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Abstract

In this work, we construct an adaptively secure functional encryption for Turing machines scheme, based on
indistinguishability obfuscation for circuits. Our work places no restrictions on the types of Turing machines that
can be associated with each secret key, in the sense that the Turing machines can accept inputs of unbounded
length, and there is no limit to the description size or the space complexity of the Turing machines.

Prior to our work, only special cases of this result were known, or stronger assumptions were required. More
specifically, previous work (implicitly) achieved selectively secure FE for Turing machines with a-priori bounded
input based on indistinguishability obfuscation (STOC 2015), or achieved FE for general Turing machines only
based on knowledge-type assumptions such as public-coin differing-inputs obfuscation (TCC 2015).

A consequence of our result is the first constructions of succinct adaptively secure garbling schemes (even
for circuits) in the standard model. Prior succinct garbling schemes (even for circuits) were only known to be
adaptively secure in the random oracle model.
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1 Introduction

Contemporary cloud-based computing systems demand encryption schemes that go far beyond the traditional
goal of merely securing a communication channel. The notion of functional encryption, first conceived under
the name of Attribute-Based Encryption in [SW05] and formalized later in the works of [BSW11, O’N10], has
emerged as a powerful form of encryption well-suited to many contemporary applications (see [BSW11, BSW12]
for further discussion of application scenarios for functional encryption). A functional encryption (FE) scheme
allows a user possessing a key associated with a function f to recover the output f(x), given an encryption of
x. The intuitive security guarantee of a FE scheme dictates that the only information about x revealed to the
user is f(x). Furthermore, if the user obtains keys for many functions f1, . . . fk, then the user should only learn
f1(x), . . . , fk(x) and nothing more. It turns out that formalizing security using a simulation-based definition leads
to impossibility results [BSW11, AGVW13]; however, there are sound adaptive indistinguishability-based formu-
lations [BSW11] that also imply simulation-based security in restricted settings [CIJ+13]. Following most recent
work on FE [GGH+13, Wat15, GGHZ14, ABSV15], we will focus on achieving this strong indistinguishability-
based notion of security here.

In this work, we address the following basic question:

“Is FE possible for functions described by arbitrary Turing machines?”

Previous work and its limitations. There have been many works on functional encryption over the past few
years but a satisfying answer to this question has remained elusive.

The first constructions of FE considered only limited functions, such as inner product [KSW08]. The first
constructions of FE that allowed for more general functions considered the setting where the adversary can just
request a single (or a bounded number of) key queries [SS10, GVW12], but only for functions represented by
circuits. A major advance occurred in the work of [GGH+13], which constructed an FE scheme allowing for
functions specified by arbitrary circuits, with no bound on key queries, based on indistinguishability obfuscation
(iO) for circuits. Since this work, the assumption of iO for circuits has become the staple assumption in this
area.

However, [GGH+13] and other FE results deal with functionalities represented by circuits – and representing
functions as circuits gives rise to two major drawbacks. The first drawback is that a circuit representation takes
the worst case running time on every input. Research to deal with this issue was initiated by Goldwasser et
al. [GKP+13], and there have been several recent works [BGL+15, CHJV15, KLW15, CCC+15], that (implicitly
or explicitly) give rise to FE schemes with input-specific runtimes based on iO for circuits.

The second drawback is that the input length of the function is a-priori bounded. In many scenarios, especially
involving large datasets, having an a-priori bound is clearly unreasonable. For example, if functional encryption
is used for allowing a researcher to perform some data analysis on hospital records, then having a bound on
input length would require that there be an a-priori bound, at the time of setting up the encryption scheme, on
the length of encrypted hospital records, which seems quite unreasonable. In general, we would like to represent
the function being computed as a Turing Machine, that can accept inputs of arbitrary length. The problem of
constructing FE schemes which can handle messages of unbounded length has remained largely open: the recent
works of [BGL+15, CHJV15, KLW15] construct iO for Turing Machines only with bounded input length, where
the bound must be specified at the time of obfuscating the Turing Machine. If this iO method is combined,
for example, with the FE construction recipe of [GGH+13], then this would only yield FE for functions with a
bound on input length specified at the time of setting up the FE scheme.
There have been works [BCP14, IPS15] on overcoming the issue of a priori bounded input lengths but these are
based on strong knowledge-type assumptions called differing inputs obfuscation [BGI+12, BCP14, ABG+13] or
more recently public-coin differing inputs obfuscation [IPS15]. Our main contribution is developing new technical
approaches that allow us to remove the need for such assumptions, and use only iO for circuits1.

Results and Technical Overview. We prove the following informal theorem.

Theorem 1 (Informal). There exists an adaptively secure FE scheme for Turing machines assuming the existence
of indistinguishability obfuscation and one-way functions.

1We stress that despite recent cryptanalytic progress, iO candidates such as [BGK+14] remain beyond the reach of any known
cryptanalytic technique.
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A corollary of the above theorem is the first construction of succinct adaptively secure garbling schemes for TMs
(with indistinguishability-based security) in the standard model. By succinctness, we mean that the size of the
input encoding is independent of the function (circuit or TM) size. Prior solutions were either shown in the
random oracle model [BHR12, AIKW15] or under restricted settings [BGG+14].

We now give a roadmap for the overall approach and the techniques we use to achieve our result.
To gather some ideas towards achieving our goal of adaptive FE for TMs, we first focus on the simplest

possible scenario of FE for Turing machines: adversary can make only a single ciphertext query and a function
query, and furthermore we work in the secret-key setting. We call a FE scheme satisfying this security notion to
be 1-CT 1-Key Private-key FE.

Initial goal: Adaptive 1-CT 1-Key Private-key FE for TMs. To build an adaptive 1-CT 1-key private-
key FE for TMs scheme, we first take inspiration from the corresponding FE for circuits constructions known in
the literature to see what tools might be helpful here. Sahai and Seyalioglu [SS10] and Gorbunov et al. [GVW12]
give constructions using the tool of randomized encodings (RE) of computation. A randomized encoding is a
representation of a function along with an input that is simpler to compute than the function itself. Further
this representation reveals only the output of the function and nothing else. In other words, given functions
f1, f2 and inputs x1, x2 such that f1(x1) = f2(x2), it should be the case that the encoding of (f1, x1) should
be computationally indistinguishable from an encoding of (f2, x2). Such randomized encodings for TMs were
recently constructed in [BGL+15, CHJV15, KLW15], based on iO for circuits.

The essential difference between a randomized encoding and what we need for a 1-CT 1-key FE scheme
concerns two additional features that we would need from the randomized encoding:

• First, we need the randomized encoding to be computable separately for the function and the input. That
is, given only f , it should be possible to compute an encoding f̂ ; and given only x, it should be possible to
compute an encoding x̂; such that (f̂ , x̂) constitute a randomized encoding of (f, x). We need this because
the ciphertext will be akin to the encoding of the input, whereas the private key will be akin to the encoding
of the function. This is essentially the notion of a decomposable randomized encoding [AIK06].

• Then, more crucially, we also need to strengthen our notion of security: In a standard randomized encoding
scheme, the adversary needs to declare f1, f2, x1, x2 all at the beginning, and then we have the guarantee
that (f̂1, x̂1) is computationally indistinguishable to (f̂2, x̂2). However, for an FE scheme, even with just
“selective” security, the adversary is given the power to adaptively specify at least f1, f2 after it has seen
the encodings x̂1 and x̂2. More generally, we would like to have security where the adversary can choose
whether it would like to specify f1, f2 first or x1, x2 first.

It turns out that achieving these two properties is relatively straightforward when dealing with randomized
encodings of circuits using Yao’s garbled circuits [Yao86]. It is not so straightforward for us in the context of
TMs and adaptive security, as we explain below.
To see why our situation is nontrivial and to get intuition about the obstacles we must overcome, let us first
consider a failed attempt to achieve these properties by trying to apply the generic transformation, which was
formalized in the work of Bellare et al. [BHR12], to achieve adaptive security: in this attempt, the new input

encoding and new function encoding will now be (x̂ ⊕ R,S) and (R, f̂ ⊕ S), respectively, where R and S are
random strings. The idea behind this transformation is as follows: no matter what the adversary queries for
(input or function) in the beginning, it is just given two random strings (R,S). When the adversary makes the
other query, the simulator would know at this point both the input and the function. Hence, it would obtain
the corresponding encodings f̂ and x̂ from the ordinary security of the randomized encoding scheme. Now, the
simulator would respond to the adversary by giving (x̂ ⊕ R, f̂ ⊕ S) thus successfully simulating the game. The
problem with this solution for us lies in the sizes of the encodings. If we look at the strings R and S, they are
as long as the length of x̂ and f̂ respectively. This would mean that the size of the new input encoding (resp.,
new function encoding) depends on the function length (resp., input length) – which violates our main goal of
achieving FE without restrictions on input length!

Revisiting the KLW randomized encoding. In order to achieve our goal, we will need to look at the
specifics of the decomposable RE for TMs construction in [KLW15]. We then develop new ideas specific to the
construction that help us achieve adaptive security. Before we do that, we revisit the KLW randomized encoding
at a high level, sufficient for us to explain the new ideas in our work. The encoding procedure of a Turing
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machine M and input x consists of the following two main steps:

1. The storage tape of the TM is initialized with the encryption of x. It then builds an accumulator storage
tree on the ciphertext. The accumulator storage tree resembles a Merkle hash tree with the additional
property that this tree is unconditionally sound for a select portion of the storage. The root of the tree is
then authenticated.

2. A program that computes the next step function of the Turing machine M is then designed. This program
enables computation of M one step at a time. This program has secrets that enable decrypting encrypted
tape symbols and also to perform some checks on the input encrypted symbol. To hide the secrets, this
program is obfuscated.

The decoding just involves running the next message function repeatedly on the computation obtained so far
until the Turing Machine terminates. At this point, the decode algorithm will output whatever the Turing
Machine outputs.

First Step towards Adaptivity: 3-Stage KLW. The main issue with trying to use the random masking
technique was that we were trying to use randomness to mask the entire input encoding or the function encoding,
which could be of unbounded length. So our main goal will be to find a way to achieve adaptivity where
randomness need only be used to mask bounded portions of the encoding.

As a first step towards achieving this, we want to symmetrize how we treat the input x and the function
f . We do this by treating both x and f as being inputs to a Universal Turing Machine U , where U is both of
bounded size and is entirely known a-priori, such that U(f, x) = f(x).

That is, we have three algorithms2: InpEnc outputs an encoding of input x, FnEnc outputs an encoding of f ,
and UTMEnc outputs a TM encoding of UTM.

A natural approach would be to try to use the KLW scheme sketched above to achieve the goal. The only
difference is that, unlike the original KLW scheme, in the 3-stage KLW scheme, the input encoding is split into
two encodings (InpEnc and FnEnc) and so there must be a way to stitch the input encodings into one. We
develop a mechanism, called combiner, to achieve this goal. A combiner is an algorithm that combines two input
encodings into one input encoding. Furthermore, the combiner algorithm we develop is succinct; it only takes a
portion of the two encodings (of say, x and f) and spits out an element that together with the encodings of x
and f represent x||f . Note, however, that the combiner algorithm needs secret information in order to perform
its combining role correctly.

The key to constructing this combiner is the accumulator storage scheme of KLW. Recall that the accumulator
storage on (x||f) was essentially a binary tree on x||f . We modify this accumulator storage such that the storage
tree on (x||f) can be built by first building a storage tree on x, then building a separate independent storage tree
on f , and then joining both these two trees by making them children of a root node. Once we have this tool,
developing our combiner algorithm is easy: the input encoding of x consists of a storage tree on an encryption
of x, encoding of f consists of a storage tree on the encryption of f . The combine algorithm then takes only the
root nodes of both these two trees and creates a new root node which is the parent of these two root nodes. The
combiner then signs on the root node as a means of authenticating the fact that this new root node was created
legally.

We are almost ready to now apply the random masking technique to achieve adaptive security by masking our
new succinct representations. However, there is a problem: the combiner algorithm. In 3-stage KLW, once we
have encodings of x and f , before we can have a randomized encoding, these two encodings need to be combined
using secret information. This is not allowed in a randomized encoding, where the decode algorithm must be
public.

Getting rid of combiner: 2-ary FE for TMs (1-CT 1-Key setting). Since we need to eliminate the
need for the combiner algorithm, we start by trying to delegate the combine operation to the decoder. We
can attempt to do so by including an obfuscated version of the combiner program as part of the encoding itself,
where obfuscation is needed since the combiner procedure contains some secret values that have to be hidden. By
itself, however, this approach does not work, because the adversary who now possesses the obfuscated combine

2The actual algorithms as presented in the technical section is slightly different. We chose to present it this way in the introduction
for intuitive clarity.
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program can now illegally combine different storages (other than those corresponding to x and f) – we term this
type of attack as a mixed storage attack.

To prevent mixed storage attacks, we use splittable signatures: the challenger can sign the root of the storage
of x as well as the root of the storage of f . The obfuscated program now only outputs the combined value if the
signatures can be verified correctly. By using splittable signatures, we can argue that the adversary is prevented
from mixed storage attacks relying only on indistinguishability obfuscation for circuits.

Once we have the obfuscated combiner program, the next issue is whether the obfuscated combiner should
be included as part of InpEnc or FnEnc. Including it in either of them will cause problems because the simulator
needs to simulate the appropriate parameters in the combiner algorithm and it can do that only after looking
at both the InpEnc and FnEnc queries. Here we can (finally!) apply the random masking technique since the
size of the combiner is independent of the size of the input as well as the function and thus the length of the
random mask needed is small. The resulting scheme that we get is a 2-ary FE [GGG+14] for TMs, where the
adversary can only make a single message and key query – note that it is essentially the same as 3-stage KLW
scheme except that it does not have the combiner algorithm.

Using some additional but similar ideas, we can show that the algorithms FnEnc and UTMEnc can be combined
into one encoding. The result is a scheme with an input encoding, function encoding and a decode algorithm with
the security guarantee that the input query and the function query can be made adaptively, which is precisely
the goal we had started off with.

Boosting mechanism: 1-Key 1-CT (private-key) FE to many-key (public-key) FE. Now that we have
achieved the goal of single-ciphertext single-key private key FE for TMs, the next direction is to explore whether
there is any way to combine this with other known tools to obtain a public-key FE with unbounded number of
function queries. We give a mechanism of combining the 1-Key 1-CT FE scheme with other FE schemes that are
defined for circuits to obtain a public-key FE scheme for Turing machines. Further, our resulting FE scheme is
such that it is adaptively secure assuming only that the 1-Key 1-CT FE scheme is adaptively secure. The high
level approach is that the ciphertexts and the functional keys are designed such that every ciphertext-functional
key pair gives rise to a unique instantiation of single-ciphertext single-key private FE. This is reminiscent of the
approach of Waters [Wat15], later revisited by [ABSV15], in the context of constructing adaptively secure FE
for circuits.

Our boosting mechanism, however, diverges in several ways from the previous works of [Wat15, ABSV15].
First, we note that just syntactically, our boosting mechanism is the first such mechanism that uses only 1-Key
1-CT FE as a building block; in contrast, for example, [ABSV15] needed many-Key 1-CT FE as a building block.

Zooming in on the main new idea we develop for our boosting mechanism, we find that it is used exactly
to deal with the fact that unbounded inputs that must be embedded in ciphertexts. Note that all previous
FE schemes placed an a-priori bound on the inputs to be encrypted in ciphertexts. Therefore, to build our
encryption mechanism, we cannot use previous FE encryption to encode inputs. We also cannot directly use
the 1-Key 1-CT FE, since this scheme can only support a single key and a single ciphertext. To resolve this
dilemma, we note that even though previous FE schemes could not handle inputs of unbounded length, previous
FE schemes can handle keys corresponding to arbitrary-length circuits. Therefore, crucially in our boosting
procedure, when encrypting an input x, we actually prepare a circuit Hx that has x built into it, and then use
an existing FE scheme to prepare a key corresponding to Hx. Here we make use of the Brakerski-Segev [BS14]
transformation to guarantee that the key for Hx does not leak x. We utilize a new layer of indirection, where
this circuit Hx expects to receive as input the master secret key of a 1-Key 1-CT FE scheme, and then uses this
master secret key to create a 1-Key 1-CT encryption of x. In this way, the final FE scheme that we construct
inherits the security of the 1-Key 1-CT encryption scheme, but a fresh and independent instance of the 1-Key
1-CT scheme is created for each pair of (input, function) that is ever considered within our final FE scheme.

2 Preliminaries

We denote λ to be the security parameter. We say that a function µ(λ) is negligible if for any polynomial p(λ)
it holds that µ(λ) < 1/p(λ) for all sufficiently large λ ∈ N. We use the notation negl to denote a negligible
function.

The standard cryptographic notions of pseudorandom functions and symmetric encryption schemes are de-
fined in Appendix B.1. We also recall the definition of Turing machines in the same section. We use the
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convention that a Turing machine also outputs the time it takes to execute. As a consequence, if we have
M0(x) = M1(x) then it means that not only are the outputs same but even the running times are the same.

2.1 Functional Encryption for Turing machines

We now define the notion of functional encryption (FE) for Turing machines. This notion differs from the
traditional notion of FE for circuits (to be defined later) in that the functional keys are associated to Turing
machines as against circuits. Further, the functional keys can be used to decrypt ciphertexts of messages of
arbitrary length and the decryption time depends only the running time of the Turing machine on the message.

A public-key functional encryption scheme, defined for a message space M and a class of Turing machines
F , consists of four PPT algorithms FE = (Setup,KeyGen,Enc,Dec) described as follows.

• Setup(1λ): The setup algorithm takes as input the security parameter λ in unary and outputs a public
key-secret key pair (PK,MSK).

• KeyGen(MSK, f ∈ F): The key generation algorithm takes as input the master secret key MSK, a Turing
machine f ∈ F 3, and outputs a functional key skf .

• Enc(PK,m ∈ M): The encryption algorithm takes as input the public key PK, a message m ∈ M and
outputs a ciphertext CT.

• Dec(skf ,CT): The decryption algorithm takes as input the functional key skf , a ciphertext CT and outputs
m̂.

The FE scheme defined above, in addition to correctness and security, needs to satisfy the efficiency property.
All these properties are defined below.

Correctness. The correctness notion of a FE scheme dictates that there exists a negligible function negl(λ)
such that for all sufficiently large λ ∈ N, for every message m ∈ M, and for every Turing machine f ∈ F it
holds that Pr [f(m)← Dec(KeyGen(MSK, f),Enc(PK,m))] ≥ 1 − negl(λ), where (PK,MSK) ← Setup(1λ), and
the probability is taken over the random choices of all algorithms.

Efficiency. The efficiency property of a public-key FE scheme says that the algorithm Setup on input 1λ

should run in time polynomial in λ, KeyGen on input the Turing machine f (along with master secret key)
should run in time polynomial in (λ, |f |), Enc on input a message m (along with the public key) should run in
time polynomial in (λ, |m|). Finally, Dec on input a functional key of f and an encryption of m should run in
time polynomial in (λ, |f |, |m|, timeTM(f,m))).

Security. The security is modeled in the form of a game between the challenger and an (efficient) adversary.
The adversary is allowed to request for an arbitrary number of functional keys from the challenger. In addition,
the adversary can also submit message pairs of the form (m0,m1), where |m0| = |m1| and in return it receives

a ciphertext of mb, where b
$←− {0, 1} is sampled by the challenger. At the end of the game, the adversary

outputs a bit b′. The adversary wins the game if b′ = b and if f(m0) = f(m1), for all Turing machine queries f ,
message pair queries (m0,m1). Recall that, we only consider Turing machines which also output the time taken
to execute and hence, f(m0) = f(m1) ensures that the running time of f on m0 and m1 are the same.

Definition 1. A public-key functional encryption scheme FE = (Setup, KeyGen, Enc, Dec) over a class of Turing
machines F and a message space M is adaptively secure if for any PPT adversary A there exists a negligible
function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFEA =
∣∣∣Prob[ExptFEA (1λ, 0) = 1]− Prob[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between the challenger and
the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends PK to the adversary.

3We use the same notation to denote the function as well as the Turing machine representing the function f .
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2. Query Phase I: The adversary submits a Turing machine query f to the challenger. The challenger sends
back skf to the adversary, where skf is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (m0,m1) to the challenger. The challenger
checks whether f(m0) = f(m1) for all Turing machine queries f made so far. If this is not the case, the
challenger aborts. Otherwise, the challenger sends back CT = Enc(MSK,mb).

4. Query Phase II: The adversary submits a Turing machine query f to the challenger. The challenger
generates skf , where skf is the output of KeyGen(MSK, f). It sends skf to the adversary only if f(m0) =
f(m1), otherwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

We can also consider a weaker notion, termed as selective security, where the adversary has to submit the
challenge message pair at the beginning of the game itself even before it receives the public parameters and such
a FE scheme is said to be selectively secure.

Private Key Setting. We can analogously define the notion of FE for TMs in the private-key setting.
The difference between the public-key setting and the private-key setting is that in the private-key setting, the
encryptor needs to know the master secret key to encrypt the messages. We provide the formal definition of
private-key FE for TMs in Appendix B.3.

2.2 (Compact) FE for circuits

2.2.1 Public-Key FE

One of the building blocks in our construction of FE for TMs is a public-key FE for circuits (i.e., the functions
are represented as circuits). We now recall its definition from [BSW11, O’N10].

A public-key functional encryption (FE) scheme PubFE, defined for a class of functions F = {Fλ}λ∈N and
message space M = {Mλ}λ∈N, is represented by four PPT algorithms, namely (Setup, KeyGen, Enc, Dec). The
input length of any f ∈ Fλ is the same as the length of any m ∈ Mλ. The description of these four algorithms
is given below.

• Setup(1λ): It takes as input a security parameter λ in unary and outputs a public key-secret key pair
(PK,MSK).

• KeyGen(MSK, f ∈ Fλ): It takes as input a secret key MSK, a function f ∈ Fλ and outputs a functional key
skf .

• Enc(PK,m ∈Mλ): It takes as input a public key PK, a message m ∈Mλ and outputs an encryption of m.

• Dec(skf ,CT): It takes as input a functional key skf , a ciphertext CT and outputs m̂.

We require the FE scheme to satisfy the efficiency property in addition to the traditional properties of correctness
and security.

Correctness. The correctness property says that there exists a negligible function negl(λ) such that for all
sufficiently large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it holds that Pr[f(m) ←
Dec(KeyGen(MSK, f),Enc(PK,m))] ≥ 1 − negl(λ), where (PK,MSK) ← Setup(1λ), and the probability is taken
over the random choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup and the encryption algorithm is
independent of the size of the circuits for which functional keys are produced. More formally, the running time
of the setup algorithm, Setup(1λ) is a polynomial in just the security parameter λ and the encryption algorithm,
Enc(PK,m) is a polynomial in only the security parameter λ and length of the message, |m|.

An FE scheme that satisfies the above efficiency property is termed as compact FE. It was shown by [AJ15,
BV15] that iO is implied by (sub-exponentially hard) compact FE. However, we don’t place any sub exponential
hardness requirement on compact FE in our work.

Remark 1. We note that the definitions of FE for circuits commonly used in the literature do not have the
above efficiency property.
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Security. The security definition is modeled as a game between the challenger and the adversary as before.

Definition 2. A public-key functional encryption scheme FE = (Setup, KeyGen, Enc, Dec) over a function space
F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is an adaptively-secure public-key functional encryp-
tion scheme if for any PPT adversary A there exists a negligible function µ(λ) such that for all sufficiently
large λ ∈ N, the advantage of A is defined to be

AdvFEA =
∣∣∣Prob[ExptFEA (1λ, 0) = 1]− Prob[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between the challenger and
the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends PK to the adversary.

2. Query Phase I: The adversary submits a function query f to the challenger. The challenger sends back
skf to the adversary, where skf is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (m0,m1) to the challenger. The challenger
checks whether f(m0) = f(m1) for all function queries f made so far. If this is not the case, the challenger
aborts. Otherwise, the challenger sends back CT = Enc(MSK,mb).

4. Query Phase II: The adversary submits a function query f to the challenger. The challenger generates
skf , where skf is the output of KeyGen(MSK, f). It sends skf to the adversary only if f(m0) = f(m1),
otherwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

We define the FE scheme to be selectively secure if the adversary has to declare the challenge message pair even
before it receives the public parameters.

2.2.2 Function-private Private Key FE

We now give an analogous definition of FE for circuits in the private-key setting. In particular, we focus on the
private-key FE that is function-private.

A function-private private-key functional encryption (FE) scheme PubFE, defined for a class of functions
F = {Fλ}λ∈N and message spaceM = {Mλ}λ∈N, is represented by four PPT algorithms, namely (PrivFE.Setup,
PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec). The input length of any f ∈ Fλ is the same as the length of any
m ∈Mλ.

We give the description of the four algorithms below.

• PrivFE.Setup(1λ): It takes as input a security parameter λ in unary and outputs a secret key PrivFE.MSK.

• PrivFE.KeyGen(PrivFE.MSK, f ∈ Fλ): It takes as input a secret key PrivFE.MSK, a function f ∈ Fλ and
outputs a functional key PrivFE.skf .

• PrivFE.Enc(PrivFE.MSK,m ∈ Mλ): It takes as input a secret key PrivFE.MSK, a message m ∈ Mλ and
outputs an encryption of m.

• PrivFE.Dec(PrivFE.skf ,CT): It takes as input a functional key PrivFE.skf , a ciphertext CT and outputs m̂.

We require the above function-private private key FE scheme to satisfy the correctness, efficiency and the function
privacy properties of the above FE scheme.

Correctness. The correctness notion of a function-private private-key FE scheme dictates that there exists
a negligible function negl(λ) such that for all sufficiently large λ ∈ N, for every message m ∈Mλ, and for every
function f ∈ Fλ it holds that Pr[f(m) ← PrivFE.Dec(PrivFE.KeyGen(PrivFE.MSK, f),PrivFE.Enc(PrivFE.MSK,
m))] ≥ 1−negl(λ), where PrivFE.MSK← PrivFE.Setup(1λ), and the probability is taken over the random choices
of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup algorithm and the encryption algorithm
is independent of the size of the circuits for which functional keys are produced. More formally, the running
time of PrivFE.Setup(1λ) is just a polynomial in the security parameter λ, and PrivFE.Enc(PrivFE.MSK,m) is a
polynomial in only the security parameter λ and length of the message, |m|.
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Function Privacy. We now recall the definition of function privacy in private key FE as defined by Brakerski,
and Segev [BS14]. In the security game of function privacy, a function query made by the adversary is a pair of
functions and in response it receives a functional key corresponding to either of the two functions. As long as
both the functions are such that they do not split the challenge message-pairs, the adversary should not be able
to tell which function was used to generate the functional key. That is, the output of the left function on the
left message should be the same as the output of the right function on the right message.

Note that the function privacy property below subsumes the usual notion of security (when only one function
is submitted).

Definition 3. A private-key functional encryption scheme PubFE = (PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc,
PrivFE.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is a function-private
adaptively-secure private-key FE scheme if for any PPT adversary A there exists a negligible function µ(λ)
such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvPubFEA =
∣∣∣Prob[ExptPubFEA (1λ, 0) = 1]− Prob[ExptPubFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPubFEA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes PrivFE.MSK ← PrivFE.Setup(1λ). The adversary then makes the following
message queries and function queries in no particular order.

• Message queries: The adversary submits a message-pair (m0,m1) to the challenger. In return, the
challenger sends back CT = PrivFE.Enc(PrivFE.MSK,mb).

• Function queries: The adversary then makes functional key queries. For every function-pair query
(f0, f1), the challenger sends PrivFE.skfb to the adversary, where PrivFE.skfb is the output of PrivFE.KeyGen(
PrivFE.MSK, fb) only if f0(m0) = f1(m1), for all message-pair queries (m0,m1). Otherwise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

We define a function-private private key FE to be selectively secure if the adversary has to declare all the
challenge message pairs at the beginning of the security game.

Remark 2. We note that we can define a private-key FE scheme without the function privacy property, analogous
to the public-key FE.

Single-key setting. A single-key function-private functional encryption scheme (in the private-key setting)
is a functional encryption scheme, where the adversary in the security game (either selective or adaptive) is
allowed to query for only one function. There are several known constructions [SS10, GVW12, GKP+12] but
none of them satisfy the efficiency property of our FE definition – in particular, the size of the ciphertexts in
these constructions grow with the circuit size (for which functional keys are computed). We later describe how
to obtain a single-key scheme that indeed satisfies the efficiency property.

3 Adaptive 1-Key 1-Ciphertext FE for TMs

One of the main tools in our constructions is a single-key single-ciphertext FE for TMs in the private key
setting. In the security game, the adversary only gets to make a single message and function query. Since we are
interested in adaptive security, the message and the function query can be made in any order. In the language of
randomized encodings (RE), this primitive is nothing but an adaptively secure succinct decomposable RE. The
formal definition of single-ciphertext single-key FE for TMs is provided below.

In the adaptive security game of single-ciphertext single-key FE, the adversary can only make a single function
query and a single challenge message query. We define this notion for the case when the functions are represented
by Turing machines.

Definition 4 (Single-ciphertext Single-key Private-key FE for TMs). A private-key functional encryption scheme
OneCTKey = (OneCTKey.Setup, OneCTKey.KeyGen, OneCTKey.Enc, OneCTKey.Dec) for Turing machines over a
function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is an adaptively-secure single-ciphertext
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single-key private-key FE scheme for Turing machines if for any PPT adversary A there exists a negli-
gible function µ(λ) such that the advantage of A is defined to be

AdvOneCTKey
A =

∣∣∣Prob[ExptOneCTKey
A (1λ, 0) = 1]− Prob[ExptOneCTKey

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptOneCTKey
A (1λ, b), modeled as a game between the challenger

and the adversary A, is defined as follows:

1. The challenger first executes OneCTKey.Setup(1λ) to obtain OneCTKey.MSK.

2. Query Phase I: The adversary can submit a single Turing machine query f to the challenger during this
phase. The challenger generates OneCTKey.skf , where OneCTKey.skf is the output of OneCTKey.KeyGen(
OneCTKey.MSK, f). It then sends OneCTKey.skf to the adversary. We emphasize that the adversary can
only make at most one function query in this phase.

3. Challenge Phase: The adversary submits a message pair (m0,m1) to the challenger. The challenger
generates CT = OneCTKey.Enc(OneCTKey.MSK,mb). If f(m0) = f(m1) for a Turing machine query f
made in Query Phase I, the challenger sends CT to the adversary. Otherwise, it aborts. We emphasize
that the adversary can make at most one message query in this phase.

4. Query Phase II: If the adversary has already made a Turing machine query during Query Phase I then the
adversary can make no more Turing machine queries during this phase. Otherwise, the adversary can sub-
mit a Turing machine query f to the challenger during this phase. The challenger generates OneCTKey.skf ,
where OneCTKey.skf is the output of OneCTKey.KeyGen(OneCTKey.MSK, f). If f(m0) = f(m1), for the
message query (m0,m1), it sends OneCTKey.skf to the adversary and otherwise, it aborts. As in Query
Phase I, we emphasize that the adversary can only make at most one Turing machine query in this phase.

5. The output of the experiment is b′, where b′ is the output of A.

As before, we can define a single-ciphertext single-key private-key FE to be selectively-secure if the adversary
has to declare the challenge message pair even before he submits the function query.

We now proceed to build this tool based on iO and one-way functions. Towards this end, we first consider the
notion of private key multi-ary functional encryption (FE) [GGG+14] for TMs. Multi-ary FE is a generalization
of FE where the functions can take more than one input. We are interested in the restricted setting when the
adversary only makes a single function and message query. Moreover, we restrict ourselves to the 2-ary setting,
i.e., the arity of the functions is 2. We refer to this notion as 2-ary FE for TMs. We describe this notion formally
in Section 3.1.

Prior to this work, we knew how to construct this only based on (public coins) differing inputs obfuscation.
Later we show how to construct this primitive assuming just iO for circuits and one-way functions.

3.1 Semi-Adaptive 2-ary FE for TMs: 1-Key 1-Ciphertext Setting

The formal description of the 2-ary FE for TMs is given below. A 2-ary FE for a class of Turing machines F
consists of four PPT algorithms, 2FE = (2FE.Setup, 2FE.Enc, 2FE.KeyGen, 2FE.Dec), as described below.

• 2FE.Setup(1λ): On input the security parameter λ, the algorithm 2FE.Setup outputs a master secret key
2FE.MSK.

• 2FE.KeyGen(2FE.MSK,M): On input the master secret key 2FE.MSK and Turing machine M ∈ F , it
outputs the key 2FE.skM .

• 2FE.Enc(2FE.MSK, x, b): On input the master secret key 2FE.MSK, message x ∈ {0, 1}∗ and position
b ∈ {0, 1}, it outputs 2FE.CTx.

Remark 3. The bit b essentially indicates the position with respect to which the message needs to be
encrypted. For convenience sake, we refer to the first position as the 0th position and the second position
as the 1st position.

• 2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy): On input the functional key 2FE.skM and ciphertexts 2FE.CTx and
2FE.CTy, it outputs the value z.
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For the above notion to be interesting, a 2-ary FE for TMs scheme is required to satisfy the following correctness,
efficiency and security properties.

Correctness: This property ensures that the output of 2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy) is always M(x, y)
where (i) 2FE.MSK ← 2FE.Setup(1λ), (ii) 2FE.skM ← 2FE.KeyGen(2FE.MSK,M), (iii) 2FE.CTx ← 2FE.Enc(
2FE.MSK, x, 0) and (iv) 2FE.CTy ← 2FE.Enc(2FE.MSK, y, 1).

Efficiency: This property says that the size of the ciphertexts (resp., functional key) depend solely on the size of
the message (resp., machine) and the security parameter. That is, the complexity of 2FE.Enc(2FE.MSK, x, b) is a
polynomial in (λ, |x|) and the complexity of 2FE.KeyGen(2FE.MSK,M) is a polynomial in (λ, |M |). Furthermore,
we require that the complexity of 2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy) is just a polynomial in (λ, |x|, |y|, |M |, t),
where t is the time taken by M to execute on the input (x, y).

Semi-Adaptive Security: The security guarantee states that the adversary cannot distinguish joint ciphertexts
of (x0, y0) from the joint ciphertexts of (x1, y1) given the functional key of M , as long as M(x0, y0) = M(x1, y1).
Note that we adopt the convention that the Turing machine also outputs its running time and thus this alone
ensures that the execution time of M(x0, y0) is the same as the execution time of M(x1, y1).

Depending on the order of the message and the Turing machine queries the adversary can make, there are
many ways to model the security of a 2-ary FE scheme. We adopt the notion where the adversary can make the
message queries corresponding to 0th and 1st position in an adaptive manner but the TM query should be made
only after both the message queries. We term this notion semi-adaptive security.

Suppose A be any PPT adversary. We define an experiment ExptASemiAd below.

ExptSemiAd
A (1λ):

1. The challenger first executes 2FE.Setup(1λ) to obtain 2FE.MSK. It then chooses a bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on the choice of the adversary).

• The adversary submits the message query (x0, x1), corresponding to 0th position, to the challenger.
The challenger responds with 2FE.CTx ← 2FE.Enc(2FE.MSK, x0, 0) if b = 0 else it responds with
2FE.CTx ← 2FE.Enc(2FE.MSK, x1, 0).

• The adversary submits the message query (y0, y1), corresponding to 1st position, to the challenger.
The challenger responds with 2FE.CTy ← 2FE.Enc(2FE.MSK, y0, 0) if b = 0 else it responds with
2FE.CTy ← 2FE.Enc(2FE.MSK, y1, 0).

3. After both the message queries, the adversary then submits a Turing machine M to the challenger. The
challenger aborts if either (i) M(x0, y0) 6= M(x1, y1) or (ii) |x0| 6= |x1| or (iii) |y0| 6= |y1|. If it has not
aborted, it executes 2FE.skM ← 2FE.KeyGen(2FE.MSK,M). It then sends 2FE.skM to the adversary.

4. The adversary outputs b′.

The experiment outputs 1 if b = b′, otherwise it outputs 0.
We now define the semi-adaptive security notion.

Definition 5. A 2-ary FE scheme is semi-adaptive secure if for any PPT adversary A, we have that the
probability that the output of the experiment ExptSemiAd

A is 1 is at most 1/2 + negl(λ), for any negligible function
negl.

3.2 Adaptive FE from Semi-Adaptive 2-ary FE for TMs

We now show how to achieve adaptively secure single-ciphertext single-key FE starting from a semi-adaptively
secure 2-ary FE for TMs. Recall that in the semi-adaptive security game of 2-ary FE, the key query can be made
only after the message queries but however, the message queries corresponding to the first and the second position
can be made in an adaptive manner. This leads to the main idea behind our construction – symmetrization of
the input and the TM. That is, the adaptive FE functional key of a machine M is the 2-ary FE encryption of
M w.r.t the 1st position and the adaptive FE encryption of a message m is essentially the 2-ary FE encryption
of m w.r.t the 0th position. This takes care of the adaptivity issue. To facilitate the execution of M on m, a
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2-ary FE key of a universal TM (UTM) is also provided. The question is whether we include the 2-ary FE key
of UTM in the ciphertext or the functional key. This is crucial because the UTM key can only be provided by
the challenger after seeing the queries corresponding to both the 0th and 1st position. To solve this issue, we
additively secret share the UTM key across both the ciphertext and the functional key. This gives the challenger
leeway to provide a random string as part of the response to the first query and by providing the appropriate
secret share in the second response it can reveal the UTM key – at this point the challenger has seen both m
and M . The formal scheme is described next.

Consider a 2-ary FE for TMs, denoted by 2FE = (2FE.Setup, 2FE.KeyGen, 2FE.Enc, 2FE.Dec), for a class of
Turing machines F . We construct a single-ciphertext single-key FE, OneCTKey, for the same class F .

Denote by UTM = UTMλ, the universal Turing machine, that takes as input a Turing machine M , message
m and outputs M(m) if it halts within 2λ steps else it outputs ⊥. Further, we denote by `UTM to be the length
of the output of a 2FE key of UTM.

OneCTKey.Setup(1λ): On input the security parameter λ, it first executes 2FE.Setup(1λ) to obtain the master

secret key 2FE.MSK. It also picks a random string R in {0, 1}`UTM . It outputs the secret key OneCTKey.MSK =
(2FE.MSK, R) as the master secret key.

OneCTKey.KeyGen(OneCTKey.MSK, f ∈ F): On input the master secret key OneCTKey.MSK = (2FE.MSK, R),

and a Turing machine M ∈ F , it executes 2-ary FE encryption of M w.r.t 0th position, 2FE.Enc(2FE.MSK,M, 0),
to obtain 2FE.CTM . It then computes a 2-ary FE key of UTM by generating 2FE.skUTM ← 2FE.KeyGen(2FE.MSK,
UTMλ). Finally, it outputs the functional key OneCTKey.skM = (2FE.CTM , 2FE.sk⊕R).

OneCTKey.Enc(OneCTKey.MSK,m): On input the master secret key OneCTKey.MSK = (2FE.MSK, R), and mes-
sage m, it generates a 2-ary FE encryption of m by executing 2FE.CTm ← 2FE.Enc(2FE.MSK,m, 1). It outputs
the ciphertext OneCTKey.CT = (2FE.CTm, R).

OneCTKey.Dec(OneCTKey.skM ,OneCTKey.CT): On input the functional key OneCTKey.skM = (2FE.CTM , S)
and ciphertext OneCTKey.CT = (2FE.CTm, R). It computes S ⊕ R to obtain 2FE.skUTM. It then executes
2FE.Dec(2FE.skUTM, 2FE.CTM , 2FE.CTm) to obtain z. Finally, it outputs z.

Theorem 2. The scheme OneCTKey satisfies correctness, efficiency and adaptive security properties.

Proof. We prove the correctness, efficiency and adaptive security properties below.

Correctness. Suppose the master secret key OneCTKey.MSK = SRE.sk is the output of OneCTKey.Setup(1λ).
And let the ciphertext OneCTKey.CT, parsed as (m̃,R), be the output of OneCTKey.Enc on input (OneCTKey.MSK,m).

Further, let the functional key OneCTKey.skf , parsed as (f̃ , S), be the output of OneCTKey.KeyGen, where

S = ŨTMλ⊕R with ŨTMλ being the output of SRE.TMEnc(SRE.sk,UTMλ). Then, from the correctness property

of the 2-stage SRE, we have the output of the decode algorithm SRE.Decode on input (ŨTMλ, f̃ , m̃) to be f(m).
Thus, we have the output of the decryption algorithm OneCTKey.Dec on input (OneCTKey.skf ,OneCTKey.CT),

which is nothing but the output of the decode procedure SRE.Decode(ŨTMλ, f̃ , m̃), to be f(m).

Efficiency. We need to argue about the efficiency of the key generation, encryption as well as the decryption
procedures. We first argue that the running time of the key generation algorithm, OneCTKey.KeyGen, on input
master secret key OneCTKey.MSK = (SRE.sk, R) and function f , is a polynomial in (λ, |f |). We first note that
the master secret key OneCTKey.MSK itself is a fixed polynomial in the security parameter λ. The running time
of the input encoding algorithm SRE.InpEnc on input (SRE.sk, f, 1) is a polynomial in (λ, |f |) and the running
time of the TM encode algorithm SRE.TMEnc on input (SRE.sk,UTM) is a polynomial in λ – this follows from the
efficiency properties of the 2-stage SRE scheme. Thus, the running time of OneCTKey.KeyGen is a polynomial
in (λ, |f |).

We now analyze the running time of the encryption algorithm OneCTKey.Enc, on input master secret key
OneCTKey.MSK = (SRE.sk, R) and message m. The running time of the input encoding algorithm SRE.InpEnc
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on input (SRE.sk,m, 2), is a polynomial in (λ, |m|) – this again follows from the efficiency of the input encoding
algorithm. Thus, the running time of OneCTKey.Enc is a polynomial in (λ, |m|).

Finally, we analyze the running time of the decryption algorithm OneCTKey.Dec, on input the functional key

of f , OneCTKey.skf = (f̃ , S) and ciphertext of message m, OneCTKey.CT = (m̃,R), where S = ŨTMλ ⊕R. To
determine this quantity, it suffices to analyze the running time of the decoding procedure SRE.Decode on input

(ŨTMλ, f̃ , m̃), which is nothing but a polynomial in (λ, |UTMλ|, |f |, |x|, t), where t is the running time of the
TM f on input x, as desired.

Adaptive Security. We need to argue that the FE scheme OneCTKey that we constructed above is indeed
an adaptively secure single-ciphertext single-key FE. More formally, we prove the following. The proof of the
theorem essentially follows from the security of the 2-stage SRE scheme.

Lemma 1. Assuming the security of 2-stage SRE SRE, the scheme OneCTKey is adaptively secure.

Proof. Suppose OneCTKey is not adaptively secure, that is, there exists a PPT adversary A that breaks the
security of OneCTKey. We then design a reduction B that internally runs the adversary A and breaks the security
of SRE.

The reduction B essentially simulates the role of the challenger in the security game of OneCTKey and at the
same time takes the role of the adversary in the game of SRE. Depending on the order in which the adversary
makes the function and the message query, there are two cases.

1. Adversary first submits a TM query: Suppose the adversary submits the TM query f to the B. The
reduction then represents f as a string and then submits this as an input query to the challenger of SRE. In
return it receives f̃ . It then sends the functional key (f̃ , S′) to A, where S′ is a random string in {0, 1}`UTM .
The reduction then receives the input pair (m0,m1) from the adversary A. The reduction then submits
the input query (m0,m1) to the challenger of SRE. In response to this query, it receives the encoding m̃∗.
Then, B sends the universal Turing machine UTMλ as a TM query to the challenger and it receives the

TM encoding ŨTMλ. The reduction then sends the challenge ciphertext (m̃∗, R′) to A, where R′ is set to

be S ⊕ ŨTMλ.

2. Adversary first submits a message query: Suppose the adversary submits the message pair query
(m0,m1) to B. The reduction B then forwards this message query (m0,m1) to the challenger of SRE.
In return it receives m̃∗. The reduction then sends the challenge ciphertext (m̃∗, R) to the adversary A,
where R is a random string of length {0, 1}`UTM . The adversary then sends the Turing machine f to B,
who then forwards it as an input query to the challenger of SRE. The reduction B receives back the input
encoding f̃ – this won’t be forwarded to A at this point. The reduction B then submits, as TM query, the

universal Turing machine UTMλ, to the challenger of SRE. In response, it receives ŨTMλ. The reduction

then composes the response to the TM query of A. It sends the functional key (f̃ , ŨTMλ) to A.

In both the cases, we note that the distribution of the functional key and the challenge ciphertext to be identical
as produced by B is identical to the distribution as produced according to the scheme. Thus, if A breaks the
security of OneCTKey with non-negligible probability then B breaks the security of SRE with non-negligible
probability.

3.3 Constructing Semi-Adaptive 2-ary FE for TMs: Overview

Lets begin with the following simple idea: the 2-ary FE encryption of x w.r.t 0th position will just be a standard
public key encryption of x0. Since this encryption should not be malleable, we provide an authentication of the
ciphertext. Similarly, the 2-ary FE encryption of y w.r.t 1st position is also a public key encryption of y along
with its authentication. The functional key of M is an obfuscated program that takes as input an encrypted
tape symbol; decrypts it; executes the next message function and then outputs an encryption of the new symbol.
The evaluation is performed by executing next message function one step at a time while updating the storage
tape which is initialized to the encryptions of x and y along with their respective authentications.
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This however suffers from consistency issues. An adversary could re-use encrypted storage tape values of the
current tape in the future steps. It would seem that using signatures to bind the time step to the tape symbol
should solve this problem. In fact, if we had virtual black box obfuscation this idea would work. However,
we are stuck with indistinguishability obfuscation and it is not clear how to make this work – signatures in
general aren’t compatible with iO because signatures guarantee computational soundness whereas iO demands
information theoretic soundness. Looking back at the literature, we notice that Koppula-Lewko-Waters had to
deal with similar issues in their recent work on randomized encodings (RE)4 for TMs [KLW15]. The template of
their construction comprises of two components as described below. The actual construction of KLW has more
intricate details involved from what is presented below but to keep the discussion at an intuitive level, we choose
to describe it this way.

Let M and x be the input to the encoding procedure.

• Storage tree: Encrypt x using a public key encryption scheme. Initialize the work tape with this cipher-
text. Compute a storage tree on this ciphertext. The root of the storage tree along with the current time
step (which is initially 0) is then signed using a signature scheme. This signature serves as an authentication
of the work tape and the current time step.

• Obfuscated next message program: The obfuscated program takes as input an encrypted tape symbol
(leaf node), its path to the root of the storage tree and the signature on the root. It performs few checks
to test whether the encrypted tape symbol is valid. It then decrypts the encrypted tape symbol, computes
the next message function of the TM M and then re-encrypts the output tape symbol. Finally, it computes
the new root of the storage tree (this can be done by just having the appropriate path from the new tape
symbol leading up to the root) and signs it.

There are two main hurdles in using the above template for our construction of 2-ary FE for TMs: (i) the TM
only takes a single input in the above template whereas in our setting the TM takes two inputs. Moreover, we
require that the TM and the inputs are encoded separately and, (ii) the security notion considered by KLW is
weak-selective – the adversary is required to declare both the TM and the input at the beginning of the game.
On the other hand the security notion we consider is stronger. Because of these two main reasons, we employ
new techniques to achieve our construction.

Ciphertext combiner mechanism. As remarked earlier, we require that the TM and the inputs are
encoded separately. We exploit the fact that inherently KLW has two components – storage tree and obfuscated
next message program – that depend upon the input and the TM separately. But note that we have two inputs
and so we need to further split the storage tree component. The tree structure automatically allows for such
a decomposition. We compute a storage tree on the (encrypted) 0th position input and another tree on the
(encrypted) 1st position input. We can then combine the roots of both the trees, during the decryption phase,
to obtain a new root. But the root of the new tree needs to be authenticated and this operation needs to be
public. We could provide the decryptor the signing key but then we end up sacrificing security!

To overcome this problem, we provide a combiner program, as part of one of the ciphertexts, that takes as
input two nodes in the tree and outputs a new node along with a signature. This signature is signed using a
signing key which is part of the combiner program. Of course the combiner program needs to be obfuscated to
hide the signing key. As we will see later in the actual construction, we require “iO-compatible” signatures a.k.a
splittable signatures scheme of KLW to make this idea work.

While using combiner seems to solve the problem, the next question is in which ciphertext do we include the
combiner? We will see next that this becomes crucial for our proof of security.

Ensuring semi-adaptivity. Suppose we decide to include the combiner as part of the 0th ciphertext. In
line with the techniques used in proving the security using iO, we require that in the proof of security we hardwire
the resulting (combined) root node in the combiner. But this is not possible if the 0th position challenge message
is requested before the 1st position challenge message. The same problem occurs if we include the combiner as
part of the 1st position ciphertext – the adversary can now query for the 1st position challenge ciphertext first
and then query the 0th position challenge message.

4A randomized encoding of a machine M and input x is an encoding of M(x) that takes much less time to compute than M(x).
Furthermore, the encoding should only reveal M(x) and nothing more.
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This conundrum can be tackled by using deniable encryption. We can compute a deniable encryption of com-
biner in one ciphertext and in the other ciphertext we open the deniable ciphertext. This gives us the flexibility
to open the ciphertext to whatever message we want depending on the adversary’s queries. While this solves the
problem, we can replace deniable encryption with a much simpler tool – one-time pad! We compute a one-time
pad of the combiner with randomness R in one ciphertext and the other ciphertext contains just R. This solves
our problem just like the case of deniable encryption.

We present a high level and a simplified description of the 2-ary FE scheme below. The formal description is
more involved and is presented in Section 3.4 where we present the construction in a modular fashion by first
describing an intermediate primitive that we call 3-stage KLW.

1. Setup: Generate a master signing key-verification key pair (SK, V K). Also generate two auxiliary signa-
ture key-verification key pairs (SKx, V Kx) and (SKy, V Ky). Generate the public parameters PP of the
storage tree. Compute a random string R of appropriate length. The public key is PP while the master
secret key is (SKx, SKy, V Kx, V Ky, SK, V K,R).

2. Key generation of M : Generate an obfuscated next message program of M whose functionality is as in
the above high level description. The pair (SK, V K) is hardwired inside the obfuscated program.

3. Encryption of x w.r.t 0th position: Compute a storage tree on x. Sign the root of the tree rtx using
SKx to obtain σx. Compute the obfuscated combiner program S = Comb⊕R whose description is as given
above. Output (rtx, σx, S).

4. Encryption of y w.r.t 1st position: Compute a storage tree on y. Sign the root of the tree rty using
SKy to obtain σy. Output (rty, σy, R).

5. Decryption: First, compute S⊕R to recover Comb. Then execute Comb on inputs ((rtx, σx) , (rty, σy)) to
obtain the joint root rt accompanied by the signature σ computed using SK. Once this is done, using the
joint tree and obfuscated next message program of M , execute the decode procedure of KLW to recover
the answer.

3.4 Constructing Semi-Adaptive 2-ary FE for TMs: Formal Description

The randomized encodings construction of [KLW15] is the starting point of our construction. However, to achieve
our goal, we need to make several modifications to their construction. To present things in a more modular way,
we identify a primitive that is “closest” to the construction of KLW. We call this primitive, 3-stage KLW. This
notion is similar to the notion of 2-ary FE for TMs (in the single-key single-ciphertext) setting except that there
is an algorithm called “Combine” that gives a way to combine two encryptions (we call them encodings in the
following description) into one ciphertext.

We provide a construction of 3-stage KLW which builds on the RE construction of [KLW15]. Using this
primitive, we show how to obtain 2-ary FE for TMs.

3.4.1 3-stage KLW

We first describe the syntax of 3-stage KLW scheme. The scheme we construct is denoted by 3StgKLW. It consists
of 4 PPT algorithms, namely (3StgKLW.Setup, 3StgKLW.Encode, 3StgKLW.Combine, 3StgKLW.TMEncode, 3StgKLW.Decode).

• Setup algorithm, 3StgKLW.Setup(1λ): It takes as input security parameter λ and it outputs the secret
parameters 3StgKLW.sk.

• Input encoding algorithm, 3StgKLW.Encode(3StgKLW.sk, x, b): It takes as input secret parameters
3StgKLW.sk, input x, bit b and outputs an encoding x̃ = (x̂, accx).

• Combiner algorithm, 3StgKLW.Combine(3StgKLW.sk, accx, accy): It takes as input secret parameters
3StgKLW.sk, accumulator values accx, accy, and outputs joint accumulator value accx||y.

• TM encoding algorithm, 3StgKLW.TMEncode(3StgKLW.sk,M): It takes as input secret parameters

3StgKLW.sk, Turing machine M and outputs an encoding M̃ .

• Decode algorithm, 3StgKLW.Decode(x̂, ŷ, accx||y, M̃): It takes as input, encodings x̂, ŷ, joint accumulator

values accx||y, TM encoding M̃ , and outputs z.
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The above scheme is required to satisfy the correctness, efficiency and security properties.

Correctness. Suppose the output of 3StgKLW.Encode(3StgKLW.sk, x, 0) is x̃ = (x̂, accx) and the output of
3StgKLW.Encode(3StgKLW.sk, y, 1) is ỹ = (ŷ, accy). And let the output of the combine algorithm 3StgKLW.Combine
on input (3StgKLW.sk, accx, accy) be accx||y. Further let the output of 3StgKLW.TMEncode(3StgKLW.sk,M) be

the TM encoding M̃ . Then the output of the decode algorithm 3StgKLW.Decode on input (x̂, ŷ1, accx||y, M̃) is
always M(x, y).

Efficiency. A 3-stage KLW scheme is required to satisfy the following efficiency properties:

• The running time of 3StgKLW.Encode on input (3StgKLW.sk, x, b) is a polynomial in the security parameter
λ and the length of the instance, |x|.

• The running time of 3StgKLW.Combine on input (3StgKLW.sk, accx, accy) is a polynomial in the security
parameter λ. In particular, the run time does not depend on the length of x or y that were used to generate
the parameters accx and accy.

• The running time of 3StgKLW.TMEncode on input (3StgKLW.sk,M) is a polynomial in the security param-
eter λ and size of the Turing machine, |M |.

• The running time of 3StgKLW.Decode on input (x̃, ỹ, accx||y, M̃) is a polynomial in the security parameter
λ, |M |, |x| and t, where t is the running time of M on input (x, y).

Semi-Adaptive Security. The above 3-stage KLW scheme satisfies the following semi-adaptive security
property. This notion is identical to the semi-adaptive security notion defined in the context of 2-ary FE for
TMs. In the game, adversary can request for input encodings, denoted by (x0, y0) and (x1, y1), in an adaptive
manner. The response to these queries are made by the challenger by encoding xb and yb, where the bit b is
picked at random. After this, the challenger sends the joint accumulator value (of encodings of x and y) to the
adversary. The adversary then queries for a TM M to the challenger who then responds with an encoding of M .
The game ends with the adversary guessing the bit b.

The game is formally described below. We denote by A, the adversary in the experiment below.

Expt3StgKLW,A(1λ, b):

1. The challenger runs 3StgKLW.Setup(1λ) to obtain 3StgKLW.sk. It then picks a challenge bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on the choice of the adversary).

• The adversary submits the message query (x0, x1), corresponding to 0th position to the challenger.
The challenger responds with (x̃0, accx0) if b = 0 else it responds with (x̃1, accx1).

• The adversary submits the message query (y0, y1), corresponding to 1st position to the challenger.
The challenger responds with (ỹ0, accy0) if b = 0 else it responds with (ỹ1, accy1).

3. The challenger then sends the combined encodings, accxb||yb to the adversary.

4. The adversary then submits the Turing machine query M to the challenger. The challenger first checks if
M(x0, y0) = M(x1, y1). If the check does not go through, it aborts. Otherwise, the challenger sends the

TM encoding M̃ to the adversary.

5. The adversary outputs bit b′.

We say that the adversary wins the game Expt3StgKLW(1λ) if b′ = b.

Definition 6. The 3-stage KLW scheme is secure if the adversary wins in Expt3StgKLW,A(1λ, b) with probability
at most 1/2 + negl(λ).
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3.4.2 Construction of 3-stage KLW

The starting point of our construction is the succinct randomized encodings5 construction of [KLW15]. In general,
it is not clear how to generically transform a succinct randomized encodings scheme into a 2-stage scheme but we
will make use of the special structure satisfied by the construction of [KLW15] to achieve our goal. We describe
the encoding scheme of Koppula et al. at a high level below.

Structure of Koppula et al. [KLW15]. Let the input to the encoding procedure be the Turing machine
M and input x.

1. The encoding scheme begins by generating the encryption and the decryption keys of a public-key encryp-
tion scheme. It then encrypts the input x, bit by bit, using the public key encryption scheme, to obtain a
tuple of ciphertexts.

2. The encoding scheme then initializes the parameters of the accumulator and the iterator scheme. This is
done using the accumulator setup SetupAcc (Refer to 2) and iterator setup SetupItr (Refer to 2). Positional
accumulators allow for compressing work tape into a small accumulator value just like a collision-resilient
hash function. However, unlike a traditional collision-resilient hash function, it is possible to program the
accumulator such that a hash value information theoretically binds a tape symbol.

3. The ciphertexts computed in Bullet 1 are then accumulated using the storage of the accumulator. This
process is carried out using the helper algorithms of the accumulator scheme. The resulting storage that is
in the form of a tree has an associated accumulator value, which is nothing but the root of the tree. This
storage will be part of the encoding.

4. The accumulator value along with the iterator value and the initial state is then signed using a splittable
signature scheme.

5. Finally, a program is designed that computes the next step function of the Turing machine M , that is to
be encoded. This program also performs additional checks to ensure that a malicious adversary does not
input incorrect values. These checks are carried out using accumulator, iterator and splittable signatures.
In order to hide these checks, the program is then obfuscated. This completes the encoding process.

We first make some observations about the structure of the KLW scheme as stated above. The first observation
is that the storage computed in Bullet 3 need not be part of the encoding. This is because this storage can
be recomputed by the decoding algorithm using the ciphertexts and the public parameters of the accumulator
scheme. The second observation is that the Bullets 1-4 do not depend on the Turing machine M to be encoded
and at the same time, Bullet 5 does not depend on the input x. Using this observation, we can split the encoding
procedure into two sub procedures, one for input encoding of x and the other for TM encoding of M .

In addition to the above simplifications, we make one modification to the structure of the scheme. Recall
that in a 2-ary FE scheme, we should be able to split the input into two parts with the ability to encode each
part separately and then there should be a mechanism to combine both these encodings. To do this, we should
be able to split the storage, handled by the accumulator scheme, and later be able to join the storage together.
Fortunately, the accumulator scheme constructed by KLW already has this property. The storage in the scheme
of KLW is in the form of a tree. Joining two storage components paramounts to joining two trees into one tree
with a new root node.

We now formally describe the scheme that incorporates the simplifications and the modification described above.
We denote the 3-stage KLW scheme we construct to be 3StgKLW. The tools used in the below construc-
tion are as follows: an indistinguishability obfuscator iO for polynomial sized circuits, accumulator scheme
(SetupAcc, EnforceRead, EnforceWrite, PrepRead, PrepWrite, VerifyRead, WriteStore, Update), iterator scheme
(SetupItr,ItrEnforce, Iterate) and a splittable signature scheme represented by (SetupSpl, SignSpl, VerSpl, SplitSpl,
SignSplAbo). In addition we use a puncturable pseudorandom function family and a public key encryption
scheme, (PKE.Setup,PKE.Enc,PKE.Dec).

5We note that the construction of Koppula et al. was proven secure with respect to a notion that is termed as machine hiding
encodings. However, as observed in Section 7.3 (of their ePrint version), the same construction can be shown to be a secure succinct
randomized encoding.
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3StgKLW.Setup(1λ): It first samples puncturable PRF keys KE and KA. KE will be used for computing an
encryption of the symbol and state, and KA to compute the secret key/verification key for signature scheme.
Let (r0,1, r0,2, r0,3) = PRF(KE , 0). It then executes the following:

• PKE setup. Generate (pk, sk) = PKE.Setup(1λ; r0,1). It computes CTst ← PKE.Enc(pk, q0).

• Accumulator setup. Compute (PPAcc, w̃0, s̃tore0)← SetupAcc(1λ, T ).

• Iterator setup. Compute (PPItr, v0)← SetupItr(1λ, T ).

Finally, output the secret key 3StgKLW.sk = (KE ,KA,PPAcc,PPItr, v0,CTst).

3StgKLW.Encode(3StgKLW.sk, x, b): Parse the input secret key 3StgKLW.sk as (KE ,KA,PPAcc,PPItr, v0,CTst).
It then computes the following. Let `Inp = |x|.
• Encrypt the input tape. It encrypts each bit of x separately; that is, it computes CTi = PKE.Enc(pk, xi)

for 1 ≤ i ≤ `Inp. Denote by CTx to be the tuple (CT1, . . . ,CT`Inp).

• Compute the storage tree on the input tape. These ciphertexts are ‘accumulated’ using the accumulator.
It computes s̃torej = WriteStore(PPAcc, s̃torej−1, j− 1, (CTj , 0)), auxj = PrepWrite(PPAcc, s̃torej−1, j− 1),

w̃j = Update(PPAcc, w̃j−1, Inpj , j − 1, auxj) for 1 ≤ j ≤ `Inp. It sets wx = w̃`Inp and sx = s̃tore`Inp .

Output x̃ = (x̂ = CTx, accx = wx).

3StgKLW.Combine(3StgKLW.sk, accx = wx, accy = wy): Parse the input secret key 3StgKLW.sk as (KE ,KA,PPAcc,

PPItr, v0,CTst). Then it does the following operation:

• Combine both the accumulator values wx and wy to obtain w0: the public parameter PPAcc is first parsed
as a program P . Then execute the program P (wx, wy) to obtain w0. This will be the joint accumulator of
x0 and x1. Let rA = F (KA, 0), (SKA,VKA) = SetupSpl(1λ; rA) and σ0 = SignSpl(SKA, (v0,CTst, w0, 0)).

Output accx||y = (w0, σ0).

3StgKLW.TMEncode(3StgKLW.sk,M ′): On input (3StgKLW.sk,M ′), first parse 3StgKLW.sk as (KE ,KA,PPAcc,PPItr,

v0,CTst). It first transforms M ′ into an oblivious TM M . It computes an obfuscation P ← iO(Prog{M , T , PPAcc,

PPItr, KE , KA}) where Prog is defined in Figure 1. It outputs the machine encoding M̃ = P .

3StgKLW.Decode(x̂, ŷ, accx||y, M̃): The input to SRE.Decode are input encodings x̂ = CTx and ŷ = CTy, along

with their combined encoding accx||y = (w0, σ0).

• Initialize the storage on CTx and CTy. Compute s̃torex,j = WriteStore(PPAcc, s̃torex,j−1, j−1, (CTjx, j, 0)),

auxj = PrepWrite(PPAcc, s̃torex,j−1, j − 1), w̃j = Update(PPAcc, w̃x,j−1, Inpj , j − 1, auxj) for 1 ≤ j ≤ `Inp.

Finally, it sets w∗x = w̃x,`Inp and sx = s̃tore`Inp . Correspondingly, initialize storage on the ciphertext CTy as
well. We denote the resulting accumulator value to be w∗y and denote the storage to be sy.

• Merging the storage tree. Assign the final storage, corresponding to the joint value (x||y) to be s0, which
is obtained by merging the trees sx and sy with the root of the final storage s0 being w0.

Once this is computed, run the decode algorithm Mc.Dec of [KLW15] to recover the output. That is, execute
Mc.Dec(P,w0, v0, σ0, s0) to obtain the value out. Output the value out.

The correctness, efficiency, and the security properties of the above scheme 3StgKLW essentially follows along
the same lines as the security proof of machine hiding encodings scheme of [KLW15]. The minor modifications
is just incorporating the following two observations (i) that their proof also works when the adversary can query
the input to obtain the storage tree and only after that he can query for the TM and, (ii) the storage tree need
not necessarily be balanced as in the work of KLW. Thus we have,

Theorem 3. Assuming the existence of indistinguishability obfuscation for circuits and public key encryption
schemes, 3StgKLW is a secure 3-stage KLW scheme.
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Program Prog

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, Public parameters for accumulator PPAcc, Public parameters
for Iterator PPItr, Puncturable PRF keys KE ,KA ∈ K.

Input: Time t ∈ [T ], encrypted symbol and last-write time (CTsym,in, lw), encrypted state CTst,in, accumulator value win ∈
{0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t − 1) and posout = tmf(t), where tmf is the time movement function that determines the current
position of the tape head given the current time step.

2. Verification step.

• If VerifyRead(PPAcc, win, (CTsym,in, lw), posin, π) = 0 or lw ≥ t, output ⊥.

• Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = SetupSpl(1λ; rS,A).

• Let min = (vin,CTst,in, win, posin). If VerSpl(VKA,min, σin) = 0 output ⊥.

3. Decrypting the encrypted tape symbols.

• Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = PKE.Setup(1λ; rlw,1), sym = PKE.Dec(sklw,CTsym,in).

• Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), (pkst, skst) = PKE.Setup(1λ, rt−1,1), st = PKE.Dec(skst,CTst,in).

4. Computing the next message function.

• Let (st′, sym′, β) = δ(st, sym).

• If stout = qrej output 0.

• If stout = qacc output 1.

5. Encrypting the new tape symbol.

• Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = PKE.Setup(1λ; r′t,1), CTsym,out = PKE.Enc(pk′, sym′; rt,2) and

CTst,out = PKE.Enc(pk′, st′; rt,3).

6. Authenticate the computed encrypted tape symbol.

• Compute wout = Accumulate(PPAcc, win, (CTsym,out, t), posin, aux). If wout = Reject, output ⊥.

• Compute vout = Iterate(PPItr, vin, (CTst,in, win, posin)).

• Let F (KA, t) = r′S,A. Compute (SK′A,VK
′
A,VK

′
A,rej)← SetupSpl(1λ; r′S,A).

7. Let mout = (vout,CTst,out, wout, posout) and σout = SignSpl(SK′A,mout).
8. Output posin,CTsym,out,CTCT,out, wout, vout, σout.

Figure 1 Program Prog

3.4.3 2-ary FE for TMs from 3-stage KLW

We now show how to obtain a 2-ary 1-CT 1-Key FE for TMs scheme in the private key setting from a 3-stage
KLW scheme. The main goal is to implement the combiner function as part of the encryption itself. But since
the combiner function has information about the secret parameters, the description of the program cannot be
in the clear. So, we obfuscate the combiner program and include the obfuscated program to be part of one of
the two encryptions. However, we still have the adaptivity issue to deal with – the adversary can query for the
encryption having the combiner program at the beginning of the game and only after that he can query for the
other input encoding. And, it is not clear how to reduce this to the security game of 3-stage KLW. To overcome
this scenario, we use a standard trick which has appeared in many works before and more prominently in the
work of Bellare et al. [BHR12]: the input encoding which was queried first will have a random value in the place
of combiner program and the other encoding will now contain the XOR of the random value with the combiner
program. This way the challenger can adjust the combiner program after seeing both the input queries.

The tools used in our construction are a 3-stage KLW scheme, denoted by 3StgKLW = (3StgKLW.Setup,
3StgKLW.Encode, 3StgKLW.Combine, 3StgKLW.TMEncode, 3StgKLW.Decode), an indistinguishability obfuscation
scheme iO for polynomial sized circuits and a splittable signatures scheme (SetupSpl, SignSpl, VerSpl, SplitSpl,
SignSplAbo). We denote by 2FE, the 2-ary FE scheme.
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2FE.Setup(1λ): On input security parameter λ, execute 3StgKLW.Setup on input (1λ) to obtain 3StgKLW.sk.

It then executes SetupSpl(1λ) twice to obtain the signing key-verification key pairs (SKx,VKx) and (SKy,VKy).
Pick a random string R ∈ {0, 1}`comb , where the value of `comb will be clear later. Output the secret parameters
SRE.sk = (3StgKLW.sk,R,SKx,VKx,SKy,VKy).

2FE.Enc(SRE.sk, x, b): On input secret parameters SRE.sk = (3StgKLW.sk,R,SKx,VKx,SKy,VKy), input x, po-
sition bit b, first execute 3StgKLW.Encode on input (3StgKLW.sk, x, b) to obtain (x̂, accx). If b = 0, sign
the message accx using the signing key SKx, by running SignSpl(SKx, (accx, 0)) to obtain σx. Else if b =
1, compute the signature σx ← SignSpl(SKy, (accx, 0)). Compute an obfuscation Combiner as an output of
iO(Prog2{VKx,VKy, 3StgKLW.sk,⊥}), where Prog2 is defined in Figure 2. If b = 0, set Sb to be R otherwise, set
Sb to be R⊕ Combiner. Output x̃ = (x̂, accx, σx,Sb).

Program Prog2

Constants: Verification keys VKx, VKy, secret parameters SRE.sk, value v.

Input: Accumulator-signature pairs (accx, σx) and (accy, σy).

1. Check if both VerSpl(VKx, (accx, 0), σ0) and VerSpl(VKy, (accy, 1), σ1) outpute 1. If the check fails, i.e., either one of the
verification algorithms output 0, output ⊥.

2. Execute 3StgKLW.Combine(SRE.sk, accx, accy) to obtain accx||y.

3. Output accx||y.

Figure 2 Program Prog2

2FE.KeyGen(SRE.sk,M): On input (SRE.sk = (3StgKLW.sk,R,SKx,VKx,SKy,VKy) ,M), it executes

3StgKLW.TMEncode(3StgKLW.sk,M) to obtain M̃ . Output M̃ .

2FE.Dec(x̃, ỹ, M̃): On input encodings x̃ = (x̂, accx, σx,S0) and ỹ = (ŷ, accy, σy,S1) and TM encoding M̃ , it
does the following. It computes S0⊕S1 to obtain the obfuscated program Combiner. Then, execute Combiner on
input (accx, σx, accy, σy) to obtain accx||y. It then executes 3StgKLW.Decode on input (x̂, ŷ, accx||y, M̃) to obtain
z. Output z.

We prove the following theorem.

Theorem 4. Assuming the security of 3StgKLW, the security of splittable signature scheme SplScheme, and the
scheme SRE satisfies the semi-adaptive security stated in Definition 3.1.

Proof. We prove the theorem by using the standard hybrid argument technique. The first hybrid Hybrid1,b
corresponds to the real experiment, where the challenger uses the bit b to choose which input to encode. We
then, by introducing intermediate hybrids and arguing indistinguishability of every consecutive hybrids using
the primitives stated in the theorem, show that Hybrid1,b is indistinguishable to Hybrid4,b. Finally, we argue
that Hybrid4,0 is computationally indistinguishable from Hybrid4,1 which proves that Hybrid1,0 is computationally
indistinguishable from Hybrid1,1, as desired.

The hybrids are described below. For convenience sake, we denote the query (xb, yb) made by the adversary
as (x0,b, x1,b).

Hybrid1,b for b ∈ {0, 1}: This corresponds to the real experiment, where the challenger uses the challenge bit b in

choosing which input to encode. That is, on receiving an input queries of the form (x0,0, x1,0) and (x0,1, x1,1, 1),
the challenger responds with input encodings x̃0,b and x̃1,b. The output of the hybrid is the output of the ad-
versary.
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Hybrid2,b for b ∈ {0, 1}: In this hybrid, the challenger sets the value of the mask S in the input encodings

depending on the order of the queries. This is unlike the previous hybrid, where the value of mask S depends
on the bit b that is part of the input to the algorithm 3StgKLW.Encode.

The challenger produces the secret parameters (3StgKLW.sk,R, {SKc,VKc}c∈{0,1}) by executing SRE.Gen(1λ, T ).
If the adversary submits query for the input ((x0,0, x0,1), 0) of the form first, the challenger responds by comput-
ing an input encoding of x0,b, namely (x̂0,b, accx0,b

, σx0,b
,S0), computed as in the scheme, except that S0 is just

set to be R, which is part of the secret parameters output by the SRE setup algorithm. Next, when the adversary
submits the query ((x1,0, x1,1), 1) to the challenger. The challenger then responds with an input encoding of
x1,b, namely (x̂1,b, accx1,b

, σx1,b
,S1), which are computed as in the scheme, except that S1 in the encoding is set

to be R⊕ Combiner, where Combiner is obtained by obfuscating the program Prog2{VKx,VKy, 3StgKLW.sk,⊥},
as described in Figure 2.

Similarly, if the adversary queries for ((x1,0, x1,1), 1) then the challenger responds with (x̂1,b, accx1,b
, σx1,b

,S0),
where it sets S0 to be R and when the adversary queries for ((x0,0, x0,1), 0), the challenger responds with
(CTx0,b

, wx0,b
, σx0,b

,S,PP), where the string S is set to be R⊕Combiner. The output of the hybrid is the output
of the adversary.

The hybrids Hybrid1,b and Hybrid2,b are identically distributed.

Hybrid3,b for b ∈ {0, 1}: In this hybrid, the challenger changes the hardwired verification keys in the combiner

program such that these verification keys can be used to verify signatures 6 of only one message.
The challenger produces the secret parameters (3StgKLW.sk,R, {SKc,VKc}c∈{0,1}) by executing SRE.Gen(1λ, T ).

If the adversary submits query for the input ((x0,0, x0,1), 0) of the form first, the challenger responds by comput-
ing an input encoding of x0,b, namely (x̂0,b, accx0,b

, σx0,b
,S0), computed as in the scheme, except that S0 is just

set to be R, which is part of the secret parameters output by the SRE setup algorithm. Next, when the adversary
submits the query ((x1,0, x1,1), 1) to the challenger. The challenger then responds with an input encoding of x1,b,
namely (x̂1,b, accx1,b

, σx1,b
,S1), which are computed as in the scheme, except that S1 in the encoding is set to be

R ⊕ Combiner, where Combiner is obtained by obfuscating the program Prog2{VKone,0,VKone,1, 3StgKLW.sk,⊥},
as described in Figure 2. Here, VKone,0 (resp., VKone,1), is obtained as part of the output of the execution of
SplitSpl(SK0, (wx, 0))(resp., SplitSpl(SK1, (wy, 0))), where SK0,SK1 denote the signing keys that is part of the
secret parameters generated by the setup algorithm.

Similarly, if the adversary queries for ((x1,0, x1,1), 1) then the challenger responds with (x̂1,b, accx1,b
, σx1,b

,S0),
where it sets S0 to be R and when the adversary queries for ((x0,0, x0,1), 0), the challenger responds with
(CTx0,b

, wx0,b
, σx0,b

,S,PP), where the string S is set to be R⊕Combiner. The output of the hybrid is the output
of the adversary.

The computational indistinguishability of Hybrid2,b and Hybrid3,b can be argued by introducing an interme-
diate hybrid Hybrid2.5,b. The indistinguishability of Hybrid2 and Hybrid2.5,b as well as the indistinguishability
of Hybrid2.5,b and Hybrid3,b follows from the VKone-indistinguishability property of the underlying splittable sig-
natures scheme. This is because, at any time, the adversary is handed over only signatures on (accx0,b

, 0) and
(accx1,b

, 1). Thus, the verification key VKx (or VKy) can be replaced with VKone,0 (or VKone,1) without a com-
putationally bounded adversary being able to distinguish this change with significant probability.

Hybrid4,b for b ∈ {0, 1}: In this hybrid, the challenger hardwires the signature of the “correct” combined accu-

mulator value in the combiner algorithm.
The challenger produces the secret parameters (3StgKLW.sk,R, {SKc,VKc}c∈{0,1}) by executing SRE.Gen(1λ, T ).

If the adversary submits query for the input ((x0,0, x0,1), 0) of the form first, the challenger responds by comput-
ing an input encoding of x0,b, namely (x̂0,b, accx0,b

, σx0,b
,S0), computed as in the scheme, except that S0 is just

set to be R, which is part of the secret parameters output by the SRE setup algorithm. Next, when the adversary
submits the query ((x1,0, x1,1), 1) to the challenger. The challenger then responds with an input encoding of x1,b,
namely (x̂1,b, accx1,b

, σx1,b
,S1), which are computed as in the scheme, except that S1 in the encoding is set to be

R⊕ Combiner, where Combiner is obtained by obfuscating the program Prog2{VKone,0,VKone,1,⊥, accx1,0||x1
}, as

described in Figure 2. Here, VKone,0 and VKone,1 are generated as in the previous hybrid and the value accx||y is ob-
tained by executing the 3-stage KLW combine algorithm 3StgKLW.Combine on input (3StgKLW.sk, accx0,b

, accx1,b
).

6Here, since the splittable signature scheme is deterministic, there is only such signature
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Similarly, if the adversary queries for ((x1,0, x1,1), 1) then the challenger responds with (x̂1,b, accx1,b
, σx1,b

,S0),
where it sets S0 to be R and when the adversary queries for ((x0,0, x0,1), 0), the challenger responds with
(CTx0,b

, wx0,b
, σx0,b

,S,PP), where the string S is set to be R⊕Combiner. The output of the hybrid is the output
of the adversary.
The indistinguishability of Hybrid3,b and Hybrid4,b follows from the security of indistinguishability obfuscation.
The reason is that the programs Prog2{VKone,0,VKone,1,⊥, accx1,0||x1

} and Prog2{VKone,0,VKone,1,SRE.sk,⊥} are
functionally equivalent. This is because, both the programs output ⊥ on all the inputs except the input (accx0,b

,
σx0,b

, accx1,b
, σx1,b

). On this input, the program with SRE.sk calculates the joint value to be accx1,0||x1,1
and

the program without the secret parameters essentially outputs this value, accx1,0||x1,1
, which has already been

hardwired.
Finally, the indistinguishability of Hybrid4,0 and Hybrid4,1 follows from the security of 3StgKLW scheme.

4 Adaptive FE for TMs

We show how to obtain an adaptively secure public key functional encryption scheme for Turing machines.
To achieve this, we use a public key FE scheme for circuits, single-key FE scheme for circuits and single-key
single-ciphertext FE for Turing machines.

Tools. We use the following tools to achieve the transformation.

• (Compact) Public key FE scheme for circuits, denoted by PubFE = (PubFE.Setup,PubFE.KeyGen,PubFE.Enc,
PubFE.Dec). It suffices for us that PubFE is selectively secure.

• (Compact) Function-private Single-key FE scheme for circuits, denoted by OneKey = (OneKey.Setup,
OneKey.KeyGen,OneKey.Enc,OneKey.Dec). It suffices for us that OneKey is selectively secure.

• Single-key single-ciphertext FE scheme for Turing machines, denoted by OneCTKey = (OneCTKey.Setup,
OneCTKey.KeyGen,OneCTKey.Enc,OneCTKey.Dec). We require that OneCTKey is adaptively secure.

• Psuedorandom function family, F.

• Symmetric encryption scheme with pseudorandom ciphertexts, denoted by Sym = (Sym.Setup,Sym.Enc,
Sym.Dec).

Instantiations of the tools. We gave an construction of single-key single-ciphertext FE for Turing ma-
chines satisfying adaptive security in Section 3. We can instantiate the compact public-key FE scheme using
the construction of [GGH+13, Wat15] (here, we refer to the post-challenge FE construction of [Wat15]). This
construction can be based on indistinguishability obfuscation and other standard assumptions. Lastly, we can
instantiate a function-private single key FE by, first, applying the function-privacy transformation by Brakerski-
Segev [BS14] on the public-key FE 7. The resulting FE is a private-key FE which is also function-private. And,
a function-private single-key FE in the private key setting is a special case of function-private private key FE.
Note that this instantiation can be based off the same assumptions as public-key FE (this is because, [BS14]
does not add any additional assumptions).

Intuition. We view our construction as a transformation from adaptively secure 1-CT 1-key FE scheme into
one that can handle unbounded collusions. Even though in general we don’t know any way of achieving this, we
show that by leveraging additional tools we can attain this goal. These additional tools, as mentioned above,
are multi-key FE schemes that are only selective secure.

The key idea is as follows: we give a mechanism to generate a unique key corresponding to a pair of ciphertext
(of m) and functional key (of f) in the resulting adaptive multi-key FE scheme. This unique key would correspond
to the master secret key of the adaptive 1-CT 1-Key FE scheme. At this point, we can generate functional keys
of f and ciphertext of m w.r.t this unique key. Implementing this mechanism using iO, in the context of FE for
circuits, was introduced by Waters [Wat15]. We show how to implement the same, in the more general context

7The function-privacy transformation was defined for private key FE but a public key FE can be transformed into a private key FE
in a straightforward way.
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of FE for TMs, but using just a multi-key FE. We highlight that in general we don’t know how to replace the
use of iO with multi-key FE since FE does not offer function hiding.

At the high level, the construction proceeds as follows. A ciphertext of m “communicates” a PRF key K
to a functional key of f . This communication is enabled by a multi-key FE scheme. The functional key using
K and hardwired values, derives the master secret key OneCTKey.MSK of a 1-CT 1-Key FE scheme. If then
computes a functional key of f w.r.t OneCTKey.MSK. But the ciphertext of m does not contain an encryption
w.r.t OneCTKey.MSK! And so this key has to be “communicated” from functional key back to the ciphertext.
To do this, we will use another instantiation of selectively secure FE scheme. Here, we note that it suffices to
consider just a single-key scheme and that too in the private key setting. Once we have this instantiation, the
functional key can now generate a single-key FE encryption of OneCTKey.MSK. The single-key FE functional
key, which will now be part of the ciphertext, will take as input encryption of OneCTKey.MSK and outputs an
encryption of m w.r.t OneCTKey.MSK. Finally, we can just run the decryption algorithm of OneCTKey to obtain
the answer. We illustrate a simple example, when a single ciphertext and functional key is released, in Figure 3.

Our construction has more details that we present below.

Figure 3 The ciphertext of m has two components – the first component is a single-key FE (denoted by FE2) functional key and the
second component is a multi-key FE (denoted by FE1) encryption of a PRF key K. The function key of f is just a FE1 functional
key of the program described in the figure. The arrows indicate the flow of execution of decryption of the ciphertext of m using the
functional key of f .

Construction. We now describe the construction. We denote the FE for TMs scheme, that we construct, to
be FE = (Setup,KeyGen,Enc,Dec).
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Setup(1λ): Execute PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). Output the secret key-public key pair
(MSK = PubFE.MSK,PK = PubFE.PK).

KeyGen(MSK = PubFE.MSK, f): Draw CE at random8. Denote τ to be (τ0||τ1||τ2||τ3), where τi for i ∈ {0, 1, 2, 3}
is picked at random. Execute PubFE.KeyGen(PubFE.MSK, G[f, CE , τ ]), where G[f, CE , τ ] is described in Fig-
ure 4, to obtain PubFE.skG. Output skf = PubFE.skG.

G[f, CE , τ ]
(
OneKey.MSK,K,Sym.k, β

)
1. Parse τ as (τ0||τ1||τ2||τ3)

2. If β = 0 then

• Ri ← PRF(K, τi), for i ∈ {0, 1, 2, 3}
• OneCTKey.MSK← OneCTKey.Setup(1λ;R0)

• OneCTKey.skf ← OneCTKey.KeyGen(OneCTKey.MSK, f ;R1)

• OneKey.CT← OneKey.Enc(OneKey.MSK, (OneCTKey.MSK, R2, 0);R3)

• Output (OneCTKey.skf ,OneKey.CT)

3. Else,

• (OneCTKey.skf ,OneKey.CT)← Sym.Dec(Sym.k, CE)

• Output (OneCTKey.skf ,OneKey.CT)

Figure 4

Enc(PK = PubFE.PK,m):

• Draw a PRF key K at random from {0, 1}λ.

• Execute OneKey.Setup(1λ) to obtain OneKey.MSK.

• Execute OneKey.KeyGen(OneKey.MSK, H[m]) to obtain OneKey.skH , where H[m] is defined in Figure 5.

• Execute PubFE.Enc(PubFE.PK, (OneKey.MSK,K,⊥, 0)) to obtain PubFE.CT.

Finally, output CT = (OneKey.skH ,PubFE.CT).

H[m](OneCTKey.MSK, R, α)

1. If α = 0 then

• OneCTKey.CT← OneCTKey.Enc(OneCTKey.MSK,m;R)

• Output OneCTKey.CT

2. Else, output ⊥.

Figure 5

Dec(skf = skG,CT = (OneKey.skH ,PubFE.CT)):

• Execute PubFE.Dec(PubFE.skG,PubFE.CT) to obtain (OneCTKey.skf ,OneKey.CT).

• Execute OneKey.Dec(OneKey.skH ,OneKey.CT) to obtain OneCTKey.CT.

• Execute OneCTKey.Dec(OneCTKey.skf ,OneCTKey.CT) to obtain m̂.

8The length of CE is determined as follows. Denote by |f |, the size of the Turing machine representing f . Denote by `OneCTKey,
the length of the ciphertext obtained by encrypting a message of length |f |, using OneCTKey.Enc. Denote by `OneKey, the length of
the ciphertext obtained by encrypting a message of length λ + 2, using OneKey.Enc. Further, denote by `Sym to be the length of the
ciphertext obtained by encrypting a message of length `OneCTKey + `OneKey, using Sym.Enc. We set the length of CE to be `Sym.
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Output m̂.

We argue in Section 4.1 that the above scheme is correct, succinct and has input-specific run time property. We
then prove the following theorem that establishes the proof of security of the above scheme.

Theorem 5. Assuming the selective security of PubFE,OneKey, adaptive security of OneCTKey, security of F,
Sym, we have that the scheme FE is adaptively secure.

Since the proof is involved, we choose to first present the proof of selective security of FE. We then point out
the (minor) changes that need to be made to prove the adaptive security of FE. We give a sketch of the proof
of the above scheme in Section 5 and prove the security formally in the Section 6.

4.1 Proof of Correctness and Efficiency

Correctness. To argue correctness, we need to show that the output of the decryption algorithm on input a
functional key of f and an encryption of m is f(m). Recall that the functional key of f is nothing but a PubFE
functional key of G and the ciphertext of m consists of a OneKey functional key of H[m] and a PubFE encryption
of (OneKey.MSK,K,⊥, 0) (where the notation is as described in the construction). From the correctness of PubFE,
we have that the output of PubFE.Dec on input a functional key of G and an encryption of (OneKey.MSK,K,⊥, 0)
is a OneCTKey functional key of f and a OneKey.CT encryption of (OneCTKey.MSK, R2, 0) (with notation as
in the construction). Further, from the correctness of OneKey, we have the output of OneKey.Dec on input,
a functional key of H[m] and encryption of (OneCTKey.MSK, R2, 0), is a OneCTKey encryption of m. Finally,
the correctness of OneCTKey ensures that the output of OneCTKey.Dec on input a functional key of f and an
encryption of m is f(m), as required.

Efficiency. We argue, one by one, that all the algorithms in the above scheme satisfies the efficiency conditions.

1. The running time of Setup(1λ) is the same as the running time of PubFE.Setup(1λ), which is a polynomial
in λ.

2. The running time of KeyGen(1λ, |f |) is equal to a polynomial in t, where t is equal to the running time of
PubFE.KeyGen on input (PubFE.MSK, G[f, CE , τ ]), which is again a polynomial in (λ, |G[f, CE , τ ]|) (note
that G is represented as a circuit). We calculate |G[f, CE , τ ]| as follows. First, note that the size of
OneCTKey.Setup (as a circuit) is a polynomial in λ. The size of OneCTKey.KeyGen is polynomial in
(λ, |f |). Then, the size of OneKey.Enc is polynomial in λ. Lastly, the size of Sym.Dec is again a polynomial
in (λ, |CE |), where |CE | is a polynomial in (λ, |f |). Using these facts, we have that |G[f, CE , τ ]| is a
polynomial in (λ, |f |) and thus, the running time of KeyGen is a polynomial in (λ, |f |).

3. We calculate the running time of Enc(PK,m) step-by-step. Sampling of the PRF key K takes time polyno-
mial in λ. In the second step, the time taken to execute OneKey.Setup is again a polynomial in λ. In the
third step, the running time of OneKey.KeyGen(OneKey.MSK, H[m]) is a polynomial in (λ, |H[m]|). The
size of |H[m]| (same as |H∗[m,m′, v]|, as in Figure 7) is a a polynomial in (λ, |OneCTKey.Enc)|), where
the size of OneCTKey.Enc is again a polynomial in (λ, |m|). Thus, the running time of OneKey.KeyGen is
a polynomial in (λ, |m|). In the final step of Enc, the PubFE.Enc algorithm takes time polynomial in λ.
Summing up the running time of all the steps, we get the running time of Enc to be poly in (λ, |m|) as
intended.

4. Finally, we determine the running time of Dec(OneKey.skH ,PubFE.CT). In the first step, the running time
of PubFE.Dec is a polynomial in (λ, |M |, |G|), where M = (OneKey.MSK,K,⊥, 0) 9. We have already seen
that |G| is a polynomial in (λ, |f |) and further, observe that |M | is a polynomial in λ. In the second step,
the running time of OneKey.Dec is a polynomial in (λ, |H|, |M ′|), where M ′ = (OneCTKey.MSK, R2, 0).
We have already seen that H is polynomial in (λ, |m|) and further, |M ′| is a polynomial in λ. Lastly, the
running time of OneCTKey.Dec is a polynomial in (λ, |f |, |m|, timeTM(f,m)). Thus, the running time of
Dec is a polynomial in (λ, |f |, |m|, timeTM(f,m)), as desired.

9Note that the ⊥ symbol is viewed as a string of size |Sym.k|, which is a polynomial in λ.
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5 Proof of Theorem 5: Informal

To explain the proof intuition, we restrict ourselves to the setting when the adversary makes only a single message
and key query.

In the first hybrid, the challenger uses a bit b picked at random, to generate the challenge ciphertext as in
the (selective) security notion. By using the security of many primitives (listed in the theorem statement), we
then move to a hybrid where the bit b is information-theoretically hidden from the adversary. At this point, the
probability that the adversary guesses the bit b is 1/2. And thus the probability that the adversary guesses b
correctly in the first hybrid is at most 1/2 + negl(λ).

Hybrid0: This corresponds to the real experiment when the challenger uses the bth message in the challenge
message pair query to compute the challenge ciphertext, where the bit b is picked at random. The output of the
hybrid is the same as the output of the adversary.

Hybrid1: In this hybrid, the values corresponding to the challenge ciphertext are hardwired in the “CE” compo-
nent of all the functional keys.

That is, the challenger upon receiving a function query f , first samples a symmetric key Sym.k∗. It generates
an encryption of the message (OneCTKey.MSK, R2, 0) with respect to the single-key FE scheme. Call this
ciphertext, OneKey.CT. It then samples a functional key of f with respect to the single-key single-ciphertext FE
scheme. Call this functional key, OneCTKey.skf . It is important to note here that, the (pseudo)randomness used
in the generation of OneKey.CT and OneCTKeyf is as described in the scheme. Finally, it computes a symmetric
encryption of (OneKey.CT,OneCTKey.skf ) using the key Sym.k. The resulting ciphertext will be assigned to CE
and then the challenger proceeds as in the previous hybrid.

The indistinguishability of Hybrid0 and Hybrid1 follows from the security of symmetric encryption scheme.

Hybrid2: In this hybrid, the mode is switched from β = 0 to β = 1.
Upon receiving a challenge message query (m0,m1), the challenger computes the challenge ciphertext as

follows. Recall that there are two components in the ciphertext – namely, the single-key FE functional key
and the public-key FE ciphertext. The challenger computes the single-key FE functional key as in the previous
hybrid. However, it generates the public-key FE cipehertext to be an encryption of (⊥,⊥,Sym.k∗, 1) instead of
(OneKey.MSK∗,K∗,⊥, 0), as in Hybrid1. The rest of the hybrid is the same as the previous hybrid.

The indistinguishability of Hybrid1 and Hybrid2 follows from the security of public-key FE scheme. This is
because the output of G (Figure 4) on input (⊥,⊥,Sym.k∗, 1) is nothing but the decryption of CE . And by our
choice of CE , this is the same as the output of G on input (OneKey.MSK∗,K∗,⊥, 0).

Hybrid3: The hardwired values in the “CE” components of all the functional keys are now computed using
randomness drawn from a uniform distribution. Recall that in the previous hybrid, the single-key ciphertext
and the single-key single-ciphertext FE encrypted in CE were computed using pseudorandom values.

The indistinguishability of Hybrid2 and Hybrid3 follows from the security of pseudorandom function family.

Hybrid4: A branch encrypting message m0 (the 0th message in the challenge message query) is introduced in the
function H.

The challenger upon receiving the challenge message query (m0,m1), first computes a single-key FE functional
key of the function H∗[m0,mb, v], as described in Figure 6. Here, b is the challenge bit, picked at random by
the challenger. The program H∗ is the same as H except that it contains an additional branch. The rest of the
hybrid is the same as Hybrid3.

The indistinguishability of Hybrid3 and Hybrid4 follows from the function-privacy property of single-key FE
scheme. To see why, let us look at the messages that are encrypted under the single-key FE scheme (note
that each encryption is part of the “CE” component of some functional key). We observe that each message
is of the form (OneCTKey.MSK, R, 0). From the descriptions of H and H∗, it follows that the output of H on
(OneCTKey.MSK, R, 0) is the same as the output of H∗ on (OneCTKey.MSK, R, 0).

Hybrid5: We switch the mode of α from 0 to 1 in the OneKey ciphertexts output by all the functional keys.
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H∗[m,m′, v](OneCTKey.MSK, R, α)

1. If α = 0 then

• OneCTKey.CT← OneCTKey.Enc(OneCTKey.MSK,m;R)

• Output OneCTKey.CT

2. If α = 1 then

• OneCTKey.CT← OneCTKey.Enc(OneCTKey.MSK,m′;R)

• Output OneCTKey.CT

3. Else, output v.

Figure 6

The challenger, upon receiving a functional query f , first generates a single-key FE ciphertext to be an en-
cryption of (OneCTKey.MSK, R, 1), where OneCTKey.MSK is as generated in the previous hybrids. The resulting
ciphertext along with the single-key single-ciphertext FE functional key is then encrypted, using the symmetric
key encryption, to obtain CE . The rest of the functional key is then generated as previously.

The indistinguishability of Hybrid4 and Hybrid5 is more complex and involves more intermediate hybrids and
thus we defer the explaination.

Hybrid6: We change the α = 0 branch in the function H to encrypt the message m0 instead of mb.
The challenger upon receiving a message query (m0,m1), first generates a single-key FE functional key of

H∗[m0,m0, v]. It then generates the public key FE encryption as in previous hybrids. The rest of the hybrid is
as in Hybrid5.

The indistinguishability of Hybrid5 and Hybrid6 follows from the function privacy property of single-key FE
scheme. To see why, we look at the messages encrypted in the single-key FE ciphertexts. We first note all
these ciphertexts are part of “CE” component of some functional key. Further, each message is of the form
(OneCTKey.MSK, R, 1). Thus, the output of H∗[mb,m0, v] is the same as the output of H∗[m0,m0, v].

Observe that the challenge bit b is no longer used. This combined with the indistinguishability of consecutive
hybrids proves that the probability that A wins in Hybrid1 is at most 1/2 + negl(λ). This proves the security of
FE.

6 Proof of Theorem 5: Formal

As remarked earlier, we present the proof of selective security of FE. We point out the (minor) changes in the
proof that need to be made in order to prove the adaptive security of FE.

We prove the theorem by giving a sequence of hybrids. The first hybrid corresponds to the real experiment,
where the challenger uses a bit b picked at random, to generate the challenge ciphertext as in the security notion.
By using the security of many primitives (listed in the theorem statement), we then move to a hybrid where the
bit b is information-theoretically hidden from the adversary. At this point, the probability that the adversary
guesses b is 1/2. And thus the probability that the adversary guesses b correctly in the first hybrid is at most
1/2 + negl(λ).

We define the advantage of an adversary A in hybrid, say Hybridi, denoted by AdviA, to be the probability
that A outputs b.

Hybrid0: This corresponds to the real experiment when the challenger uses the bth message in the challenge
message pair query to compute the challenge ciphertext, where the bit b is picked at random.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.
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3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

5. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H[mb]) to obtain OneKey.sk∗H , where H is defined in
Figure 5.

6. Challenger executes PubFE.Enc(PubFE.PK, (OneKey.MSK∗,K∗,⊥, 0)) to obtain PubFE.CT∗. It then sets
CT∗ = (OneKey.sk∗H ,PubFE.CT

∗).

7. Challenger then sends (PK,CT∗) to the adversary.

8. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws CE , τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ]), where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(c) Challenger sends skfj = PubFE.skG to the adversary.

9. Adversary outputs bit b′ and wins if b′ = b.

Hybrid1: In this hybrid, the values corresponding to the challenge ciphertext are hardwired in the “CE” com-
ponent of all the functional keys.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H[mb]) to obtain OneKey.sk∗H , where H is defined in
Figure 5.

7. Challenger executes PubFE.Enc(PubFE.PK, (OneKey.MSK∗,K∗,⊥, 0)) to obtain PubFE.CT∗. It then sets
CT∗ = (OneKey.sk∗H ,PubFE.CT

∗).

8. Challenger then sends (PK,CT∗) to the adversary.

9. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes Ri ← PRF(K∗, τi), for i ∈ {0, 1, 2, 3}. It computes OneCTKey.MSK to be the out-
put of OneCTKey.Setup(1λ;R0). It then computes OneCTKey.skf to be the output of
OneCTKey.KeyGen(OneCTKey.MSK, f ;R1). It computes OneKey.CT to be the output of
OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK, R2, 0);R3). It then computes CE to be the output of
Sym.Enc(Sym.k∗, u), where u = (OneCTKey.skfj ,OneKey.CT).

(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

10. Adversary outputs bit b′ and wins if b′ = b.

Lemma 2. Assuming the security of symmetric encryption scheme Sym, for any PPT adversary A, we have
|Adv1A − Adv0A| ≤ negl(λ).
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Hybrid2: In this hybrid, switch the mode from β = 0 to β = 1 in the challenge ciphertext. In the challenge

ciphertext, the (PubFE) encryption of (⊥,⊥,Sym.k∗, 1) is computed instead of (OneKey.MSK∗,K∗,⊥, 0).

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H[mb]) to obtain OneKey.sk∗H , where H is defined in
Figure 5.

7. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H , PubFE.CT

∗).

8. Challenger then sends (PK,CT∗) to the adversary.

9. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes Ri ← PRF(K∗, τi), for i ∈ {0, 1, 2, 3}. It computes OneCTKey.MSK to be the out-
put of OneCTKey.Setup(1λ;R0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R2, 0);R3). It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where
u = (OneCTKey.skfj ,OneKey.CT).

(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

10. Adversary outputs bit b′ and wins if b′ = b.

Lemma 3. Assuming the security of public-key FE scheme PubFE, for any PPT adversary A, we have |Adv2A−
Adv1A| ≤ negl(λ).

Hybrid3: The hardwired values in the “CE” components of all the functional keys are now computed using
randomness drawn from a uniform distribution, as against computing them using a PRF.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H[mb]) to obtain OneKey.sk∗H , where H is defined in
Figure 5.

7. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ =
(OneKey.sk∗H , PubFE.CT

∗).

8. Challenger then sends (PK,CT∗) to the adversary.

9. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be the output
of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R∗1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3). It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where
u = (OneCTKey.skfj ,OneKey.CT).
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(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

10. Adversary outputs bit b′ and wins if b′ = b.

Lemma 4. Assuming the security of pseudorandom function family F, for any PPT adversary A, we have
|Adv3A − Adv2A| ≤ negl(λ).

Hybrid4: A branch encrypting message m0 (the 0th message in the challenge message query) is introduced in
the function H.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is a random string10, to obtain
OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

7. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ , PubFE.CT

∗).

8. Challenger then sends (PK,CT∗) to the adversary.

9. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be the output
of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R∗1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3). It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where
u = (OneCTKey.skfj ,OneKey.CT).

(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

10. Adversary outputs bit b′ and wins if b′ = b.

Lemma 5. Assuming the selective security of function-private single-key FE scheme OneKey, for any PPT
adversary A, we have |Adv4A − Adv3A| ≤ negl(λ).

Hybrid5: We switch the mode of α from 0 to 1 in the OneKey ciphertexts output by all the functional keys.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is a random string, to obtain
OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

10The length of v is determined to be the length of a OneCTKey ciphertext of a message of length |m0| (or |mb|).
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H∗[m,m′, v](OneCTKey.MSK, R, α)

1. If α = 0 then

• OneCTKey.CT← OneCTKey.Enc(OneCTKey.MSK,m;R)

• Output OneCTKey.CT

2. If α = 1 then

• OneCTKey.CT← OneCTKey.Enc(OneCTKey.MSK,m′;R)

• Output OneCTKey.CT

3. Else, output v.

Figure 7

7. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ , PubFE.CT

∗).

8. Challenger then sends (PK,CT∗) to the adversary.

9. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be the output
of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R∗1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗,
(OneCTKey.MSK, R∗2, 1);R∗3). It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where
u = (OneCTKey.skfj ,OneKey.CT).

(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

10. Adversary outputs bit b′ and wins if b′ = b.

Lemma 6. Assuming the security of function-private single-key FE scheme OneKey, pseudorandom function
family F and single-key single-ciphertext FE OneCTKey, for any PPT adversary A, we have |Adv5A − Adv4A| ≤
negl(λ).

Hybrid6: We change the α = 0 branch in the function H to encrypt the message m0 instead of mb.

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger computes Ri, for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSKi to be the out-
put of OneCTKey.Setup(1λ;R0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R∗1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK,
R∗2, 1);R∗3).

7. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[m0,m0, v]), where v is a random string, to obtain
OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

8. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ , PubFE.CT

∗).
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9. Challenger then sends (PK,CT∗) to the adversary.

10. For the jth function query fj made by the adversary, the challenger does the following.

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be the output
of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of OneCTKey.KeyGen(
OneCTKey.MSK, f ;R∗1). It computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 1);R∗3). It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where
u = (OneCTKey.skfj ,OneKey.CT).

(c) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in Fig-
ure 4, to obtain PubFE.skG.

(d) Challenger sends skfj = PubFE.skG to the adversary.

11. Adversary outputs bit b′ and wins if b′ = b.

Lemma 7. Assuming the selective security of function-private single-key FE scheme, for any PPT adversary
A, we have |Adv6A − Adv5A| ≤ negl(λ).

Lemma 8. For any PPT adversary A, we have Adv6A = 1
2 .

Proof. Notice that in Hybrid6, that the bit b picked by the challenger is completely hidden from the adversary and
more specifically, none of the messages exchanged between the challenger and the adversary has any information
about b. Hence, the probability that the adversary guesses b′ such that b′ = b is exactly 1/2.

From Lemmas 2, 3, 4, 5, 6 and 7, we have that

|Adv0A − Adv6A| ≤ negl(λ). (1)

Recall that Adv6A = 1/2, from Lemma 8. Plugging this in Equation 1, we have that Adv0A is at most 1
2 + negl(λ).

This completes the proof of the theorem.

6.1 Security Proof: Indistinguishability of Hybrids

Proof of Lemma 2. We design a PPT reduction B that internally uses A to break the security of symmetric
encryption scheme with probability |Adv0A − Adv1A|, thus proving the lemma. Here, B simulates the role of the
challenger in the selective security game of FE.

When the adversary A sends the message pair query (m0,m1) to B, it first generates the public key PK
and then generates the challenge ciphertext CT∗ of mb with b picked at random. Both PK and CT∗ are
generated as in Hybrid0. For every function query fj , where j ∈ [q] the reduction B, generates the values
uj = (OneCTKey.skfj ,OneKey.CT) as in Hybrid1. It then sends the message uj to the challenger of the Sym
security game. In return it gets back CE . The reduction B then uses this to design the circuit G[fj , CE , τj ] as
in Hybrid1. It then computes a PubFE functional key of G[fj , CE , τj ] to obtain PubFE.skG, which is then sent to
the adversary. In the end, B outputs whatever A outputs.

If the challenger of Sym security game sends a random string (for every query) then we are in Hybrid0, else
if it sends an encryption of uj , for every j ∈ [q], then we are in Hybrid1. Hence, the success probability of B is
the same as |Adv0A − Adv1A|, which proves the lemma.

Proof of Lemma 3. We prove by contradiction. Suppose there exists an PPT adversary A such that the
difference in the advantages of A in Hybrid1 and Hybrid2 is non-negligible then we construct a B that breaks the
security of PubFE with non-negligible probability. Our reduction B will simulate the role of the challenger in the
selective security game of FE.

When the adversary A makes the message pair query (m0,m1), then B does the following. It first generates
OneKey.MSK∗ by executing OneKey.Setup(1λ). It then samples a PRF key K∗. It also computes a symmetric key

Sym.k by executing Sym.Setup(1λ). It then sends the challenge message query
(

(OneKey.MSK∗,K∗,⊥, 0), (⊥,⊥,

Sym.k∗)
)

to the challenger of PubFE (selective) security game. In return it receives back (PubFE.PK,PubFE.CT∗).

The reduction B then proceeds to generates a OneKey.sk∗H functional key of H[mb] as in Hybrid2, where b is
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picked at random. It then sends the public key PK = PubFE.CT∗ along with the challenge ciphertext CT∗ =
(PubFE.CT∗,OneKey.sk∗H) to A. For every function query fj made by A, the reduction B constructs the circuit
G[fj , CE , τj ] as in Hybrid2. It then forwards it to the challenger of PubFE and in return it receives PubFE.skG.
B then sets skf = PubFE.skG and sends it to A. At the end of the execution, the output of B is the output of
A.

We first prove that B is a valid adversary of the PubFE game. To see this, notice that for every function
query fj , with j ∈ [q], we have G[fj , CE , τj ](⊥,⊥,Sym.k∗, 1) is the decrypted value of CE . And this is nothing
but the output of G[fj , CE , τj ](OneKey.MSK∗,K,⊥, 0) by the way we defined the message to be encrypted in
CE . Further, the challenge message query is made at the beginning of the game. This shows that B is a valid
adversary.

If the challenger sent back an encryption of (OneKey.MSK∗,K∗,⊥, 0) then we are in Hybrid0 else if it sent back
an encryption of (⊥,⊥,Sym.k∗, 1) then we are in Hybrid1. Hence, the success probability of B directly translates
to the difference in the advantages of A in Hybrid1 and Hybrid2, which contradicts the security of PubFE. This
completes the proof of the lemma.

Remark 4. Notice that the above proof goes through if we were proving the adaptive security of FE while still
assuming the selective security of PubFE.

Proof of Lemma 4. Suppose there exists a PPT adversary A such that |Adv2A − Adv3A| is non-negligible,
call it δ. We then construct a PPT reduction B that internally uses A to break the security of pseudorandom
functions with B playing the role of the challenger of FE when interacting with A.

When A makes the challenge message query, B computes the public key and the challenge ciphertext as in
Hybrid2 and then sends them to A. For every function query fj , B picks τi, for i ∈ {0, 1, 2, 3}, at random. It
then submits queries τi, for i ∈ {0, 1, 2, 3} to the PRF oracle it has access to. In return it receives R∗i , for
i ∈ {0, 1, 2, 3}. The reduction B then proceeds as in Hybrid3 to generate the functional key skfj , which it then
sends to A. The output of B is essentially the output of A.

If the values R∗i (for every function query) were the output of a pseudorandom function then we are in
Hybrid2, else we are in Hybrid3. From our hypothesis, this means that B breaks the security of the pseudorandom
function family F with non-negligible probability δ; a contradiction. This proves the lemma.

Proof of Lemma 5. We design a reduction B, that uses A, to break the function privacy property of
OneKey. We then claim that the success probability of B is exactly |Adv3A − Adv4A| which will prove the lemma.
Our reduction B will simulate the challenger of OneKey to the adversary A.

On receiving the challenge message pair query (m0,m1) fromA, B first generates PK = PubFE.PK as described
in Hybrid3. It then computes PubFE.CT∗, again as in Hybrid3. It then computes the message tuple (x1, . . . , xq),
where q is the number of function queries11, as follows. It sets xj to be (OneCTKey.MSK, R∗2, 0) as in Hybrid4. The
reduction B then sends the message pair (xj , xj), for j ∈ [q], to the challenger of OneKey. In return it gets back
OneKey.CTj , for j ∈ [q], which it is going to use later when generating the jth functional key. Once it receives
the challenge ciphertexts from the challenger, the reduction B then constructs two functions H[mb] (Figure 5)
and H∗[mb,m0, v] (Figure 7). Now, B submits the function query (H[mb], H

∗[mb,m0, v]) to the challenger and
then it receives back a functional key OneKey.sk∗H . The reduction B then sends (OneKey.sk∗H ,PubFE.CT

∗) to A.
The functional queries made by A are handled as in Hybrid4 except that the pre-computed values OneKey.CTj ,
for j ∈ [q] (obtained from the OneKey challenger) are used instead of computing them from scratch. Finally, the
output of B is the same as the output of A.

We show that B is a valid adversary in the (selective) security game of OneKey. Firstly, B only makes a
single function query to the challenger. Further, it can be seen that H[mb](xj) = H∗[mb,m0, v](xj), for every
j ∈ [q] – this is because, xj is of the form (∗, ∗, 0) and for inputs of that form, the output of H[mb](xj) and
H∗[mb,m0, v](xj) are the same. Lastly, the challenge message queries are declared by B at the beginning of the
game. This proves that B is a valid adversary in the security game of OneKey.

If the challenger of OneKey sends a functional key of H[mb] then we are in Hybrid3, else if it sends a functional
key of H∗[mb,m0, v] then we are in Hybrid4. This proves our claim that the success probability of B is the same
as |Adv3A − Adv4A|.

11Here we assume that the reduction knows a priori the number of function queries made by A.
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Remark 5. Notice that if we were proving the adaptive security of FE, the above proof goes through while still
only assuming the selective security of OneKey.

Proof of Lemma 6. The proof of this lemma involves more intermediate hybrids and hence we defer this
proof to the Section 6.1.1.

Proof of Lemma 7. This is similar to the proof of Lemma 5. Suppose there exists an adversary A such that
|Adv5A − Adv6A| is non-negligible. We then construct a reduction B, that breaks the function privacy of OneKey
with probability |Adv5A − Adv6A|.

The reduction B on receiving the challenge message pair query (m0,m1) from A, first generates PK =
PubFE.PK as described in Hybrid5. It then computes PubFE.CT∗, again as in Hybrid5. It then computes the mes-
sage tuple (x1, . . . , xq), where q is the number of function queries as follows. It sets xj to be (OneCTKey.MSK, R∗2, 1)
as in Hybrid5. The reduction B then sends the message pair (xj , xj), for j ∈ [q], to the challenger of OneKey. In
return it gets back OneKey.CTj , for j ∈ [q], which it is going to use later when generating the jth functional key.
Once it receives the challenge ciphertexts from the challenger, the reduction B then constructs two functions
H∗[mb,m0, v] and H∗[m0,m0, v]. Now, B submits the function query (H∗[mb,m0, v], H∗[m0,m0, v]) to the chal-
lenger and then it receives back a functional key OneKey.sk∗H . The reduction B then sends (OneKey.sk∗H ,PubFE.CT

∗)
to A. The functional queries made by A are handled as in Hybrid4 except that the pre-computed values
OneKey.CTj , for j ∈ [q] are used instead of computing them from scratch. Finally, the output of B is the
same as the output of A.

As before, we need to show that B is a valid adversary in the (selective) security game of OneKey. Firstly,
B only makes a single function query to the challenger. Further, it can be seen that H∗[mb,m0, v](xj) =
H∗[m0,m0, v](xj), for every j ∈ [q] – this is because, xj is of the form (∗, ∗, 1) and for inputs of that form, the
output of H[mb,m0, v] and H∗[m0,m0, v] are the same. Lastly, all the challenge message queries are made at
the beginning of the game. This proves that B is a valid adversary in the security game of OneKey.

If the challenger of OneKey sends a functional key of H[mb,m0, v] then we are in Hybrid3, else if it sends a
functional key of H∗[m0,m0, v] then we are in Hybrid4. This proves our claim that the success probability of B
is the same as |Adv5A − Adv6A|.
Remark 6. Notice that if we were proving the adaptive security of FE, the above proof goes through while still
only assuming the selective security of OneKey.

6.1.1 Proof of Lemma 6

We now describe a sequence of intermediate hybrids, Hybrid4.η.1, . . . ,Hybrid4,η.4 for every η ∈ [q], where q is the
number of function queries made by the adversary. We also use the notation Hybrid4.q+1.1 to denote Hybrid5.
Our aim is to show the following: for any PPT adversary A, every η ∈ [q],

• |Adv4A − Adv4.1.1A | ≤ negl(λ).

• |Adv4.η.1A − Adv4.η.2A | ≤ negl(λ).

• |Adv4.η.2A − Adv4.η.3A | ≤ negl(λ).

• |Adv4.η.3A − Adv4.η.4A | ≤ negl(λ).

• |Adv4.η.4A − Adv4.η+1.1
A | ≤ negl(λ).

The above bullets then show that |Adv4A − Adv5A| ≤ negl(λ), thus proving Lemma 6.
Before we give the formal hybrids, we first explain the intuition. In both the hybrids Hybrid4 and Hybrid5, the

function H as part of the challenge ciphertext contains two branches with the first branch encrypting message
mb and the second branch encrypting message m0. However in Hybrid4, all the function keys signal the first
branch of H while in Hybrid5, all the function keys signal the second branch of H. So in order to move from
Hybrid4 to Hybrid5, we create a “dummy” third branch. In order to switch a function key from signaling the first
branch to signaling the second branch, we first hardwire the appropriate 1-ciphertext 1-key encryption of mb in
the third branch. At this point, we make the function key to signal the third branch since the first and the third
branches are identical. We next switch this encryption from mb to m0. We now use the fact that the second
and the third branches are identical to switch the function key to signal the second branch instead of the third
branch. We repeat this process for every function query.
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Hybrid4.η.1:

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger draws τ0, τ1, τ2, τ3 at random and sets τη = τ0||τ1||τ2||τ3. Challenger computesR∗i,η, for i ∈ {0, 1, 2, 3},
at random. It computes OneCTKey.MSKη to be the output of OneCTKey.Setup(1λ;R∗0,η). It then com-
putes OneCTKey.skfη to be the output of OneCTKey.KeyGen(OneCTKey.MSKη, fη;R∗1,η). It computes
OneKey.CTη to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSKη, R

∗
2,η, 0);R∗3,η). It sets uη =

(OneCTKey.skfη ,OneKey.CT).

7. Challenger then computes v to be the output of OneCTKey.Enc(OneCTKey.MSKη,mb;R
∗
2,η).

8. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is computed as above, to ob-
tain OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

9. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ , PubFE.CT

∗).

10. Challenger then sends (PK,CT∗) to the adversary.

11. For the jth function query fj made by the adversary, the challenger does the following.

• If j 6= η :

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be
the output of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of
OneCTKey.KeyGen(OneCTKey.MSK, f ;R∗1).

(c) If j < η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK,
R∗2, 1);R∗3). If j > η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3).

(d) It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where u = (OneCTKey.skfj ,
OneKey.CT).

(e) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in
Figure 4, to obtain PubFE.skG.

(f) Challenger sends skfj = PubFE.skG to the adversary.

• If j = η:

(a) Challenger computes CE to be the output of Sym.Enc(Sym.k∗, uη). Challenger executes PubFE.KeyGen(
PubFE.MSK, G[fη, CE , τη], where G[fη, CE , τη] is described in Figure 4, to obtain PubFE.skG.

12. Adversary outputs bit b′ and wins if b′ = b.

Lemma 9. Assuming the selective security of function-private single-key FE scheme OneKey, for any PPT
adversary A, we have |Adv4.1.1A − Adv4A| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |Adv4.η.1A − Adv4A| is non-negligible. We then design
a reduction B that uses A, by simulating the role of the challenger in to break the function-privacy property of
OneKey. We then show that the success probability of B is |Adv4.1.1A − Adv4A|.

The reduction B on receiving the challenge message pair query (m0,m1) from A, first generates PK =
PubFE.PK as described in Hybrid4. It then computes PubFE.CT∗, again as in Hybrid4. It then computes the mes-
sage tuple (x1, . . . , xq), where q is the number of function queries as follows. It sets xj to be (OneCTKey.MSK, R∗2, 0)
as in Hybrid4. The reduction B then sends the message pair (xj , xj), for j ∈ [q], to the challenger of OneKey. In
return it gets back OneKey.CTj , for j ∈ [q], which it is going to use later when generating the jth functional key.
Once it receives the challenge ciphertexts from the challenger, the reduction B then constructs two functions

36



H∗[mb,m0, v
′] and H∗[mb,m0, v

′′] (Figure 7), where v′ is a random string (of appropriate length) while v′′ is
computed to be the OneCTKey encryption of m0 with respect to OneCTKey.MSK1 and randomness R∗2,1; both
of which are associated to the functional query corresponding to 1st function query. B then submits the function
query (H∗[mb,m0, v

′], H∗[mb,m0, v
′′]) to the challenger and then it receives back a functional key OneKey.sk∗H .

The reduction B then sends (OneKey.sk∗H ,PubFE.CT
∗) to A.

The functional queries made byA are handled as in Hybrid4.1.1 except that the pre-computed values OneKey.CTj ,
for j ∈ [q], are used (obtained from the OneKey challenger) instead of computing them from scratch. Finally,
the output of B is the same as the output of A.

We need to show that B is a valid adversary in the (selective) security game of OneKey. Firstly, B only makes
a single function query to the challenger. Further, it can be seen that H∗[mb,m0, v

′](xj) = H∗[mb,m0, v
′′](xj),

for every j ∈ [q] – this is because, xj is of the form (∗, ∗, 0) and for inputs of that form, the output of H[mb,m0, v
′]

and H∗[mb,m0, v
′′] are the same. Lastly, all the challenge message queries are made at the beginning of the

game. This proves that B is a valid adversary in the security game of OneKey.
If the challenger of OneKey sends a functional key of H[mb,m0, v

′] then we are in Hybrid4, else if it sends a
functional key of H∗[mb,m0, v

′′] then we are in Hybrid4.1.1. This proves our claim that the success probability
of B is the same as |Adv4.1.1A − Adv4A|.

Remark 7. Notice that if we were only proving the adaptive security of FE, the above proof goes through even
if we were only assuming the selective security of OneKey.

Hybrid4.η.2:

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger draws τ0, τ1, τ2, τ3 at random and sets τη = τ0||τ1||τ2||τ3. Challenger computes R∗i,η, for i ∈
{0, 1, 2, 3}, at random. It computes OneCTKey.MSKη to be the output of OneCTKey.Setup(1λ;R∗0,η). It then
computes OneCTKey.skfη to be the output of OneCTKey.KeyGen(OneCTKey.MSKη, fη;R∗1,η). It computes
OneKey.CTη to be the output of OneKey.Enc(OneKey.MSK∗, (0, 0, 2);R∗3,η). It sets uη = (OneCTKey.skfη ,

OneKey.CT).

7. Challenger then computes v to be the output of OneCTKey.Enc(OneCTKey.MSKη,m0;R∗2,η).

8. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is computed as above, to ob-
tain OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

9. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ , PubFE.CT

∗).

10. Challenger then sends (PK,CT∗) to the adversary.

11. For the jth function query fj made by the adversary, the challenger does the following.

• If j 6= η:

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be
the output of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of
OneCTKey.KeyGen(OneCTKey.MSK, f ;R∗1).

(c) If j < η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK,
R∗2, 1);R∗3). If j > η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3).

(d) It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where u = (OneCTKey.skfj ,
OneKey.CT).
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(e) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in
Figure 4, to obtain PubFE.skG.

(f) Challenger sends skfj = PubFE.skG to the adversary.

• If j = η:

(a) Challenger computes CE to be the output of Sym.Enc(Sym.k∗, uη). Challenger executes PubFE.KeyGen(
PubFE.MSK, G[fη, CE , τη], where G[fη, CE , τη] is described in Figure 4, to obtain PubFE.skG.

12. Adversary outputs bit b′ and wins if b′ = b.

Lemma 10. Assuming the selective security of function-private single-key functional encryption scheme OneKey,
for any PPT adversary A, we have |Adv4.η.2A − Adv4.η.1A | ≤ negl(λ).

Proof. Assume that there exists a PPT adversary A such that |Adv4.η.2A − Adv4.η.1A | is non-negligible. We then
construct a reduction B that breaks the security of the single-key FE scheme. The reduction B simulates the
role of the challenger of OneKey when interacting with A.

The reduction B on receiving the challenge message pair query (m0,m1) from A, first generates PK =
PubFE.PK after which it computes PubFE.CT∗. These are generated as in Hybrid4.η.1. It then computes the mes-
sage tuple (x1, . . . , xq), where q is the number of function queries as follows. It sets xj to be (OneCTKey.MSKj , R

∗
2,j , 1),

for all j < η and it sets xj to be (OneCTKey.MSKj , R
∗
2,j , 0), for all j > η, where OneCTKey.MSKj is as described

in Hybrid4.η.1. It then sets x0η to be (OneCTKey.MSKη, R
∗
2,η, 0) and it sets x1η to be (0, 0, 2). The reduction B

then sends the message pair (xj , xj), for j 6= η, and (x0η, x
1
η) to the challenger of OneKey. In return it gets back

OneKey.CTj , for j ∈ [q], which it is going to use later when generating the jth functional key. Once it receives
the challenge ciphertexts from the challenger, the reduction B then constructs the function H∗[mb,m0, v], which
is as computed in Hybrid4.η.1. B then submits the function query (H∗[mb,m0, v], H∗[mb,m0, v]) to the challenger
and then it receives back a functional key OneKey.sk∗H . The reduction B then sends (OneKey.sk∗H ,PubFE.CT

∗)
to A.

The functional queries made by A are handled as in Hybrid4.η.1. Finally, the output of B is the same as the
output of A.

We need to show that B is a valid adversary in the (selective) security game of OneKey. Firstly, B only makes
a single function query to the challenger. Further, it can be seen that H∗[mb,m0, v](x0η) = H∗[mb,m0, v](x1η),
for every j ∈ [q]. Lastly, the challenge message query is made at the beginning of the game. This proves that
OneKey is a valid adversary.

If the challenger of OneKey uses the message x0η to compute the ηth ciphertext then we are in Hybrid4.η.1, else
if uses the message x1η then we are in Hybrid4.η.2. This proves our claim that the success probability of B is the

same as |Adv4.η.2A − Adv4.η.1A |.

Remark 8. Notice that if we were proving the adaptive security of FE, the above proof goes through while still
only assuming the selective security of OneKey.

Remark 9. The hybrids Hybrid4.η.1 and Hybrid4.η.2 could be merged into one hybrid, but for simplicity of expo-
sition and to avoid introducing many changes in one hybrid, we choose to not to do so.

Hybrid4.η.3:

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.

6. Challenger draws τ0, τ1, τ2, τ3 at random and sets τη = τ0||τ1||τ2||τ3. Challenger computes R∗i,η, for i ∈
{0, 1, 2, 3}, at random. It computes OneCTKey.MSKη to be the output of OneCTKey.Setup(1λ;R∗0,η). It then
computes OneCTKey.skfη to be the output of OneCTKey.KeyGen(OneCTKey.MSKη, fη;R∗1,η). It computes
OneKey.CTη to be the output of OneKey.Enc(OneKey.MSK∗, (0, 0, 2);R∗3). It sets uη = (OneCTKey.skfη ,
OneKey.CT).
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7. Challenger then computes v to be the output of OneCTKey.Enc(OneCTKey.MSKη,m0;R∗2,η).

8. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is computed as above, to ob-
tain OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

9. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ ,PubFE.CT

∗).

10. Challenger then sends (PK,CT∗) to the adversary.

11. For the jth function query fj made by the adversary, the challenger does the following.

• If j 6= η:

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be
the output of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of
OneCTKey.KeyGen(OneCTKey.MSK, f ; R∗1).

(c) If j < η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK,
R∗2, 1);R∗3). If j > η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3).

(d) It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where u = (OneCTKey.skfj ,
OneKey.CT).

(e) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in
Figure 4, to obtain PubFE.skG.

(f) Challenger sends skfj = PubFE.skG to the adversary.

• If j = η:

(a) Challenger computes CE to be the output of Sym.Enc(Sym.k∗, uη). Challenger executes PubFE.KeyGen(
PubFE.MSK, G[fη, CE , τη], where G[fη, CE , τη] is described in Figure 4, to obtain PubFE.skG.

12. Adversary outputs bit b′ and wins if b′ = b.

Lemma 11. Assuming the selective security of single-key single-ciphertext FE scheme OneCTKey, for any PPT
adversary A, we have |Adv4.η.3A − Adv4.η.2A | ≤ negl(λ).

Proof. We construct a reduction B that internally uses A to break the security of OneCTKey. We further show
that the success probability of B is the same as |Adv4.η.3A − Adv4.η.2A |.

The reduction B receives the challenge message query (m0,m1) from A. It then forwards this to the challenger
of OneCTKey selective security game. In return it gets the ciphertext OneCTKey.CT∗ which it denotes it by v. B
then proceeds as in the challenger of Hybrid4.η.3 to generate the challenge ciphertext and then to answer function
key queries. While generating the challenge ciphertext, B hardwires v into the function H[mb,m0, v].

Now, if the challenger sends an encryption of mb then we are in Hybrid4.η.2 and if the challenger sends an
encryption of m0 then we are in Hybrid4.η.3. This proves our claim.

Remark 10. Observe that the above proof can be adapted to argue the adaptive security of FE by assuming the
existence of adaptively secure single-key single-ciphertext FE scheme.

Hybrid4.η.4:

1. Adversary sends (m0,m1) to the challenger.

2. Challenger chooses bit b ∈ {0, 1} at random.

3. Challenger executes PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). It then sets (MSK = PubFE.MSK,
PK = PubFE.PK).

4. Challenger executes Sym.Setup(1λ) to obtain Sym.k∗.

5. Challenger chooses a PRF key K∗ at random. Challenger executes OneKey.Setup(1λ) to obtain OneKey.MSK∗.
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6. Challenger draws τ0, τ1, τ2, τ3 at random and sets τη = τ0||τ1||τ2||τ3. Challenger computes R∗i,η, for i ∈
{0, 1, 2, 3}, at random. It computes OneCTKey.MSKη to be the output of OneCTKey.Setup(1λ;R∗0,η). It then
computes OneCTKey.skfη to be the output of OneCTKey.KeyGen(OneCTKey.MSKη, fη;R∗1,η). It computes
OneKey.CTη to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSKη, R

∗
2,η, 1);R∗3,η). It sets uη =

(OneCTKey.skfη ,OneKey.CT).

7. Challenger then computes v to be the output of OneCTKey.Enc(OneCTKey.MSKη,m1;R∗2,η).

8. Challenger executes OneKey.KeyGen(OneKey.MSK∗, H∗[mb,m0, v]), where v is computed as above, to ob-
tain OneKey.sk∗H∗ , where H∗ is defined in Figure 7.

9. Challenger executes PubFE.Enc(PubFE.PK, (⊥,⊥,Sym.k∗, 1)) to obtain PubFE.CT∗. It then sets CT∗ = (
OneKey.sk∗H∗ ,PubFE.CT

∗).

10. Challenger then sends (PK,CT∗) to the adversary.

11. For the jth function query fj made by the adversary, the challenger does the following.

• If j 6= η:

(a) Challenger draws τ0, τ1, τ2, τ3 at random. It sets τj to be (τ0||τ1||τ2||τ3).

(b) Challenger computes R∗i , for i ∈ {0, 1, 2, 3}, at random. It computes OneCTKey.MSK to be
the output of OneCTKey.Setup(1λ;R∗0). It then computes OneCTKey.skf to be the output of
OneCTKey.KeyGen( OneCTKey.MSK, f ;R∗1).

(c) If j < η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (OneCTKey.MSK,
R∗2, 1);R∗3). If j > η, it computes OneKey.CT to be the output of OneKey.Enc(OneKey.MSK∗, (
OneCTKey.MSK, R∗2, 0);R∗3).

(d) It then computes CE to be the output of Sym.Enc(Sym.k∗, u), where u = (OneCTKey.skfj ,
OneKey.CT).

(e) Challenger executes PubFE.KeyGen(PubFE.MSK, G[fj , CE , τj ], where G[fj , CE , τj ] is described in
Figure 4, to obtain PubFE.skG.

(f) Challenger sends skfj = PubFE.skG to the adversary.

• If j = η:

(a) Challenger computes CE to be the output of Sym.Enc(Sym.k∗, uη). Challenger executes PubFE.KeyGen(
PubFE.MSK, G[fη, CE , τη], where G[fη, CE , τη] is described in Figure 4, to obtain PubFE.skG.

12. Adversary outputs bit b′ and wins if b′ = b.

Lemma 12. Assuming the selective security of function-private single-key FE scheme OneKey, for any PPT
adversary A, we have |Adv4.η.3A − Adv4.η.4A | ≤ negl(λ).

This is similar to the proof of the Lemma 9. Here, we will use the indistinguishability of ciphertexts to prove
the above lemma.

Lemma 13. Assuming the selective security of function-private single-key FE scheme OneKey, for any PPT
adversary A, we have |Adv4.η.4A − Adv4.η+1.1

A | ≤ negl(λ).

This is similar to the proof of the Lemma 10. Here, we will use indistinguishability of function keys to prove the
above lemma.
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A Tools Used in [KLW15]

We recall the tools used in the work of Koppula et al. [KLW15]. The three main tools used in the work of KLW
are positional accumulators, iterators and splittable signatures. Positional accumulators can be thought of as a
small piece of storage that be used to information-theoretically validate any part of a huge block of memory. An
iterator consists of a state that is updated in an iterative fashion as messages are received which is performed
using some public parameters. The last tool that we borrow from KLW is the notion of splittable signatures. A
splittable signature scheme is just like the standard notion of the signature scheme except that it is equipped
with some additional algorithms that produce alternative signing and verification keys with different capabilities.
More precisely, there will be “all but one” keys that work correctly except for a single message m∗, and there
will be ”one” keys that work only for m∗. Furthermore, there also will be a rejection verification key that always
output reject no matter what the input signature is.

We now describe the syntax of the tools below.

A.1 Positional Accumulators

The notion of positional accumulators is defined below. This is similar in spirit to the notion of statistically
binding hash conceived by [HW15]. A positional accumulator for message space Msgλ consists of the following
algorithms.

SetupAcc(1λ, T )→ PPAcc, w0, store0 The setup algorithm takes as input a security parameter λ in unary and
an integer T in binary representing the maximum number of values that can stored. It outputs public
parameters PPAcc, an initial accumulator value w0, and an initial storage value store0.

EnforceRead(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk), INDEX∗)→ PPAcc, w0, store0 The setup enforce read al-
gorithm takes as input a security parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and a sequence of symbol, index pairs, where each index is between 0
and T − 1, and an additional INDEX∗ also between 0 and T − 1. It outputs public parameters PPAcc, an
initial accumulator value w0, and an initial storage value store0.

EnforceWrite(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk))→ PPAcc, w0, store0 The setup enforce write algorithm
takes as input a security parameter λ in unary, an integer T in binary representing the maximum number
of values that can be stored, and a sequence of symbol, index pairs, where each index is between 0 and
T − 1. It outputs public parameters PPAcc, an initial accumulator value w0, and an initial storage value
store0.

PrepRead(PPAcc, storein, INDEX)→ m,π The prep-read algorithm takes as input the public parameters PPAcc,
a storage value storein, and an index between 0 and T − 1. It outputs a symbol m (that can be ε) and a
value π.

PrepWrite(PPAcc, storein, INDEX)→ aux The prep-write algorithm takes as input the public parameters PPAcc,
a storage value storein, and an index between 0 and T − 1. It outputs an auxiliary value aux.

VerifyRead(PPAcc, win,mread, INDEX, π)→ {True, False} The verify-read algorithm takes as input the public
parameters PPAcc, an accumulator value win, a symbol, mread, an index between 0 and T − 1, and a value
π. It outputs True or False.

WriteStore(PPAcc, storein, INDEX,m)→ storeout The write-store algorithm takes in the public parameters, a
storage value storein, an index between 0 and T − 1, and a symbol m. It outputs a storage value storeout.
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Update(PPAcc, win,mwrite, INDEX, aux)→ wout or Reject The update algorithm takes in the public parame-
ters PPAcc, an accumulator value win, a symbol mwrite, and index between 0 and T − 1, and an auxiliary
value aux. It outputs an accumulator value wout or Reject.

Correctness. We consider any sequence (m1, INDEX1), . . . , (mk, INDEXk) of symbols m1, . . . ,mk and in-
dices INDEX1, . . . , INDEXk each between 0 and T − 1. We fix any PPAcc, w0, store0 ← SetupAcc(1λ, T ). For j
from 1 to k, we define storej iteratively as storej := WriteStore(PPAcc, storej−1, INDEXj ,mj). We similarly de-
fine auxj and wj iteratively as auxj := PrepWrite(PPAcc, storej−1, INDEXj) and wj := Update(PPAcc, wj−1,mj ,
INDEXj , auxj). Note that the algorithms other than SetupAcc are deterministic, so these definitions fix precise
values, not random values (conditioned on the fixed starting values PPAcc, w0, store0).

KLW then define various security properties for the above accumulator scheme that – we will not go into its
details and we refer the interested reader to their work. A construction of positional accumulators based on iO,
puncturable PRFs, and public key encryption was constructed in the same work.

A.2 Iterators

In this subsection, we now describe the notion of cryptographic iterators. As remarked earlier, iterators essentially
consist of states that are updated on the basis of the messages received. We describe its syntax below.

Syntax Let ` be any polynomial. An iterator PPItr with message space Msgλ = {0, 1}`(λ) and state space
SplSchemeλ consists of three algorithms - SetupItr, ItrEnforce and Iterate defined below.

SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary), and an integer bound
T (in binary) on the number of iterations. It outputs public parameters PPItr and an initial state v0 ∈
SplSchemeλ.

ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security parameter λ (in
unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where each mi ∈ {0, 1}`(λ) and k is
some polynomial in λ. It outputs public parameters PPItr and a state v0 ∈ SplScheme.

Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters PPItr, a state vin, and a message
m ∈ {0, 1}`(λ). It outputs a state vout ∈ SplSchemeλ.

For simplicity of notation, the dependence of ` on λ will not be explicitly mentioned. Also, for any integer
k ≤ T , we will use the notation Iteratek(PPItr, v0, (m1, . . . ,mk)) to denote Iterate(PPItr, vk−1,mk), where vj =
Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.
KLW defined the security notions of indistinguishability of Setup and (Information-theoretic) enforcing proper-
ties. They further gave a construction of iterators based on indistinguishability obfuscation, puncturable PRFs
and the existence of public-key encryption schemes.

A.3 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.

Syntax A splittable signature scheme SplScheme for message space Msg consists of the following algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input the security parameter λ and
outputs a signing key SK, a verification key VK and reject-verification key VKrej.

SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing key SK and a
message m ∈ Msg. It outputs a signature σ.

VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input a verification key
VK, signature σ and a message m. It outputs either 0 or 1.

SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK and a message m∗ ∈
Msg. It outputs a signature σone = SignSpl(SK,m∗), a one-message verification key VKone, an all-but-one
signing key SKabo and an all-but-one verification key VKabo.
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SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an all-but-one signing
key SKabo and a message m, and outputs a signature σ.

Correctness Letm∗ ∈ Msg be any message. Let (SK,VK,VKrej)← SetupSpl(1λ) and (σone,VKone,SKabo,VKabo)←
SplitSpl(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈ Msg, VerSpl(VK,m,SignSpl(SK,m)) = 1.

2. For all m ∈ Msg,m 6= m∗, SignSpl(SK,m) = SignSplAbo(SKabo,m).

3. For all σ, VerSpl(VKone,m
∗, σ) = VerSpl(VK,m∗, σ).

4. For all m 6= m∗ and σ, VerSpl(VK,m, σ) = VerSpl(VKabo,m, σ).

5. For all m 6= m∗ and σ, VerSpl(VKone,m, σ) = 0.

6. For all σ, VerSpl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈ Msg, VerSpl(VKrej,m, σ) = 0.

KLW described various security notions corresponding to the above splittable signatures scheme. We describe
only one of the properties that will be useful for this work. This security notion is termed as VKone indistin-
guishability and states that given a signature on a message m, an adversary should not be able to distinguish
the verification key VK from the split verification key VKone, that is computed as a result of applying SplitSpl on
the signing key and message m.

B Preliminaries (cont’d)

B.1 Standard Notions

Pseudorandom functions. One of the tools that we use in our work are pseudorandom function families.
The security property of a pseudorandom function family states that any PPT adversary can distinguish only
with negligible probability a function sampled at random from this family from a random function.

Definition 7. A function family F =
{
PRFK : {0, 1}n → {0, 1}m : K

$←− K
}

, is a pseudorandom function
family with K being the space of PRF keys12, if the following holds for every security parameter λ ∈ N, every
PPT adversary A:∣∣∣Prob[1← AO(0)(PRFK(·))(1λ) : K

$←− K
]
− Prob

[
1← AO(1)(·)(1λ)

]∣∣∣ ≤ negl(λ),

where the oracle O(b) takes as input x and outputs PRFK(x) if b = 0 else if b = 1 it outputs r, where r is picked
at random from {0, 1}m.

Pseudorandom functions can be constructed from one-way functions [GGM86, HILL99].
We say that the pseudorandom function family F, defined above, is implementable in NC1 if every function

in F can be implemented by a circuit of depth c · log(n), for some constant c. We also consider a weakening of
the above security notion where the oracle is queried at random points instead of the points being adversarially
chosen as defined above. This security notion is termed as weak pseudorandom functions.

Symmetric encryption schemes with pseudorandom ciphertexts. Another tool that we use in
our transformation is a symmetric encryption scheme. A symmetric encryption scheme consists of a tuple of
PPT algorithms (Sym.Setup,Sym.Enc,Sym.Dec). The algorithm Sym.Setup, takes as input a security parameter
λ in unary and outputs a key KE . The encryption algorithm takes as input (KE ,m), where KE is the symmetric
key, m is the message to be encrypted and the output is a ciphertext CT. The decryption algorithm takes as
input (KE ,CT), where CT is the ciphertext and the output is the message m, contained in the ciphertext.

For this work, we require a symmetric encryption scheme where ciphertexts produced by Sym.Enc are pseu-
dorandom strings. More formally, we design a game, parametrized by a PPT adversary that has access to an

12We abuse the notation and interchangeably denote the PRF keyspace to be a set as well as a sampling procedure that produces
PRF keys from this set.
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encryption oracle, Ob
(
Sym.Enc(Sym.k, ·)

)
, parameterized by bit b. The oracle takes as input a message m and

outputs CT = Sym.Enc(Sym.k,m) if b = 0, else if b = 1 it returns a random string s ∈ {0, 1}`, where ` = |CT|.
The adversary wins in this game if the output of adversary is b′ = b. The success probability of the adversary is
defined to be |Prob[b′ = b] − 1

2 |. We say that the scheme is secure if the success probability of the adversary is
negligible.

We note that such a symmetric encryption scheme can be constructed from one-way functions, e.g. using
weak pseudorandom functions by defining Sym.Enc(K,m; r) = (r,PRFK(r)⊕m), see [Gol09] for details.

B.2 Turing machines

We now briefly recall the definition of Turing machines13. A Turing machine is a 7-tupleM = 〈Q,Σtape,Σinp, δ, q0, qacc, qrej〉
where Q and Σtape are finite sets with the following properties:

- Q is the set of finite states.

- Σinp is the set of input symbols.

- Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is a special blank symbol
‘ ’ ∈ Σtape \ Σinp.

- δ : Q× Σtape → Q× Σtape × {+1,−1} is the transition function.

- q0 ∈ Q is the start state.

- qacc ∈ Q is the accept state.

- qrej ∈ Q is the reject state, where qacc 6= qrej.

For any i ≤ T , we define the following variables:

- MT
tape,i ∈ ΣTtape : A T dimensional vector which gives the description of tape before ith step.

- MT
pos,i : An integer which describes the position of Turing machine header before ith step.

- MT
state,i ∈ Q : This denotes the state of the Turing machine before step i.

Initially, MT
tape,1 = ( )T , MT

pos,1 = 0 and MT
state,1 = q0. At each time step, the Turing machine reads the tape

at the head position and based on the current state, computes what needs to be written on the tape, the next
state and whether the header must move left or right. More formally, let (q, α, β) = δ(MT

state,i,M
T
tape,i[M

T
pos,i]).

Then, MT
tape,i+1[MT

pos,i] = α, MT
pos,i+1 = MT

pos,i + β and MT
state,i+1 = q. M accepts at time t if MT

state,t+1 = qacc.

Given any Turing machine M and time bound T , let ΠT
M = 1 if M accepts within T steps, else ΠT

M = 0.

Notation. We denote by timeTM(M,x), the time taken by a Turing machine M to evaluate on input x. We
adopt the convention that the Turing machine also outputs, in addition, the time taken to execute. Thus, if we
have two inputs x and y, a Turing machine M , then if M(x) = M(y), by this notation, means that not only does
M on x output the same value as M on y but also that the running time of M on both x and y are the same.

B.3 Private Key FE for TMs

We can define the notion of private key FE for Turing machines analogous to the public key setting.
A private key functional encryption (FE) scheme PubFE, defined for a class of Turing machines F and message

spaceM, is represented by four PPT algorithms, namely (PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec)
whose descriptions are given below.

• PrivFE.Setup(1λ): It takes as input a security parameter λ in unary and outputs a secret key PrivFE.MSK.

• PrivFE.KeyGen(PrivFE.MSK, f ∈ F): It takes as input a secret key PrivFE.MSK, a Turing machine f ∈ F ,
and outputs a functional key PrivFE.skf .

• PrivFE.Enc(PrivFE.MSK,m ∈ M): It takes as input a secret key PrivFE.MSK, a message m ∈ M and
outputs an encryption of m.

• PrivFE.Dec(PrivFE.skf ,CT): It takes as input a functional key PrivFE.skf , a ciphertext CT and outputs m̂.

13This part is taken verbatim from [KLW15]
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As in the public key setting, we can analogously define the efficiency property, in addition to the correctness
and the security property. We define the properties below.

Correctness. The correctness notion of a FE scheme dictates that there exists a negligible function negl(λ)
such that for all sufficiently large λ ∈ N, for every message m ∈M, and for every Turing machine f ∈ F it holds
that Pr[f(m) ← PrivFE.Dec(PrivFE.KeyGen(PrivFE.MSK, f), PrivFE.Enc(PrivFE.MSK,m))] ≥ 1 − negl(λ), where
PrivFE.MSK← PrivFE.Setup(1λ), and the probability is taken over the random choices of all algorithms.

Efficiency. The efficiency property of a private-key FE scheme says that the algorithm PrivFE.Setup(1λ)
should run in time polynomial in λ, PrivFE.KeyGen on input the Turing machine f (along with master secret
key) should run in time polynomial in (λ, |f |), PrivFE.Enc on input a message m (along with the master secret
key) should run in time polynomial in (λ, |m|). Finally, PrivFE.Dec on input a functional key of f and an
encryption of m should run in time polynomial in (λ, |f |, |m|, timeTM(f,m))).

Security. We give the security definition below.

Definition 8. A private-key functional encryption scheme PubFE = (PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc,
PrivFE.Dec) over a class of Turing machines F and a message space M is adaptively secure if for any PPT
adversary A there exists a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A
is defined to be

AdvPubFEA =
∣∣∣Prob[ExptPubFEA (1λ, 0) = 1]− Prob[ExptPubFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPubFEA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes PrivFE.Setup(1λ) to obtain PrivFE.MSK. The adversary makes the following
message queries and function queries in no arbitrary order.

• Message queries: The adversary submits a message-pair (m0,m1) to the challenger. The challenger
generates CT = PrivFE.Enc(PrivFE.MSK,mb). If f(m0) = f(m1) for all Turing machine queries f
made so far, the challenger sends CT to the adversary. Otherwise, it aborts.

• Turing machine queries: The adversary submits a Turing machine query f to the challenger. The
challenger generates PrivFE.skf , where PrivFE.skf is the output of PrivFE.KeyGen(PrivFE.MSK, f). If
f(m0) = f(m1), for all message-pair queries (m0,m1) made so far, the challenger sends PrivFE.skf
to the adversary. Otherwise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

We define the scheme to be selectively secure if the adversary has to declare all the challenge message pairs at
the beginning of the game.
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