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Abstract. Arithmetic Walsh transform(AWT) of Boolean function caugh-
t our attention due to their arithmetic analogs of Walsh-Hadamard trans-
form(WHT) recently. We present new results on AWT in this paper.
Firstly we characterize the existence of linear structure of Boolean func-
tions in terms of AWT. Secondly we show that the relation between
AWT and WHT of a balanced Boolean function with a linear structure
1n is sectionally linear. Carlet and Klapper’s recent work showed that
the AWT of a diagonal Boolean function can be expressed in terms of
the AWT of a diagonal Boolean function of algebraic degree at most 3
in a larger number of variables.However their proof is right only when c
has even weight.We complement their proof by considering the case of c
with odd weight.
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1 Introduction

In conventional cryptograpic systems, Boolean functions play an impor-
tant role. Cryptographic transformations (pseudo-random generators in
stream ciphers, S-boxes in block ciphers) are designed by appropriate
composition of nonlinear Boolean functions [1]. To resist the known at-
tacks, Boolean functions with cryptographic applications should satis-
fy a variety of criteria simultaneously. These are balancedness, nonlin-
earity, correlation immunity, algebraic degree, algebraic immunity etc
[2]. The trade-off among these criteria have gotten many researches in
Boolean function literature for a long time. The Walsh-Hadamard trans-
form (WHT), which measure the proximity of a Boolean function to a
cryptographically simple Boolean function [3], are often used to research
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on cryptographic properties of Boolean functions. In recent years, Klapper
and Goresky defined an arithmetic or ”with carry” analog of the WHT,
known as the arithmetic Walsh transform (AWT) [4, 5]. It is a new one of
with-carry analogs of without-carry phenomena, which have been studied
for a long time, such as feedback with-carry shift registers, p-adic com-
plexity [6]. Basic definitions of AWT were showed and the AWT of affine
functions was determined in [4, 5]. Later the AWT of quadratic functions
was determined in [7]. Carlet and Klapper generalized the classical Pois-
son summation formula to the AWT in [8]. The generalization maybe
allow similar properties in the framework of addition with carry to be
proved in the future. It was also showed that the AWT of a large class
of Boolean functions(defined as diagonal function) can be expressed in
terms of the AWT of a Boolean function of algebraic degree at most 3 in
a larger number of variables in [8]. However the fact that they only proved
the result for c with even weight makes this proof to be incomplete. The
proof will be complemented in this paper.
Linear structure of Boolean functions has been investigated for their
cryptanalytic significance [9–13]. Since the existence of linear structures
of Boolean function is a weakness for block ciphers [10] and stream cipher-
s [14], the linear structure feature is an important criterion to measure
cryptographic properties of a Boolean function in cryptographic applica-
tions. The WHT can give a characterization of linear structure of Boolean
functions. Dubuc characterized the existence of linear structure by means
of the WHT of Boolean function in [12].
In this paper we contribute some interesting results on the AWT of
Boolean functions with linear structure. The remainder of the paper is
organized as follows. In Sect.2, notations in this paper are listed, and
some preliminaries about the n-variable Boolean functions, linear struc-
ture, the definition of AWT are reviewed. In Sect.3, the characterization
of Boolean functions with linear structure by means of AHT is presented.
In Sect.4, the linear relations of AWT and WHT of the balanced Boolean
functions with 1n complementary or invariant linear structure are estab-
lished. In Sect.5, we complement Carlet and Klapper’s proof in [8]. Sect.6
concludes the paper.
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2 Preliminaries

2.1 Notations in this paper

In this paper we use the notations listed in table 1. Major of these nota-
tions are as same as used in [8].

Table 1. notations in this paper

notation meaning

f a Boolean function on Fn
2

Vn the set of n dimensional Boolean vectors
Bn the set of n-variable Boolean functions
supp(f) the support of f
supp(f) the set of x such that f(x) = 0
wt(f) the weight of f
W (f)(ω) the Walsh-Hadamard coefficient of f at ω
WA(f)(ω) the arithmetic Walsh coefficient of f at ω
Rn the set of all Boolean functions on Nn

f the extension of f to Nn

Dx the diagonal {x+ i · 1n : i = 0, 1, 2 . . .}
f̄(x) the 2-adic number associated with values of f on diagonal Dx

Z(f) the imbalance of an eventually periodic f

2.2 Boolean functions

A Boolean function on n variables is a mapping from Fn
2 into F2, for

some positive integer n. Here F2 = {0, 1} is the field with 2 elements.
Let Bn denote the set of n-variable Boolean functions and Vn denote the
set of n dimensional Boolean vectors. The support of a Boolean function
is defined as supp(f) = {(x1, x2 . . . xn)|f(x1, x2 . . . xn) = 1}. The weight
of a function f ∈ Bn is wt(f) = |supp(f)|. A function is balanced if
wt(f) = 2n−1. Any f ∈ B can be uniquely represented as a multivariate
polynomial over F2 called the algebraic normal form (ANF),

f(x1, x2 . . . xn) = a0⊕
∑

1≤i≤j≤n

aixi⊕
∑

1≤i≤j≤n

ai,jxixj⊕. . .+a1,2...nx1x2 . . . xn

where the coefficients a0, ai, aj , . . . a1,2...n ∈ {0, 1}. The algebraic degree
deg(f) is the number of variables in the highest order term with non-zero
coefficient.
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Let x = (x1, x2 . . . xn) and ω = (ω1, ω2 . . . ωn) both belong to Vn, and [x]2
denote reduction of an integer x. Let x ·ω = x1 ·ω1 ⊕ . . .⊕ xn ·ωn denote
F2-inner product. The Walsh-hadamard transform of f(x) is an integer
valued function over Vn which is defined as

Wf (ω) =
∑
x∈Vn

(−1)f(x)⊕[x·ω]2

The Walsh spectrum of f is the set {Wf (ω)|ω ∈ Vn}.
Let α be a vector in Vn. If a Boolean function f such that f(x)⊕f(x+α) =
c where c ∈ {0, 1} for all x ∈ Vn , then α is a linear structure of f . α is
a complementary linear structure of f if c = 1. α is an invariant linear
structure of f if c = 0.
Concerning a function f ∈ Bn with a linear structure, the following suf-
ficient and necessary conditions are presented in [12].

Proposition 1 [12] α is an invariant linear structure of f if and only if
W (f)(ω) = 0 for all ω /∈ α⊥. α is a complementary linear structure of f
if and only if W (f)(ω) = 0 for all ω ∈ α⊥.

2.3 Arithmetic Walsh transform

For self-completeness, we give the definition of AWT in this section.
Let N = {0, 1, 2 . . .} denote the natural numbers including 0. Any f ∈ Bn

can be extended to a mapping f : Nn → F2 by setting

f(x1, x2, ...xn) = f(x1 mod 2, x2 mod 2, ...xn mod 2)

We call f the extension of f . Let denote by Rn the set of all Boolean
functions f : Nn → F2. The extension f of f is 2-periodic function in Rn,
since f(x + 2a) = f(x) for any a ∈ Nn. By setting f(x1, x2, ...xn) =
f(x1,x2,...xn), we identify an element f ∈ Rn with a multi 2-adic integer
whose formal expression is∑

x=(x1,x2, ... ,xn)∈Nn

fxt1
x1t2

x2 ... tn
xn

The addition and Multiplication of Rn were defined similarly with the 2-
adic integers[5, 6, 16]. However when the coefficient of tx = t1

x1t2
x2 ... tn

xn

is 2 , one carry is induce to the tx+1n . The addition and Multiplication
were as follows: ∑

x∈Nn

fxt
x +

∑
x∈Nn

gxt
x =

∑
x∈Nn

hxt
x
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if there are carry integers {dx|x ∈ Nn}, such that {dx} = 0 if any compo-
nent of x is 0, and for all x ∈ Nn we have fx + gx + dx = hx + 2dx+1n .∑

x∈Nn

fxt
x ·

∑
x∈Nn

gxt
x =

∑
x∈Nn

hxt
x

if there are carry integers {dx|x ∈ Nn}, such that {dx} = 0 if any compo-
nent of x is 0, and for all x ∈ Nn we have

∑
x+y=z

fxgy + dz = hz + 2dz+1n .

LetSn = Z[[t1, t2, ... , tn]]/(t1t2 ... tn − 2) which is isomorphic to the
ring Rn. The sum of terms of a Boolean function f ∈ Rn in the diagonal
Dx = {x+ i · 1n : i = 0, 1, 2 · ··} defines a 2-adic integer:

f̄(x) =

∞∑
i=0

f(x+ i · 1n)(t1...tn)i

=

∞∑
i=0

f(x+ i · 1n)2i (1)

There is a one to one correspondence between Boolean functions f ∈ Rn

and functions f̄ : H → Z2 where

H = {(x1, x2, ... , xn) ∈ Nn : some i = 0}.

Suppose that α = p/q is an arbitrary rational number. It is known that
the 2-adic expansion for α is eventually periodic. The sum and difference
of k-periodic numbers are eventually periodic. Based on the definition 1

in [5], it is clear that if f =
∞∑
i=0

fi2
i and g =

∞∑
i=0

gi2
i are 2-adic numbers

with 2-periodic coefficient, the coefficients of index 2 of −f, f − g, f + g,
are eventually periodic.
If f is 2-peoriodic , then equation (1) can be expressed by

f̄(x) =

∞∑
i=0

f(x+ i · 1n)2i

= f(x) + f(x+ 1n)2 + f(x)22 + f(x+ 1n)23 + . . .

= −f(x) + 2f(x+ 1n)

3

Definition 1 Let f∈ Rn be eventually p-periodic. The imbalance of f is

Z(f) =
∑
x∈Nn

(−1)f(x)

where the sum is extended over one complete period of f .
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Definition 2 The arithmetic Walsh transform of an eventually periodic
f∈ Rn is the real valued function WA(f) :Vn → R defined by WA(f)(ω) =
Z(f − lω). If f is a Boolean function on Vn, then the arithmetic Walsh
transform of f is the arithmetic Walsh transform of the extension f of
f , WA(f)(ω)= WA(f)(ω). The list of values of

⟨
· · · ,WA(f)(ω), · · ·

⟩
, ω ∈

Vn is the arithmetic Walsh spectrum of f , and each WA(f)(w) is an
arithmetic Walsh coefficient.

Let Un = {x ∈ Fn
2 : x1 = 0}. The imbalance of an eventually periodic

function f is the sum of the imbalances of the restrictions of f to the
diagonals Dx with x ∈ Un.

Z(f) =
∑
x∈Un

Z(f̄(x))

Now let lω = [x ·ω]2 be a linear function for ω ∈ Vn, and let lω denote the
extension of lω. Using Lagrange interpolation, the following proposition
was proved in [5].

Proposition 2 Let f ∈ Bn be a Boolean function.
if [ω · 1n]2 = 0,

WA(f)(ω) =
∑
x∈Un

2(1− f(x)− f(x+ 1) + 2f(x)f(x+ 1n)[x · ω]2) (2)

= 2n − 2
∑
x∈Vn

f(x) + 2
∑
x∈Vn

f(x)f(x+ 1n)[x · ω]2 (3)

if [ω · 1n]2 = 1,

WA(f)(ω) = 2
∑
x∈Un

(f(x+ 1n)− f(x)f(x+ 1n) + (f(x)

− f(x+ 1n))[x · ω]2) (4)

=
∑
x∈Vn

(f(x+ 1n)− f(x)f(x+ 1n) + (f(x)

− f(x+ 1n))[x · ω]2) (5)

3 Characterization of Boolean functions with linear
structures

Dubuc [12] have given the characterization of function with linear struc-
ture by means of its WHT. He showed that 1n is an invariant linear
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structure of f if and only if W (f)(ω) = 0 for all ω /∈ (1n)⊥, and 1n is a
complementary linear structure of f if and only if W (f)(ω) = 0 for all
ω ∈ (1n)⊥. We generalize this result to AWT in this section. We firstly
give the definition of linear structure of f ∈ Rn. Then we characterize a
Boolean functions with linear structure in terms of its AWT and get the
similar results. Three class Boolean functions are discussed: Boolean func-
tions with a 1n invariant linear structure (theorem 1), Boolean functions
with a α(α ∈ Vn) invariant linear structure (theorem 2), and Boolean
functions with a 1n complementary linear structure (theorem 3).

Definition 3 let f ∈ Rn be a function and α ∈ Nn be a vector. We say
f has an invariant linear structure α if f(x) = f(x+ α) for all x ∈ Nn. f
eventually has an invariant linear structure α if there is a certain natural
integer z such that f(x) = f(x + α) for all x = (x1, x2...xn) ∈ Nn and
xi ≥ z.
we say f has a complementary linear structure α if f(x + α) ⊕ f(x) = 1
for all x ∈ Nn.f eventually has a complementary linear structure α if
there is a certain natural integer z such that f(x) ⊕ f(x + α) = 1 for all
x = (x1, x2...xn) ∈ Nn and xi ≥ z.

If α is an invariant or complementary linear structure of f , α is an invari-
ant or complementary linear structure of the extension f of f . Especially
as described in [8], f is diagonal if 1n is an invariant linear structure of
f . Similarly f is eventually diagonal if 1n is eventually an invariant linear
structure of f .
Next we give some lemmas that will be used later.

lemma 1 If w ∈ Vn,∑
u∈Vn

(−1)u·w =

{
2n if w = 0n,
0 else.

lemma 2 f is a balanced function if f has a complementary linear struc-
ture 1n.

lemma 3 let f be a Boolean function and 1n be a complementary linear
structure of f , then

W (f)(w) =

−2
∑

x∈supp(f)
(−1)[x·w]2 if ω /∈ (1n)⊥

0 if ω ∈ (1n)⊥.

lemma 4 [5] Every Boolean function on Vn is uniquely determined by its
arithmetic Walsh transform.
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From now on, let 10n−1 denote the vector with 1 values at the first place
and 0 values at the other n−1 places. The following theorem characterize
the Boolean function with 1n complementary linear structure in terms of
its AWT.

Theorem 1 Let f be a boolean function on n variables. 1n is an invariant
linear structure of f if and only if WA(f)(w) = WA(f)(10n−1) for all
ω /∈ (1n)⊥.

Using the above theorem 1 and proposition 2, we have the following
corollary.

Corollary 1 If 1n is an invariant linear structure of a Boolean function
f , WA(f)(ω) = 0 for all ω /∈ (1n)⊥.

Theorem 2 Let f be a boolean function on n variables, and α be a vector
in Vn and α ̸= 1n. Let g(x) = f(x)f(x + 1). α is an invariant linear
structure of f if and only if

WA(f)(ω) =

{
WA(f)(10n−1) if ω ∈ (1n)⊥ and ω /∈ α⊥ ,
2n−WA(g)(0n)

2 +WA(f)(0n) if ω /∈ (1n)⊥ and ω /∈ α⊥.

Theorem 3 Let f be a Boolean function in Bn. 1
n be a complementary

linear structure of f if and only if WA(f)(ω) = 0 for all ω ∈ (1n)⊥ and
WA(f)(10n−1) = 2n−1.

4 Relation between AWT and WHT of functions with
the linear structure 1n

In this section we analysis the arithmetic Walsh coefficient of Boolean
function with a 1n invariant or complementary linear structure. We give
the new expressions of the arithmetic Walsh coefficient of these functions
using lemma 5 and lemma 6, and then establish the linear relation between
the AWT and WHT based on theorem 4 and theorem 5.

lemma 5 Let f be a Boolean function in Bn, and 1n be an invariant
linear structure of f . Then

WA(f)(ω) =

0, ω /∈ (1n)⊥,

2n − supp(f)−
∑

x∈supp(f)
(−1)[x·ω]2 , ω ∈ (1n)⊥.
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Proof. Let f denote the extension of f .
For ω ∈ Vn, if ω ∈ (1n)⊥,

WA(f)(ω) =
∑
x∈Un

Z((f − lω)(x))

=
∑
x∈Un

Z(−f(x) + 2f(x+ 1n)

3
+ [x · ω]2).

Let v be an integer and u = v/3. Table 2 lists the possible values of Z(u).
Let Zx = Z((f − lω)(x)). Using the table 2 we calculate the value of Zx

Table 2. possible values of imbalances of some rational numbers

u −1 -2/3 -1/3 0 1/3 2/3 1

Z(u) -2 0 0 2 0 0 2

listed in table 3 for ω · 1n = 0. From table 3, we can conclude that the

Table 3. possible values of imbalances of Zx for ω · 1n = 0

f(x) 0 1 0 1 0 1 0 1
f(x+ 1n) 0 0 1 1 0 0 1 1
[x · ω]2 0 0 0 0 1 1 1 1

Zx 2 0 0 -2 2 0 0 2

value of (f(x), f(x+1n), [x ·w]2) only can take (0, 0, 0), (1, 1, 0), (0, 0, 1),
(1, 1, 1) for f(x) = f(x + 1n), and they all contribute to the value of∑
x∈Un

Zx. Denote ni,j,k the number of (f(x), f(x + 1n), [x · w]2) = (i, j, k)

for all x ∈ Vn, where i, j, k ∈ {0, 1}. So

WA(f)(ω) =
∑
x∈Un

Zx

=
1

2
· 2 · (n0,0,0 − n1,1,0 + n0,0,1 + n1,1,1)

= (2n − |supp(f)|)− |{x|x ∈ supp(f), and [x · w]2 = 0}|
+ |{x|x ∈ supp(f), and [x · w]2 = 1}|
= (2n − |supp(f)|)−

∑
x∈supp(f)

(−1)[x·w]2
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The last equation holds because |{x|x ∈ supp(f), and [x · w]2 = 0}| −
|{x|x ∈ supp(f), and [x · w]2 = 1}| =

∑
x∈supp(f)

(−1)[x·w]2 .

For ω /∈ (1n)⊥, we have WA(f)(ω) = 0 by corollary 1. �

Corollary 2 Let f be a balanced Boolean function in Bn and 1n be a
invariant linear structure of f . Then

WA(f)(w) =

0, ω /∈ (1n)⊥,

= 2n−1 −
∑

x∈supp(f)
(−1)[x·w]2 , ω ∈ (1n)⊥.

Theorem 4 Let f be a balanced Boolean function in Bn, and 1n be a
invariant linear structure of f . Then

WA(f)(ω) =

{
1
2W (f)(w) + 2n−1, ω ∈ (1n)⊥ and ω ̸= (0n),
W (f)(ω) = 0, others.

Proof. We discuss in the following three cases.
Case 1. if ω = 0n, WA(f)(ω) = W (f)(ω) = 0 for f is balanced,.
Case 2. if ω /∈ (1n)⊥, according to corollary 2 and proposition 1, we have
WA(f)(ω) = W (f)(ω) = 0 if ω · 1n = 1.
Case 3. if ω ∈ (1n)⊥ and ω ̸= 0n, by lemma 1, if ω ̸= 0n, the following
equation holds. ∑

x∈sup p(f)

(−1)x·w +
∑

x∈sup p(f)

(−1)x·w = 0.

Then

W (f)(ω) =
∑
x∈Vn

(−1)f(x)+[x·ω]2

= −
∑

x∈supp(f)

(−1)x·w +
∑

x∈supp(f)

(−1)[x·ω]2

= −2
∑

x∈supp(f)

(−1)[x·ω]2 .

Using corollary 2, WA(f)(ω) = 1
2W (f)(w) + 2n−1. �

lemma 6 Let f be a Boolean function in Bn, and 1n be a complementary
linear structure of f . Then

WA(f)(ω) =

0 if ω ∈ (1n)⊥,

2n−1 −
∑

x∈supp(f)
(−1)[x·w]2 if ω /∈ (1n)⊥.
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Table 4. possible values of imbalances ofZx for ω · 1n = 1

f(x) 0 1 0 1 0 1 0 1
f(x+ 1n) 0 0 1 1 0 0 1 1
[x · w]2 0 0 0 0 1 1 1 1

Zx 0 0 2 0 0 2 0 0

Proof. If ω ∈ (1n)⊥, by theorem 3, it is obvious that WA(f)(ω) = 0.
If ω /∈ (1n)⊥, as listed in table 4, the value of Zx is 2 only when the value
of (f(x), f(x+ 1), x · ω) takes (0, 1, 0),(1, 0, 1). So

WA(f)(ω) =
1

2
· 2(n0,1,0 + n1,0,1)

= |{x|x ∈ supp(f), and xw = 1}|+ |{x|x ∈ supp(f), and [x · ω]2 = 0}|

Because [ω · 1n]2 = 1 , we can deduce the following equation:

|{x|x ∈ supp(f), and [x · ω]2 = 0}| = |{x|x ∈ supp(f), and [x · ω]2 = 1}|.

By applying lemma 2, then

WA(f)(ω) = 2|{x|x ∈ supp(f), and [x · ω]2 = 1}|

= 2 · 1
2
(|supp(f)| −

∑
x∈supp(f)

(−1)[x·w]2)

= 2n−1 −
∑

x∈supp(f)

(−1)[x·w]2 .

�

Theorem 5 Let f be a Boolean function in Bn, and 1n be a complemen-
tary linear structure of f . Then

WA(f)(ω) =

{
1
2W (f)(w) + 2n−1 ω /∈ (1n)⊥,
W (f)(ω) = 0 ω ∈ (1n)⊥.

Proof. by proposition 1 and lemma 6, we can obtainWA(f)(ω) = W (f)(ω) =
0 if ω ∈ (1n)⊥. Using lemma 3 and lemma 6, it can be deduced that
WA(f)(ω) = 1

2W (f)(w) + 2n−1 if ω /∈ (1n)⊥. �
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5 Complementation of Carlet and Klapper’s proof

Carlet and Klapper [8] have studied the AWT of diagonal functions. They
have firstly proved that the 2-adic imbalance of diagonal functions can
be expressed in terms of the the 2-adic imbalance of diagonal functions
of algebraic degree at most 3 in a larger number of variables, as scribed
in the following theorem 6.

Theorem 6 Let g ∈ Rn be eventually 2-periodic and eventually diagonal.
Then there are an integer p ≥ 1 and a diagonal Boolean function h ∈
Bn+2p such that Z(h) = 2pZ(g) and deg(h) ≤ 3.

By applying theorem 6, they have got the next corollary 3. However, the
proof of this corollary is true only if c has even weight. If c has odd weight,
theorem 6 can not be applied to g = f − lc because g is not eventually
diagonal.

Corollary 3 Let f ∈ Bn be a diagonal boolean function and let c ∈ Vn.
Then there are an integer P ≥ 0 and a Boolean function h ∈ Bn+2p so
that h has algebraic degree at most 3 and Z(h) = 2pWA(f)(c).

For self-consistent, we have ω replace c. We demonstrate the next corollary
which is true for both ω with even weight and ω with odd weight based
on their work.

Corollary 4 Let f ∈ Bn be a diagonal boolean function and let ω ∈
Vn. Then there is an integer P ≥ 0 and a diagonal Boolean function
h ∈ Bn+2p so that h has algebraic degree at most 3 and WA(h)(ω) =
2pWA(f)(ω).

Proof. If ω has even weight, applying theorem 6 to g = f − lω, then there
is an integer p ≥ 0 and a diagonal Boolean function h ∈ Bn+2p so that h
has algebraic degree at most 3 and Z(h− lω) = 2pWA(f)(ω). Here h− lω
is also a diagonal function. It is implied that WA(h)(ω) = 2pWA(f)(ω)
for ω has even weight.
By corollary 1, we can get that WA(f)(ω) = 0 if ω has odd weight. So if
ω has odd weight, there is a diagonal Boolean function h ∈ Bn+2p such
that h has algebraic degree at most 3 and WA(h)(ω) = 0 = 2pWA(f)(ω).
�

6 Conclusion

In this paper, we have prensented the characterizations of the existence of
linear struction of Boolean functions by means of AWT. Although the re-
sults on AWT is more complex than the results on WHT, the prensented
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characterizations are another analogs of well known results on WHT. Our
study also have leaded to a linear relation between AWT and WHT of a
large class of Boolean functions. This means that AWT of these functions
can characterize the cryptographic properties of these functions as long
as WHT can characterize the cryptographic properties of these functions.
However functions of this result only include functions with 1n comple-
mentary linear structure and balanced functions with 1n invariant linear
structure. It need further research on whether there are other functions
whose AWT and WHT have linear relation. In addition, We have com-
plemented Carlet and Klapper’s proof of the result that the AWT of a
large class of Boolean function can be expressed in terms of the AWT of
a Boolean function of algebraic degree at most 3 in a larger number of
variables.
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