phony ciphertexts from the micro SD card. Therefore, the
victim cannot observe any unencrypted data as it would be
the case if the FPGA is simply bypassed.

VI. ARM CODE MODIFICATION

In this section we briefly describe the cryptographic self-
tests and ARM firmware modifications essential to enable the
above presented FPGA hardware Trojan insertion.

A. Utilized Self-tests
When we reverse-engineered the ARM code using the tool

IDA Pro, we were able to identify several functions that check
the integrity of the ARM firmware and consistency of several
cryptographic functions. Every executed self-test must return
a specific integer indicating whether the test passed or not. If
any self-test fails, the target device switches to an error state.

The corresponding test-vectors used by the self-tests are
stored in the SPI flash. Table II provides an overview of all
self-tests and the integrity checks. Besides, we also identified

Self-test function Utilized parameter of self-test
AES-256 (CBC) Key K = 0x2B2B...2B (16 Bytes)

IV = 0x3C3C...3C (16 Bytes)
Input x = 0x1111...11 (32 Bytes)

AES-256 (XTS) Key K1 = 0x2021...3F (32 Bytes)
Key K2 = 0x4041...5F (32 Bytes)
Tweak = 0xA2566E3D7EC48F3B
Input x = 0xF0F1...FF (16 Bytes)

SHA-{224,256,384,512} Input x = ”abc”
Integrity check Input
SHA-384 Main ARM firmware

TABLE II: Identified self-tests and firmware integrity check

several relevant security header fields that are processed by the
ARM CPU.
The ARM CPU expects to receive a specific signature (during
power-up of the system) from the Xilinx FPGA to ensure that
it operates correctly after the configuration process. Also, the
bitstream length is coded in the header such that the ARM
CPU knows the amount of configuration bytes. Lastly, a SHA-
384 hash value, calculated over the main ARM firmware, is
appended to ensure the program code integrity.

Field Name Offset Byte size Value
Header Signature 0x00 4 0x11223344
FPGA signature 0x04 16 ”SPYRUS_HYDRA2005”
Bitstream length 0x14 4 0x45600
SHA-384 hash of 2nd image 0x1D0 48 SHA-384(2nd image)

TABLE III: Security Header Fields

B. Disabling Self-tests to Modify ARM Code and FPGA Bit-
stream

Preliminary tests have shown that even minor code changes,
which do not influence the behavior of the firmware, cause the
USB flash drive to enter the error state and halt during power-
up. It was concluded that there exists an implemented self-test
at least checking the integrity of the code. Thus, it became a
mandatory prerequisite to find and deactivate such a test. The
responsible code was identified due to its obvious structure
and function calls.

In addition to the firmware integrity, the correct functionality
of several cryptographic algorithms is tested: the AES, ECC
and Secure Hash Algorithm (SHA) in the ARM code and the
AES inside the FPGA. The individual checks are performed
in dedicated functions invoked by the main self-test function,
and their corresponding return values are verified. Finally, the
self-test succeeds only in case all individual checks are passed.

In order to disable the self-test the code was patched in
a way that the function always returns zero, which is the
integer representation for success. Hence, arbitrary firmware
modifications and changes to the cryptographic algorithms can
be applied after this patch.

C. Separating Key Derivation and FPGA AES IP-Core
As explained in the previous sections, cf., Fig. 8, there

is a software AES implementation executed by the ARM
CPU and a considerably faster hardware AES instance inside
the FPGA. They are both capable of ECB, CBC and XTS
operation modes. The software AES is mainly used for self-
tests and the hardware AES for key derivation as well as
encryption and decryption of the user data stored on the USB
flash drive. The key derivation requires the establishment of a
secure communication channel between the PC software and
the USB flash drive. The FPGA hardware Trojan weakens
the AES IP-core making it incompatible to the standard AES,
cf., Section V. Thus, the initialization of the communication
channel fails and the USB flash drive goes to an error state. To
avoid such a situation the firmware has to be changed in such
a way that only the original software AES is used during the
key derivation and the secure channel establishment (instead
of the modified hardware AES inside the FPGA).

The ARM code internally uses a unified AES API. Four
parameters are passed to its AES instance constructor routine.
They hand over the key, the key length, the mode of operation
and a flag indicating whether the ARM CPU or the FPGA is
selected for the actual computations. The creation of all the
AES instances, which are related to the key derivation as well
as secure channel establishment, had to be patched. Conse-
quently all corresponding AES encryptions and decryptions
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are computed by the ARM CPU instead of the FPGA. In total
the parameters of 12 AES instance constructor calls have been
patched to eliminate the AES dependency between the ARM
and FPGA.

D. Recording XTS-AES Parameters
In order to recover all user data from the USB flash drive we

need several values for the attack, cf., Section V: 32 plaintext-
ciphertext pairs of the same sector, the sector number and
the initial tweak value. The latter parameter is hard-coded
in the firmware and was obtained by static analysis. The
plaintext-ciphertext pairs are acquired at runtime during normal
operation of the USB flash drive. In the ARM code there is
a highly-speed-optimized function which reads data from the
embedded SD card, sends them to the FPGA for decryption
and finally copies the plaintexts from the FPGA to the USB
endpoint so that the computer receives the requested data. This
function was intercepted at several positions in a way that the
plaintext-ciphertext pairs and the initial sector number could be
obtained. They are then written (only once) in the embedded
SPI flash from where they can be read out by an attacker to
launch the cryptographic attack.

As explained in Section V, having this information is
essential to decrypt the phony ciphertexts due to the underlying
XTS mode. We practically verified the plaintext recovery of
the weakly encrypted ciphertexts stored on the SD card of our
target device.

VII. SUMMARY

In this section we summarize the security problems of our
investigated target device and further outline which security
barriers might be inserted by the vendor to improve the security
of the analyzed USB flash drive.

As previously stated, during our analysis we found a HSM
from SPYRUS that is directly connected to the Xilinx FPGA
over a single-bit bus. According to [32] it provides certain
cryptographic primitives and serves as secure storage device,
e.g., for secret (symmetric) keys. We suggest to include the
following security measure: during the power-up of the USB
flash drive, the FPGA should validate its AES implementation
using the AES core provided by the HSM. It should be
extremely challenging for an attacker to alter the AES core of
the HSM as its internal functionality is realized by an ASIC.
The HSM should decide whether the USB flash drive continues
(no alteration detected) or switches to an error state (alteration
detected).

To further raise the bar for an attacker, the FPGA design
should include built-in self-tests for the S-box configuration
as well as for the whole AES core. To be more precise, it
is recommended to include several test vectors in the FPGA
firmware so the FPGA can validate its consistency. Probably,
the built-in self-tests do not hinder a more powerful attacker
who can disable them, but the reverse-engineering efforts are
significantly increased and require a more powerful adversary.
Since in our attack scenario we exploited the content of
the block RAMs, it is also important to assure its integrity.
Their initial content can be encrypted with an appropriate

mode of operation: a built-in circuitry in the FPGA design
might (during the FPGA power-up) decrypt the block RAM’s
contents and update them with the corresponding decrypted
data. By doing so, an attacker cannot replace the highly
important S-boxes in a meaningful way, which can have severe
security implications as demonstrated in this work.

More importantly, all self-tests (including those we found)
should be performed by the HSM. Therefore, the HSM should
verify the integrity of the ARM code. Further, the bitstream
of the FPGA must be protected (not stored in plain in the
SPI flash) and its integrity must be verified e.g., by the
HSM. This should prevent any modification attempt on the
ARM code as well as on the bitstream, making a firmware
modification attack extremely difficult. We should emphasize
that an attacker is able to turn the device into a malicious one
that can infect the target computer with malicious software, as
shown by Nohl et al. [21]. This also highlights the practical
relevance of our attack.

VIII. CONCLUSIONS

In this paper we demonstrated the first practical real-world
FPGA hardware Trojan insertion into a high-security commer-
cial product to weaken the overall system security. We reverse-
engineered a third-party FPGA bitstream to a certain extent
and replaced parts of the FPGA logic in a meaningful manner
on the lowest level. In particular, we significantly weakened
the embedded XTS-AES-256 core and successfully canceled
its strong cryptographic properties making the whole system
vulnerable to cryptanalysis. Our work is a proof of concept that
an FPGA can also be one of several weak points of a seemingly
protected system. It is important to ensure the integrity of the
FPGA firmware as otherwise the system may be compromised
by an attacker. This is especially critical in applications where
the FPGA acts as master device and where the integrity or
confidentiality of the bitstream is not ensured. One can assume
that certain determined attackers such as foreign intelligence
services are already capable of inserting FPGA backdoors
in the presented manner since these kind of attacks do not
require a complete bitstream reverse-engineering. Future works
must deal with counterfeiting bitstream modification attacks
by developing appropriate countermeasures that have to be
implemented within an FPGA design.
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