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Abstract — Diffusion layers are critical components of symmetric 

ciphers. MDS matrices are diffusion layers of maximal branch 

number which have been used in various symmetric ciphers. In 

this article, we examine decomposition of cyclic matrices from 

mathematical viewpoint and based on that, we present new cyclic 

MDS matrices. From the aspect of implementation, the proposed 

matrices have lower implementations costs both in software and 

hardware, compared to what is presented in cryptographic 

literature, up to our knowledge. 

Keywords   —   Diffusion layer; MDS matrix; Symmetric cipher; 

Decomposition of matrices;  

 

I.  INTRODUCTION  

Diffusion layers are crucial components of symmetric ciphers. 

MDS matrices are diffusion layers with maximum branch 

number. MDS diffusion layers are used in several symmetric 

ciphers [1-7]. Some aspects of the theory of MDS diffusion 

layers is studied in [8-14].  
 

    In this article, we verify a special kind of MDS matrices, 

namely cyclic MDS matrices and propose new MDS matrices 

of this type. The presented matrices have lower implementation 

costs compared to what is presented up to now. In [10,15,16] 

diffusion layers in the form of a matrix power are examined. In 

this paper, we study decomposition of matrices from another 

viewpoint: we consider the product of matrices and then check 

these products for MDSness. 
 

    More precisely, we study cyclic matrices over finite fields of 

characteristic two and based upon this algebraic investigation, 

we provide some 4 × 4 and 8 × 8 MDS matrices with efficient 

implementation. 
 

    In Section 2, we present preliminary notations and 

definitions. Section 3 is devoted to MDS matrices with efficient 

implementation and Section 4 is the conclusion. 

 
 

II. PRELIMINARY NOTATIONS AND DEFINITIONS 
 

Let 𝑅 be a finite commutative ring with identity. We denote the 

ring of polynomials over 𝑅 by 𝑅[𝑥]. Suppose that  𝑝(𝑥) ∈ 𝑅[𝑥]; 

the ring of polynomials modulo 𝑝(𝑥) is denoted by 
𝑅[𝑥]

<𝑝(𝑥)>
. 

 

    Throughout the paper, 𝑚, 𝑛, 𝑟 and 𝑡 are natural numbers. The 

finite field of order 2𝑛 is denoted by 𝐹2𝑛  and the Cartesian 

product of 𝑛 copies of 𝐹2 by 𝐹2
𝑛. Cardinality of a finite set 𝐴 is 

denoted by |𝐴|. We denote the operation of addition in 𝐹2𝑛  by 

+. Addition in 𝐹2𝑛[𝑥]  and the XOR operation in 𝐹2
𝑛 is denoted 

by  ⨁. We denote left rotation by ⋘ and composition of 

functions by ∘. The zero vector of any size is denoted by 𝟎. We 

use the notation ≡ for equivalence of sets, functions, vectors or 

algebraic structures. 
 

    Let 𝐹2𝑛
𝑚  be the natural 𝑚-dimensional linear space over 𝐹2𝑛. 

Let 𝑥 = (𝑥𝑚−1, . . . , 𝑥0) ∈ 𝐹2𝑛
𝑚  be a vector of length 𝑚. The 

weight of 𝑥 is denoted by 𝑤(𝑥) and is defined as 
 

𝑤(𝑥) = |{0 ≤ 𝑖 < 𝑚: 𝑥𝑖 ≠ 0}|. 
 
 

    The (differential) branch number of a linear transformation 

𝜓: 𝐹2𝑛
𝑚 → 𝐹2𝑛

𝑚  or its representing matrix is defined as 
 

𝑚𝑖𝑛𝑥∈𝐹
2𝑛
𝑚−{𝟎} {𝑤(𝑥) + 𝑤(𝜓(𝑥))}. 

 

    A linear transformation 𝜓: 𝐹2𝑛
𝑚 → 𝐹2𝑛

𝑚  is called MDS [17,18] 

iff its branch number is equal to 𝑚 + 1. 
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III. CONSTRUCTION OF NEW MDS MATRICES 
 

At first, we prove a theorem which is the base for applications 

presented in this paper. 
 

 

Theorem 1. Let 𝑅 =
𝐹2𝑛[𝑥]

<𝑥𝑟⊕1>
. Every 𝑝 ∈ 𝑅 of the form                                 

 

𝑟 − 1 

      ⊕ 𝑝𝑖𝑥
𝑖  

𝑖 = 0 

 

corresponds to a mapping 
 

 

𝜓𝑝: 𝑅 → 𝑅, 
 

𝜓𝑝(𝑎) = 𝑝𝑎  𝑚𝑜𝑑  (𝑥𝑟⊕ 1). 
 

 

Further, there is an 𝑟 × 𝑟 matrix 𝑃 over 𝐹2𝑛   which is the 

representing matrix of a linear transformation 𝜓𝑃 such that the 

action of  𝜓𝑝 and 𝜓𝑃 are exactly the same: 
 

𝜓𝑃: 𝐹2𝑛
𝑟 → 𝐹2𝑛

𝑟 , 
 

𝑎 ≡ (𝑎𝑟−1, … , 𝑎0) ⟼ (𝑎𝑟−1, … , 𝑎0)𝑃 ≡ 𝑝𝑎  𝑚𝑜𝑑  (𝑥𝑟⊕ 1). 
 

Here, 

𝑃 = [𝑝𝑖𝑗]𝑟×𝑟 ,      𝑝𝑖𝑗 = 𝑝(𝑖−𝑗)  𝑚𝑜𝑑  𝑟 . 
 

 

Proof. We know that 𝑎 is of the form  
 

𝑟 − 1 

      ⊕ 𝑎𝑖𝑥
𝑖 

𝑖 = 0 

 

 

and so, if we take 
 

⊕
𝑖=0

𝑟−1

𝑞𝑖𝑥
𝑖 = 𝑝𝑎  𝑚𝑜𝑑  (𝑥𝑟 ⊕1), 

 

then we have 

𝑞𝑖 =∑𝑝𝑗𝑎(𝑖−𝑗) 𝑚𝑜𝑑 𝑟

𝑟−1

𝑗=0

,   0 ≤ 𝑖 < 𝑟. 

 

Here, the symbol ∑ stands for addition in 𝐹2𝑛. Now, if we 

consider the action of the linear transformation 𝜓𝑃, we have 
 

(𝑎𝑟−1, … , 𝑎0) ⟼ (𝑎𝑟−1, … , 𝑎0)𝑃, 
with 

𝑃 = [𝑝𝑖𝑗]𝑟×𝑟 ,      𝑝𝑖𝑗 = 𝑝(𝑖−𝑗)  𝑚𝑜𝑑  𝑟 .                      ∎ 
 

 

Note 2. The correspondence investigated in Theorem 1 is such 

that for 𝑝, 𝑝1, 𝑝2 ∈ 𝑅 with 𝑝 = 𝑝1𝑝2, we have 𝑃 = 𝑃1𝑃2. Here, 

𝑃1 is the corresponding matrix of  𝑝1 and 𝑃2 is the corresponding 

matrix of  𝑝2. Moreover, for an invertible element 𝑝 ∈
𝐹2𝑛[𝑥]

<𝑥𝑟⊕1>
 , 

𝑝−1 corresponds to 𝑃−1. 
 

 

    Now, we recall the mapping given in [19, Exam. 6] as an 

application of Theorem 1. We note that Theorem 1 is somewhat 

a generalization of the concepts presented in [19]. 
 

 

 

 

Example 3. Consider the mappings 
 

 

𝑓1, 𝑓2, 𝑓3, 𝑓: 𝐹2
32 → 𝐹2

32, 
 

𝑓1(𝑥) = 𝑥 ⊕ (𝑥 ⋘ 1)⊕ (𝑥 ⋘ 2), 
 

 

𝑓2(𝑥) = 𝑥 ⊕ (𝑥 ⋘ 2) ⊕ (𝑥 ⋘ 7), 
 

 

𝑓3(𝑥) = 𝑥 ⊕ (𝑥 ⋘ 4) ⊕ (𝑥 ⋘ 10), 
 

and 𝑓(𝑥) = 𝑓1 ∘ 𝑓2 ∘ 𝑓3(𝑥). Then, 𝑓 has branch number 12 over 

𝐹2𝑛 for any 𝑛. 
 

    In Example 3, we have used the concept of decomposition of 

matrices over 𝐹2 or factoring of polynomials in 
𝐹2[𝑥]

<𝑥32⊕1> 
 , to 

find a linear mapping of maximal branch number with more 

efficient implementation, compared to what is presented up to 

now.  
 

    Now we have an example in finite field 𝐹2𝑛,  𝑛 > 1. 
 
 

 

Example 4. Consider 𝑅 =
𝐹2𝑛[𝑥]

<𝑥3⊕1>
. Let  𝑝, 𝑎 ∈ 𝑅 with 

 

 

𝑝 = 𝑝0⊕𝑝1𝑥 ⊕ 𝑝2𝑥
2, 

 

𝑎 = 𝑎0⊕ 𝑎1𝑥 ⊕ 𝑎2𝑥
2. 

We have 
 

      𝑝𝑎  𝑚𝑜𝑑  (𝑥3⊕1) = (𝑝0𝑎0 + 𝑝2𝑎1 + 𝑝1𝑎2) 
 

                             ⊕ (𝑝0𝑎1 + 𝑝1𝑎0 + 𝑝2𝑎2)𝑥 
 

                                ⊕ (𝑝0𝑎2 + 𝑝1𝑎1 + 𝑝2𝑎0)𝑥
2. 

 

With matrix notations, we have 

𝑝𝑎  𝑚𝑜𝑑 (𝑥3⊕ 1) ≡ (𝑎2    𝑎1    𝑎0) (

𝑝0 𝑝2 𝑝1
𝑝1 𝑝0 𝑝2
𝑝2 𝑝1 𝑝0

). 

 

So, the corresponding matrix of 𝑝 would be 
 

 

𝑃 = (

𝑝0 𝑝2 𝑝1
𝑝1 𝑝0 𝑝2
𝑝2 𝑝1 𝑝0

). 

 
 

Construction 5. Let 𝛼 ∈ 𝐹2𝑛. Consider 𝑅 =
𝐹2𝑛[𝑥]

<𝑥4⊕1>
 and 

𝑝, 𝑝1 , 𝑝2 ∈ 𝑅 with  𝑝 = 𝑝1𝑝2  𝑚𝑜𝑑 (𝑥
4⊕1), and 

 

𝑝1 = 𝑥
3⊕𝛼, 

 

𝑝2 = 𝑥
3⨁𝑥⨁1. 

 

We have 

𝑝 = (𝛼 + 1)𝑥3⨁𝑥2⨁𝛼𝑥⨁(𝛼 + 1). 
 
 

The corresponding matrices are 
 

𝑃1 = (

𝛼 1 0 0
0 𝛼 1 0
0
1

0
0

𝛼
0

1
𝛼

), 

 



𝑃2 = (

1 1 0 1
1 1 1 0
0
1

1
0

1
1

1
1

), 

and 
 

𝑃 = (

𝛼 + 1            𝛼 + 1          1                     𝛼
𝛼            𝛼 + 1      𝛼 + 1                1
1

𝛼 + 1

          𝛼  
        1

 
          𝛼 + 1      

   𝛼
  
    𝛼 + 1   
 𝛼 + 1

). 

 

It can be verified that the conditions on 𝛼 to make 𝑃 MDS over 

𝐹2𝑛, is the same as conditions of [12, Coro. 4.5]: 𝛼, 𝛼3 + 1 and 

𝛼7 + 1 should not be zero. So, as stated after that corollary, 

almost all elements 𝛼 in 𝐹2𝑛, make 𝑃 MDS.  
 

 

If we wish to use the diffusion layer corresponding to 𝑃, the 

pseudo-code for implementing it, would be as follows:  
 

 

𝑍3 = 𝛼𝑋3⊕𝑋0, 
 

𝑍2 = 𝛼𝑋2⊕𝑋3, 
 

𝑍1 = 𝛼𝑋1⊕𝑋2, 
 

𝑍0 = 𝛼𝑋0⊕𝑋1, 
 

𝑇1 = 𝑍3⊕𝑍2, 
 

𝑇2 = 𝑍1⊕𝑍0, 
 

𝑌3 = 𝑇1⊕𝑍0, 
 

𝑌2 = 𝑇1⊕𝑍1, 
 

𝑌1 = 𝑇2⊕𝑍2, 
 

𝑌0 = 𝑇2⊕𝑍3. 
 

Here, 𝑋𝑖’s, 0 ≤ 𝑖 ≤ 3, are the inputs, 𝑌𝑖’s, 0 ≤ 𝑖 ≤ 3, are the 

outputs and 𝑍𝑖’s, 0 ≤ 𝑖 ≤ 3, and 𝑇𝑖’s, 1 ≤ 𝑖 ≤ 2, are temporary 

variables. 
 
 

Note 6. If we replace 𝐹2𝑛  in Construction 5 with any finite 

commutative ring with identity 𝑆, or 
𝐹2𝑛[𝑥]

<𝑥4⊕1>
 with 

𝑆[𝑥]

<𝑥4⊕1>
 , then 

the conditions for MDSness of 𝑃 are invertibility of 𝛼, 𝛼3 + 1 

and 𝛼7 + 1 in the ring 𝑆. These conditions are the same as 

conditions of [10, Theo. 7] and so, every matrix 𝐿 (instead of 

𝛼) satisfying the conditions of that theorem, satisfies the 

conditions for MDSness of  𝑃. The important point concerning 

the decomposition done in Construction 5 is that, the cost of 

implementing this decomposition is 10 XOR’s and 4 table 

lookups or field multiplications. Compared to the best matrices 

given in [10] which need 14 XOR’s and 4 table lookups or field 

multiplications, our proposed matrix saves 4 XOR operations. 
 
 

 

    One of the drawbacks of our method is that the cost of 

implementing the inverse of these cyclic matrices is high and 

there are no involutions of this type. For example, for 

Construction 5 we have 
 

 

(𝑥3⊕𝛼)−1 = 𝛼2(𝛼 + 1)−4𝑥3⊕𝛼(𝛼 + 1)−4𝑥2 
 

                       ⊕ (𝛼 + 1)−1𝑥 ⊕ 𝛼3(𝛼 + 1)−4, 
 

(𝑥3⊕𝑥⊕ 1)−1 = 𝑥3⊕𝑥⊕ 1, 
and 

                     ((𝛼+1)𝑥3⊕𝑥2⊕𝛼𝑥⊕(𝛼+1))
−1

 

 

= (𝛼3+𝛼2+𝛼)(𝛼+1)
−4
𝑥
3
 

 

         ⊕ (𝑥2 + 𝛼 + 1)(𝛼 + 1)−4𝑥2 
 

       ⊕ (𝛼3 + 𝛼 + 1)(𝛼 + 1)−4𝑥 
 

                               ⊕ (𝛼3 + 𝛼2 + 1)(𝛼 + 1)−4. 
 

    Of course, if we apply the matrix of Construction 5 in a 

Feistel scheme or in an SPN structure in a mode like CTR, 

which do not need the implementation of the inverse of 

mappings, then our method is more efficient. 
 
 

 

Construction 6. Let  𝑅 =
𝐹2𝑛[𝑥]

<𝑥8⊕1>
 . We take 

 

 

𝑝 = (𝑥3⊕ 𝑎)(𝑥2⊕𝑏)(𝑥4⊕ 𝑐𝑥 ⊕ 1)  𝑚𝑜𝑑  (𝑥8⊕1) 
 

         = 𝑏𝑥7⊕ (𝑎 + 𝑐)𝑥6⊕𝑥5⊕ (𝑎𝑏 + 𝑏𝑐)𝑥4 

 

            (𝑎𝑐 + 𝑏)𝑥3⨁𝑎𝑥2⨁(𝑎𝑏𝑐 + 1)𝑥 + 𝑎𝑏. 
 

Here, 𝑝 = 𝑝1𝑝2𝑝3  𝑚𝑜𝑑  (𝑥
8⊕1) with 

 

 

𝑝1 = 𝑥3⊕ 𝑎, 
 

𝑝2 = 𝑥2⊕ 𝑏, 
 

𝑝3 = 𝑥4⊕ 𝑐𝑥 ⊕ 1. 
 

 

The corresponding matrices are 
 

 

𝑃1 = [𝑝𝑖𝑗
1 ]

8×8
,       

with 
 

𝑝𝑖𝑗
1 = {

𝑎          (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 0

1         (𝑖 − 𝑗) 𝑚𝑜𝑑  8 = 3

0      (𝑖 − 𝑗) 𝑚𝑜𝑑  8 ≠ 0,3

,   0 ≤ 𝑖 < 8,   0 ≤ 𝑗 < 8.   

 

 

𝑃2 = [𝑝𝑖𝑗
2 ]
8×8
,       

with 
 

𝑝𝑖𝑗
2 = {

𝑏          (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 0

1         (𝑖 − 𝑗) 𝑚𝑜𝑑  8 = 2

0      (𝑖 − 𝑗) 𝑚𝑜𝑑  8 ≠ 0,2

,   0 ≤ 𝑖 < 8,   0 ≤ 𝑗 < 8.  

 

 

𝑃3 = [𝑝𝑖𝑗
3 ]
8×8
,       

with 
 

𝑝𝑖𝑗
3 = {

1            (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 0,4

𝑐                (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 1

0         (𝑖 − 𝑗) 𝑚𝑜𝑑 8 ≠ 0,1,4

,   0 ≤ 𝑖 < 8,   0 ≤ 𝑗 < 8,   

 

and 
 



𝑃 = [𝑝𝑖𝑗]8×8,       

with 

𝑝𝑖𝑗 =

{
 
 
 
 

 
 
 
 
𝑎𝑏                (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 0

𝑎𝑏𝑐 + 1      (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 1

𝑎                  (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 2

𝑎𝑐 + 𝑏        (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 3

𝑎𝑏 + 𝑏𝑐      (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 4

1                  (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 5

𝑎 + 𝑐          (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 6

𝑏                 (𝑖 − 𝑗) 𝑚𝑜𝑑 8 = 7

, 0 ≤ 𝑖, 𝑗 < 8. 

 

 
 

We have searched these matrices for MDSness by symbolic 

computation programming. The following parameters in any 

field 𝐹2𝑛 with 𝑛 ≥ 8  satisfy the conditions for MDSness of  𝑃: 
 
 

𝑎 = 𝛼 + 1, 
 

𝑏 = 𝛼2 + 𝛼 + 1, 
 

𝑐 = 𝛼3 + 𝛼 + 1, 
 

where 𝛼 is a primitive element in 𝐹2𝑛. In fact, we have used 

symbolic computations and found all of the 
 

∑(
8
𝑖
)
2

= (
16
8
) − 1

8

𝑖=1

= 12869 

 

determinants: there were 930 distinct polynomials. The subtle 

point here is that the degree of all these polynomials (symbolic 

determinants) is less than 255. So, any 𝛼 which is not a root of 

these polynomials, satisfy the conditions for MDSness of 𝑃. 

From the practical aspect, we can use any primitive element of 

𝐹2𝑛 with 𝑛 ≥ 8; because a primitive element has multiplicative 

order 2𝑛 − 1 and cannot be a root of any polynomial over 𝐹2𝑛 

with degree less than 2𝑛 − 1 ≥255. Of course, we can use a 

primitive polynomial as the defining polynomial of 𝐹2𝑛. In this 

case, 𝛼 = 𝑥 would be a primitive element which is the best case 

from implementation viewpoint. By checking different 

primitive polynomials as defining polynomial of 𝐹2𝑛, we can 

find the best primitive polynomial which yields the best 

implementation in hardware. 
 

 

As in Construction 5, if 𝑋𝑖’s, 0 ≤ 𝑖 ≤ 7, are the inputs, 𝑌𝑖’s,   

0 ≤ 𝑖 ≤ 7, are the outputs and 𝑍𝑖’s and 𝑇𝑖’s, 0 ≤ 𝑖 ≤ 7, are 

temporary variables, then we have 
 

 
 

𝑍7 = 𝑎𝑋0⊕𝑋3, 
 

𝑍6 = 𝑎𝑋7⊕𝑋2, 
 

𝑍5 = 𝑎𝑋6⊕𝑋1, 
 

𝑍4 = 𝑎𝑋5⊕𝑋0, 
 

𝑍3 = 𝑎𝑋4⊕𝑋7, 
 

𝑍2 = 𝑎𝑋3⊕𝑋6, 
 

𝑍1 = 𝑎𝑋2⊕𝑋5, 
 

𝑍0 = 𝑎𝑋1⊕𝑋4, 
 

𝑇7 = 𝑎𝑍0⊕𝑍2, 
 

𝑇6 = 𝑎𝑍7⊕𝑍1, 
 

𝑇5 = 𝑎𝑍6⊕𝑍0, 
 

𝑇4 = 𝑎𝑍5⊕𝑍7, 
 

𝑇 = 𝑎𝑍4⊕𝑍6, 
 

𝑇2 = 𝑎𝑍3⊕𝑍5, 
 

𝑇1 = 𝑎𝑍2⊕𝑍4, 
 

𝑇0 = 𝑎𝑍1⊕𝑍3, 
 

𝑌0 = 𝑇0⊕ 𝑐𝑇1⊕𝑇4, 
 

𝑌0 = 𝑇7⊕ 𝑐𝑇0⊕𝑇3, 
 

𝑌0 = 𝑇6⊕ 𝑐𝑇7⊕𝑇2, 
 

𝑌0 = 𝑇5⊕ 𝑐𝑇6⊕𝑇1, 
 

𝑌0 = 𝑇4⊕ 𝑐𝑇5⊕𝑇0, 
 

𝑌0 = 𝑇3⊕ 𝑐𝑇4⊕𝑇7, 
 

𝑌0 = 𝑇2⊕ 𝑐𝑇3⊕𝑇6, 
 

𝑌0 = 𝑇1⊕ 𝑐𝑇2⊕𝑇5. 
 
 

The implementation of 𝑃, needs 32 XOR’s and 24 table lookups 

or field multiplications, which has lower implementation cost 

in comparison to what is presented in [8] for 8 × 8 MDS 

matrices: the best implementation of [8] needs 43 table lookups 

plus 56 XOR’s. Of course, our proposed matrix can be 

compared with the 8 × 8 MDS matrices of [10]. The best 

implementation of [10, Tab. 4] needs 16 table lookups plus 80 

XOR’s, which has higher implementation cost than our 

proposed matrix in typical processors. 
 

IV. CONCLUSION 

Diffusion layers are important components of symmetric 

ciphers. MDS matrices have been used in several symmetric 

ciphers. In this article, we studied decomposition of cyclic 

matrices from mathematical viewpoint and based on that, we 

presented new cyclic MDS matrices.  

    From the aspect of implementation, the proposed matrices 

have lower implementations costs both in software and 

hardware, compared to what is presented in cryptographic 

literature, up to our knowledge. 

    We think that based on the theory presented in this paper, the 

search for optimum MDS matrices over finite fields or finite 

commutative rings with identity can be done and more efficient 

matrices can be found by this method. 
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