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Abstract The Modular Inversion Hidden Number Problem (MIHNP) was introduced by
Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001 (BHH’01). They provided two heuris-
tics - in Method I, two-third of the output bits are required to solve the problem, whereas the
more efficient heuristic (Method II) requires only one-third of the bits of the output. After
more than a decade, here we identify that the claim in Method II is actually not correct and a
detailed calculation justifies that this method too requires two-third of the bits of the output,
contrary to the claim in BHH’011. Further, we show that using the same relations as in Boneh
et al., one can reconstruct the lattice so that the problem can be heuristically solved by the
knowledge of five-eighth of the bits. Finally, we could accumulate additional relations to solve
the problem heuristically with only half of the output bits in asymptotic sense. Experimental
results support the claim corresponding to our heuristics.

Keywords Coppersmith’s techniques · Hidden Number Problem · LLL algorithm · Modular
Inversion.

1 Introduction

1.1 Background

In many instances, complexity assumptions are used to prove the security of a cryptographic
protocol. For example, Chosen Ciphertext Secure Encryption [3] is based on Decision Diffie-
Hellman assumption (DDH). This DDH assumption is also used to generate pseudo random
functions [22]. Construction of secure hash-and-sign signature [14] relies on strong RSA as-
sumption. Further, security of the public key encryption schemes proposed in [11] are based
on Paillier’s Decision Composite Residuosity (DCR) [23] and Quadratic Residuosity (QR)
assumptions.

Hidden Number Problems (HNPs) were introduced in [6] by Boneh and Venkatesan. They
used these to prove that computing the most significant bits of the secret key from the public
keys of participants, in a Diffie-Hellman key-exchange protocol, is as hard as computing the
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secret key itself. The work [6] has originated a whole direction of research and HNP has since
been exploited in a wide spectrum of applications like an attack on weak versions of the
Digital Signature Algorithm (DSA) [18] and appeared in a number of questions, related and
unrelated to cryptography (see [25] for a survey of relevant results and also [1] for some recent
developments). The general idea of HNPs [6] is as follows.

Let α ∈ Zp be the (hidden) secret. Now consider n elements x1, . . . , xn ∈ Z∗p, chosen inde-
pendently and uniformly at random. The attacker is given n pairs

{
(xi,MSBk(αxi mod p))

}n
i=1

for some k > 0 (here MSBk(z mod p) refers to the k most significant bits of z). The target is
to obtain α efficiently.

1.2 Modular Inversion Hidden Number Problem (MIHNP): Our Concern

A closely related class to HNPs known as Modular Inverse Hidden Number Problems (MIH-
NPs) was introduced and studied in [7] by Boneh, Halevi and Howgrave-Graham and certain
important cryptographic applications in pseudo-random generator and MAC had been pro-
posed. The exact problem (MIHNP) is as follows.

For a sufficiently large m-bit prime p, consider n elements x1, . . . , xn ∈ Z∗p, chosen in-
dependently and uniformly at random and a secret α ∈ Zp. The question is, given n pairs{ (
xi,MSBk((α+ xi)

−1 mod p)
) }n

i=1
for some k > 0, whether it is possible to recover α. The

δ-MIHNP assumption states that there is no polynomial time algorithm for MIHNP whenever
k < δm.

One of the most fundamental cryptographic primitives is the Pseudorandom Generator
(PRG). It has numerous applications in cryptography. Several number theoretic PRGs have
been analysed over the last few decades [27,8,4,15,26,2]. The problem under consideration, MI-
HNP, can also be used to construct an efficient pseudorandom generator. Take an m bit prime
p and two positive integers n and k. The input of the generator is a sequence {α, x1, . . . , xn}
of n+ 1 elements in Zp. The output is{

x1, . . . , xn,MSBk((α+ x1)−1 mod p), . . . ,MSBk((α+ xn)−1 mod p)

}
.

Note that although this is a pseudorandom number generator, this is not a pseudorandom bit
generator. However, there are standard techniques [19,28] to convert this into a pseudorandom
bit generator as well.

In [7], two polynomial time heuristics were presented to solve MIHNP, provided that k is
sufficiently large. Their first heuristic (a linear approach [7, Section 3.1] that we refer here as
Method I) works only if more than 2

3 portion of most significant bits of (α+xi)
−1 mod p’s are

given, i.e., k > 2m
3 . Importantly, the second heuristic (where multiples are used [7, Section 3.2]

that we refer here as Method II) claimed knowledge of significantly fewer bits which is k > m
3

only.
Ling, Shparlinski, Steinfeld and Wang [21] provided a rigorous probabilistic polynomial

time algorithm for MIHNP. The work [21] could match one of the heuristics (Method I) of
Boneh et al. [7], where one requires two-third of the bits of the output to solve the problem.
However, Ling et al. [21] could not theoretically justify the more efficient heuristic (Method II)
by Boneh et al., that requires only one-third of the bits of the output. Recently, Xu et al. [29]
revisit the work of [7]. They give involved lattice construction to obtain the same asymptotic
bound of [7].

In this direction, we were motivated to look at Method II of Boneh et al. [7]. A detailed
study of this pointed out an important flaw in the analysis at [7, Page 44], where it had been
written that
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weight(relations) ≤ d · (d+ 1)(nd) (1 + o(1)).

However, we note that this would actually be

weight(relations) = d·(d+1)
2 (nd) (1 + o(1)).

and correspondingly, the results will be modified. In particular, the performance of Method
II will be same as Method I in [7] and thus, k > 2m

3 output bits need to be known instead of
k > m

3 .

1.3 Contribution of this paper

In this paper, we study hardness of the δ-MIHNP assumption in detail. In particular, the
contribution of this paper is three-fold.

– We revisit the analysis of the MIHNP as in [7] and observe a flaw. The proposed heuristic
(Method II) in [7] that claims to solve the MIHNP when k > m

3 is not correct. More
precisely, we show that the approach of [7] only works when k > 2m

3 and does not work in
the range of m

3 < k < 2m
3 .

– We then use same relations as in [7] with a different lattice construction and obtain a new
heuristic that solves the MIHNP when k > 5

8m.
– Finally in Section 4, we present two lattice based heuristics for MIHNP using two different

kinds of lattices based on same relations. We exploit additional relations over those men-
tioned in [7]. For both these heuristics, we require about half of the bits of the output, i.e.,
k > m

2 .

2 Preliminaries

Consider w many linearly independent vectors b1, . . . , bw ∈ Rn. The set

L =

{
b : b = c1b1 + · · ·+ cwbw, c1, . . . , cw ∈ Z

}
is called an w dimensional lattice with basis B = {b1, . . . , bw}. A lattice is of full rank when
w = n and in this paper we only use such lattices. The determinant of L is defined as det(L) =
det(B), where B is a w × w matrix. When b1, . . . , bw ∈ Zn, lattice is called integer lattice.

In 1982, Lenstra, Lenstra and Lovász [20] defined LLL reduced basis of a lattice and
proposed a polynomial time algorithm (famous as LLL algorithm) to obtain such a basis.
Given a basis b1, . . . , bω of a lattice L, LLL algorithm can find a reduced basis u1, . . . , uω with

||u1|| ≤ ||u2|| ≤ · · · ≤ ||ui|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω.

In [12], Coppersmith formulated seminal ideas to find small roots of a modular polynomial
in a single variable and also for polynomials in two variables over the integers. One may also
refer to the works of Coron [9,10] in this context. These deterministic techniques have many
important consequences in cryptography. The idea of [12] can also be extended to more than
two variables, but the method becomes a heuristic in such cases. The following result due
to Howgrave-Graham [17] gives a sufficient condition under which modular roots become the
roots over integers for polynomials over two or more variables.

Theorem 1 Let g(x1, . . . , xv) be a polynomial with integer coefficients which is a sum of ω many

monomials. Suppose that
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1. g(y1, . . . , yv) ≡ 0 mod R for some positive integer R and |y1| < Y1, . . . , |yv| < Yv.

2. ‖ g(x1Y1, . . . , xvYv) ‖< R√
ω

,

Then g(x1, x2, . . . , xv) = 0 holds over integers.

Towards solving our modular polynomials, we use the idea of [17]. Our technique works in
practice as noted from the experiments we perform, but this may not always happen theo-
retically as we are working with heuristics only. Thus our approach relies on the following
heuristic assumption like many other lattice based approaches [13,16]:

Assumption 1 In this work, the lattice based constructions yield algebraically independent poly-

nomials and the common roots of the polynomials involved can be computed using Gröbner basis

technique.

3 Revisiting the work on MIHNP [7]

Suppose attacker knows p, xi and bi = MSBk((α + xi)
−1 mod p) for 0 ≤ i ≤ n. Hence we can

write:

(α+ xi)(bi + εi) = 1 mod p,

for 0 ≤ i ≤ n. It is clear that if any εi is known, one can easily find α as α = (bi+εi)
−1−xi mod p.

Also note that εi ≈ 2m−k, since p is an m-bit integer and k many MSBs of bi and (α+ xi)
−1

mod p are the same. Now eliminating α from (α+x0)(b0+ε0) = 1 mod p and (α+xi)(bi+εi) =
1 mod p, for some i, we have

(
xi − x0

)
ε0εi +

(
b0(xi − x0) + 1

)
εi +

(
bi(xi − x0)− 1

)
ε0

+b0bi(xi − x0) + bi − b0 ≡ 0 mod p,

for 1 ≤ i ≤ n. Here ε0 and εi are unknowns. Hence we need to solve fi(ε0, εi) = 0 mod p, where
fi(ε0, εi) = Aiε0εi +Biεi + Ciε0 +Di, Ai = xi − x0, Bi = b0(xi − x0) + 1, Ci = bi(xi − x0)− 1
and Di = b0bi(xi−x0) + bi− b0 for 1 ≤ i ≤ n. To solve these polynomials two methods namely
linear and non-linear approaches were proposed in [7].

3.1 Linear Approach [7]

Since fi(ε0, εi) ≡ 0 mod p, we can write Aiε0εi + Biεi + Ciε0 + Di + pki = 0 for 1 ≤ i ≤ n.

Using these relations, construct a lattice M of dimension 3n + 2 of the form M =

(
E R

0 P

)
,

where E and P are diagonal matrices of dimensions (2n+ 2)× (2n+ 2) and n×n respectively.
Further, R is a (2n+ 2)× n matrix. The first 2n+ 2 rows of M are associated with one of the
terms of fi(ε0, εi) and each of the last n columns are associated with one of the n relations.
The matrix E is a diagonal matrix whose diagonal elements correspond to the upper bound
of each monomial. Hence the matrix M is of the form:
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Row corresponds to



1 0 0 · · · 0 0 · · · 0 D1 · · · Dn
0 2k−m 0 · · · 0 0 · · · 0 C1 · · · Cn
0 0 2k−m · · · 0 0 · · · 0 B1 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 0 · · · 2k−m 0 · · · 0 0 · · · Bn
0 0 0 · · · 0 22k−2m · · · 0 A1 · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 22k−2m 0 · · · An
0 0 0 · · · 0 0 · · · 0 p · · · 0
...

...
...

. . .
...

...
. . .

...
...

. . .

0 0 0 · · · 0 0 · · · 0 0 · · · p



· · · · · · · · · 1
· · · · · · · · · ε0
· · · · · · · · · ε1

...
· · · · · · · · · εn
· · · · · · · · · ε0ε1

...
· · · · · · · · · ε0εn

Now let us consider the vector v = (1, ε0, . . . , εn, ε0ε1, . . . , ε0εn, k1, . . . , kn). Note that

s = v ·M =

(
1,

ε0
2m−k

, . . . ,
εn

2m−k
,

ε0ε1

22(m−k) , . . . ,
ε0εn

22(m−k) , 0, . . . , 0

)
.

Thus s is a lattice point and ||s|| <
√

2n+ 2. Also det(M) = pn

2(m−k)(3n+1) . Hence using Gaussian
heuristic, one can expect that s is the shortest vector when

√
2n+ 2�

√
3n+ 2

(
pn

2(m−k)(3n+1)

) 1
3n+2

.

This is equivalent to det(M)�
(√

2n+2
3n+2

)3n+2

. Hence the required condition can be taken as

det(M)� 1.

Now using LLL algorithm [20], one can expect to find v whenever this condition det(M)� 1
is satisfied. Since p ≈ 2m, the condition det(M) � 1 yields k � 2mn+m

3n+1 . So asymptotically

this bound becomes k � 2m
3 . Hence the linear approach of [7] works only when the number of

known most significant bits is more than 2m
3 .

3.2 Non Linear Approach [7]: Flaw and Correction

This approach is based on the idea of Coppersmith [12]. There are n relations f1, . . . , fn.
Now we will use the products of these relations. For example, if one can use the relation
f1f2 = 0 mod p2 in the lattice construction, the relation ε1f2 = 0 mod p can also be used
for free as each term of ε1f2 is also present in f1f2. In this case, one can construct a lattice
L from the relations f1f2 = 0 mod p2, ε1f2 = 0 mod p, ε0f2 = 0 mod p, f2 = 0 mod p, ε0f1 =
0 mod p, ε2f1 = 0 mod p. Let ∆ = 2k−m. Then the matrix M is of the form:
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Row corresponds to

1 0 0 0 0 0 0 0 0 0 0 0 − 0 0 − 0 0
0 ∆ 0 0 0 0 0 0 0 0 0 0 − 0 − − − 0
0 0 ∆ 0 0 0 0 0 0 0 0 0 − − 0 0 0 0
0 0 0 ∆ 0 0 0 0 0 0 0 0 − 0 0 − 0 −
0 0 0 0 ∆2 0 0 0 0 0 0 0 − 0 − 0 − 0
0 0 0 0 0 ∆2 0 0 0 0 0 0 − − 0 0 − 0
0 0 0 0 0 0 ∆2 0 0 0 0 0 − 0 − − 0 −
0 0 0 0 0 0 0 ∆2 0 0 0 0 − − 0 0 0 −
0 0 0 0 0 0 0 0 ∆3 0 0 0 − 0 0 0 − 0
0 0 0 0 0 0 0 0 0 ∆3 0 0 − − 0 0 0 −
0 0 0 0 0 0 0 0 0 0 ∆3 0 − 0 − 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ∆4 − 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p



· · · · · · · · · · · · 1
· · · · · · · · · · · · ε0
· · · · · · · · · · · · ε1
· · · · · · · · · ε2
· · · · · · · · · ε20
· · · · · · · · · ε0ε1
· · · · · · · · · ε0ε2
· · · · · · · · · ε1ε2
· · · · · · · · · ε20ε1
· · · · · · · · · ε0ε1ε2
· · · · · · · · · ε20ε2
· · · · · · · · · ε20ε1ε2

In this case det(M) = p7∆24. As in Section 3.1, using Coppersmith’s idea, it is not difficult
to show that one can find εi for 0 ≤ i ≤ 2 by LLL algorithm over the matrix M if det(M)� 1.

Now take a positive integer d < n. In [7], the authors described the process of adding
relations to the lattice in different phases. In phase d, one adds the relations that are obtained
by multiplying up to d many original relations. Hence the new relations look like fi1 · · · fid =
0 mod pd for some 0 < i1, . . . , id ≤ n in phase d. Now one can construct a lattice L from these
polynomials. For example when n = 3 and d = 2, the relations are given as

{
f1f2 = 0 mod p2, f1f3 = 0 mod p2, f2f3 = 0 mod p2, ε0f1 = 0 mod p,

ε0f2 = 0 mod p, ε1f2 = 0 mod p, ε0f3 = 0 mod p, ε1f3 = 0 mod p,

ε2f3 = 0 mod p, f1 = 0 mod p, f2 = 0 mod p, f3 = 0 mod p

}
.

In [7], two phrases, namely “weight of terms” and “weight of relations” are introduced.
The weight of a term is its degree. For example, weight of ε0ε1 is 2. The weight of a relation
is the number of original relations fi that are multiplied. As for an example, f1f2 = 0 mod p2

has the weight 2. In the lattice constructions of [7, Section 3.2], all terms can be expressed as
εr00 ε

r1
1 · · · ε

rn
n , where 0 ≤ r0 ≤ d and 0 ≤ r1, . . . , rn ≤ 1 with r1 + · · ·+ rn ≤ d. Hence by taking

r1 + . . .+ rn = j, the total weight WT of all the terms is

1∑
r1,...,rn=0
r1+...+rn≤d

d∑
r0=0

(r0 + r1 + · · ·+ rn) =
d∑
j=0

d∑
r0=0

(
n

j

)
(j + r0)

=
d∑
j=0

(
n

j

)
(d+ 1)

(
j +

d

2

)
=

(
n

d

)
(d+ 1)

3d

2

(
1 + o(1)

)
,

when d� n. This exactly matches with the calculation provided in [7].
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3.2.1 The Flaw and the Correction

Next we calculate the total weight of relations. Consider the relation F = f t11 · · · f
tn
n where

0 ≤ ti ≤ 1 with i ∈ [1, n] and
∑n
i=1 ti ≤ d. The weight of F is

n∑
i=1

ti and the corresponding

term is εt1+...+tn0 εt11 · · · ε
tn
n since the term corresponding to fi is ε0εi. The weight of the relation

which corresponds to the term εr00 ε
r1
1 · · · ε

rn
n is min(r0, r1 + r2 + . . . + rn). Hence total weight

WR of all relations is

1∑
r1,...,rn=0
r1+...+rn≤d

d∑
r0=0

min(r0, r1 + · · ·+ rn) =
d∑
j=0

d∑
r0=0

(
n

j

)
min(r0, j)

=
d∑
j=0

(
n

j

)( j∑
r0=0

r0 +
d∑

r0=j+1

j

)
=

d∑
j=0

(
n

j

)(
j(j + 1)

2
+ j(d− j)

)

=
d · (d+ 1)

2

(
n

d

)
(1 + o(1)) ,

when d � n. Let us refer to [7, Page 44] for the comment “In fact, it is possible to show
that this bound is tight, and the total weight of the relations that we get is at least d2(nd).”
That is, in [7], it has been claimed that the total weight of relations WR is upper bounded by
d · (d+ 1)(nd) (1 + o(1)).

Although there are approximately (d + 1)(nd) terms, many corresponding relations have
weight less than d. For example, the relation corresponding to the term εr11 · · · ε

rn
n has weight

zero. Hence we cannot approximate the total weight of relations WR by d ·(d+1)(nd); instead it

is d·(d+1)
2 (nd). This is the reason, one should not obtain any further improvement by considering

this non linear approach over the linear approach in [7].
When p ≈ 2m and ε0 ≈ · · · ≈ εn ≈ 2m−k, the determinant of the lattice will be approxi-

mately det(L) ≈ 2m·WR−(m−k)·WT . Now as in Section 3.1, using Coppersmith’s technique one
can find εi if det(L) � 1 for 0 ≤ i ≤ n. Now the condition det(L) � 1 gives k � m(1 − WR

WT
).

Since WR
WT
≈ 1

3 , the condition is k � 2m
3 .

Given that the non linear method of [7] does not solve the MIHNP when m
3 < k < 2m

3 , we

need to obtain improved results. Considering the same relations as in [7], but with a different lattice

construction, we could show that MIHNP can be solved heuristically when k > 5m
8 . As we could provide

further improvements over this, we put this initial improvement in Appendix A for interested readers.

In the following section, we go for more involved techniques to show that MIHNP can indeed be solved

heuristically when k > m
2 . To the best of our knowledge, this is the best result in this area given that

the claim of [7] using non linear method is flawed.

4 Generate more relations: Improved attack on MIHNP

Previously, only n many relations have been used to solve the problem and we go for more
relations for an improved attack.

Consider two relations (α + xi)(bi + εi) = 1 mod p and (α + xj)(bj + εj) = 1 mod p for
0 ≤ i < j ≤ n. Now eliminating α from these two relations, we obtain

(xi − xj)εiεj + (xibj − xjbj + 1)εi + (xibi − xjbi − 1)εj

+(xibibj − xjbibj + bi − bj) ≡ 0 mod p.



8 Santanu Sarkar

Hence we have total (n+1
2 ) relations of the form

fij = Aijεiεj +Bijεi + Cijεj +Dij ≡ 0 mod p,

where Aij = xi−xj , Bij = xibj−xjbj+1, Cij = xibi−xjbi−1 and Dij = xibibj−xjbibj+bi−bj .
From fij we obtain the relations of the form gi,j = A−1

ij fij mod p, where the coefficient of εiεj
in gi,j is 1. It is immediate that gi,j(εi, εj) ≡ 0 mod p. We will use all these relations, along
with the idea of Howgrave-Graham [17], to obtain an improved bound.

4.1 Our Method I

From the knowledge of
{
xi,MSBk((α+ xi)

−1 mod p)
}

, we construct (n+1
2 ) relations gi,j such

that gi,j(εi, εj) ≡ 0 mod p for 0 ≤ i < j ≤ n. Suppose that εi ≤ 2m−k for 0 ≤ i ≤ n + 1 and

Z = 2m−k. Consider the following set of polynomials

P =

{
g0,1, . . . , g0,n, . . . , gn−1,n, ε0p, . . . , εnp, p

}
.

Note that h(ε0, . . . , εn) = 0 mod p for each h ∈ P.
Now construct a lattice L using the coefficient vectors of h(ε0Z, . . . , εnZ) for each h ∈ P.

Then the matrix M , corresponding to L, is of the form



ε0ε1 . . . ε0εn . . . εn−1εn ε0 ε1 . . . εn 1

Z2 . . . 0 . . . 0 − − . . . 0 −
...

. . .
...

...
...

...
. . .

...
...

0 . . . Z2 . . . 0 − 0 . . . − −
...

...
...

. . .
...

...
. . .

...
...

0 . . . 0 . . . Z2 0 0 . . . − −
0 . . . 0 . . . 0 Zp 0 . . . 0 0

0
... 0

... 0 0 Zp
. . . 0 0

...
...

...
...

...
...

...
. . .

...
...

0 . . . 0 . . . 0 0
... . . . Zp 0

0 . . . 0 . . . 0 0
... . . . 0 p


Here ‘−’ indicates non zero element. The dimension of L is ω = 2 + n+ (n+1

2 ). Also det(L) =

Z2 · · ·Z2 · Z · · ·Z · p2+n = Z(n+1)2p2+n. By the property of LLL algorithm and Howgrave-

Graham’s theorem (Theorem 1), if 2
ω(ω−1)
4(ω−n)

(
det(L)

) 1
ω−n < p√

ω
, after lattice reduction we get

n+1 polynomials which contain the root (ε0, . . . , εn) over integers. Since the terms 2
ω(ω−1)
4(ω−n) and√

ω are much smaller than det(L) and p, the required condition reduces to det(L) < pω−n−o(1).
Now p ≈ 2m, ω = 2 + n+ (n+1

2 ) and Z = 2m−k. Also

det(L) = Z(n+1)2p2+n ≈ 2(m−k)(n+1)22m(2+n) = 2(m−k)(n+1)2+m(2+n)

and pω−n−o(1) = p2+(n+1
2 )−o(1) ≈ 2m(n(n+1)

2
+2−o(1)).

Thus the condition det(L) < pω−n−o(1) implies

(m− k)(n+ 1)2 +m(2 + n) < m

(
n(n+ 1)

2
+ 2− o(1)

)
.
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So we get k >
(
1
2 + 3n+1

2(n+1)2
+ o(1)

)
m.

So when k >
(
1
2 + 3n+1

2(n+1)2
+ o(1)

)
m, after lattice reduction we have n + 1 polynomials

f1, . . . , fn+1 such that fi(ε0, . . . , εn) = 0 for 1 ≤ i ≤ n+1. Now under Assumption 1, we can find
ε0, . . . , εn from f1, . . . , fn+1. If any εi is known, one can easily find α as α = (bi+εi)

−1−xi mod p
for i ∈ [0, n]. Hence we have the following result.

Theorem 2 Let p be an m-bit prime. Let α ∈ Zp be hidden. Consider that n+1 pairs (xi,MSBk(α+
xi)
−1 mod p) are given for random x0, x1, . . . , xn ∈ Zp. Then one can find α under Assumption 1

in polynomial time if k >
(
1
2 + 3n+1

2(n+1)2
+ o(1)

)
m.

4.2 Our Method II

Asymptotically, when n → ∞, one can solve MIHNP if k ≥ m
2 using our Method I. Now

we will present another method which improves the bound k >
(
1
2 + 3n+1

2(n+1)2
+ o(1)

)
m by

using the broad idea of Coppersmith [12] with a set of polynomials. Solving such a system
of equations using Coppersmith’s method is a non-trivial task, as discussed throughly in [24].
For this purpose, we will generate more polynomials for lattice construction from the original
polynomials gi,j discussed above. The generated polynomials satisfy certain conditions and are
divisible by the polynomials of the form

∏
i,j g

si,j
i,j . The values of si,j are chosen in a cleaver

way to reduce the size of the determinant of the lattice constructed.
Choice of si,j can be considered as the following combinatorial problem. Suppose we are

given n+ 1 non-negative integers (r0, . . . , rn). Consider (n+1
2 ) many monomials εi,j = εiεj for

0 ≤ i < j ≤ n. Our problem is to find non-negative integers si,j such that
∏

0≤i<j≤n ε
si,j
i,j

divides
n∏
i=0

εrii and
∑

0≤i<j≤n
si,j is as large as possible. This is purely an optimization problem.

Let us first discuss an algorithm for the generation of si,j . We will see in Theorem 3 that by
choosing si,j as given by this algorithm provides a better lower bound on k than in Theorem 2.
We are not claiming our approach gives the optimal result but it helps to get a better lower
bound on k than the existing works.

The input to our algorithm is an array A = [r0, . . . , rn] of length n+ 1, where r0, . . . , rn are
non negative integers and the output is a sequence {s0,1, . . . , sn−1,n} of non negative integers
of length (n+1

2 ) and a non negative integer s =
∑
i,j si,j . We denote the number of zeros in A

by Z(A).
For a sequence {r0, r1, . . . , rn}, let minl(r0, r1, . . . , rn) be the l-th minimum of {r0, . . . , rn}.

Thus, for the sequence {0, 1, 0, 3}, we have min1(0, 1, 0, 3) = min2(0, 1, 0, 3) = 0,min3(0, 1, 0, 3)
= 1 and min4(0, 1, 0, 3) = 3.

Now we will present our algorithm in Algorithm 1. In each iteration of the algorithm, if
the condition of line 4 is true, then exactly two (positive) elements of the array are decreased
by 1. Note that length of the array A in Algorithm 1 is n+ 1, and algorithm runs as long as
it contains at least two positive integers. That is, the algorithm stops when the number Z(A)
of zeros in A is more than n− 1.

For a given sequence {r0, r1, . . . , rn}, we want to estimate the second output s of Algo-
rithm 1. We have the following result in this direction. The proof of Lemma 1 is given in
Appendix B.

Lemma 1 The value of s returned by the Algorithm 1 satisfies

s = minn(r0, r1, . . . , rn) +
1

2

n−1∑
i=1

mini(r0, r1, . . . , rn) + E(n),
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Input: A = [r0, . . . , rn].
Input: Zero sequence

{
s0,1, . . . , sn−1,n

}
=
{

0, . . . , 0
}
, s = 0.

Output:
{
s0,1, . . . , sn−1,n

}
and s

1 while

(
Z(A) < n

)
do

2 for i = 0 to n− 1 do
3 for j = i+ 1 to n do
4 if A[i] > 0 & A[j] > 0 then
5 A[i] = A[i]− 1 ;
6 A[j] = A[j]− 1 ;
7 si,j = si,j + 1 ;
8 s = s+ 1 ;

end

end

end

end

Algorithm 1

with |E(n)| < (n+ 1)3.

Let us start with the array A = [23, 34, 65, 13] of length n + 1 = 4. Now consider the
following iterations:

27︷ ︸︸ ︷
↓ ↓ ↓ ↓ ↓ ↓

[23, 34, 65, 13]→ [22, 33, 65, 13]→ · · · → [9, 21, 52, 1]→ [8, 21, 52, 0].

After 27 iterations, the array [r0, r1, r2, r3] = [23, 34, 65, 13] becomes [8, 21, 52, 0]. Here

l = 27 and n = 3, n

⌊
l

(n+1
2 )

⌋
= 3b276 c = 12. In this case, ε0 = −3, ε1 = ε2 = ε3 = −1. Hence

|εi| < n + 1 = 4 for 0 ≤ i ≤ 3. The value of s of the algorithm for the inputs [8, 21, 52, 0] and
[8, 21, 52] is same. Here the final value of s will be 52. In this example, min1(23, 34, 65, 13) =
13,min2(23, 34, 65, 13) = 23,min3(23, 34, 65, 13) = 34.

So we get min3(23, 34, 65, 13)+ 1
2 (min1(23, 34, 65, 13)+min2(23, 34, 65, 13)) = 34+ 13+23

2 =
52, exactly matches with s. Now we will generate polynomials for lattice construction and use
that lattice to find α. In this direction, we have the following result.

Theorem 3 Let p be an m-bit prime. Let α ∈ Zp be hidden. Consider that n+1 pairs (xi,MSBk(α+
xi)
−1 mod p) are given for random x0, x1, . . . , xn ∈ Zp. Then one can find α under Assumption 1

in time polynomial in m but exponential in n if k > m

(
1
2 + 1

(n+1)(n+2) + o(1)

)
.

Proof Let εi ≤ 2m−k. Take Z = 2m−k. Now for 0 ≤ r0, . . . , rn ≤ nd, define the polynomials

hr0,...,rn = g
s0,1
0,1 g

s0,2
0,2 · · · g

sn−1,n

n−1,n

n∏
k=0

ε
rk−

∑k−1
l=0 sl,k−

∑n
l=k+1 sk,l

k pd(
n+1
2 )−s,

where {si,j} and s are obtained by Algorithm 1 on input [r0, . . . , rn] and d is a non negative
integer.

In the lexicographic ordering of subscript (r0, . . . , rn), where each component ri ∈ [0, nd],
the polynomial hr0,...,rn introduces a new monomial εr00 ε

r1
1 · · · ε

rn
n which is not present in the pre-

vious polynomials. Thus the matrix corresponding to these polynomials will be lower-triangular
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and hence the matrix will be nonsingular. Note that hr0,...,rn(ε0, . . . , εn) ≡ 0 mod pd(
n+1
2 ). Con-

struct a lattice L using the coefficient vectors of hr0,...,rn(ε0Z, . . . , εnZ). The dimension of the
lattice is ω = (nd+ 1)n+1. Now the determinant of L is

det(L) =
nd∏
r0=0

· · ·
nd∏
rn=0

Zr0 · · ·Zrnp
ωd(n+1

2 )−
nd∑
r0=0

· · ·
nd∑
rn=0

s

.

Our condition is 2
ω(ω−1)
4(ω−n) (det(L))

1
ω−1 < 1√

ω
pd(

n+1
2 ). Since the terms 2

ω(ω−1)
4(ω−n) ,

√
ω are much

smaller than det(L) and p, required condition can be written as det(L) < pd(
n+1
2 )(ω−n)−o(1).

From this condition becomes

nd∏
r0=0

· · ·
nd∏
rn=0

Zr0 · · ·Zrn < p
∑nd

r0=0···
∑nd

rn=0 s−d(
n+1
2 )n−o(1).

Since
∑nd
r0=0 · · ·

∑nd
rn=0

(
r0 + . . .+ rn

)
= (n+ 1)(nd+ 1)n

∑nd
r0=0 r0

= n+1
2 (nd)n+2 + o

(
dn+2

)
,

we have
∏nd
r0=0 · · ·

∏nd
rn=0 Z

r0 · · ·Zrn = Z
n+1
2

(nd)n+2+o
(
dn+2

)
.

Also from Lemma 1,
nd∑
r0=0

· · ·
nd∑
rn=0

s =
nd∑
r0=0

· · ·
nd∑
rn=0

(
minn(r0, . . . , rn)

+ minn−1(r0,...,rn)+···+min1(r0,...,rn)
2

)
+ o
(
dn+2

)
,

as
∑nd
r0=0 · · ·

∑nd
rn=0(n+ 1)3 = (n+ 1)3(nd+ 1)n+1 = o

(
dn+2

)
.

We will first calculate
nd∑
r0=0

· · ·
nd∑
rn=0

minl(r0, . . . , rn). Suppose minl(r0, . . . , rn) = k, where

0 ≤ k ≤ nd. Then we have a sequence {y0, . . . , yn} = {r0, . . . , rn} such that

y0 ≤ y1 ≤ · · · ≤ yl−2︸ ︷︷ ︸
l−1

≤ yl−1 = k ≤ yl ≤ · · · ≤ yn︸ ︷︷ ︸
n−l+1

.

Total number of such sequences
{
r0, . . . , rn

}
for which minl(r0, . . . , rn) = k is equal to

l−1∑
i=0

n−l+1∑
j=0

(
n+ 1

i+ j + 1

)(
n− i− j
l − 1− i

)
kl−1−i(nd− k)n−l+1−j .

Here we assume yl−2 = · · · = yl−i−1 = k and yl = · · · = yl+j−1 = k.

Each such sequence will contribute minl(r0, . . . , rn) = k towards the sum. Hence,

nd∑
r0=0

· · ·
nd∑
rn=0

minl(r0, . . . , rn) =
∑nd
k=0 k

∑l−1
i=0

∑n−l+1
j=0 ( n+1

i+j+1)(
n−i−j
l−1−i)k

l−1−i(nd− k)n−l+1−j

=
∑nd
k=0 k

∑l−1
i=0

∑n−l+1
j=0 ( n+1

n+1−i−j)(
i+j
i )ki(nd− k)j .
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Now let S(X) =
X∑
k=0

ki(X − k)j for some positive integer X. Then S(X)
Xi+j+1 =

X∑
k=0

1

X

(
k

X

)i(
1− k

X

)j
. Thus,

lim
X→∞

S(X)

Xi+j+1
=

∫ 1

0

xi(1− x)j dx = B(i+ 1, j + 1),

where B(., .) is the Beta function (see [5]). Hence S(X) = Θ
(
Xi+j+1

)
.

So we have
nd∑
r0=0

· · ·
nd∑
rn=0

minl(r0, . . . , rn) =
∑nd
k=0(n+ 1)( n

l−1)k
l(nd− k)n−l+1 + o

(
dn+2

)
.

Thus,

nd∑
r0=0

· · ·
nd∑

rn=0

s =
1

2

n−1∑
l=1

nd∑
k=0

(n+ 1)
( n

l − 1

)
kl(nd− k)n−l+1 +

nd∑
k=0

(n+ 1)
( n

n− 1

)
kn(nd− k) + o

(
dn+2

)

=
n+ 1

2

nd∑
k=0

n−2∑
l=0

(n
l

)
kl+1(nd− k)n−l +

n

n+ 2
(nd)n+2 + o

(
dn+2

)
=
n+ 1

2

nd∑
k=0

k ·
((
k + (nd− k)

)n − nkn−1(nd− k)− kn
)

+
n

n+ 2
(nd)n+2 + o

(
dn+2

)
=
n+ 1

2
(nd)n+2

(
1

2
−

n

n+ 1
+
n− 1

n+ 2

)
+

n

n+ 2
(nd)n+2 + o

(
dn+2

)
.

Now putting Z = 2m−k and p ≈ 2m in Z
n+1
2

(nd)n+2

< p
∑nd

r0=0···
∑nd

rn=0 s−d(
n+1
2 )n−o(1),

required condition is k > m

(
1
2 + 1

(n+1)(n+2) + o(1)

)
. So when k >

(
1
2 + 3n+1

2(n+1)2
+ o(1)

)
m,

after lattice reduction we have n+ 1 polynomials f1, . . . , fn+1 such that fi(ε0, . . . , εn) = 0 for
1 ≤ i ≤ n+ 1. Now under Assumption 1, we can find ε0, . . . , εn from f1, . . . , fn+1.
The running time of our algorithm is dominated by the runtime of the LLL algorithm, which
is polynomial in the dimension of the lattice and in the bitsize of the entries. Since the
lattice dimension in our case is exponential in n, the running time of our strategy is
polynomial in m but exponential in n. ut

As 1
2 + 1

(n+1)(n+2) <
1
2 + 3n+1

2(n+1)2
, our Method II provides better result than our Method I.

Asymptotically both our methods approach the same limit 1
2 .

In Figure 1, we present the new attack region pictorially.
As we work with low lattice dimensions, the theoretical bounds presented in Theorem 3

may not be achieved. In Table 1, we present few numerical values of δ for different values of
d, n, where k ≥ δm.

4.3 Comparisons of our two methods and experimental results

We have implemented the code in SAGE 5.13 on a Linux Mint 12 on a laptop with Intel(R)
Core(TM) i5-4200U CPU @ 1.60GHz, 3 GB RAM and 3 MB Cache. In all our experiments,
the polynomials obtained (after lattice reduction) satisfy the desired root over integers, we
could successfully collect the root using Gröbner basis technique.
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2(n+1)2

δ = 1
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+ 1
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δ = 0.50

δ = 0.33

n→

δ

↑

Fig. 1 New attack region. We need k ≥ δm.

n d δ Lattice Dimension Asymptotic lower

Bound of δ

2 8 0.588 4913 0.583

3 3 0.558 10000 0.550

4 3 0.539 371293 0.533

5 2 0.532 46656 0.524

Table 1 Numerical values of lower bound δm of k for different parameters.

First let us consider the case when n = 2. This case is interesting as our Method I does

require k >
(
1
2 + 3n+1

2(n+1)2

)
m = 8m

9 , whereas our Method II requires k > m

(
1
2 + 1

(n+1)(n+2)

)
=

7m
12 . However, in experiments we observe for k > 2m

3 is sufficient for Method I. Gröbner basis
means the time to extract the roots.

Method Parameters Theory Experiment Time in Seconds
LLL Algorithm Gröbner basis

Our Method I n = 2, LD = 7,m = 1000 k ≥ 889 667 < 1 < 1
Our Method II n = 2, LD = 27,m = 1000 k ≥ 583 630 2.57 < 1

Table 2 Comparison of our Method I and II for n = 2; LD means Lattice Dimension.

Method I works successfully with low lattice dimensions and we can easily obtain the
experimental results for a few values of n ≤ 14 as given in Table 3. In fact although theoretically
we need det(L) < pω−n−o(1), experimentally we observe that condition det(L) < pω−o(1) is
sufficient to find the roots. Thus for Method I, experimental result is much better than the
theoretical prediction.

Experimental results of Method II are presented in tabular form in Table 4. We cannot
perform the experiments for our Method II for large values of n due to very high lattice
dimensions.
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n Lower bound of Lower bound of Lattice Time in Seconds
k (theory) k (expt.) Dimension LLL Algorithm Gröbner basis

4 760 602 16 < 1 < 1
6 694 573 29 3.15 < 1
8 654 558 46 17.94 2.83
10 628 548 67 74.17 18.65
12 609 540 92 239.60 88.55
14 596 535 121 651.81 318.49

Table 3 Method I: Experimental results for 1000-bit p.

n d Lower bound of Lower bound of Lattice Time in Seconds

k (theory) k (expt.) Dimension LLL Algorithm Gröbner basis

2 1 583 630 27 2.57 < 1

2 2 583 608 125 3371.41 6111.55

3 1 550 582 256 29581.79 28305.81

Table 4 Method II: Experimental results for 1000-bit p.

5 Conclusion

In this paper, we have studied the Modular Inversion Hidden Number Problem (MIHNP).
This problem was studied in [7] and two heuristics were presented. We note that there is a
flaw in the improved heuristic proposed in [7], and as a result, it requires two-third (instead
of claimed one-third) of the bits of the outputs to find the hidden number.

Then, using the same relations as in [7], we could reconstruct the lattice, so that the
problem can be heuristically solved by the knowledge of five-eighth of the bits. Finally, we
explored additional relations to solve the problem heuristically with only half of the output
bits in asymptotic sense. In terms of theoretical results, our Method II is better than our
Method I. The experimental results are also close to what we obtain in theory. We also note
that our Method I is better in terms of actual implementation as the lattice dimension is much
less that what is required for Method II.
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Appendix A: An Intermediate Improvement on MIHNP

Here we consider same n many relations fi as in [7], as described in our Section 3. Using these
relations we prove that one can solve MIHNP when k > 5m

8 .

Theorem 4 Let p be an m-bit prime. Let α ∈ Zp be hidden. Consider that n+1 pairs (xi,MSBk(α+
xi)
−1 mod p) are given for random x0, x1, . . . , xn ∈ Zp. Then one can find α heuristically if

k >
(
5
8 + 1

24n + o(1)
)
m.

Proof We have a system of n equations fi = Aiε0εi + Biεi + Ciε0 +Di, for 1 ≤ i ≤ n over the
variables ε0, ε1, . . . , εn. From fi, we generate another system of n equations gi = A−1

i fi mod p
for 1 ≤ i ≤ n. For a given sequence of n+ 1 non negative integers r0, r1, . . . , rn, let us define a
new sequence {j1, . . . , jn} where

jl =

{
min(r0, r1), for l = 1,

min(r0 −
∑l−1
k=1 jk, rl), for l > 1.
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Further, for a positive integer d, consider the following shift polynomials

hr0,··· ,rn =

( n∏
k=1

gjkk

)
ε
r0−

∑n
k=1 jk

0

( n∏
k=1

εrk−jkk

)
pnd−

∑n
k=1 jk ,

for 0 ≤ r0 ≤ nd and 0 ≤ rk ≤ d with 1 ≤ k ≤ n.
Note that hr0,··· ,rn(ε0, ε1, . . . , εn) ≡ 0 mod pnd. Let Z = 2m−k. Clearly |εi| < Z. Now

construct a lattice L using the coefficient vectors of the polynomials hr0,··· ,rn(ε0Z, . . . , εnZ).
The dimension ω of the lattice L is

ω =
nd∑
r0=0

d∑
r1,··· ,rn=0

1 = (nd+ 1)(d+ 1)n.

Now, let us calculate the determinant of the lattice L. We have

det(L) =

( nd∏
r0=0

d∏
r1,··· ,rn=0

Zr0 · · ·Zrn
)( nd∏

r0=0

d∏
r1,··· ,rn=0

pnd−
∑n

k=1 jk

)

Now
∏nd
r0=0

∏d
r1,··· ,rn=0 Z

r0 · · ·Zrn = Z
∑nd

r0=0

∑d
r1,··· ,rn=0(r0+···+rn) = Zn

2dn+2+o(dn+2).

Also,

nd∏
r0=0

d∏
r1,··· ,rn=0

pnd−
∑n

k=1 jk = p

∑nd
r0=0

∑d
r1,··· ,rn=0

(
nd−min(r0,r1+···+rn)

)

= pndω−
∑nd

r0=0

∑d
r1,··· ,rn=0 min(r0,r1+···+rn).

Let us now calculate
∑nd
r0=0

∑d
r1,··· ,rn=0 min(r0, r1 + · · ·+ rn). We have

nd∑
r0=0

d∑
r1,...,rn=0

min(r0, r1 + · · ·+ rn) =

d∑
r1,...,rn=0

r1+···+rn∑
r0=0

r0

+

d∑
r1,...,rn=0

nd∑
r0=r1+···+rn+1

(
r1 + · · ·+ rn

)

=

d∑
r1,··· ,rn=0

(r1 + · · ·+ rn)2

2
+

d∑
r1,··· ,rn=0

(nd− r1 − · · · − rn)(r1 + · · ·+ rn) + o(dn+2)

=
d∑

r1,··· ,rn=0

(
nd(r1 + · · ·+ rn)−

(r1 + · · ·+ rn)2

2

)

=
n2dn+2

2
−

1

2

d∑
r1,··· ,rn=0

(r1 + · · ·+ rn)2 + o(dn+2)

=
n2dn+2

2
−

1

2

(
ndn+2

12
+
n2dn+2

4

)
+ o(dn+2)

=

(
3

8
n2 −

n

24

)
dn+2 + o(dn+2)
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Hence, we have det(L) = Zn
2dn+2+o(dn+2)p

ndω−

(
3
8
n2− n

24

)
dn+2−o(dn+2)

. So, from the condition

det(L) < pnd(ω−n)−o(1), we have Zn
2dn+2

< p

(
3
8
n2− n

24

)
dn+2−o(1)

. Since Z = 2m−k and
p ≈ 2m, we finally obtain k >

(
5
8 + 1

24n + o(1)
)
m. ut

Hence, as n approaches to infinity, we need k ≥ 5
8m to solve the problem.

Appendix B: Proof of Lemma 1

Proof Let us prove the result by induction on n and first consider n = 2, i.e, A = [r0, r1, r2]
with ri ≥ 0 for 0 ≤ i ≤ 2. Suppose that one of r0, r1, r2 is zero, then min1(r0, r1, r2) = 0. In
this case the value of s = min2(r0, r1, r2), and so s = min2(r0, r1, r2) + 1

2 min1(r0, r1, r2). We
can take E(2) = 0 < 33 and thus the result is true in this case.

Now assume that ri > 0 for all i ∈ [0, 2]. Recall that in each successful iteration (the
condition of line 4 is true), two elements of A are decremented by 1. Suppose that for the first
time one of the element of A becomes zero after l successful iterations.

After l successful iterations, array A is of the form A =

[
r0− 2b l3c+ e0, r1− 2b l3c+ e1, r2−

2b l3c+ e2

]
, where |ei| < 3 for 0 ≤ i ≤ 2.

Now as after l iterations, one of the elements becomes zero, we have either r0−2b l3c+e0 = 0

or r1 − 2b l3c+ e1 = 0 or r2 − 2b l3c+ e2 = 0.

Since r0 − 2l
3 + 2 + e0 > r0 − 2

⌊
l
3

⌋
+ e0 ≥ r0 − 2l

3 + e0, if r0 − 2
[
l
3

]
+ e0 = 0, we must have

r0 − 2l
3 + e0 + η0 = 0 for some η0 ∈ [0, 2). That is 2l

3 = r0 + e for some e = |e0| + η0. Here

|e| < 3 + 2 = 5. Similarly in general we have 2l
3 = min1(r0, r1, r2) + e for some |e| < 5.

After l successful iterations, algorithm gives min2(r0−2b l3c+e0, r1−2b l3c+e1, r2−2[ l3 ]+e2)
more successful iterations before terminate.

Thus

s = l + min2

(
r0 − 2

⌊ l
3

⌋
+ e0, r1 − 2

⌊ l
3

⌋
+ e1, r2 − 2

⌊ l
3

⌋
+ e2

)
= l + min2(r0 + e0, r1 + e1, r2 + e2)− 2

⌊ l
3

⌋
= l −

2l

3
+ min2(r0, r1, r2) + e′

=
l

3
+ min2(r0, r1, r2) + e′

=
min1(r0, r1, r2)

2
+ min2(r0, r1, r2) +

1

2
e+ e′

where |e′| < 2 + max{e0, e1, e2} < 6. Thus we can take E(2) = 1
2e+ e′ < 1

2 · 5 + 6 < (2 + 1)3.
Hence result is true for n = 2.

Suppose the result is true for n = m. We have to prove that the result holds for n = m+ 1.
Now consider A = [r0, . . . , rm, rm+1].
First suppose one of r0, . . . , rm, rm+1 is zero. Without loss of generality, let rm+1 = 0. In this
case min1(r0, . . . , rm, rm+1) = 0. Also mini(r0, . . . , rm) = mini+1(r0, . . . , rm+1) for i ≥ 1. Also
value of s of the algorithm for inputs (r0, . . . , rm, rm+1) and (r0, . . . , rm) is same. Thus by
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induction hypothesis,

s = minm(r0, r1, . . . , rm) +
1

2

m−1∑
i=1

mini(r0, r1, . . . , rm) + E(m)

= min1(r0, r1, . . . , rm+1) + minm+1(r0, r1, . . . , rm+1) +
1

2

m∑
i=2

mini(r0, r1, . . . , rm+1) + E(m)

= minm+1(r0, r1, . . . , rm+1) +
1

2

m∑
i=1

mini(r0, r1, . . . , rm+1) + E(m)

Hence if we take E(m+ 1) = E(m), |E(m+ 1)| < (m+ 2)3 as |E(m)| < (m+ 1)3. Thus the
result is true for n = m+ 1.

Finally assume ri > 0 for all 0 ≤ i ≤ m+ 1. Suppose that for the first time one of the element
of A becomes zero after l successful iterations. After l successful iterations, array A is of the

form A =

[
r0 − (m+ 1)

⌊
l

(m+2
2 )

⌋
+ e0, . . . , rm+1 − (m+ 1)

⌊
l

(m+2
2 )

⌋
+ em+1

]
with |ei| < m+ 2 for

i ∈ [0,m+ 1].

Since one of the elements of A is zero, m+1

(m+2
2 )

l = min1(r0, . . . , rm+1) + e, where

|e| < (m+ 2) + (m+ 1) = 2m+ 3. So we have l = m+2
2 min1(r0, . . . , rm+1) + m+2

2 e.

Also since after l successful iterations, one of the elements in A becomes 0, without loss of
generality, suppose last element rm+1 − (m+ 1)

⌊
l

(m+2
2 )

⌋
+ em+1 = 0. By induction

hypothesis, if the input of the algorithm is

(
r0 − (m+ 1)

⌊ l

(m+2
2 )

⌋
+ e0, . . . , rm − (m+ 1)

⌊ l

(m+2
2 )

⌋
+ em

)
,

the total number of successful iterations is

minm(r0 − (m+ 1)
⌊ l(m+2

2

) ⌋+ e0, . . . , rm − (m+ 1)
⌊ l(m+2

2

) ⌋+ em)+

1

2

m−1∑
i=1

mini(r0 − (m+ 1)
⌊ l(m+2

2

) ⌋+ e0, . . . , rm − (m+ 1)
⌊ l(m+2

2

) ⌋+ em) + E(m)

= minm+1(r0 − (m+ 1)
⌊ l(m+2

2

) ⌋+ e0, . . . , rm+1 − (m+ 1)
⌊ l(m+2

2

) ⌋+ em+1)

+
1

2

m∑
i=2

mini(r0 − (m+ 1)
⌊ l(m+2

2

) ⌋+ e0, . . . , rm+1 − (m+ 1)
⌊ l(m+2

2

) ⌋+ em+1) + E(m)

= minm+1(r0 + e0, . . . , rm+1 + em+1)− (m+ 1)
⌊ l(m+2

2

) ⌋+
1

2

m∑
i=2

mini(r0 + e0, . . . , rm+1 + em+1)− (m− 1)
m+ 1

2

⌊ l(m+2
2

) ⌋+ E(m)

= minm+1(r0 + e0, . . . , rm+1 + em+1)−
(m+ 1)2

2

⌊ l(m+2
2

) ⌋+
1

2

m∑
i=2

mini(r0 + e0, . . . , rm+1 + em+1) + E(m).
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Thus the value of s will be

s = l + minm+1

(
r0 + e0, . . . , rm+1 + em+1

)
−

(m+ 1)2

2

⌊ l(m+2
2

) ⌋+

1

2

m∑
i=2

mini(r0 + e0, . . . , rm+1 + em+1) + E(m)

=

(
m+ 2

2
−

(m+ 1)2

2
(m+2

2

) · m+ 2

2

)
min1(r0, . . . , rm+1) + minm+1(r0, . . . , rm+1) +

1

2

m∑
i=2

mini

(
r0, . . . , rm+1

)
+ E(m) + ε′

= minm+1(r0, . . . , rm+1) +
1

2

m∑
i=1

mini

(
r0, . . . , rm+1

)
+ E(m) + e′,

where |e′| < m+2
2 (2m+ 3) + (m+ 2) + (m+1)2

2

(
1 + 1

(m+2
2 )

m+2
2 (2m+ 3)

)
+m−1

2 (m+ 2) = 3m2 + 17
2 m+ 6.

(
Here we are using

l = m+2
2 min1(r0, . . . , rm+1) + m+2

2 e, |e| < 2m+ 3, |ei| < m+ 2 ∀i ∈ [0,m+ 1].

)
Thus if we take E(m+ 1) = E(m) + e′,
|E(m+ 1)| < 3m2 + 17

2 m+ 6 + |E(m)| < 3m2 + 17
2 m+ 6 + (m+ 1)3 < (m+ 2)3. Hence by

induction we have for all n,

s = minn(r0, r1, . . . , rn) +
1

2

n−1∑
i=1

mini(r0, r1, . . . , rn) + E(n),

with |E(n)| < (n+ 1)3. ut


