
A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME

SEBASTIAN E. SCHMITTNER

Abstract. We propose a public key encryption scheme based on the Boolean

Satisfiability Problem (SAT). The public key is given by a SAT formula and
the private key is the satisfying assignment. Encryption is a probabilistic

algorithm that takes the bits of the message to randomly generated Boolean

functions, represented in algebraic normal form. Those are implied to be true
or false by the public key, hence bit-wise decryption is done by applying each

function to the private key. Our scheme does not provide signatures.

1. Introduction

It is well known that the asymmetric cryptography schemes predominantly used
today are vulnerable (at least) to attacks from quantum computers using Shor’s
algorithm. Since it is common believe that P 6= NP and that NP hard prob-
lems can not be solved efficiently, not even on a quantum computer, cryptography
based on NP hard problems is dubbed “post-quantum”. Daniel Bernstein [1] lists
Hash-based cryptography, Code-based cryptography, Lattice-based cryptography,
and Multivariate-quadratic-equations cryptography as the existing post-quantum
algorithms. The aim of this paper is to introduce a different crypto-system based
on the Boolean Satisfiability Problem (SAT). This problem of finding a pre-image
of 1 under a Boolean function given in a certain conjunctive form is well known to
be NP-complete. Although a SAT instance can, from a certain angle, be viewed as
a multivariate-equation, our encryption scheme is different from the systems men-
tioned above. In particular, we use a fulfilling assignment as the secret key rather
than a trap door.

The idea of using SAT to provide a post-quantum key pair is not far-fetched.
The main point of this paper is how to use such keys to actually encrypt and
decrypt. To this end, we randomly produce Boolean functions which are implied
by the public key and hence evaluate to true on the private key. These functions
and their negates can then be used as the ciphers encoding the message bits.

The paper is organised as follows: We start with a simple guiding example
in Section 1.1 that illustrates the main ideas. In Section 2, our algorithms are
described in detail. The probabilistic scheme introduced there is vulnerable to an
oracle attack, which is discussed in Section 3, as well as some other attacks. In this
section we also compute bounds for the parameters of the encryption to resist all
mentioned attacks and also explain how the oracle attack can be countered. We
conclude in Section 4.

1.1. Example. Before explaining the key generation and encryption algorithm in
detail, we start with a simple toy example to guide the readers intuition. A possible1

private/public key pair for Alice is:

priv = (1, 1, 0, 0, 1, 0, 0)(1)

and pub = (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x4 ∨ x5) ∧ (x1 ∨ x6 ∨ x7)(2)

1Of course, the ratio of clauses to variables in realistic keys needs to be much larger (see
Appendix E) and also the key length needs to be much longer.

1

2 SCHMITTNER

since pub(priv) = 1. Bob wants to send a bit y ∈ B to Alice. He rewrites

c̄1 = x1x2x3(3)

c̄2 = x1 ⊕ x1x4 ⊕ x1x5 ⊕ x1x4x5(4)

c̄3 = 1⊕ x1 ⊕ x6 ⊕ x7 ⊕ x1x6 ⊕ x1x7 ⊕ x6x7 ⊕ x1x6x7(5)

and randomly generates

R2,3 = x4 ⊕ x5 ⊕ x6 ⊕ x4x5 ⊕ x4x6x7 ⊕ x5x6x7 ⊕ x4x5x6x7(6)

R1,3 = 1⊕ x2x3 ⊕ x6x7 ⊕ x2x3x6x7(7)

R1,2 = 1⊕ x4 ⊕ x5 ⊕ x2x3 ⊕ x4x5 .(8)

The cipher is

g = c̄1R2,3 ⊕ c̄2R1,3 ⊕ c̄3R1,2(9a)

= y ⊕ 1⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x1x6 ⊕ x1x7 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6(9b)

⊕ x4x7 ⊕ x5x6 ⊕ x5x7 ⊕ x6x7 ⊕ x1x4x6 ⊕ x1x4x7 ⊕ x1x5x6 ⊕ x1x5x7(9c)

⊕ x2x3x6 ⊕ x2x3x7 ⊕ x4x5x6 ⊕ x4x5x7 ⊕ x4x6x7 ⊕ x5x6x7 ⊕ x1x2x3x7(9d)

⊕ x1x4x5x6 ⊕ x1x4x5x7 ⊕ x2x3x6x7 ⊕ x4x5x6x7(9e)

Bob sends the cipher g for the clear text y to Alice, who decodes g(priv) = y.
Mallet can attack the scheme above by replacing a literal in g by a truth value,

say x3 7→ 1. He sends the modified cipher to Alice and from Alice’s reply, he will
notice whether Alice received the correct bit or not. Hence he concludes that x3 = 0
in the private key. Alice might notice the attack by a suitable syntax check on the
decoded text (containing more than one bit), but the security of the key pair is lost
anyway.

This attack can be countered as follows. Bob seeds his random number generator,
which chooses the clauses and generates the random functions Ri, with a hash of
the salted clear text. He then sends the salt together with the encrypted message.
If the clear text was long enough, it would take Mallet very long to guess the right
seed from the salt alone (hence decoding the message). But knowing the salt and
the clear text, Alice can easily re-encrypt the message after decryption and check
whether the cipher has been altered by Mallet. She rejects any faulty message,
regardless of the private key, hence not revealing any information.

2. Algorithms

In this section we specify the algorithms for key generation and encryption. The
public key, pub, is a “planted” random k-SAT instance for k ∈ N with k > 2.
This is a Boolean function in n ∈ N variables, pub : Bn → B, which is given as a

conjunction of m ∈ N many k-clauses, cj : Bk ⊂ Bn → B, together with a truth

assignment, the private key priv ∈ pub−1
(1). In summary

pub : x 7→
m∧
j=1

cj(x) , cj : x 7→
k∨
i=1

(xI(i,j) ⊕ s(i, j)) ,(10)

where the signs s(i, j) ∈ B determine wether the literal xI is negated.
To discuss the complexity of the algorithms, we use the notation

O(f) :=

{
g : N→ R

∣∣ lim sup
n→∞

|g(n)|
f(n)

<∞
}
,(11)

o(f) :=

{
g : N→ R

∣∣ lim sup
n→∞

|g(n)|
f(n)

= 0

}
,(12)

and Θ(f) := O(f) \ o(f) for f : N→ R+.

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 3

2.1. Key generation. A key pair is generated as follows:

(1) Choose the private key priv ∈ Bn at random (equidistributed).
(2) Generate the clause cj by randomly choosing k distinct integers Ij,i ∈
{1, . . . , n} and “signs” si ∈ B.

(3) If cj(priv) accept the clause, otherwise reject it.2

(4) Repeat until m clauses have been generated.

In other words, the data to be generated and stored for the each key pair is

I : {1, . . . ,m} × {1, . . . , k} → {1, . . . , n}(13)

and s : {1, . . . ,m} × {1, . . . , k} → B ,(14)

hence the length of the public key is in Θ(mk(log(n) + 1)). The run time is pro-
portional to the public key length3.

It is very important to generate hard instances as public keys. Therefore we
must ensure that priv is (almost surely) the unique solution, i.e. m needs to be
larger than the critical value, m > mc = αc(k)n for some αc(k) ∈ Θ(1), see [2].
Choosing m rather close to mc yields the most difficult instance (this is well known
in similar setups, see Appendix E for some of our own benchmarks). Choosing
m ∝ n for fixed k leads to a public key length of Θ(n log(n)). Longer public keys
are not recommended, since the resulting SAT instances then become much easier
to solve.

2.2. Encryption and Decryption. We fix parameters α, β ∈ N with 2 ≤ β � α
to tune the run time and security of the encryption.

(1) Choose α many tuples of β many distinct clauses at random,

(15) J : {1, . . . , α} × {1, . . . , β} → {1, . . . ,m}
such that J(i, a) 6= J(i, b) for all a 6= b.
(a) To counter attacks discussed in Section 3.1.2, it is preferable if the

clauses within one tuple share variables. This is particularly important
if one of the clauses does not contain negations, i.e. s(i, 1) = . . . =
s(i, k) = 0.

(b) We have to ensure that each tuple shares at least one clause with
another tuple to counter the attack discussed in Section 3.2.

(c) Each clause of pub is to appear in some tuple as discussed in Sec-
tion 3.3.

(2) The cipher encoding y ∈ B is the algebraic normal form (ANF) of

(16) g = y ⊕
α⊕
i=1

β⊕
a=1

c̄J(i,a) ∧Ri,a .

Here Ri,a is a random function. It depends on the same set of variables
as the clauses {cJ(i,b)|b 6= a} and is generated in ANF where each possible
term occurs with probability 1/2.

(3) The decryption “algorithm” is g(priv) = y.

We can ensure (1b) and (1c) by choosing J as follows: First choose a permuta-
tion σ ∈ Sm at random. Then set J(i, a) = σ(i + a − 1), where the indices are
understood modulo m. In this scheme α = m. To also ensure (1a) we enhance the
probability of neighbouring clauses, cσ(j) and cσ(j)+1, to have variables in common
when generating σ.

2If the algorithm is to have finite worst case run time, one should modify the clause instead
of generating a new one at random. Notice, however, that the number of signs to flip has to be
chosen carefully if the resulting distribution of public keys is to be unchanged. See e.g. [3].

3If clauses are rejected this is the case almost surely.

4 SCHMITTNER

To turn the negated clauses in Equation (16) into ANF, one can use various
identities, such as x∨ y = x⊕ y⊕ xy, but x ∨ y = x̄ȳ is the most efficient one here.
It leads to

(17) 1⊕ (x1 ⊕ s1) ∨ . . . ∨ (xk ⊕ sk) = (x1 ⊕ s1 ⊕ 1) ∧ . . . ∧ (xk ⊕ sk ⊕ 1) .

The resulting ANF (obtained by distributing ∧ over ⊕) is of length ≤ 2k.
The run time to compute the cipher in Equation (16) as well as the length of the

resulting cipher are in O(α2βk). Consequently, we need to choose β ∈ O(log(m)) in
order for the run time to be polynomial. The length can be expected to be shorter
than the run time by a factor > 2 due to the cancellation of terms in the sum and
due to Ri,a only containing 2(β−1)k−1 terms on average. If we choose β = log2(m)/k
and α ∝ m, we have α2βk ∝ m2. For β ∈ Θ(1), run time and cipher length formally
only scale with m, but for m ≈ 210 and β = k = 3 the pre-factor is still comparable
to m.

3. Known attacks and improved schemes

Denote by Gb = Gb(pub) the set of all possible ciphers encoding b ∈ B and by
G = G1 ∪G0 the set of all ciphers. Since the problem of deriving the private from
the public key is known to be hard, we will focus on attacks on the cipher. We
will refer to the problem of deciding for g ∈ G whether g ∈ G0 or g ∈ G1 as the
decoding problem. We do not have a proof that this is a hard problem, although
some related problems are (see Appendix A). In this section we focus on some
particular attacks, i.e. algorithms that solve the decoding problem and show that
all of them have exponential run time, if the parameters of the encryption algorithm
are chosen suitably.

3.1. Simple attacks.

3.1.1. Enumeration of ciphers attack. Since the set of all possible ciphers for a given
public key is finite, a trivial brute force attack is to just enumerate it. In order to
prevent this attack, the encryption parameters α and β need to be large enough.
More precisely, the number of possible ciphers is roughly(

m

β

)α
2αβ((β−1)k) .(18)

We can ensure this number to be (super) exponentially large by choosing

(19) n ∈ O(αβ) .

Further we should apply some fixed invertible linear transformation to the mes-
sage bit vector before encoding such that decoding a few of the cipher bits does not
reveal any clear text bits. E.g. Yi =

⊕
j<i yj is in upper triangular form and hence

easy to invert.

3.1.2. Constant term probability attack. Another rather trivial attack is to determ-
ine g(0, . . . , 0) for a cipher g ∈ G. This is just the presence or absence of the
constant 1 in the ANF, which is where the message bit enters. Hence this property
must not distinguish G0 from G1.

The ANF of a random clause of length k contains a constant 1 with probability
1 − 2−k, hence the probability for each summand in Equation (16) to contain the
constant 1 is 2−k−1. This is rather small, but a variant of the central limit theorem
is in this case on our side, see Appendix B. As a consequence, the probability for
g(0, . . . , 0) = 1 tends to 1/2 exponentially quickly with αβ at the scale of

(20) αβ � 2k .

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 5

Considering the enumeration attack from Section 3.1.1, the bound established in
Equation (19) is much stronger than Equation (20). In other words, the encryption
resists the constant term attack if parameters are chosen such that it resists the
most trivial enumeration attack.

A more refined version of this attack focuses on those clauses which can con-
tribute a summand 1, namely those ci which do not contain any negation. For
those,

(21) c̄i = (xi1 ⊕ 1) . . . (xik ⊕ 1) = 1⊕ xi1 ⊕ . . .⊕ xi1xi2 . . . xik
contributes a constant to the cipher sum iff the corresponding Ri also contains the
constant 1. An attacker can try to judge wether the latter is the case by looking for
the order k term, xi1xi2 . . . xik , in the cipher sum. The same term could be caused
by another clause depending on the same variables, but such a clause is part of
pub with vanishing probability for large m ∝ n. Hence we need to ensure that ci
shares at least one variable with another clause in the same tuple or that another
clause in the same tuple contains no negated literals. Both of these can lead to the
appearance of the same order k term, see the example in Section 1.1.

3.1.3. Cipher value probability attack. An attacker can try to estimate |{g−1(1)}|
for any g ∈ G by evaluating g on a random set of trial inputs. Hence this value must
not distinguish G1 from G0. This attack is structurally very similar to the constant
term attack (Section 3.1.2). For each clause c of length k, the number of inputs on
which c is 1 is |{c−1(1)}| = 2k−1. Due to the structure of the encryption algorithm
(Equation (16)), the probability of all summands in the cipher g evaluating to 1
on a random input is the same as for all summands to contain a constant 1, if
R = 1 with probability 1/2. Even if most Rs were randomly chosen such that they
evaluates to 1 only on ∝ 2−βk many inputs, choosing

(22) α� k

still ensures that the probability for g(1) = 1 is exponentially close to 1/2 according
to Appendix B. Since β ∈ O(log(m)) for run time reasons, condition (22) is again
ensured by (19).

3.2. Decoding attack. More sophisticated attacks exploit the structure of the
encoding algorithm. Any function in g ∈ G is necessarily of the form

g = y ⊕
m⊕
i=1

c̄iRi

for some functions Ri (see Appendix C). A crucial point of our whole scheme is
that polynomial long division does not work over finite fields such as B, because
the degree is not well behaved under addition and multiplication in the polynomial
ring. This can be seen in the Example 1.1. A simpler example is xn+1 = x and
hence e.g. x2y ⊕ y2x5 = 0. In this section we will argue that such “collisions” are
sufficiently likely to secure our ciphers, if the random functions RI are chosen in a
good way.

Attacks on the structure of the encoding algorithm start with the following
observation. The set of all clauses which depend only on literals in a small set
{xi1 , . . . , xiM } has an expected size of

(23)

(
M

k

)
m

nk
,

which is exponentially small for M ∈ o(m). In other words, a small set of clauses C
is most likely uniquely determined byD(C) :=

⋃
ci∈C D(ci) whereD(c(x1, . . . , xk)) =

{x1, . . . , xk} denotes the variables on which c depends. This means that most likely

6 SCHMITTNER

all tuples J(i, 1), . . . , J(i, β) used to generate our cipher g in Section 2.2 can be iden-
tified from the ANF of g. For a given tuple, this leaves 2β(β−1)k choices for the
random functions associated with it. If we choose β = log2(m)/k (see Section 2.2)
then 2β(β−1)k ≈ mlog(m). This is super polynomial in m, but, for reasonable values
of m, an attacker can still produce all possible summands associated with this tuple
and try to add them to g. He can check whether all terms involving variables from
this tuple cancel. However, the same variables will occur also in other tuples. In
fact, we should ensure that also some of the clauses from this tuple appear in other
tuples. This will leave the attacker with a few possibilities for the random function,
which can only be decided once the touples sharing clauses are decided as well. But
since all tuples are connected (indirectly) by sharing clauses, the run time of this
attack is exponential in α which we chose to be of the order of m.

3.3. Reduced SAT problem attack. If an attacker can learn that only a certain
set of clauses was used to produce a cipher, he can try to solve the SAT problem
given by the conjunction of only those clauses that were used. If the ratio of used
clauses to variables appearing in those clauses is small enough, the SAT problem is
easily solvable and any solution can be used to decode the cipher.

To resist this attack, care is to be taken in Step (1) of the encryption (Section 2.2).

The set of all clauses used, C =
⋃α
i=1

⋃β
a=1{cJ(i,a)} should not depend on more than

|C|n/m many different variables. Furthermore, reducing the number of clauses
used, even at constant clauses to variables ratio, effectively reduces the key length.
Overall, we should ensure that (almost) all clauses are used to generate the cipher.

3.4. Oracle attack. The communication according to the algorithms from Sec-
tion 2.2 is vulnerable to the following attack: If the recipient is expected to send a
reply to an encrypted message, an attacker can fake a cipher by replacing a literal
with a guessed truth value. If he can learn from the reply whether the cipher was
correctly decoded, he gets a strong hint, or even evidence, for the assignment of this
literal in the private key. Repeating the attack in a suitable scheme will reveal the
full private key. This is a severe attack which limits the scope of application of the
random encryption algorithm to such cases where replies are only send to authen-
ticated communication partners. Post-quantum authentication could be provided
by e.g. a hash-based scheme, see [1, Hash-based Digital Signature Schemes]). One
could also use only one- (or few-)time key pairs for encryption, again with the
problem of authenticating the new keys.

Instead, we have developed two improved version of our scheme. The one which
we consider superior resist the oracle attack completely and is described in Sec-
tions 3.4.1. In special circumstances, also the version described in Appendix D
might be useful. The latter makes the oracle attack substantially more difficult and
preserves the probabilistic nature of the encryption.

3.4.1. Proof of honest encryption. In this section we introduce an improved version
of the encryption/decryption scheme which prevents the oracle attack completely
without increasing the complexity of the encryption algorithm. Key generation is
unchanged, but decryption becomes as complex as encryption and the feature of
stochastic ciphers is lost. More precisely, using the encryption discussed in Sec-
tion 2.2, the cipher is not a function of the public key and clear text. In particular,
even if Bob encodes the same clear text twice, he will get different ciphers. This
makes repetition-attacks impossible and the algorithm is very resistant against rain-
bow table type attacks. It is, of course, only pseudo random. In other words, the
cipher is a function of public key, clear text and the seed of the pseudo random
number generator (PRNG), implicitly used to make the random choices. This can
be used to verify that the cipher was not tempered with in order to oracle the

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 7

private key, at the cost of loosing the rainbow-resistance. The latter can then be
restored in the usual way by salting.

Concretely, key generation as described in Section 2.1 stays untouched and also
encryption is done as explained in Section 2.2, but the sender starts by seeding the
PRNG with a specific seed, computed from clear text and a salt. The salt is then
to be part of the cipher. After decryption of the cipher (applying it to the private
key), the recipient computes the seed from the clear text and the salt. He then
checks that the received cipher text matches that one that is computed from the
public key, the clear text, and the seed according to the fixed encryption algorithm.
This way, oracle attacks can be detected without revealing any information.

The cost to pay is that the implementation of the PRNG and the encryption
algorithm on the sender and receiver side have to match and that the receiver has to
re-do the most time consuming part of the whole scheme, the encryption. Further
more, the clear text needs to be long enough (of order n) in order to prevent a
brute force attack on the seed. Notice that the seed, as computed from the salt
and clear text, is to be considered as a key for decoding the particular message. If
an attacker can find the seed he can decode the cipher without the private key.

4. Conclusion

We have introduced a public key encryption scheme based on the Boolean Sat-
isfiability Problem. The motivation for developing such an algorithm is to fill the
arsenal of post-quantum cryptography with some fresh ammunition. The simpli-
city of the scheme developed in this paper might be an advantage over the well
known post-quantum schemes. Furthermore, there is a lot of freedom in the details
of the encryption algorithm, in particular in choosing probability distributions for
the random functions RI . This makes it possible to adapt the algorithm if more
sophisticated attacks are discovered in the future. The encryption presented in Sec-
tion 2.2 has undergone some evolution to resist all attacks of this type which came
to our mind. The version using a proof honest encryption has no vulnerabilities
currently known to us, but of course much more crypto-analysis is needed and the
reader is invited to device stronger attacks to challenge and improve our encryp-
tion. In particular, we have not proven that it is (NP-)hard to decipher a message
without knowledge of the private key. It is the problem of deducing the private
from the public key that is NP-hard, i.e. “post-quantum”, by construction. After
key generation, one should check that the algorithm did not accidentally generate
an easy instance, which will however almost surely not happen for large keys.

The oracle attack mentioned in Section 3.4 is a severe generic attack on any
cipher consisting of a Boolean function. Enforcing honest encryption as explained
in Section 3.4.1 is a generic counter. The version of our scheme which enforces
honest encryption does not suffer from oracle attacks at all and is most likely the
preferred one for most applications. The multi-key version described in Appendix D
is another (generic) work around. However, this one is not completely resistant
against oracle attacks, although it only reveals much less information. In this multi-
key version, the key pairs still need to be changed regularly, but here this could
here be feasible. In some special situations, this version of our algorithm might
be preferable, since encryption is considerably more complex than key generation
and decryption which in particular yields some protection against DOS attacks for
multi-key schemes.

The length of the public key m and the run time of the key generation algorithm
scale as O(n log n) with the length of the private key n. The length of the cipher
and the run time of the encryption algorithm per bit of clear text scale as O(m1+ε)
with ε ≥ 0. The crucial question is how big n should be in practice today. At the

8 SCHMITTNER

SAT Competition 20144, random 3-SAT instances of size n ≈ 104 have been solved
for m ≈ mc in less than one hour.5 These instances were selected in order to be
solvable within that time, but still they are randomly generated with non-negligible
probability. For m < mc even instances with n ≈ 106 have been solved, but these
instances have most likely very many solutions and are hence much easier than our
public keys. Our own benchmarks (Appendix E) show that the minisat solver6 can
not break keys of length n > 210 on a modern PC.

Key generation is very fast and choosing n� 105 is not a problem here. However,
encryption with our not very much optimised proof of concept implementation [4]
already takes time of the order of few seconds per bit of clear text to encode with
α = m = 5n = 5 × 210 and β = 3 and still tenth of seconds per bit for β = 2 and
the other parameters as before. Although there is certainly room for improving the
implementation, the constraint β ≥ 2 means that the run time of the encryption
algorithm is in O(m1+ε) with ε ≥ 3/5 for m ≈ 210. These run times are not
yet very well suited for practical applications. However, the situation can easily be
improved by advancing from bit-wise encryption, on which we focused in this paper,
to schemes which take advantage of the shared secret of already decoded bits. Such
improved schemes for encoding longer messages are an interesting topic for future
research. One could, for example, apply a random re-labelling of variables, or more
generally some invertible (linear) function f : Bn → Bn, to counter the attack from
Section 3.3 and then use much smaller α. However, also this function needs to be
encoded in the cipher. It could e.g. be derived by using the first few message bits,
encoded as described in this paper, as a seed. Then later bits can be encoded much
faster using f . Anyway, before more research builds on the ideas presented here,
we would like our algorithm to be challenged by more advanced attacks in order to
improve it. Furthermore, the problems which we have proven to be NP -hard (see
Appendix A) are still not very close to the decoding problem. To build faith in this
encryption really being post-quantum secure, more research in this direction is in
order.

Acknowledgement

We acknowledge helpful discussions with Prof. Dr. Schrader and Prof. Dr. Speck-
enmeyer as well as their groups in Cologne. In particular, we would like to thank
Martin Olschewski, who pointed out the oracle attack.

The author was supported by Prof. Dr. Martin Zirnbauer, by a grant from
Deutsche Telekom Stiftung, and another grant from the Bonn-Cologne Graduate
School of Physics and Astronomy, funded by the DFG.

References

[1] D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptography.

Springer-Verlag Berlin Heidelberg, 2009.

[2] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random boolean expres-
sions. Science (New York, N.Y.), 264(5163):1297–1301, 1994.

[3] F. Krzakala, M. Mezard, and L. Zdeborova. Reweighted belief propagation and quiet planting
for random K-SAT. Journal on Satisfiability, Boolean Modeling and Computation, 8:149–171,
2014.

[4] S. E. Schmittner. A prove of concept implementation of a sat-based crypto system. https:

//github.com/Echsecutor/kryptoSAT, 2015.

4http://www.satcompetition.org/2014/
5E.g. http://satcompetition.org/edacc/sc14/experiment/24/result/?id=23531
6http://www.minisat.se/

https://github.com/Echsecutor/kryptoSAT
https://github.com/Echsecutor/kryptoSAT
http://www.satcompetition.org/2014/
http://satcompetition.org/edacc/sc14/experiment/24/result/?id=23531
http://www.minisat.se/

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 9

Appendix A. Some hard problems

In this section, we establish that some problems related to the decoding prob-
lem (see Section 3) are hard. To this end, fix a public key pub and assume that

pub−1
(1) = {priv}. The partitioning of ciphers G = G0 ∪G1 is characterised by

G1 = {g ∈ G | pub ⇒ g}(24)

G0 = {g ∈ G | pub ⇒ ḡ} .(25)

Deriving the private key is harder than decoding, since ∀g ∈ G : g ∈ Gg(priv).

Assuming that all g ∈ G are given in such a form that evaluating g(priv) is possible
in polynomial time, the decoding problem is in NP .

If G would contain the elementary functions X := {x 7→ xi} then the decoding
problem would be (polynomial time) equivalent to deriving the private key, hence
solving the SAT problem. A set of functions Y of polynomials size will be called
“hard to decode”, if solving the decoding problem for each f ∈ Y determines (by
a polynomial time algorithm) the solution of the SAT problem. The following sets
of functions are hard to decode:

(1) The elementary functions X
(2) Any set of functions containing a subset that is hard to decode
(3) {f ⊕ sf |f ∈ Y } where sf ∈ B are known and Y is hard to decode
(4) {f ⊕ g|f ∈ Y } where Y is hard to decode and g is any Boolean function
(5) {f ∧ g|f ∈ Y } ∪ {f ∧ ḡ|f ∈ Y } with Y , g as above
(6) {xi ∧ f |f ∈ Y, xi ∈ X} with X, Y as above
(7) {xi ∨ f |f ∈ Y, xi ∈ X} with X, Y as above

(3) is hard to decode since f ⊕ s ∈ Gb ↔ f ∈ Gb⊕s. (4) is hard to decode since
we can decide for each f ⊕ g whether or not it is implied by pub, then assume that

g(priv) = 0 and use that Y is hard to decode to produce a trial solution priv ′. If

pub(priv ′) 6= 1 then g(priv) = 1 and we can use (3). (5) is hard to decide since one
of the two sets evaluates to {0} on priv . Since there are only two possibilities for
g(priv) one can check both in polynomial time, similar to (4). In (6) (and similarly
in (7)) we can decide {x1 ∧ f}. If this turns out to be a subset of G0 then we
likely have x1(priv) = 0 and we proceed deciding {x2 ∧ f}. After polynomial time
we either arrive at some xi(priv) = 1 and can hence derive priv or conclude that
priv = (0, . . . , 0).

The above construction shows that some generic problems similar to the decoding
problem are hard to decide. Notice, however, that the sender can not (on purpose)
encode a message of polynomial length into a hard to encode set of functions in
polynomial time, or else he would solve the SAT problem.

Appendix B. Boolean CLT

Consider a set of i.i.d. Boolean variables xi, with p1 := prob(xi = 1). Then

p⊕0 := prob

(
M⊕
i=1

xi = 0

)
=

bM/2c∑
j=0

(
M

2j

)
p2j

1 (1− p1)M−2j(26)

p⊕1 := prob

(
M⊕
i=1

xi = 1

)
=

dM/2e−1∑
j=0

(
M

2j + 1

)
p2j+1

1 (1− p1)M−2j−1(27)

and hence |p⊕0 − p
⊕
1 | = |1− 2p1|M converges to 0 for any 0 < p1 < 1 and M → ∞

at exponential speed. In other words, for large enough M we have p⊕1 ≈ 1/2
irrespective of p1. Large enough here means M � −1/ log |1 − 2p1|, which means
M � p−1

1 /2 for small p1 � 1/2.

10 SCHMITTNER

Appendix C. Structure of ciphers

In this section we discuss which functions g can, in principle, be constructed
from the public key pub without knowledge of the private key, such that pub ⇒ g,
i.e. g ∈ G1. We will therefore assume that only the clauses ci of pub =

∧m
i=1 ci can

be used as the elementary building blocks for which pub ⇒ ci is known.
Any encryption algorithm of the type discussed in this paper will lead to sets

of ciphers G and Gb which are contained in the sets G̃ and G̃b, respectively. The
latter are constructed as follows

(1) 1 ∈ G̃1 and ci ∈ G̃1 for i ∈ {1, . . . ,m}.
(2) f ∈ G̃a, g ∈ G̃b ⇒ f ⊕ g ∈ G̃a⊕b, f ∧ g ∈ G̃a∧b and f ∨ g ∈ G̃a∨b. In

particular, ḡ = 1⊕ g ∈ G̃b̄.
(3) f ∈ G̃1, g arbitrary ⇒ f ∨ g ∈ G̃1 and f̄ ∧ g ∈ G̃0.

The sets that can be constructed from (1) using (2) and (3) are

G̃0 =

{
m∧
i=1

c̄ifi | fi : Bn → B

}
(28)

G̃1 = {1⊕ f | f ∈ G0} .(29)

These are stable under (2), since f ∨ g = 1 ⊕ f̄ ḡ = f ⊕ g ⊕ fg and f = 1 ⊕ f̄ .
Further, the set of Boolean functions used in (2) is complete.

Appendix D. Multi-key chains

In some situations, the proof of honest encryption method laid out in Section 3.4
might not be favourable, for example if the feature of (pseudo) random ciphers is
crucial or re-computing the encryption on the receiver side is to costly. In such
cases, we can still substantially weaken the oracle attack. The key idea here is to
introduce redundancy, which increases key length and all run times by a constant
factor.

The private/public key chain now consists of γ ∈ N different private/public key
pairs. To encrypt a message, each bit is to be encrypted with each of the public
keys, i.e. the cipher for one bit now consists of γ many Boolean functions in ANF.
In a valid cipher, all of these functions evaluate to the same value upon inserting
the respective private keys.

After decoding, the recipient has to decide whether or not to accept the message
(bit), if the cipher is invalid. Rejecting all invalid ciphers would reveal as much
information about the private key as the simple version of Section 2. Therefore we
fix a threshold t ∈ {2, . . . , γ/2} and accept the bit with value given by the majority,
if the minority is smaller than t. To properly choose t, we consider the two possible
outcomes of the attack:

(1) If the message is rejected, the attacker learns that more than the (known)
threshold t of the bits he guessed did not match the private keys.

(2) If the message is accepted, the attacker will learn whether or not he guessed
the majority of bits right (from the reply of the receiver).

To keep the information leakage about the private key as small as possible, we
should choose t large in order to make (1) unlikely. More precisely, if f ∈ {0. . . . , γ}
of the encoded versions of the bit are manipulated by replacing one variable with
a guessed value (such that the change in the function influences its value), the
probability of rejection is

probr(t, f) =
1

2f

∑
t≤T≤f

(
f

T

)
,(30)

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 11

which can be expressed through the error function for large f . If f is close or
even equal to t, the attacker gains substantial information, but for this attack, the
success probability is exponentially small in t.

In the opposite case of choosing f close to γ, the attack is most likely detected
if t is small enough. Concretely choosing e.g.

(31) t =
γ

2
− c

2

√
γ

with c = 3 means that more than 99.7% (for large γ) of the attacks will be detected
with hardly any information gain for the attacker. More precisely, the probability
of a successfully attack of this type scales down super exponentially (with the
complementary error function) and is below 10−8 already for c = 6. In practice,
choosing t ∝ γ with a proportionality factor slightly smaller than 1/2 should be
most reasonable.

The attacker gains most information from an attack with probr(t, f) ≈ 1/2, i.e.
f ≈ 2t. This attack being rejected or not indicates that more or less than half of
the private key bits were guessed correctly. Gathering this knowledge from O(γ2)
attacks in a suitable scheme will reveal the value of all γ bits of the keys with a high
confidence level on the attackers side. Hence the multi-key hardened version is not
fully resistant against the oracle attack, but the attack will almost surely be noticed
before substantial information is leaked. This invalidates the authenticity of the
attacker in an authenticated communication. Even if information was leaked, not
all keys in the chain have to be replaced, which limits the damage of a successful
attack.

One can improve the scheme a little more by also choosing γ at random for each
decryption, but still statistical analysis will eventually reveal the private key bits.
Hence the proof of honest encryption scheme introduced in Section 3.4.1 is certainly
more secure than the multi-key scheme.

Appendix E. Benchmarks

We have conducted some simple bench marks for breaking the public key, i.e.
solving the SAT instance, using minisat7. It is well known that random instances
are the hardest for m ≈ mc. It turns out that for the planted instances that we
use as public keys, the hardest instances have slightly more clauses, but using too
large m makes it easier to find the solution.

E.1. 3-SAT. For k = 3 we find (see Figures 1 to 6) that the hardest instance
have m ≈ 5n where mc ≈ 4.2n [2]. In Figure 6 we show the run time of minisat
for various random instances generated by our key generator as a function of the
number of variables for fixed m/n = 4.3. This is very close to the critical ratio.
Fitting an exponential function to the minimal run times, we extrapolate that one
should choose n100 ≈ 1500 to ensure that the minisat solver would take at least
100 years to break the public key. For m/n = 4.5, as displayed in Figure 5, we find
the same n100 within the error of our approximation, but for m/n = 5 (Figure 2)
n100 ≈ 1000 is significantly smaller. Increasing m/n > 5 leads to an increases in
n100 which again reaches n100 ≈ 1500 for m/n = 8.

Consequently, we choose m/n = 5 and a private key length n = 210 for k = 3
as the default values for the proof-of-concept implementation [4]. This leads to a
public key length of about k ∗m ∗ (log2(n) + 1) ≈ 165 kbit.

7http://www.minisat.se/

http://www.minisat.se/

12 SCHMITTNER

2−5

1

25

210

200 300 400 500 600 700 800 900

t

n

2−15+0.032n 2−17+0.031n

Figure 1. m/n = 8

2−10

2−5

1

25

210

215

200 300 400 500 600 700

t

n

2−17+0.059n 2−25+0.059n

Figure 2. m/n = 5

E.2. 4-SAT. For k = 4 the critical ratio of clauses to variables is about mc = 9.8n.
Using m/n = 10 our minisat benchmarks indicate n100 ≈ 350. So the private key
size can be reduced significantly by using higher k. However, the public key size
for these parameters (≈ 133 kbit) is comparable to the one for k = 3. This means
that the run time for encryption with higher k is significantly longer (exponential
in k, see Section 2.2). Overall, it does not pay off to use higher values of k.

Universität zu Köln, Institut für Theoretische Physik, Zülpicher Straße 77, 50937

Köln
E-mail address: ses@thp.uni-koeln.de

A SAT-BASED PUBLIC KEY ENCRYPTION SCHEME 13

2−5

1

25

200 300 400 500 600

t

n

2−16+0.04n

2−22+0.049n

Figure 3. m/n = 7

2−5

1

25

200 300 400 500 600

t

n

2−16+0.048n

2−17+0.041n

Figure 4. m/n = 6

2−5

1

25

210

215

200 300 400 500 600 700

t

n

2−14+0.041n

2−18+0.032n

Figure 5. m/n = 4.5

2−10

2−5

1

25

210

300 400 500 600 700 800

t

n

2−13+0.033n

2−22+0.036n

Figure 6. m/n = 4.3

	1. Introduction
	1.1. Example

	2. Algorithms
	2.1. Key generation
	2.2. Encryption and Decryption

	3. Known attacks and improved schemes
	3.1. Simple attacks
	3.2. Decoding attack
	3.3. Reduced SAT problem attack
	3.4. Oracle attack

	4. Conclusion
	Acknowledgement
	References
	Appendix A. Some hard problems
	Appendix B. Boolean CLT
	Appendix C. Structure of ciphers
	Appendix D. Multi-key chains
	Appendix E. Benchmarks
	E.1. 3-SAT
	E.2. 4-SAT

