
Secure two-party computation in applied
pi-calculus: models and verification
Sergiu Bursuc

School of Computer Science, University of Bristol, UK
s.bursuc@bristol.ac.uk

Abstract
Secure two-party computation allows two mutually distrusting parties to compute a function

together, without revealing their secret inputs to each other. Traditionally, the security properties
desired in this context, and the corresponding security proofs, are based on a notion of simulation,
which can be symbolic or computational. Either way, the proofs of security are intricate, requiring
first to find a simulator, and then to prove a notion of indistinguishability.

Furthermore, even for classic protocols such as Yao’s (based on garbled circuits and oblivious
transfer), we do not have adequate symbolic models for cryptographic primitives and protocol
roles, that can form the basis for automated security proofs. We therefore propose new models in
applied pi-calculus in order to address these gaps. Our contributions, formulated in the context
of Yao’s protocol, include:

an equational theory for specifying the primitives of garbled computation and oblivious trans-
fer;
process specifications for the roles of the two parties in Yao’s protocol;
definitions of security that are more clear and direct: result integrity, input agreement (both
based on correspondence assertions) and input privacy (based on observational equivalence).

We put these models together and illustrate their use with ProVerif, providing a first automated
verification of security for Yao’s two-party computation protocol.

1 Introduction

Secure two-party computation is a fundamental problem in cryptography [1]: two parties
with inputs a and b wish to compute a function f(a, b) such that each party can both preserve
the privacy of its inputs and be sure to receive the correct result of the computation. Even
more, each party would like assurance that the other party does not learn more from the
protocol, like the evaluation of the function f on other inputs, e.g. f(a′, b′), or the evaluation
of another function on the same inputs, e.g. g(a, b).

A classic, and still most efficient, way of achieving secure two-party computation is Yao’s
protocol based on garbled circuits [2]. It allows two parties to exchange a garbled circuit
and garbled inputs for a function, that can be used to compute the corresponding output,
without leaking private information about inputs. In addition, cut-and-choose techniques
or zero-knowledge proofs can be incorporated into this protocol to ensure that a malicious
party cannot cheat, this way learning more than it should or leading to compromized function
outputs [3, 4].

Security proofs in computational models. The active security of Yao’s protocol
has been defined and proved in the simulation-based model [5, 6, 3], which states that,
by executing a two-party computation protocol for a function f , an attacker can obtain
essentially nothing more than the output of the function. First, this requires the definition
of an ideal model where the desired functionality can be securely computed in a trivial

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

manner, for instance relying on a trusted third party and private channels. Secondly, one
has to show that the view of every attacker on the real protocol can be matched by a
computationally indistinguishable view that comes from the idealized model. This requires
a simulator, whose role is to decorate an ideal run with innocous data that makes it look like
a real run to any polynomially bounded adversary. This level of generality comes however
at a cost, the security proofs being complex and challenging to automate.

Security proofs in symbolic models. On the other hand, significant progress has
been made in the field of automated verification of security protocols in formal (or symbolic)
models [7, 8]. However, even symbolic definitions of simulation-based security, e.g. [9, 10]
or [11, 12] (in applied pi-calculus), are still a challenging task for such methods, which are
tailored for basic properties like secrecy, authentication or privacy. Indeed, recent work
aiming to automate verification for multi-party computation protocols is either relying on
additional manual input [13, 12], or only captures properties of correctness [14]. For Yao’s
protocol in particular, we also lack symbolic models for the required cryptographic primitives
of garbled computation and oblivious transfer. Overall, we do not yet have the models that
could be given directly to a verification tool and ask the basic question: is a particular
two-party computation protocol secure or not? We propose such models for Yao’s protocol.

Our approach and contributions. The main challenge in automating simulation-
based security proofs comes from the fact that a simulator first needs to be found, and, for
some methods (e.g. [13, 12]), processes need to be rearranged to have the same structure in
order to check indistinguishability - this requires some human input in order to be tractable
by tools. In this paper, we propose an alternative approach, formulating two-party compu-
tation security for Yao’s protocol as a conjunction of three basic properties: result integrity,
input agreement and input privacy (Section 5). They are based on the standard symbolic
notions of correspondence assertions and observational equivalence (of two processes with
the same structure), do not require a simulator, and are directly amenable to automation.
We also propose formal models in applied pi-calculus for the cryptographic primitives (Sec-
tion 3) and the processes (Section 4) of Yao’s two-party computation protocol. We show
that our models can be combined and verified with ProVerif, deriving a first automated
proof of security for Yao’s protocol.

Relations among notions. Computational soundness results in [9, 10, 14, 13] show
that it is sufficient to prove security in the symbolic model, in order to derive security
guarantees in the corresponding computational model. The models in [11, 12] have not yet
been shown to be computationally sound, to our knowledge. Our models are related to [11,
12, 14, 13], being formulated in the same language of applied pi-calculus. In future work, we
aim to show an even stronger relation, deriving conditions under which our properties imply,
or not, simulation-based security in these formal models. We discuss this open problem and
related work in more detail in Section 6.

2 Preliminaries

2.1 Secure two-party computation with garbled circuits
Assume two parties A (with secret input x) and B (with secret input y) want to com-
pute f(x, y), for a function f . The basic tool in Yao’s two-party computation protocol
[2, 6] is a garbling construction that can be applied to any circuit representing the func-
tion f . For a fresh key k, it generates a garbled circuit GF(f, k) and garbled input wires
GW (x, k, a),GW (y, k, b), where a and b mark the circuit wires corresponding to the input
of A or B. Then,

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

the output of the circuit GF(f, k) on inputs GW (x, k, a),GW (x, k, b) is equal to f(x, y),
as depicted in the left part of Figure 1.
without access to the key k, f(x, y) is the only meaningful information that can be derived
from GF(f, k),GW (x, k, a),GW (y, k, b). In particular, the values x and y remain secret
and, for any {x′, y′} 6= {x, y}, these garbled values do not allow to compute f(x′, y′).

Figure 1 Garbled computation and Yao’s protocol for two parties

Relying on garbling, one of the two parties, say A, can play the role of a sender and the
other party, say B, can play the role of a receiver. The role of the sender, as depicted in
the right part of Figure 1, is to garble the circuit and the inputs of the two parties. The
role of the receiver is to execute the garbled computation and send the result back to A.
Note, however, that the party A does not have access to the private input of B, so we need
another tool to ensure that A and B can agree on a garbled input for B.

This is where A and B rely on oblivious transfer [15, 16]. An oblivious transfer protocol
allows a receiver to obtain a message from a set computed by the sender such that: (i) only
one message can be received and (ii) the sender does not know which message has been
chosen by the receiver. In Yao’s protocol, the receiver B can then get one message, which
is the garbling of his desired input for the function, and nothing else, whereas the sender A
does not learn what value B has chosen as input. Having obtained GF(f, k), GW (x, k, a)
and GW (y, k, b), B can evaluate the garbled circuit and obtain f(x, y), which can be sent
back to A as the result of the computation.

Active security. In the case when B might be malicious, we have to ensure that A can
obtain from B the correct result. For this, the functionality of the garbled circuit is modified
such that its output is a pair of values f(x, y) and enc(f(x, y), k), where k is a fresh secret
key chosen by A for each protocol session. Then, instead of f(x, y), B returns enc(f(x, y), k)
to A: the result f(x, y) is authenticated by the key k. To counter the case of a malicious A,
the sender A can prove that the garbling is correct, relying on cut-and-choose techniques
[3, 17] or zero-knowledge proofs [18, 4].

2.2 Applied pi-calculus and ProVerif [19, 20, 21, 22, 23]

Equational theories. We assume given an infinite set of names, a, b, c, k, n . . ., an infinite
set of variables, x, y, z, . . . and a signature F formed of a set of constants and function
symbols. Names, constants and variables are basic terms and new terms can be built by
applying a function symbol f ∈ F to already defined terms. The signature F can be split
into public and private symbols: F = Fpub ∪ Fpriv,Fpub ∩ Fpriv = ∅. A substitution σ

is a partial function from the set of variables to the set of terms, whose application to a
term T is the term Tσ, called an instance of T , obtained by replacing every variable x
of T with the corresponding term xσ. A term context is a term C[_1, . . . ,_n] containing
special constants _1, . . . ,_n (also called holes). For a context C[_1, . . . ,_n] and a sequence

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

of terms T1, . . . , Tn, we denote by C[T1, . . . , Tn] the term obtained by replacing each _i with
the corresponding Ti in C. A context with a single hole is denoted by C[_].

The semantics of terms is given by a set R of rewrite rules of the form U → V , where
U, V are terms with variables. Then, a term T1 rewrites to T2 in one step, denoted by
T1 → T2, if there is a context C[_], a substitution σ and a rewrite rule U → V such that
T1 = C[Uσ] and T2 = C[V σ]. More generally, T1 rewrites to T2, denoted by T1 →∗ T2, if T2
can be derived from T1 by applying zero or more rewrite steps [24, 25]. A pair E = (F ,R)
formed of a signature and a set of rewrite rules is called an equational theory. We assume
equational theories that are convergent: for any term T , there is a unique term T↓ such
that T →∗ T↓ and no rewrite steps can be applied to T↓. We write U =E V if U↓ = V ↓.
We say that a term T can be deduced from a sequence of terms S, denoted by S `E T (or
simply S ` T), if and only if there is a context C[_1, . . . ,_n] and terms T1, . . . , Tn in S such
that C[T1, . . . , Tn]↓ = T and C does not contain function symbols in Fpriv. Such a context,
together with the positions of terms T1, . . . , Tn in S, is called a proof of S `E T , which may
admit several different proofs, denoted by annotations of π.

Processes. Processes of the calculus are built according to the following grammar

P, Q, R ::= processes
0 null process P | Q parallel composition
!P replication new n; P name restriction
in(c, x); P input on channel out(c, T); P output on channel
if U = V then P else Q conditional let x = T in P term evaluation
event T ; P event occurence

where c, n are names, x is a variable, T,U, V are terms. Replication allows the creation
of any number of instances of a process. Names introduced by new are called private, or
fresh, otherwise they are public, or free. In input/output actions, the name c represents
the communication channel, the variable x stands for the message to be received, and the
term T is the message sent over the channel. The construct event T is used for specifying
security properties, recording that some event has occured. The term T is usually of the
form A(T1, . . . , Tn), where A is a special symbol representing the name of the event (e.g.
the start or end of a protocol session), while the terms T1, . . . , Tn represent the parameters
of the event (e.g. the names or inputs of parties).

A variable x is free in a process P if P does not contain x in any of its input actions
and any term evaluation of the form x = T . A process P with free variables x1, . . . , xn is
denoted by P (x1, . . . , xn), i.e. x1, . . . , xn are parameters of P that will be instantiated in
the context where P is used. We denote by sig(P) the set of function symbols that appear
in P . A process context C[_] is defined similarly as a term context.

Formally, the operational semantics of processes is defined as a relation on tuples of the
form (N ,M,L,P), called configurations, whose elements represent the following information
in the execution of a process: N is the set of freshly generated names;M is the sequence of
terms output on public channels (i.e. to the attacker); L is the set of occured events; P is the
multiset of processes being executed in parallel. The rules that define the operational seman-
tics, presented in the appendix, are quite standard and correspond to the informal meaning
previously discussed. We denote by P →∗ (N ,M,L,P) if the configuration (N ,M,L,P)
can be reached from the initial configuration of P , which is (∅, ∅, ∅, {P}).

Security properties. We rely on both correspondence assertions [21] and observational
equivalence [22]. Correspondence assertions allow to specify that some events in the execu-
tion of the protocol satisfy certain constraints. They are based on formulas whose syntax

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

and semantics, for a configuration C = (N ,M,L,P) and equational theory E , are defined
below:

Syntax Φ,Ψ ::= ev : T att : T U = V Φ ∧ Ψ Φ ∨Ψ ¬Φ

Semantics C |=E ev : T ⇐⇒ ∃T ′ ∈ L. T ′ =E T C |=E att : T ⇐⇒ M `E T
C |=E U = V ⇐⇒ U =E V

Therefore, ev : T is true for a configuration if the event T occured in the execution trace
leading to it, and att : T is true if the attacker can deduce T from the public messages of the
configuration. Formulas Φ∧Ψ,Φ∨Ψ and ¬Φ represent boolean functions that are satisfied
as usual. More generally, a correspondence assertion is a formula of the form Φ Ψ. Such a
formula is satisfied for a process P if and only if, for every process Q, with sig(Q)∩Fpriv = ∅,
and every configuration C reachable from P | Q, i.e. P | Q →∗ C, and any substition σ,
we have that C |= Φσ implies C |= Ψσ′, for some substition σ′ that extends σ, i.e. if xσ is
defined, then xσ′ = xσ. Intuitively, a correspondence assertion requires that every time the
formula Φ is true during the execution of a process, the constraints specified in Ψ must also
be true for the same parameters. The process Q stands for any computation that may be
performed by the attacker.

Observational equivalence, denoted by P1 ∼ P2, specifies the inability of the attacker to
distinguish between two processes P1 and P2. Formally, P1 ∼ P2 is true if and only if, for
every process Q, with sig(Q)∩Fpriv = ∅, and every configuration (N1,M1,L1,P1) reachable
from P1 | Q, there is a configuration (N2,M2,L2,P2) reachable from P2 | Q, such that for
any term T1 and any two different proofs π1, π2 ofM1 `E T1, there is a term T2 such that
π1, π2 are also proofs ofM2 `E T2. There are different flavours of this definition, which are
essentially equivalent for the class of processes that we consider [19, 22, 26, 23].

3 Equational theory for garbled computation

In this section we present an equational theory to model the cryptographic primitives used
in garbled computation protocols like [2, 6, 3]. We will refer to a party A as the sender (who
garbles and transmits data), and to a party B as the receiver (who receives and ungarbles
data). The equational theory should enable: B to evaluate a garbled circuit on garbled
inputs; A to prove that the circuits and its inputs are correctly garbled; B to obtain by
oblivious transfer B’s garbled input. We propose for this purpose the equational theory EGC
from Figure 2, and we discuss next how it captures the desired cryptographic properties.

Garbled circuit evaluation.
the term eval(TF , TA, TB) represents the result of evaluating a circuit, represented by
the term TF , on inputs of A and B, represented by terms TA and TB respectively.
the term gf(TF , TK) represents the garbling of a circuit TF , given a garbling key TK.
the term gw(T, TK, i), with i ∈ {a, b}, represents a garbling of the input T with a key
TK, where T corresponds to the input wires of party A, when i is a, or of party B, when
i is b.
the term geval(gf(TF , TK), gw(TA, TK, a), gw(TB, TK, b)) represents the computation per-
formed on the garbled function and garbled inputs given as arguments to geval, the result
of which is eval(TF , TA, TB), as specified by the rewrite rule R1.

Moreover, we have an additional function geval ′, whose rewrite rule R2 provides an
encryption of the evaluated function. As explained in section 2.1, this ciphertext is to be
sent as response to A, and it allows A to have confidence that the final result correctly

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Figure 2 Equational theory EGC for garbled computation

F = eval/3 gf/2 gw/3 a/0 b/0 geval/3 geval′/3 ok/0
ungarb/2 checkf/2 gwot/3 com/2 get/3 enc/2 dec/2

R =

1. geval(gf(x, y), gw(x1, y, a), gw(x2, y, b)) → eval(x, x1, x2)
2. geval′(gf(x, y), gw(x1, y, a), gw(x2, y, b)) → enc(eval(x, x1, x2), y)
3. ungarb(gw(x, y, z), y) → x

4. ungarb(gf(x, y), y) → x

5. checkf(gf(x, y), x) → ok

6. get(gwot(com(x, z), y1, y2), x, z) → gw(x, y1, y2)
7. dec(enc(x, y), y) → x

reflects his inputs in the protocol, even while interacting with a malicious B. For brevity,
we have considered that the key in this encryption is the same as the one used for garbling,
but the model can be easily adapted for more complex scenarios.

Overall, R1 and R2 are the only operations that can be performed on garbled values
without the garbling key, this way enforcing several security properties at the cryptographic
level, which are crucial for deriving the security properties at the process level that we
specify in Section 5. First, the function and the inputs of the garbled circuit cannot be
modified. Second, the computation in rules R1,R2 succeeds only for circuits and inputs
that are garbled with the same key y (otherwise, a malicious party may combine garbled
values from different sessions of the protocol in order to derive more information than it
should). Third, the inputs must be used consistently, e.g. the garbled input of A cannot be
substituted with a garbled input for B (ensured by the constants a and b). Garbled data
can only be ungarbled by the key holder, as specified by the rule R3 for garbled functions
and the rule R4 for garbled inputs.

We have seen that several protections are in place in order to ensure that a malicious
receiver cannot cheat. In addition, we need to ensure that a malicious sender cannot cheat
when garbling a circuit. This is the role of R5, which allows a party to check that a function
is correctly garbled, without access to the garbling key. Cryptographically, there are various
ways in which this abstraction can be instantiated, e.g. by zero-knowledge proofs [4] or
cut-and-choose techniques [3, 27]. The model of oblivious transfer that we explain next will
also allow the receiver to be convinced that his input is correctly garbled.

Garbled oblivious transfer is modeled relying on functions gwot, get, com, and the
rewrite rule R6, as follows:

the term com(TB, V) represents a commitment to a term TB, which cannot be modified,
and is hidden by a nonce V ; such a term will be used by B to request a garbled version
of TB without disclosing it.
the term gwot(com(TB, V), TK, T) is an oblivious transfer term, obtained from a com-
mited input and a garbling key TK; such a term will be constructed by A and sent in
response to B’s commitment.
the term get(gwot(com(TB, V), TK, T), TB, V) allows to obtain gw(TB, TK, T) from an
oblivious transfer term, if a party has the secret input TB and nonce V that have been
used to construct the corresponding commitment, relying on the rule R6.

This way we express an oblivious transfer of garbled values at an abstract level, capturing
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

formally the security properties that are ensured by a concrete instantiation of the oblivious
transfer protocol (e.g. [15, 16, 27, 28]): for a sender A and a receiver B:
B should only learn one garbled value among many possible ones
A should not learn which value B has chosen

The first property is ensured in our model by the fact that a dishonest B cannot change
the commitment com(TB, V) in an oblivious transfer term gwot(com(TB, V), TK, T). The
only way to obtain a garbling of a second message would be to run a second instance of the
protocol with A, involving another commitment and corresponding oblivious transfer term
- this is a legitimate behaviour that is also allowed by our model. The second property is
ensured by the fact that a commitment com(TB, V) does not reveal TB or V . Furthermore,
only the holder of TB and V can extract the respective garbled value from an oblivious
transfer term, ensuring that B is in fact the only party that can obtain gw(TB, TK, T).

4 Formal protocol specification

In this section, we show how the equational theory from section 3 is integrated into higher
level protocols modeled by processes communicating over a public network. Figure 3 contains
the process specifications of the two roles in Yao’s protocol for secure two-party computation:
the sender process A and the receiver process B. Text within (* and *) represents comments.

The public parameter of A and B is the function to be evaluated, represented by the free
variable xF . The private parameters of A and B are their respective inputs, represented
by the free variables xA and respectively xB. The goal of A and B is therefore to obtain
eval(xF , xA, xB), without disclosing xA to B and xB to A. A public name c represents the
communication channel between the two parties, possibly controlled by an attacker.

Sender A(xF , xA)
(* Receive B’s commited input *)
in(c, xc);
(* Characterize a started session *)
event Ain(xF , xA, xc);
(* Generate a new garbling key *)
new kA;
(* Garble and send the function *)
let xgf = gf(xF , kA) in out(c, xgf);
(* Garble and send A’s input *)
let xga = gw(xA, kA, a) in out(c, xga);
(* Oblivious transfer of
B’s garbled input *)

let xot = gwot(xc, kA, b) in
out(c, xot);
(* Receive the result *)
in(c, yA); let xres = dec(yA, kA) in
(* Characterize an ended session *)
event Ares(xF , xA, xc, xres)

Receiver B(xF , xB)
(* Send B’s commited input *)
new nB; let xc = com(xB, nB) in out(c, xc);
(* Receive garbled xF and xA *)
in(c, xgf); in(c, xga);
(* Characterize a started session *)
event Bin(xF , xga, xB);
(* Oblivious receival of
B’s garbled input *)

in(c, xot); let xgb = get(xot , xB, nB) in
(* Verify the garbled function *)
if checkf(xgf , xF) = ok then
(* Perform garbled computation *)
let xres = geval(xgf , xga, xgb) in
let yA = geval′(xgf , xga, xgb) in
(* Send the result to A *)
out(c, yA);
(* Characterize an ended session *)
event Bres(xF , xga, xB, xres)

Figure 3 Processes for two-party computation

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sender. The sender process A creates a new garbling key kA, which it uses to garble
the circuit xF , its input xA and, obliviously, the input of B. As part of oblivious transfer,
A first receives the commited input of B. The garbled values, as well as the corresponding
oblivious transfer term, are sent to B over the public channel c. As response from B, A
receives the result of the computation encrypted with kA.

Receiver. The receiver process B obtains garbled data from A and, to get a garbled ver-
sion of its own input xB, engages in the oblivious transfer protocol: it makes a commitment
to xB, sends the commitment to A and receives in response the oblivious transfer term that
corresponds to the garbled version of the committed input, which B retreives relying on the
function get. Next, B verifies that the function is correctly garbled and, if the verification
is successful, it performs the garbled computation. The vaule xres is the result obtained by
B, while yA is the encrypted result that is sent back to A.

Events. The events Ain, Ares, Bin and Bres are used as part of the formal specification
of security properties that we present in section 5.

The event Ain(xF , xA, xc) records that A has engaged in a protocol session for the
computation of xF , having A’s input equal to xA, and B’s input being committed to xc.
The event Ares(xF , xA, xc, xres) records in addition that A has obtained the result xres
as outcome of the protocol session.
The event Bin(xF , xga, xB) records that B has engaged in a procotol session for the
computation of xF , having B’s input equal to xB, and A’s input being garbled as xga.
The event Bres(xF , xga, xB, xres) records in addition that B has obtained the result xres
as outcome of the protocol session.

Attacker. As usual, the attacker can execute any of the operations that we have de-
scribed, as well as any other operations allowed by the equational theory, and (pretend to)
play the role of any party, while interacting with an honest party A or B on the public
channel c. This is captured formally by the semantics of the applied pi-calculus and the
definition of the security properties that we present in the next section.

5 Formal models of security for two-party computation

Informally, we require the following properties from a secure two-party computation protocol:

1. The dishonest parties should not learn too much:
(a) The only leakage about the input of an honest party should come from the result

of the evaluated function (Input privacy).
(b) A dishonest party should be able to evaluate a function on honest inputs only as

agreed by the corresponding honest party (Input agreement).
2. The honest parties learn the correct result (Result integrity).

The distinction between input privacy and input agreement separates the task of input
protection for honest parties into (a) protecting the honest input during the protocol flow
(without bothering about the output of the function); and (b) ensuring that a dishonest party
can learn function outputs on private inputs only as agreed by the corresponding honest
party. This distinction helps to address automated verification problems when the public
output of the protocol depends on the private input of parties. For example, automating
privacy proofs for electronic voting protocols is known to be problematic, because care should
be taken to separate the legitimate (e.g. the result of the election) from the illegitimate
information flow [29, 30]. This is also a problem for automating simulation-based proofs,

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

where an ideal functionality models exactly what can be leaked by the protocol, and a
simulator needs to be found that shows the protocol not to leak more [11, 12, 13]. Our
separation of this property into (a) and (b) is a new way of addressing this problem, and is
making more explicit the properties that are achieved, without requiring a simulator as in
[11, 12, 13] or additional honest parties as in [29, 30].

These security properties can be specified in a general setting, but for brevity we present
them in relation to the models of Sections 3 and 4, and leave their generalization as future
work. In this setting, a specification of a two-party computation protocol is given by a triple
(A,B, E), where E is an equational theory containing EGC from Section 3, A is a sender
process with free variables xF , xA, B is a receiver process with free variables xF , xB, and
these processes are enriched with events Ain,Bin,Ares,Bres presented in Section 4.

5.1 Result integrity
Result integrity should ensure that the final result obtained by an honest party P ∈ {A,B}
after a session of the protocol is consistent with the function that P expects to be evalu-
ated, with the input of P in this session, and with the input of the other party, that has
responded to this session, or has initiated it. Formally, the events Ares(xF , xA, xc, xres)
and Bres(xF , xga, xB, xres) capture the views of A and B after a session of the protocol has
ended, recording all the relevant data, in particular the result obtained by the respective
party, and the committed (resp. garbled) input of the other party. Therefore, we can specify
the requirement of result integrity by the correspondence assertions ΦAint and ΦBint presented
in Definition 1.

I Definition 1 (Result integrity). Let (A,B, E) be a specification of a two-party computation
protocol. We define the correspondence assertions ΦAint and ΦBint as follows:

ΦAint
.= ev : Ares(x, y, z, w) z = com(z1, z2) ∧ w = eval(x, y, z1)

ΦBint
.= ev : Bres(x, y, z, w) y = gw(y1, y2, a) ∧ w = eval(x, y1, z)

We say that (A,B, E) satisfies result integrity if

! (in(c, xF); in(c, xA);A(xF , xA)) |=E ΦAint and
! (in(c, xF); in(c, xB);B(xF , xB)) |=E ΦBint

The specification lets the attacker execute any number of sessions of an honest party A
or B, with any function xF and any values xA, xB as inputs, and requires the correspondence
assertions ΦAint and ΦBint to be satisfied by this process. In turn, ΦAint and ΦBint require that for
any occurence of the event Ares or Bres, the result obtained by the respective honest party,
recorded in the variable w (say Tw), correctly reflects the function and relevant messages of
the corresponding session, recorded in variables x, y, z (say Tx, Ty, Tz).

The variables z1, z2 in ΦAint are existentially quantified by definition. Therefore, ΦAint
requires that the term Tz, which represents the message that A received from B, should
be of the form com(T1, T2), for some terms T1, T2 such that the final result Tw is equal to
eval(Tx, Ty, T1). Similarly, ΦBint requires Ty, which represents the message that B received
from A, to be of the form gw(T1, T2, a), for some terms T1, T2 such that Tw is equal to
eval(Tx, T1, Tz).

5.2 Input agreement
Input agreement should ensure that the function outputs obtained by a dishonest party after
executing a session of the protocol are consistent with the expectation of an honest party

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

when it releases its private inputs. Specifically, consider the case where an honest party A
supplied an input TA in order to compute a function TF . Then, the other party (possibly
dishonest) should only be able to obtain eval(TF , TA, TB), where TB is its own input when
playing the role of B in the corresponding protocol session. In particular, the other party
should not be able to obtain eval(TF , TA, T ′B), for a different input T ′B, or eval(T ′F , TA, TB),
for different function T ′F . Similar guarantees should hold for an honest party B.

We formally define these requirements as correspondence assertions restricting the func-
tion outputs that can be obtained by the attacker. The fact that the attacker knows a
particular function output can be expressed by the basic formula att : eval(x, y, z). To
express the constraints associated with this formula (restricting the values x, y, z), we rely
on events Ain(xF , xA, xc) and Bin(xF , xga, xB), that record the parameters of each honest
party in a started protocol session. In particular, the event Ain records the commited input
of B, received by A, and Bin records the garbled input of A, received by B. Therefore,
these events fully determine the result that each party (and in particular a dishonest party)
should obtain from the respective protocol session. Then, in Definition 2 we require that to
any function output eval(x, y, z) obtained by the attacker, there corresponds an initial event
recording the agreement of the respective honest party A or B.

IDefinition 2 (Input agreement). Let (A,B, E) be a specification of a two-party computation
protocol. We define the correspondence assertions ΦAagr and ΦBagr as follows:

ΦAagr
.= att : eval(x, y, z) (ev : Ain(x, y, z1) ∧ z1 = com(z, z2)) ∨ att : y

ΦBagr
.= att : eval(x, y, z) (ev : Bin(x, y1, z) ∧ y1 = gw(y, y2, a)) ∨ att : z

We say that a specification (A,B, E) of a two-party computation protocol satisfies input
agreement if:

! (in(c, xF); new iA;A(xF , iA)) |=E ΦAagr and
! (in(c, xF); new iB;B(xF , iB)) |=E ΦBagr

Note, however, that this property cannot be achieved if the input of the honest party is
known to the attacker, who can obtain eval(x, y, z) from x, y, z, by simply evaluating the
function. Therefore, input agreement as defined here makes sense only for honest input
values that are not available to the attacker. This is captured by the disjunction in the
correspondence assertions ΦAagr and ΦBagr of Definition 2, and by the fact that inputs iA, iB
of honest parties in the test processes A(xF , iA),B(xF , iB) are locally generated for each
session.

5.3 Input privacy
Input agreement prevents the attacker from learning unauthorized outputs of the function,
but it does not ensure the privacy of an honest input - an equally important and comple-
mentary property (indeed, without privacy, the attacker may first derive the honest input
and then simply evaluate the function). Traditionally, the privacy of an input x in a process
P(x) is defined as a property of indistinguishability, e.g. observational equivalence, between
two of its instances, say P(a1) and P(a2). For example, this is the case when verifying strong
secrecy [31] or vote privacy in electronic voting [29, 30]. Modeling strong secrecy in this way
is straightforward, because no information should flow from the secret input to the public
output. In the case of e-voting protocols, and in our case of secure two-party computation,
the definition should be made robust in order to take into account information flow that is
unavoidable from the output of the protocol.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Typically, such information flow results in trivial attacks against formal indistinguisha-
bility, yet they are out of the scope of cryptographic protocols, and should not be considered
as attacks (they are often called false attacks). In [29, 30], the specification avoids such
false attacks by requiring the presence of at least two honest voters, which swap their votes
such that the result of the election is the same in two different experiments. More generally,
we can require that the only leakage about the input of an honest party should come from
the result of the evaluated function. In other words, if the output of the function is with-
held from the attacker, no leakage should occur about the honest inputs. In this case, we
have a standard requirement of strong secrecy, which can be specified as an observational
equivalence.

On the other hand, it is not straightforward to formalize the first part of this requirement,
withhelding the output of the function from the attacker. The attacker might be able to
compute the output by combining data gathered throughout the protocol (for example, an
attacker playing the role of B in Yao’s protocol can evaluate the function output from the
received garbled data). In such cases, it is not clear what data can be legitimately withheld
from the attacker when defining input privacy. Instead, we will enrich the equational theory
such that, for the honest inputs, all corresponding function outputs are equivalent, i.e. the
attacker cannot observe the difference between them. Therefore, rather than suppressing
the function output in the protocol specification, we suppress the attacker’s ability to gain
information from this output. The enriched equational theory relies on special function
symbols α and β that will decorate the private inputs of an honest party A, respectively B.

I Definition 3. Let E be an equational theory. Consider the function symbols α, β and the
constants α0, β0. We define the equational theories

Eα = E ∪ { eval(x, α(y), z)→ eval(x, α0, z) } and
Eβ = E ∪ { eval(x, y, β(z))→ eval(x, y, β0) }

The rewrite rules for eval declare function evaluations of inputs decorated with α, β to
be equivalent, relying on the constants α0, β0, which are used for obtaining a convergent
equational theory. Then, the specification in Definition 4 considers two versions of a process:
for any number of sessions, and any choice of terms x0, x1 for each session, in the first version
an honest party A, respectively B, inputs α(x0), respectively β(x0); in the second version
the party inputs α(x1), respectively β(x1). We say that the protocol satisfies input privacy
if these two versions are in observational equivalence, i.e. indistinguishable for the attacker.

I Definition 4 (Input privacy). Let (A,B, E) be a specification of a two-party computation
protocol and Eα, Eβ be the equational theories from Definition 3. Let Cin[_] be the process
context in(c, xF); in(c, x0); in(c, x1); [_]. We say that (A,B, E) satisfies input privacy if

! Cin[A(xF , α(x0))] ∼Eα
! Cin[A(xF , α(x1))] and

! Cin[B(xF , β(x0))] ∼Eβ
! Cin[B(xF , β(x1))]

Note that α(x0) and α(x1) remain distinct terms with respect to Eα when considered in
any context other than in terms of the form eval(y, α(x0), z), eval(y, α(x1), z); and similarly
for Eβ . That is why, if there is a privacy weakness in the protocol, the attacker will be able
to spot the difference between the two experiments in Definition 4, for either A or B.

6 Conclusion and related work

The ProVerif code for the models introduced in this paper is in appendix. ProVerif returns
within seconds positive results for all queries, and we also perform reachability tests to

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

ensure that all parties can execute the protocol correctly. Our contributions differ from
related work in several respects and also open some new research questions:

The model of Backes et al [14] considers multi-party computation functionalities ab-
stractly, allowing to reason about their use in larger protocols, without necessarily repre-
senting the cryptographic primitives that realize the functionality. Their framework comes
equipped with a computational soundness result and is applied to the case study of an
auction protocol [32]. The security properties that are specified and verified automatically
(relying on type-checking) are limited to robust safety, which can be related to our property
of result integrity.

Dahl and Damgård [13] also propose a formal framework for specifying two-party compu-
tation protocols and present the automated verification with ProVerif of an oblivious transfer
protocol based on homomorphic encryption [28]. They formulate a definition of simulation-
based security in applied pi-calculus and show it to be computationally sound. In order to
obtain an input for ProVerif, they have to find a simulator and additionally massage the
resulting processes manually. On the other hand, our methodology does not require the ex-
plicit construction of a simulator and our models can be readily given as input to automated
tools. Our case study is also different, relying on garbled circuits rather than homomorphic
encryption, and on oblivious transfer as a sub-protocol to compute any function the two
parties may agree on. However, we do not provide a soundness result, and the relation of
our models to simulation-based security remains an open question. In that direction, we can
also explore extensions of our models into a general framework allowing the verification of
other protocols, for two or multiple parties, and relying on various cryptographic primitives.

Delaune et al [11] and Böhl and Unruh [12] study definitions of simulation-based secu-
rity in applied pi-calculus, showing their application to the analysis of several protocols.
Although quite general, their frameworks are not easily amenable to automation. Sim-
ilarly to [13], the authors of [12] have to perform a significant amount of manual proof
before applying ProVerif, and they have left automated verification as an open question.
Earlier symbolic models for simulation-based security, which are computationally sound,
yet more complex, are presented in [9, 10, 33]. Our paper is an argument for a different
approach: rather than directly expressing simulation-based security in formal models, we
propose several security notions whose conjunction should be sufficient for secure two-party
computation, while it remains to be seen under what conditions they imply simulation-based
security. This methodology promises not only better automation, but also a better under-
standing of what security properties are achieved. In turn, this may aid the design of new
protocols, where some of the properties can be relaxed.

A formal model for oblivious transfer in applied pi-calculus is presented by Dahl and
Damgård [13]. Their specification is a process modeling a particular protocol, whereas
we propose a more abstract equational theory. This equational theory is however specific,
because it only models the oblivious transfer of garbled values. It would be possible to
propose a generic equational theory for oblivious transfer, but it may cause problems for
automated verification - it remains a problem for future work. Conversely, the model of
Goubault et al [34] aims to capture formally the probabilistic aspect of some oblivious
transfer protocols.
Acknowledgement. We thank the anonymous reviewers for their valuable comments.

References
1 Andrew Yao. Protocols for secure computations (extended abstract). In FOCS, pages

160–164. IEEE Computer Society, 1982.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Andrew Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167. IEEE Computer Society, 1986.

3 Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Naor [35], pages 52–78.

4 Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on com-
mitted inputs. In Naor [35], pages 97–114.

5 Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

6 Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

7 Martín Abadi, Bruno Blanchet, and Hubert Comon-Lundh. Models and proofs of protocol
security: A progress report. In Ahmed Bouajjani and Oded Maler, editors, CAV, volume
5643 of Lecture Notes in Computer Science, pages 35–49. Springer, 2009.

8 Véronique Cortier and Steve Kremer, editors. Formal Models and Techniques for Analyzing
Security Protocols, volume 5 of Cryptology and Information Security Series. IOS Press,
2011.

9 Ran Canetti and Jonathan Herzog. Universally composable symbolic security analysis. J.
Cryptology, 24(1):83–147, 2011.

10 Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic
library with nested operations. In Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS 2003, Washington, DC, USA, October 27-30, 2003,
2003.

11 Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based security in the
applied pi calculus. In Ravi Kannan and K. Narayan Kumar, editors, Proceedings of the
29th Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’09), volume 4, pages 169–180, Kanpur, India, December 2009.

12 Florian Böhl and Dominique Unruh. Symbolic universal composability. In 2013 IEEE 26th
Computer Security Foundations Symposium, New Orleans, LA, USA, June 26-28, 2013,
pages 257–271. IEEE, 2013.

13 Morten Dahl and Ivan Damgård. Universally composable symbolic analysis for two-party
protocols based on homomorphic encryption. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 695–712. Springer, 2014.

14 Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally sound ab-
straction and verification of secure multi-party computations. In Kamal Lodaya and Meena
Mahajan, editors, FSTTCS, volume 8 of LIPIcs, pages 352–363, 2010.

15 Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

16 Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6):637–647, 1985.

17 Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation
using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors, CRYPTO
(2), volume 8043 of Lecture Notes in Computer Science, pages 18–35. Springer, 2013.

18 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Alfred V. Aho, editor, STOC,
pages 218–229. ACM, 1987.

19 Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communica-
tion. In Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, January 2001.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20 Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Computer Security Foundations Workshop (CSFW’01), 2001.

21 Bruno Blanchet. Automatic verification of correspondences for security protocols. Journal
of Computer Security, 17(4):363–434, 2009.

22 Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. J. Log. Algebr. Program., 75(1):3–51, 2008.

23 Mark Ryan and Ben Smyth. Applied pi calculus. In V. Cortier and S. Kremer, editors, For-
mal Models and Techniques for Analyzing Security Protocols, Cryptology and Information
Security Series. IOS Press, 2011.

24 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages 243–320.
MIT Press, 1990.

25 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

26 Véronique Cortier and Stéphanie Delaune. A method for proving observational equivalence.
In Computer Security Foundations Symposium (CSF), Port Jefferson, New York, USA,
July 8-10, 2009, pages 266–276. IEEE Computer Society, 2009.

27 Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. J. Cryptology, 25(4):680–722, 2012.

28 Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally
composable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors, Informa-
tion Security and Cryptology - ICISC 2008, 11th International Conference, Seoul, Korea,
December 3-5, 2008, Revised Selected Papers, volume 5461 of Lecture Notes in Computer
Science, pages 318–335. Springer, 2008.

29 Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

30 Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated verification of remote
electronic voting protocols in the applied pi-calculus. In Computer Security Foundations
Symposium (CSF), pages 195–209. IEEE Computer Society, 2008.

31 Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In 2004 IEEE
Symposium on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA,
page 86. IEEE Computer Society, 2004.

32 Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakob-
sen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob
Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes
live. In Financial Cryptography and Data Security, FC 2009, pages 325–343, 2009.

33 Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. Inf. Comput., 205(12):1685–1720, 2007.

34 Jean Goubault-Larrecq, Catuscia Palamidessi, and Angelo Troina. A probabilistic applied
pi-calculus. In Zhong Shao, editor, Asian Symposium on Programming Languages and
Systems (APLAS’07), volume 4807 of Lecture Notes in Computer Science, pages 175–290,
Singapore, 2007. Springer.

35 Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, Barcelona, Spain, May
20-24, 2007, Proceedings, volume 4515 of Lecture Notes in Computer Science. Springer,
2007.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7 Operational semantics and verification with ProVerif

The rules that define the operational semantics of applied pi-calculus and ProVerif, adapted
from [21] and [22], are presented in Figure 4. We have a transition system on configurations
of the form (N ,M,L,P), where N is a set of names, M is a sequence of messages, L is a
set of events and P is a multiset of processes. We denote by P [x 7→ T] the process obtained
from P by replacing every occurence of x with T , and by M ◦ T the sequence of terms
obtained by appending T to the sequence of termsM.

(NIL) (N ,M,L,P ∪ {0})→ (N ,M,L,P)
(BANG) (N ,M,L,P ∪ {!P})→ (N ,M,L,P ∪ {P, !P})
(PAR) (N ,M,L,P ∪ {P | Q})→ (N ,M,L,P ∪ {P,Q})
(NEW) (N ,M,L,P ∪ {new n;P})→ (N ∪ {n′},M,L,P ∪ {P})

where n′ /∈ N
(COMM) (N ,M,L,P ∪ {out(c, T);P , in(c, x);Q})→ (N ,M′,L,P ∪ {P,Q[x 7→ T↓]}})

whereM′ =M◦ T, ifM `E c, andM′ =M, otherwise
(IFT) (N ,M,L,P ∪ {if U = V then P else Q})→ (N ,M,L,P ∪ {P})

if U =E V
(IFF) (N ,M,L,P ∪ {if U = V then P else Q})→ (N ,M,L,P ∪ {Q})

if U 6=E V
(LET) (N ,M,L,P ∪ {let x = T in P})→ (N ,M,L,P ∪ {P [x 7→ T↓]})
(EV) (N ,M,L,P ∪ {event T ;P})→ (N ,M,L ∪ {T},P ∪ {P})

Figure 4 Operational semantics

On the following pages, we present the ProVerif input for the equational theory of Section
3, the processes of Section 4, and the properties of Section 5. The code is also available
online.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(* EQUATIONAL THEORY *)

(* CONSTANTS *)
fun zero/0. fun one/0.

(* FUNCTION EVALUATION *)
fun eval/3.

(* ENCRYPTION *)
fun enc/2.
reduc dec(enc(x,y),y) = x.

(* GARBLED COMPUTATION *)
fun ia/0. fun ib/0.
fun gf/2. fun gw/3.
reduc geval(gf(x,k),gw(y,k,ia),gw(z,k,ib)) = eval(x,y,z).
reduc geval’(gf(x,k),gw(y,k,ia),gw(z,k,ib)) = enc(eval(x,y,z),k).

reduc ungarb(gf(x,k),k) = x;
ungarb(gw(x,k,y),k) = x;
ungarb(gw(x,k,y),k) = x.

(* GARBLED OBLIVIOUS TRANSFER *)
fun gwot/3. fun com/2.
reduc get(gwot(com(x,z),y1,y2), x, z) = gw(x, y1, y2).

(* CORRECTNESS PROOF *)
fun ok/0.
reduc checkf(gf(xf,xk), xf) = ok.

(* PUBLIC CHANNEL MODELLING THE COMMUNICATION NETWORK *)
free c.

(* THE TWO PARTIES THAT EXECUTE THE PROTOCOL ARE MODELED BY
partyA - THE PARTY THAT GARBLES THE CIRCUIT
partyB - THE PARTY THAT EVALUATES THE GARBLED CIRCUIT
*)

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

let partyA =
(* RECEIVE A COMMITMENT TO THE INPUT OF B (PART OF OBLIVIOUS TRANSFER) *)
in(c, xc);

(* CHARACTERIZING A STARTED SESSION OF A *)
event A_in(xf, xa, xc);

(* CREATE A NEW GARBLING KEY *)
new key;

(* GARBLE AND SEND THE FUNCTION *)
let xgf = gf(xf,key) in out(c, xgf);

(* GARBLE AND SEND THE INPUT OF A *)
let xgwa = gw(xa,key,ia) in out(c,xgwa);

(* COMPLETE THE OBLIVIOUS TRANSFER OF B’S GARBLED INPUT *)
let otb = gwot(xc, key, ib) in out(c,otb);

(* RECEIVE THE AND DECRYPT THE RESULT *)
in(c,enc_result); let result = dec(enc_result,key) in

(* CHARACTERIZING A FINISHED SESSION OF A *)
event A_res(xf, xa, xc, result).

let partyB =
(* SEND THE COMMITMENT OF B’S INPUT (PART OF OBLIVIOUS TRANSFER) *)
new nonce;
let input_commit = com(xb,nonce) in
out(c, input_commit);

(* RECEIVE GARBLED DATA *)
in(c, xgf); in(c, xgwa);

(* COMPLETE THE OBLIVIOUS TRANSFER OF B’S GARBLED INPUT *)
in(c, otb); let xgwb = get(otb, xb, nonce) in

(* CHARACTERIZING A STARTED SESSION OF B *)
event B_in(xf, xgwa, xb);

(* VERIFY THE GARBLED FUNCTION *)
if checkf(xgf,xf) = ok then
(

(* PERFORM THE GARBLED COMPUTATION *)
let resultB = geval(xgf, xgwa, xgwb) in
let resultA = geval’(xgf, xgwa, xgwb) in

(* SEND THE ENCRYPTED RESULT BACK TO partyA *)
out(c,resultA);

(* CHARACTERIZING A FINISHED SESSION OF B *)
event B_res(xf, xgwa, xb, resultB)
).

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(* QUERIES (SHOULD BE COPIED AND RUN SEPARATELY IN 3 DISTINCT FILES) *)

(* RESULT INTEGRITY - HONEST PARTIES GET THE CORRECT RESULT *)
query ev:A_res(x,y,z,w) ==> z=com(z’,z’’) & w = eval(x,y,z’).
query ev:B_res(x,y,z,w) ==> y=gw(y’,y’’,ia) & w = eval(x,y’,z).

(* MAIN PROCESS FOR RESULT INTEGRITY *)
process ! (in(c, xf); in(c,xa); partyA) |
! (in(c, xf); in(c,xb); partyB)

(* INPUT AGREEMENT - THE ATTACKER ONLY LEARNS AGREED FUNCTION OUTPUTS *)
query attacker:eval(x,y,z) ==> (ev:A_in(x,y,z’) & z’=com(z,z’’)) | attacker:y.
query attacker:eval(x,y,z) ==> (ev:B_in(x,y’,z) & y’ = gw(y,y’’,ia)) | attacker:z.

(* MAIN PROCESS FOR INPUT AGREEMENT *)
process ! (in(c, xf); new xa; partyA) |
! (in(c, xf); new xb; partyB)

(* INPUT PRIVACY - EQUATIONAL THEORY AND MAIN PROCESS *)
fun alpha/1. fun alpha0/0.
fun beta/1. fun beta0/0.
equation eval(x,alpha(y),z) = eval(x, alpha0, z).
equation eval(x,y,beta(z)) = eval(x, y, beta0).

process ! (in(c,(xf,xa0,xa1));
let xa = choice[alpha(xa0),alpha(xa1)] in partyA

) |
! (in(c,(xf,xb0,xb1));

let xb = choice[beta(xb0),beta(xb1)] in partyB
)

(* REACHABILITY TESTS FOR HONEST PARTIES *)
free test_circ.
query ev:B_res(x, y, z, eval(test_circ, zero, one)).
query ev:A_res(x, y, z, eval(test_circ, zero, one)).

(* REACHABILITY TESTS FOR ATTACKER - HONEST PARTIES EXECUTED WITH SECRET INPUT *)
private free test_val.
query attacker:eval(test_circ,test_val,one).
query attacker:eval(test_circ,one, test_val).
process ! (in(c, xf); let xa = test_val in partyA) |
! (in(c, xf); let xb = test_val in partyB)

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Preliminaries
	Secure two-party computation with garbled circuits
	Applied pi-calculus and ProVerif abadi01popl,proverif,blanchet-corr,blanchet-equiv,ryan-smyth-pi

	Equational theory for garbled computation
	Formal protocol specification
	Formal models of security for two-party computation
	Result integrity
	Input agreement
	Input privacy

	Conclusion and related work
	Operational semantics and verification with ProVerif

