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Abstract—Password vaults are increasingly popular applica-
tions that store multiple passwords encrypted under a single
master password that the user memorizes. A password vault
can greatly reduce the burden on a user of remembering
passwords, but introduces a single point of failure. An attacker
that obtains a user’s encrypted vault can mount offline brute-
force attacks and, if successful, compromise all of the passwords
in the vault. In this paper, we investigate the construction of
encrypted vaults that resist such offline cracking attacks and
force attackers instead to mount online attacks.

Our contributions are as follows. We present an attack
and supporting analysis showing that a previous design for
cracking-resistant vaults—the only one of which we are
aware—actually degrades security relative to conventional
password-based approaches. We then introduce a new type of
secure encoding scheme that we call a natural language encoder
(NLE). An NLE permits the construction of vaults which, when
decrypted with the wrong master password, produce plausible-
looking decoy passwords. We show how to build NLEs using
existing tools from natural language processing, such as n-gram
models and probabilistic context-free grammars, and evaluate
their ability to generate plausible decoys. Finally, we present,
implement, and evaluate a full, NLE-based cracking-resistant
vault system called NoCrack.

I. INTRODUCTION

To alleviate the burden of memorization, many security
experts recommend the use of password vaults, also known
as “wallets” or “managers” [7]. Password vaults are applica-
tions that store a user’s website passwords, along with the as-
sociated domains, in a small database that may be encrypted
under a single master password. Vaults enable users to select
stronger passwords for each website (since they need not
memorize them) or, better yet, use cryptographically strong,
randomly chosen keys as passwords. Many modern vault
applications also backup encrypted vaults with an online
storage service, ensuring that as long as users remember
their master passwords, they can always recover their stored
credentials.

These vault management services provide attackers with
a rich target for compromise. The popular password vault
service LastPass, for example, reported a suspected breach
in 2011 [40]. Security analyses of several popular web-
based password managers revealed critical vulnerabilities
in all of them, including bugs which allow a malicious
web site to exfiltrate the encrypted password vault from the
browser [31].

An attacker that captures users’ encrypted vaults can
mount offline brute-force attacks against them, attempting
decryption using (what the attacker believes to be) the most
probable master password mpw1, the second most probable
mpw2, and so on. With standard password-based encryption
(PBE) algorithms (e.g., PKCS#5 [27]), only the correct
master password produces a valid decryption, so an attacker
knows when a vault has been successfully cracked. Such
attacks are offline in the sense that they can be conducted
without interaction with a server and hence are limited only
by the attacker’s computational capabilities, as measured by
the number of decryption attempts performed per second.

Available evidence (c.f., [5]) suggests that most master
passwords selected by users are weak in the sense that even
a modestly resourced attacker can feasibly crack them in a
matter of minutes or hours.

This state of affairs prompts the following core question
addressed by our work: Can password vaults be encrypted
under low-entropy passwords, yet resist offline attacks? We
call such vaults cracking-resistant. Cracking-resistant vaults
would have the benefit that attackers, even after investing
significant resources in offline cracking, would still need
to perform a large number of online login attempts. Such
online login attempts would significantly impede attackers
and enable service providers to detect vault compromises
evidenced by failed login attempts.

Breaking Kamouflage. At first glance, it may seem that
preventing offline cracking is impossible. After all, the
attacker has access to the ciphertext and the key is likely
low-entropy and so easily guessable. But Bojinov, Bursztein,
Boyen, and Boneh, who first investigated the question of
cracking-resistance for vaults, suggest a clever idea: include
decoy or honey vaults in an attempt to force offline attacks
to become online attacks [4]. Their system, called Kamou-
flage, permits seemingly successful decryption under some
incorrect master passwords. Kamouflage stores not only an
encryption of the true vault (under the true master password)
but also a large number N − 1 of decoy vaults encrypted
under decoy master passwords. The security goal is for an
offline attack to reveal only a set of equally plausible vaults,
forcing an attacker to attempt a login with a password from
each of the decrypted vaults in order to find the true one. The
quantitative security claimed in [4] is that an attacker must
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first perform offline work equivalent to that needed to crack
conventional PBE, but additionally perform an expected N/2
online queries.

Our first contribution is discovery of a subtle vulnerability
in this approach; we show a cracking attack that exploits
it, and evaluate the attack’s efficacy. To explain briefly,
Kamouflage stores N − 1 decoy vaults encrypted under
decoy master passwords that are generated by parsing the
true master password and using its structure to help select
the decoys. Analysis of password leaks shows that learning
the true master password’s structure reduces the attacker’s
search space substantially more than one might expect.
Successfully cracking any of the N vaults (decoy or true),
therefore, reveals this structure and confers a big speed-up
on an attacker. We explain the issue in greater detail in the
body.

The upshot is that using Kamouflage actually degrades
overall security relative to traditional PBE: an attacker can
perform significantly less computational work (on average
about 40% less for N = 1,000) and make just a handful of
online queries. In practice, an attack against Kamouflage
would therefore require less total computational resource
than one against traditional PBE, in almost all cases.

Unfortunately this flaw is not easy to fix, but rather seems
fundamental to the Kamouflage design. Thus our finding re-
opens the question of how to build cracking-resistant vaults.

Natural-language encoders. Our next contribution is a
new approach to cracking-resistant vault design. The vul-
nerability in Kamouflage is leakage of information by the
explicitly stored set of decoy ciphertexts about the true
master password. So we seek a design that stores a single
explicit ciphertext and has the property that decryption with
the wrong key ends up generating on-the-fly decoy vaults.
Here we are inspired by Hoover and Kausik’s cryptographic
camouflage system [22] and a generalization called honey
encryption (HE) [25]. These prior schemes, however, work
on plaintexts that are drawn from simple distributions, i.e.,
uniform over some set. They would work (with some adap-
tations) for computer-generated random passwords, but fail,
as we confirm experimentally, to impart cracking-resistance
to password managers that may include human-selected
passwords.

To meet the challenge of good decoy vault generation, we
introduce the concept of natural language encoders (NLEs).
An NLE is an algorithm that encodes natural language texts
(in our case, lists of human-selected passwords) such that
decoding a uniformly selected bit string results in a fresh
sample of natural language text. Technically, NLEs are a
new class of the more general concept of a distribution-
transforming encoder [25], previous examples of which gen-
erated uniform prime numbers and uniform integers. NLEs
require different techniques given the (widely understood)
additional complexity of modeling natural languages, even

in the restricted domain of passwords [29], [37], [39].
Rather than design NLEs from scratch, we instead show

how to convert existing models from statistical natural lan-
guage processing into NLEs. Models are compact represen-
tations of the distribution of natural language texts; particular
choices might include n-gram Markov models, probabilistic
context-free grammars (PCFGs), etc. We focus on the first
two because they have been used to build effective password
crackers [29], [32], [37], [39]. Our constructions of NLEs
from these model types therefore gives, in effect, a way
to retool password crackers to help us build cracking-
resistant vaults. This approach has significant benefits, as
it permits future improvements to natural language models
to be incorporated easily into password vault systems.

We build a number of NLEs based on existing models
trained from password leaks as well as one new PCFG-based
model. To evaluate security, we must determine whether
decoys generated via the decode function are distinguishable
from true passwords. More specifically, given a sample that
is either a decoy or a random sample from a password leak
(which acts as proxy for a real password), the adversary
must classify its input as a decoy or not. We experimentally
evaluate a number of machine learning classification attacks
that allow the adversary to train on decoys as well as pass-
words from the true distribution. These analyses show that
basic machine-learning attacks do not break our schemes.
A human might be able to distinguish real from decoy, but
forcing attackers to rely on the manual effort of humans
(across thousands of decoys in a typical parametrization)
would also be a huge improvement in security over existing
solutions.

We also provide the first model of the password sets
associated with password vaults which may include related
or repeated passwords. Unlike single-password models, for
which there is a large amount of public data available, there
is not yet much public data available to researchers on full
password vaults. (This dearth of data is also presumably
problematic for would-be attackers.) Again we perform a
preliminary analysis using a small number of leaked vaults.
This analysis suggests that an extension of our PCFG-
based NLEs generates password vaults resistant to simple
machine-learning attacks that attempt to distinguish fake
vaults from real ones. We caution that future work might find
better attacks against our particular NLEs. By construction,
however, our approach never yields security worse than
conventional PBE, unlike the case with Kamouflage (as
shown by our attack). Our NLEs at least provide another
obstacle that crackers must find ways to overcome, one that
may be bolstered by improvements in language models.

A full vault system. We incorporate NLEs into a full
encrypted vault service called NoCrack that resists offline
brute-force attacks better than alternative password vault
schemes. NoCrack addresses several previously unexplored
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challenges that arise in practical deployment of a honey vault
system: concealing website names associated with vault
passwords, incorporating computer-generated passwords in
addition to user-selected ones, and authenticating users to
the NoCrack service while ensuring service compromise
does not permit offline brute-force attacks. We report on
a prototype implementation of NoCrack that will be made
public and open-source.

Summary. In summary, our contributions include:

• Breaking Kamouflage: We show that Kamouflage pro-
vides less security than its original analysis suggested,
and in most realistic cases even less than traditional
PBE schemes.

• Natural-language encoders (NLEs) for vaults: We in-
troduce the concept of natural language encoders, and
show how to build them from typical password models.
This approach allows us to generate realistic decoys on
the fly during brute-force attacks.

• Cracking-resistant password vaults: We use our new
NLEs as the basis for a password vault system called
NoCrack. It addresses a number of issues for the
first time, including how to deal with authentication,
concealment of the websites for which a user stores
vault passwords, and more.

II. BACKGROUND AND EXISTING APPROACHES

In practice, password vaults are encrypted under a user’s
master password using a password based encryption (PBE)
scheme. In more detail, a user’s set ~P of passwords is
encrypted under a master password mpw using authenticated
encryption. Encryption and decryption use a password-based
key-derivation function (KDF), meaning encryption is under
a key computed by applying a hash chain to a random salt
and mpw [27]. (The salt is stored with the ciphertext.) A
decryption operation under an incorrect master password
mpw′ will fail, as it will not authenticate correctly1. It is for
this reason that an adversary can mount an offline brute-force
attack against a vault. The adversary’s trial decryption will
fail until the correct master password mpw is discovered.

Currently in-use KDFs prevent precomputation at-
tacks [21] (such as rainbow tables [34]) by salting. They also
increase the cost of brute-force attacks by iterated hashing,
which slows down each decryption attempt. See [2] for a
formal analysis. But all this only slows down brute-force at-
tacks and does not prevent them; the protection conferred on
~P by PBE is ultimately a function of the resistance of mpw
to guessing attacks. Numerous studies, e.g., [6], have shown
that users tend in general to select passwords that have low
guessing entropy. There is no available evidence indicating

1Some systems may use unauthenticated encryption such as CBC mode.
Decryption under the wrong master password is still detectable with
overwhelming probability, c.f. [25].

that users choose significantly stronger master passwords.
Given the growing use of password vaults by consumers
and the vulnerabilities they introduce—bulk compromise on
servers or compromise on consumer devices—the risk of
brute-force attacks is real and pressing.

Enter decoys. It is the inherent limitations of conventional
PBE in thwarting offline brute-force attack that motivated
Bojinov et al. [4] to propose the Kamouflage system. As
explained above, the idea behind Kamouflage is to enable
multiple master passwords to successfully decrypt a vault,
while only the true master password yields the correct vault
plaintext. The hope is that the attacker cannot distinguish
between real and decoy offline, and must instead make
online queries using decrypted credentials to identify the
true vault.

Specifically, to protect the true master password and vault
(mpw∗, ~P ∗), Kamouflage generates N−1 decoy (mpwi, ~Pi)
pairs and stores them in a list. Decoys are generated using
dictionaries of commonly seen tokens (strings of contiguous
letters, numbers or symbols) found in a password leak. We
describe decoy generation in more detail in the next section.
Every ~Pi is encrypted using a conventional PBE scheme
under mpwi and kept at a location Lj that also calculated
from mpwi. If a collision results during the generation
process, i.e., a master password is created that maps to an
already occupied location, then a fresh (mpwi, ~Pi) pair is
generated. Thus, given master password mpw′, it is possible
to locate the corresponding vault and attempt to decrypt it
with mpw′.

Kamouflage has some notable deployment limitations. As
it stores N vaults, its storage cost is linear in the security
parameter N . Additionally, Kamouflage discourages user
passwords that are not parsable using its dictionaries, a major
obstacle to practical use. Such password rejection may also
degrade security by encouraging users to choose weaker
passwords than they otherwise might. Finally, Kamouflage
provides no guidance on protecting the confidentiality of
domains paired with the passwords in a vault and on stor-
ing computer-generated passwords, both features of today’s
commercial systems. More fundamentally, the approach of
hiding the true vault among an explicitly stored list of decoy
vaults has inherent security limitations, as we explain in the
next section.

Threat Model. The primary threat model that we consider
is theft of encrypted password vault due to adversarial
compromise of a vault storage service, a lost or stolen client
device, or a software vulnerability allowing exfiltration of
the encrypted vault (c.f., [31]). The attacker does not know
anything about the passwords present inside the vault but she
has knowledge about the distribution of human generated
passwords (learned from publicly available password leaks).
She also knows the encryption algorithm and the other
information (if any) used by the algorithm at the time of
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Statistics RockYou RY-tr RY-ts Myspace Yahoo

Number of accounts 32.6 M 29.6M 2.98M 41,537 442,846
Number of Unique passwords 14.3 M 13.0M 1.3M 37,136 342,517
Min-entropy (bits) 6.8 6.7 5.3 9.1 8.1
Avg. password length 7.9 7.9 7.9 8.5 8.3
Avg. letters per password 5.7 5.7 5.6 6.4 6.2
Avg. digits per password 2.2 2.1 2.3 1.8 2.0
Avg. symbols per password 0.05 0.05 0.05 0.3 0.04
Letter-only passwords 44.0% 44.1% 43.8% 7.0% 34.6%
Passwords w/ digits 52.2% 54.0% 54.3% 84.8% 64.7%
Passwords w/ symbols 3.7% 3.7% 3.7% 10.7% 2.8%

Figure 1. Statistics of the password leak datasets used in this paper.

encryption or decryption. She does not know the master
password or any randomness consumed by the encryption
algorithm.

Her objective is to learn the correct master password (and
corresponding in-vault passwords) using a minimal amount
of computation and online querying. She tries to decrypt
the vault using offline brute force attack against the master
password. She tests the correctness of a vault by attempting
to log into a domain with a corresponding credential in the
vault.

We will measure both the offline and online resources
used by the attacker in terms of number of decryption
attempts and number of online queries, respectively. To
attack a conventionally encrypted vault, no online queries are
required and the offline work is a function of the adversary’s
uncertainty about the master password; for Kamouflage, the
claimed security is offline work equivalent to that of con-
ventional encryption and an expected N/2 online queries.
In each of our experiments, we will calculate expected
offline and online work over a choice of master password
drawn from a distribution that we will explicitly specify. The
distributions we use will be informed by password leaks, as
we now discuss.

Datasets. In the course of this paper we use a number
of datasets to train password language models, to train
attackers, and to test attackers. We primarily use three
large-scale password leaks: RockYou, Myspace, and Yahoo.
RockYou is the largest leaked clear-text password set to
date and is used extensively in modeling distributions of
human-chosen passwords [23], [37], [39]. The Myspace leak
occurred when passwords for user accounts were publicly
posted; the passwords were gleaned from a phishing attack
against Myspace’s home page. In 2012, Yahoo lost nearly
450,000 passwords after a server breach. Note that all of
these leaks contain only original plaintext passwords and
not cracked password hashes, as in some other leaks.

As we wish to ensure different training sets for the
password model and attacker in some cases, we partition
the RockYou passwords into two sets, randomly assigning
90% of the passwords to a set denoted RY-tr and the

remaining 10% to RY-(ts). We train our language model
with RY-tr only, but use all sets for adversarial training and
testing (with cross-fold validation as appropriate). Figure 1
presents statistics on our data sets. Given its large size, we
did not make use of multiple splits of the RockYou data
set in our experiments. We use RY-ts as a testing set to
model settings in which the adversary and defender have
equivalently accurate knowledge of the distribution from
which user passwords originate. The Myspace and Yahoo
data sets serve to model more challenging scenarios in which
the adversary has more accurate knowledge of the password
distribution than the defender.

III. CRACKING KAMOUFLAGE

The stated security goal for Kamouflage is that given an
encrypted vault, an attacker must first perform an offline
brute-force attack to recover all of the plaintext vaults
and then perform an expected N/2 online login attempts
to identify the true vault. Through simulations using the
leaked password datasets discussed above, we now show
that Kamouflage falls short of its intended security goal. We
first present more details on Kamouflage, and then describe
and analyze an attack against it.

Decoy generation in Kamouflage. To construct decoy
plaintext vaults, Kamouflage uses an approach based on
deriving templates from the true plaintext vault. Let Ln, Dn,
and Sn each be a subset of all n-digit strings containing only
upper or lower case English letters, only decimal digits, and
only punctuation marks and other common ASCII symbols,
respectively. We refer to the sets Ln, Dn, and Sn as token
dictionaries and individual strings in token dictionaries as
tokens. No token appears in multiple token dictionaries.
Token dictionaries are initially populated with tokens by
parsing the passwords in a password leak2 and placing each
resulting token in the appropriate dictionary. Here parsing
of each password in the leak is performed by greedily
picking the longest contiguous prefix of just letters, digits, or

2Also suggested in [4] is to use the dictionaries used by password
cracking tools such as “John the Ripper”. In our experience leaks work
better for Kamouflage.
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symbols of a password, moving this prefix to the appropriate
token dictionary, and then repeating the process on the
remainder of the original password.

Once token dictionaries are fixed, Kamouflage parses a
user-input password as a sequence of tokens found in the
dictionaries. Successful parsing yields a sequence of tokens
whose concatenation equals the original password. As above,
parsing involves greedy decomposition of the password into
tokens of contiguous letter, digit, or symbol strings; the
presence of each token in the appropriate dictionary is then
checked. (If any token is not present in its appropriate
dictionary, then Kamouflage rejects the input password and
prompts the user to pick another.)

A password template is the structural description of a
password, expressed as the sequence of token dictionaries
corresponding to tokens yielded by parsing of the password.
For example, the password password@123 is parsed as
password, @, 123, and the associated template is therefore
L8S1D3.

A vault template extends the notion of a password tem-
plate to sequences of passwords, while also keeping track of
reuse of the same token in multiple locations. For a sequence
of passwords mpw∗, ~P ∗, the vault template is generated as
follows. First, parse each password. Then, for each unique
token across all of the parsings, replace it with a symbol Xin
for X ∈ {L,D,S} where n denotes the length of the token
and i denotes that this is the ith token in Xn found in the
sequence of parsings. The resulting sequence of password
templates constitutes the vault template. In the example
below, the first column contains the passwords composing
a small vault: a master password followed by two in-vault
passwords (for logging into websites). The second column
contains the sequence of corresponding password templates
that make up the full vault template.

password@456123 L18S
1
1D

1
6

password4site → L18D
1
1L

1
4

bob!Site L13S
2
1L

2
4

Observe that the symbol L1
8 is used twice, as the substring

password appears twice, but the distinct substrings site
and Site are respectively replaced by distinct symbols L14
and L24.

Given the vault template for (mpw∗, ~P ∗), Kamouflage
produces each decoy vault (mpwi, ~Pi) by replacing each
unique symbol Xi

n with a token chosen uniformly at random
from the token dictionary Xn.

The attack. We exploit two vulnerabilities in Kamouflage.
First, all of the decoy master passwords have the same
template as the true master password. As soon as an adver-
sary recovers any (decoy or real) master password during
an offline brute-force attack, the corresponding template is
revealed. Knowledge of this template enables the adversary
to narrow its search significantly, to master passwords that

match the revealed template. This strategy permits an offline
attack to be accelerated to the point where it is faster than
cracking a conventional PBE ciphertext.

Second, decoy master passwords are chosen uniformly
with respect to the master-password template, i.e., tokens are
selected uniformly at random from their respective symbol
dictionaries. The decoy master passwords that result are
distributed differently than real, user-selected passwords.
Thus, if an adversary guesses master passwords in order
of popularity, the real master password is more likely to be
assigned a high rank (and so guessed sooner) than the decoy
master passwords.

Given these two vulnerabilities, we craft an attack that
employs a simple model of password likelihood in which the
probability of a password is the product of the probability
of its template and the probabilities of replacements for
each template symbol. For example, Pr[password9] =
Pr[L8D1] ·Pr[password|L8] ·Pr[9|D1]. The model is trained
using a password leak. Specifically, Pr[L8D1] is defined to
be the empirical probability that a password in the dataset
has template L8D1, and similarly for other passwords. (Other
models may be used, of course.)

Given this model and a challenge consisting of N
Kamouflage-encrypted vaults, the attack proceeds using two
guessing strategies, one offline and one online. First, in
an offline effort, the attacker generates trial master pass-
words in decreasing order of their probability within the
password-likelihood model, until one decrypts one of the N
vaults decrypts successfully. At this point, the adversary has
learned the template of the true master password and may
narrow its offline search to master passwords that match
this template, still in order of their probability within the
password-likelihood model.

Upon decrypting any vault successfully, i.e., discovering
its corresponding (true or decoy) master password, the
attacker makes an online login attempt against a website3

with one of the retrieved vault passwords. If the login
succeeds, the adversary has identified the true vault and
halts. Otherwise, the adversary resumes the offline attack
against master passwords.

Attack evaluation. To evaluate the speedup of our attack
over a naı̈ve Kamouflage-cracking strategy, we perform
simulations in a simplified attack model. The adversary is
given a Kamouflage-encrypted vault and access to an oracle
that indicates whether a queried password is the true master
password or not. (This oracle corresponds in a real attack to
an adversary’s ability to test a password from a decrypted
vault via an online query to a real website.) We count oracle
queries as well as offline decryption attempts. (We treat
the KDF-induced slowdown as a unit measure.) Thus the
challenger takes a master password (mpw∗) and a number

3Recall that Kamouflage does not encrypt the sites associated with each
entry in the vault.
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N , and generates an encrypted Kamouflage vault set of size
N . Then the attacker is given this vault set and access to
the oracle. Its goal is to guess mpw∗.

The Kamouflage decoy generation algorithm uses a dictio-
nary of replacements for Xn. Given that this is public (being
used by any implementation of Kamouflage), we assume the
adversary has access to it as well.

Evaluation. We use the RY-tr dataset for training both
Kamouflage’s parser (i.e., populating the token dictionaries)
and the attacker mentioned above. We use master pass-
words sampled from the RY-ts, Myspace, and Yahoo leaks
for testing the performance of the attack. Our evaluation
therefore covers both the case when master passwords are
chosen from a distribution (RY-ts) similar to that used to
train Kamouflage as well as the case when they are chosen
from a difference distribution (Myspace and Yahoo). For
every password in each of the three sets, we use the password
as the true master password mpw. We then construct N −1
decoy master passwords4 for both N = 103 and N = 104

(the values suggested in [4]). We then calculate the median
offline and online work of 100 iterations for each (mpw,N)
combination using fresh coins for decoy generation in each
iteration.

We used only the first 50 million trial master passwords
generated by the attacker’s password-likelihood model for
the attack, meaning the attack will not succeed against
every master password in the datasets. We also exclude any
passwords that can’t be parsed by Kamouflage (only 0.01%,
11.43%, and 13.49% of passwords for RY-ts, Myspace, and
Yahoo).

This allows us to compute a number of statistics regarding
the attack’s efficacy. We start with the average difficulty of
cracking a given password sampled from the three challenge
distributions, assuming it is crackable using the first 50
million guesses by our password cracker. Figure 2 gives a
breakdown of this statistic across the various settings. (The
results for Kamouflage+ are explained below.)

The takeaway is that for N = 103, breaking a Kamouflage
vault requires on average only 44% of the computational cost
of breaking PBE and incurs only 11 online queries if master
passwords are sampled from Myspace leak. If the value of
N is increased to 104, an attacker needs less than 24% of
the computational work required in the case of PBE to break
a Kamouflage vault. The offline work therefore goes down
with increasing N , which stems from the fact that more
decoys means more chances of learning the master-password
template early in the attack. The online work does increase
with increasing N , for N = 104 requiring an expected
108 queries for Myspace or 219 for Yahoo challenges.
Nevertheless, all the numbers for Kamouflage are an order of
magnitude smaller than the goal that an attacker must make

4Since our attack does not exploit the vault contents, we dispense with
simulating generation of site passwords.

expected number of queries N/2 = 5, 000 (for N = 104).
For RY-ts the offline speedup is less but the attacker requires
only 2 online queries on an average for N = 103 and 18
for N = 104 to break RY-ts challenge. The PBE numbers
are also quite low for RY-ts: the attacker does better when
trained on a master password distribution close to that used
by the target user.

A perhaps more refined measure of attack success is
the α-guesswork factor introduced by Bonneau [6]. This
factor measures the work required to break any αt-sized
subset of a corpus of t total passwords. So at α = 0.5,
we give the α-guesswork in terms of the number of offline
computations to break any half of the passwords in each
leak and the number of online queries to break any half of
the passwords. Figure 3 shows the results for the range of
α we considered. The graphs end at α = 0.82 for Yahoo
and α = 0.76 for Myspace, reflecting the 18% and 24% of
challenge passwords we either did not crack in the first 50
million guesses or which were not parsable by Kamouflage.
For RY-ts the first 50 million were able to crack all but a
handful of the passwords. While we display both online and
offline queries on the same charts, they do not necessarily
correspond to the same subsets of master passwords.

The charts give a more expansive view of Kamouflage’s
resistance to attacks as compared to conventional PBE.
Looking at the top left chart in Figure 3, we see that
for conventional PBE (the highest solid black line), up to
α = 0.5 of Myspace passwords can be cracked in 221 offline
decryptions, while for Kamouflage the same can be achieved
with only 219 offline queries (second highest red dashed
line). Half of the master passwords can be broken in two
online queries for N = 103 (lowest densely dashed red line).
Increasing Kamouflage’s security parameter to N = 104

(bottom left chart) slightly increases the online work for
some α (bottom blue curve), but at the cost of yielding even
more efficient offline decryption costs. Breaking Kamouflage
for a set of α = 0.5 of Myspace passwords is achievable
with 215 offline computations. The Yahoo charts (middle
two) show a similar picture. Half the master passwords can
be cracked in just two online queries for N = 103. The
attack performs best in the case of RY-ts. Here the attacker
can break more than 95% of master passwords with only one
online query (top right chart). This is because the attacker
has a very good estimate of the distribution of the user’s
true password.

The largest number of online queries needed at α = 0.5
across all six settings is just 11 for Myspace with N = 104.

Kamouflage+. Our attack against Kamouflage required few
online queries, which is due to the fact that decoys were
mostly ranked lower by our cracker than the true master
password. This vulnerability arises because Kamouflage’s
uniform selection of tokens produces relatively unlikely
decoy master passwords. We therefore experimented with
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Approach N
Myspace Yahoo RY-ts

Offline
(×103)

Online Offline
(×103)

Online Offline
(×103)

Online

PBE – 5,740 0 2,467 0 114 0

Kamouflage 103 2,550 11 1,261 22 84 2

104 1,381 108 751 219 64 18

Kamouflage+ 103 165 344 76 302 9 190

104 150 3,118 70 2,168 7 777

Figure 2. The expected amount of offline work (rounded to nearest thousand decryption attempts for integer) and online work (rounded to nearest number
of login attempts to a website) required to break a conventional vault (PBE), Kamouflage, and Kamouflage+ for N ∈ {103, 104}. Here expectations are
taken over the distribution of Myspace, Yahoo, or RY-ts passwords, normalized after removing those that cannot be parsed using the Kamouflage grammar
and that cannot be cracked using the first 50 million guesses of our cracker.
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Figure 3. Experimental results for attacking conventional PBE (the baseline) and for Kamouflage and Kamouflage+ vaults for N ∈ {103, 104}. Shown
is the α-guesswork measured in number of offline attacker decryptions and number of online attacker queries (both log2 scale).

a modified version of Kamouflage, called Kamouflage+,
that instead chooses tokens according to their frequency in
the RY-tr dataset. We repeated simulations of our attack,
exactly as above but now with decoy master passwords
generated by Kamouflage+. The expected work for our
various experimental configurations is given in Figure 2. The
results in terms of α-guesswork are shown in Figure 3 (the
dotted blue line, third from top being offline work and the
dotted blue line second from bottom being online work).

This modification to Kamouflage actually backfires in the
case of offline work. This is because decoys are now more
likely to be probable passwords, speeding up even further
the attacker’s discovery of the master password template. On
the other hand, Kamouflage+ does increase the online work

for our attack, but this is still noticeably below the intended
goal of N/2 in all cases. Even with N = 104, the expected
number of online queries is never more than 65% of the goal
of 5,000 queries.

Summary. This relatively simple attack shows how existing
approaches to cracking-resistant vaults actually degrade se-
curity relative to conventional PBE. Specifically, the general
Kamouflage approach of storing an explicit list of cipher-
texts, with one true vault embedded among many decoys
generated as a function of the true master password, provides
brute-force attackers with an offline speedup that increases
with the number of decoys. Attackers may even be able
to do better in the online portion should they analyze the
vault contents more carefully (our attack above orders online
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queries solely by master password likelihood).
The lesson here is a warning against building decoys

as a function of the true master password. One might
consider modifying Kamouflage to use decoy master pass-
words independently sampled from a model of the password
distribution, in order to eliminate the speedups obtained by
our attack. But this approach gives rise to other limitations,
such as a cap of N/2 expected online queries irrespective
of the entropy of the true master password. We therefore go
a different route.

IV. OVERVIEW OF OUR APPROACH

The approach of hiding a true vault in a list of encrypted
vaults appears to have fundamental limitations. Most ob-
viously it only allows a number of decoys linear in the
storage size, and the construction of effective decoy master
passwords, as shown for Kamouflage in the last section, is
challenging.

We take a significantly different approach. Instead of
explicitly storing decoy vaults, we construct single ciphertext
which, when decrypted with any wrong master password,
yields a decoy vault that appears to have been sampled
from the distribution of plaintext vaults (across the entire
user population). This approach is inspired by the theory of
honey encryption [25]. As we will see, though, successfully
building a honey vault using honey encryption raises a num-
ber of challenges, chief among them accurately modeling the
distribution of human-generated password sets in vaults.

Honey encryption. Juels and Ristenpart [25] introduced
honey encryption (HE) as a mechanism for encryption of
secrets under low-entropy passwords. We describe their
general approach, with terminology tailored to our setting.
Encryption with HE takes as input a master password
mpw and plaintext M and outputs a ciphertext, which we
denote by C = HEnc(mpw,M). Encryption is usually
randomized. Decryption takes as input a master password
and ciphertext C, and outputs a plaintext, denoted M =
HDec(mpw,C). In our setting, a plaintext is a single
password P or vector of passwords ~P . We require that
HDec(mpw,HEnc(mpw,M)) = M with probability one
for all mpw,M (over any randomness used in encryption).

HE schemes are designed so that a ciphertext, when
decrypted under an incorrect master password mpw′ 6=
mpw, emits a “plausible” plaintext M ′. This requires a
good model, built into the HE scheme specification, of the
distribution from which plaintexts are drawn.

As a concrete example Juels and Ristenpart gave an
HE scheme for a message M that is a uniformly sam-
pled prime number. (This scheme can be leveraged to
encrypted RSA private keys.) Their construction follows a
general approach to building HE schemes that composes
a distribution-transforming encoder (DTE) with a carefully
chosen, but still conventional, PBE scheme. The latter can

be, for example, CTR-mode encryption with key derived
from the master password using a PBKDF. A DTE scheme
specifies a randomized encoding of a message as a string
of bits. Decoding does the reverse (deterministically). For
a secure HE scheme, it is a requirement that the output of
the encoding, for M drawn from some target distribution,
looks uniformly distributed and that decoding a uniform
bit string give rises to a distribution for M similar to the
target distribution. For prime numbers, Juels and Ristenpart
give a secure DTE that essentially converts a sampling
algorithm for uniformly distributed prime numbers into a
DTE encoding and decoding algorithm pair.

Given DTEs suitable for password vaults, an HE-based
approach has several benefits over the hide-in-an-explicit-list
approach of Kamouflage. First, regardless of the quality of
the DTE, because there is only one ciphertext, the amount of
offline cracking effort required by an attacker is never less
than for a conventional PBE-only ciphertext. This means
that, unlike Kamouflage, an HE-based scheme will never
provide attackers with a speed-up in offline work. Addition-
ally, the size of ciphertexts in HE does not depend on the
number of decoys possible, rather decoys are generated “on-
the-fly” during a brute-force attack for each guessed master
password. Therefore, given a good DTE, the online work
required by an adversary is essentially the strength (guessing
entropy) of mpw. A strong mpw will mean the attacker must
make many online queries.

We would like a cracking-resistant vault to support use of
both computer-generated and human-chosen passwords. The
former is relatively straightforward, as computer-generated
passwords come from an easy-to-characterize distribution.
Human-chosen passwords present a significant challenge,
however, as they raise the question of whether one can
build DTEs that accurately model natural language-type
distributions. We show in the next section that such modeling
is possible, and handle further challenges of building a full-
fledged, encrypted vault management service in the sections
that follow.

V. NATURAL LANGUAGE ENCODERS FOR PASSWORDS

Formally, a DTE is a pair of algorithms DTE =
(encode,decode), where encode is randomized and
decode is deterministic. In our context, encode takes as in-
put a vector of passwords ~P and outputs a bit string of some
length s. The deterministic decoder decode takes as input
an s-bit string and outputs a password vector. We require that
the DTE be correct, meaning that decode(encode(~P )) =
~P with probability 1 over the coins used by encode. Our
DTEs will be designed so that the length s of outputs of
encode depends only on `, the number of passwords in ~P .

As an example, it is simple to construct a DTE for
uniformly random, fixed-length strings of symbols drawn
from an alphabet Σ that consists of the 96-character ASCII
printable characters. Encoding works in a symbol-by-symbol
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manner on an input string σ1 ‖σ2 ‖ . . . ‖σk, where σi ∈ Σ.
Let σi denote the position of σi in Σ under some canonical
ordering of Σ . Then for each symbol σi in turn, encode
outputs a large (e.g., 128-bit) integer Xi selected randomly
subject to the constraint Xi mod 96 = σi. (See the full
version of the paper for details on security bounds and other
considerations.) Decoding operates in the natural way: Given
input X1 ‖X2 ‖ . . . ‖Xk, it yields output σ1 ‖σ2 ‖ . . . ‖σk
such that σi = Xi mod 96. Straightforward extensions that
we omit for brevity allow construction of a DTE over
passwords that conform to standard password-composition
policies (such as needing at least one integer, one special
symbol, etc.). We refer to this DTE as UNIF.

We will use such a simple uniform DTE for computer-
generated passwords later. But it provides poor security for
human-selected passwords, which are clearly not distributed
uniformly. This observation brings us to one of our core
tasks: building DTEs that securely encode samples from
distributions of natural language-type text. Because we feel
that such DTEs will be of broad use, we give them a
special name: natural language encoders, or NLEs. We
focus on DTEs for messages consisting of a single password
and, later, lists of passwords. We note, however, that our
constructions are quite general and may be applicable in
other natural language contexts.

NLEs from password samplers. A starting point for our
NLE constructions is password crackers. Early crackers,
such as John the Ripper, simply have stored dictionary lists
of popular passwords, and can produce samples in order
of likelihood. More modern crackers instead learn compact
representations of password distributions from password
leaks [37], [39], and permit efficient sampling of passwords
over the distribution model.

In a bit more detail, we can view a sampling model for
passwords as a deterministic algorithm Samp that takes as
input a uniformly random bit string U of sufficient length
(often called the “coins”) and produces a password P . We
can characterize Samp in terms of a distribution p, meaning
that a password P is output by Samp with probability p(P )
(over the selection of bit string U ). The goal of a password
cracker is to learn an algorithm Samp from one or more
password leaks whose corresponding distribution p closely
approximates that of human-generated passwords seen in
practice.

We might hope, a priori, that one can build a secure
DTE from any sampling algorithm Samp. Unfortunately
this seems unlikely to work, in the sense that there exists
(admittedly artificial) Samp for which building a DTE
appears intractable. Briefly, let Samp(U) = H(U) for some
cryptographic hash function H , where U is a random bit
string. Then the natural approach for DTE construction is to
set decode(U) = H(U). But for such decode, correctness
would mandate that encode(P ) somehow can sample from

the set H−1(U) of preimages of U , which would contradict
the hash function’s security. Of course there may be other
ways to build encode,decode that use Samp only as a
black-box, and yet achieve correctness and security. We
conjecture that a full counter-example exists, but do not have
proof.

Such artificial counter-examples aside, for various classes
of Samp we can in fact use the straightforward approach
of having decode(U) = Samp(U). The only requirement
is that we can build encode(P ) that samples uniformly
from Samp−1(P ). We show how to do so below for a
couple of useful classes of samplers: n-gram models and
probabilistic context-free grammar (PCFG) models. We start
with the single password case for the different models, and
then discuss extensions to the (trickier) case of a vault of
possibly related passwords.

NLEs from n-gram models. So-called n-gram models
are used widely in natural language domains [13],
[15], [32]. For our purposes, an n-gram is a sequence
of characters contained in a longer string. For
example, the 4-grams of the word ‘password12’ are
{pass, assw, sswo, swor, word, ord1, rd12}.
In building models, it is convenient to add two special
characters to every string: ˆ to the beginning and $ to the
end. Given this enhancement, the 4-gram set in the example
above would also include ˆpas and d12$.

An n-gram model is a Markov chain of order n− 1. The
probability of a string is estimated by

Pr [w1w2 · · ·wk ] ≈
k∏
i=1

Pr
[
wi|wi−(n−1) · · ·wi−1

]
where the individual probabilities in the product are calcu-
lated for a given model empirically via some text corpus.
For example, for the RockYou password leak, we let c(·)
denote the number of occurrences of a substring in the leak.
The empirical probability is then

Pr [wi|w1w2 · · ·wi−1 ] =
c(w1w2 · · ·wi)∑
x c(w1 · · ·wi−1x)

for any string w1 · · ·wi of any length i. Let Fwi−(n−1)···wi−1

denote the CDF associated the probability distribution for
each history. Then the Markov chain associated to such
an n-gram model is a directed graph with nodes labeled
by n-grams. An edge from node wi−(n−1) · · ·wi−1 to
wi−(n−2) · · ·wi is labeled with wi and Fwi−(n−1)···wi−1

(wi).
To sample from the model one starts at node ˆ, samples from
[0, 1), finds the first edge5 whose CDF value is larger than
the sample, follows it to move to the next node, and repeats.
The process finishes at a node having the stop symbol. The
sequence of wi values seen on the edges is the resulting
string.

5We again assume an ordering on edges for which CDF values are strictly
increasing.
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Note that such a Markov chain may not have edges and
nodes sufficient to cover all possible strings. For use in
encoding, then, we extend the Markov chain to ensure that
each node has an edge labeled with each character. We set
the probabilities for these edges to be negligibly small, and
re-normalize the other edge weights appropriately. If this
implies a new node we add it as well, and have its output
edges all have equal probability.

We can build a DTE by encoding strings as their path in
the Markov chain. To encode a string p = w1 · · ·wk, process
each wi in turn by choosing randomly from the values in
[0, 1) that would end up picking the edge labeled with wi+1.
Decoding simply uses the input as the random choices in a
walk. Both encoding and decoding are fast, namely O(n)
for a password of length n.

In our experiments reported on later, we use a 4-gram
model trained from RY-tr. We denote the resulting DTE
by NG. We also explored 5-gram models, but in our ex-
periments these used up more space without a significant
improvement in security.

NLEs from PCFG models. A PCFG is a five-tuple G =
(N,Σ, R, S, p) where N is a set of non-terminals, Σ is a
set of terminals, R is set of relations N → {N ∪ Σ},
S ∈ N is the start symbol, and p is a function of the form
R→ [0, 1] denoting the probability of applying a given rule.
We require that for any non-terminal X ∈ N , it holds that∑
β∈N∪Σ p(X → β) = 1. PCFGs are a compact way of

representing a distribution of strings in a language. Each
derivation for a member of the language defined by the
underlying CFG has a probability associated to it.

Weir, Aggarwal, de Medeiros, and Glodek [39] were the
first to apply PCFGs to the task of modeling password
distributions. They constructed a password cracker that could
enumerate passwords (in approximate order of descending
probability) in a way that ensured faster cracking com-
pared to previous approaches like John the Ripper. Weir
et al. parsed passwords into sets of contiguous sequences
of letters, digits or symbols. Further improvements are pos-
sible by employing their approach with alternative parsing
schemes. Jakobsson and Dhiman [23] and later Veras et
al. [37] used a (so-called) maximum coverage approach for
parsing passwords with the help of external language specific
dictionaries. Veras et al. also used the semantic meaning of
passwords to provide finer granularity parsing, and improved
PCFG cracking performance.

We now show how to build a DTE for a single password
from any PCFG model. Intuitively, the encoding of a pass-
word will be a sequence of probabilities defining a parse tree
that is uniformly selected from all such giving rise to the
same password. Decoding will just emit the string indicated
by the encoded parse tree. We first fix some definitions. A
rule l→ r can be specified as a pair (l, r), where l is a non-
terminal and r is a terminal or non-terminal. Every edge in a

parse tree is a rule. A rule set is a lexicographically ordered
set of rules with the same left-hand-side. A rule list is an
ordered list of rules generated by depth-first search of the
parse-tree of a string / password (with siblings taken in left
to right order).

A CFG is completely specified as a set of rule sets.
A PCFG is completely specified by what we call here an
admissible assignment of probabilities to CFG rules. Let S
be a rule set of size |S| and pS(l → r) be the probability
assigned to a rule l→ r in S. An admissible assignment of
probabilities has the property that

∑
(l→r)∈S

pS(l → r) = 1.

We refer to the probability distribution over rules in a rule
set S for a given admissible assignment as its induced
probability distribution.

As a technical modification to such a PCFG, we add a
special catch-all rule. Its left-hand side is the start symbol
and its right hand side represents any string. We assign this
catch-all rule a very low probability (and normalize other
probabilities accordingly). This rule ensures all passwords
can be parsed (and generated) by the PCFG model and that
the model will never fail to encode any real password.

For a given PCFG, a parse tree, and thus a string str, may
be specified as a sequence of probabilities p1, . . . , pk (for
sufficiently large k). To construct this parse tree, a rule is
selected using p1 from the rule set for the start symbol S,
producing the children of S in the tree. A rule from the rule
set for each child is then selected using p2, p3, etc., from
left to right. Recursing in this way produces the full parse
tree; its leaves, read left to right, constitute str.

As shown in Appendix B we can represent a rule-set
probability by an b-bit integer. It follows that a parse tree for
a PCFG, and thus a generated string P , may be completely
specified by a vector ~X = 〈X1, . . . , Xk〉 of k integers, where
Xi ∈ {0, 1}b. This vector is not necessarily unique: There
may, of course, be multiple vectors corresponding to str.

We can now build a DTE from any PCFG model. Decod-
ing takes as input a vector ~X of integers, uses it to determine
a parse tree, and outputs the corresponding password P .
This requires time O(n log s) for n-character passwords and
where s is the size of the largest rule set in the PCFG.
Encoding takes as input a password P and selects uniformly
at random a vector ~X from the set of all that decode to
P . This inverse sampling can be efficiently implemented by
finding all parse trees (also known as parse forest) of P , and
picking one at random. This is an O(k3) time operation [3],
[17]. Note that ~X is of a fixed size k; thus encoding pads
out the resulting vector with random bit strings representing
sufficiently many extra integers.

Of course, all of the above relies on having a PCFG that
accurately models the password distribution, a research topic
in its own right [29], [32], [37], [39]. Our general approach
has the benefit of allowing us to use any of these prior
PCFG construction approaches. We built our own hand-
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tuned PCFG using the RockYou training set, employing a
combination of techniques from Weir et al. [39] and Veras et
al. [37]. In initial evaluations it performs better than the Weir
et al. PCFG (in terms of security; see Section VI). Some
further details on the process for generating it are provided
in Appendix A. We refer to the DTE built from our new
PCFG as PCFG. As baselines for decoy generation quality,
we built two additional DTEs, WEIR and WEIR-UNIF. WEIR
uses the grammar proposed by Weir et al. [39]. WEIR-UNIF
is the same grammar except it ignores frequency information
and treats all rules inside a rule-set with equal probability.
These grammars are functionally equivalent to those used by
Kamouflage+ and Kamouflage, respectively, when restricted
to a single password.

From one-password DTEs to vault DTEs. We can eas-
ily extend any single-password DTE to handle multiple
passwords by applying an encoder independently to each
password in the vault. This models a vault distribution in
which passwords are independent of one another. This is
especially useful when we have both computer-generated
passwords in a vault as well as human-chosen; we can
choose appropriate single-password DTEs for each case.
We denote this independent-password DTE by MPW (for
multiple passwords).

Such a DTE may not work well when users repeat or
have related passwords in their vaults, however, motivating
a decode algorithm that generates a vector of passwords ~P
in which passwords repeat in full or part. We introduce
a technique for embellishing PCFG-based single-password
DTEs to handle vaults in this way, what we refer to as the
sub-grammar approach. The intuition is that if DTE-decode
samples passwords from a smaller domain than the actual
trained PCFG, it will often end up using the same password
components or full passwords.

In more detail, SG (for sub-grammar) is the following
DTE scheme. Encoding first parses all the passwords in
~P using the trained PCFG. It then generates a new sub-
grammar PCFG that consists of the cumulative set of rules
used in parsing the passwords in ~P . The rule probabilities
are copied from the original PCFG and then normalized
over the sub-grammar PCFG. (We also copy special rule
sets described in detail in Appendix A. For example, T, the
catch-all rule, is always included in the sub-grammar.) This
sub-grammar is encoded as the first part of the DTE output,
as detailed below. Finally, the DTE separately encodes each
P ∈ ~P as in PCFG, but using the sub-grammar PCFG.

Decoding works in the natural way: first decode the sub-
grammar PCFG, then decode the encoding of each password
using the resulting sub-grammar PCFG.

Encoding/Decoding of the sub-grammar. Given a canon-
ical representation of the trained PCFG, a sub-grammar
can be specified by simply encoding for each non-terminal
(except T) the number of corresponding rules used by the

sub-grammar followed by a list of such rules. Each rule in
the list is encoded in the same way as a derivation rule for
a password.

To encode the size of a rule set we proceed as follows.
Using a set of leaked password vaults in Pastebin (see
Section VI-A), we generate the sub-grammar PCFG for all
the vaults of size ≥ 2. For each non-terminal in the PCFG
(except T), we then create a histogram of the number of the
non-terminal rules used by each sub-grammar. This gives
a per-non-terminal empirical distribution on the number
of rules used, which we use as the distribution for sizes
that should arise when decoding a random string to a sub-
grammar. The DTE encodes this distribution via the inverse
transform sampling mechanism of [25].

We have explained now how SG encodes an input ~P in
a way that captures structure across passwords, making SG
suitable for encoding of password vaults. One additional step
is required in the full specification of encode: SG pads out
all encodings to a constant length with random bits. This is
important because the size of the encoding will otherwise
leak the size of the sub-grammar.

VI. EVALUATING THE ENCODERS

We have shown how to construct functional NLEs that
model real-world password selections by human users of
password vaults. To evaluate the quality of these NLEs, we
now study their resilience to attack using standard machine-
learning techniques.

Recall that in an offline brute-force attack the adversary
makes repeated guesses at the master password and decrypts
the target vault under each guess. The task of the adversary
is to identify the result of decryption under the true master
password, i.e., to determine the true plaintext for the vault.

Suppose q is the number of such guessing / decryption
attempts. If the true master password is among the adver-
sary’s guesses, the result will be q−1 random samples from
the NLE, as well as the true plaintext, and thus q plaintext
candidates in total.

We consider an adversary that orders these q plaintexts
in a list from highest to lowest likelihood of being the true
vault (in the adversary’s view). The adversary’s best strategy
for attacking the vault is then to make online authentication
attempts using one password from each plaintext (decrypted
vault) in order from the list. Thus the position of the
true plaintext vault in the list indicates the number of
online authentication attempts the adversary must make. We
evaluate such an attack for an adversary that ignores master
password likelihood, and instead uses machine learning
(ML) algorithms on the plaintexts to order the list.

Evaluating single decoy passwords. We start by evaluating
the security of NLEs for single decoy passwords, and leave
full vault analysis to the next subsection. The security goal
for a single-password NLE is to produce a decoy password
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that is indistinguishable by an adversary from a true, user-
selected one. We evaluate security in two ways.

First, we look at the accuracy with an binary adversarial
classifier can assign the right label (“true” / “decoy”) to a
password. Second, we evaluate the ability of such a classifier
to assign a high rank to a true password in an ordered list
of plaintexts (single passwords) as described above. For this
second evaluation, we use the confidence measure of the
classifier for a label assignment of “true” as the basis for
ranking passwords in the list.

Methodology. We explored a number of approaches to
attack, and settled on building machine learning (ML) clas-
sifiers to distinguish between true and decoy passwords.
We treat this as a supervised learning problem. That means
we train a classifier with two sets: labeled true passwords
and labeled decoy passwords. We test by drawing from two
(disjoint) sources of real passwords and decoy passwords.
After experiments with a number of feature and classifier
types, we have chosen to report only on the best-performing
option, random forest classifiers [12] with 20 estimators
using the following features:
(1) Bag of characters: This feature captures the frequency

distribution of characters in a password. We represent
this feature as a vector of integers of size equal to the
number of printable characters. We also append the
length of the password to the vector.

(2) n-gram probability: We train two 4-gram models sepa-
rately on each of the two classes of password (true and
decoy) provided for training. For a given password, we
use the probability yielded by each of these two models
as a feature. (These two probabilities / features do not
sum in practice to 100%, as they would for perfectly
complementary models.)

We apply this classifier to the various training set / testing
set pairs explored in our experiments.

We evaluate five distinct NLEs as sources of decoys:
WEIR-UNIF, WEIR, UNIF, NG, and PCFG. These are all
trained using the RockYou training set RY-tr. To generate a
decoy using any of these NLEs, we decode a fresh, random
bit string of suitable length. As a sixth source of “decoys”
we sample directly from RY-tr.

As sources of true passwords, we use the RY-ts, Myspace,
and Yahoo data sets. Use of RY-ts creates a case where
the NLE is trained using samples from the same data set
(but not the same data) as the classifier is tested upon. Use
of Myspace and Yahoo data sets creates a case where true
passwords originate from a different distribution, which we
expect to make the task of distinguishing true from decoy
easier for the adversary.

As we have six sources of decoy passwords and three sets
of true passwords, we have a total of eighteen true / decoy
source pairs on which to conduct our experiments.

For each experiment, given a true / decoy password source

NLEs
Myspace Yahoo RY-ts

α r̄ α r̄ α r̄

WEIR-UNIF 66 24 72 13 82 5
WEIR 63 35 54 36 60 25
UNIF 86 2 97 <2 97 <2
NG 70 22 68 41 61 41
PCFG 70 26 58 39 57 39

RY-tr 70 22 64 50 50 50

Figure 4. For different decoy / true password source pairs, percentage
classification accuracy (α) and percentage average rank (r̄) of a real
password in a list of q = 1,000 decoy passwords for ML adversary. Lower
α and higher r̄ signify good decoys.

pair, we first sample t passwords from the true data set
uniformly without replacement to obtain a derived set of
true passwords. We set t = 100, 000 or the size of the true
data set, whichever is smaller. We treat the sampled data
set as a multiset, meaning that the probability of selecting a
password is proportional to the number of times it appears
in the set. We also treat the derived data set as multiset,
meaning that a given true password can be sampled and
thus appear multiple times. We then generate a set of t
decoy passwords using the decoy source, i.e., by using the
appropriate NLE or sampling from the “decoy” set RY-tr.
Using the resulting pair of derived data sets, we do a 10-fold
cross-validation of the random forest classifier with 90% /
10% training / testing splits.

For our experiments in true / decoy password classifica-
tion, we measure α, the average accuracy of the classifier
on testing data. In those experiments involving ranking of q
passwords in order of likelihood of being the true password,
we order passwords according to the confidence of the
classifier in assigning a “true” label. We measure r̄, the
average rank of the true password in the resulting list. (Thus
r̄ is an estimate of the number of online authentication
attempts required for a brute-force attacker that uses the
classifier to identify the true password.)

An effective classifier will achieve a high value of α and
a low value of r̄. For example, a classifier that performs no
better than random on a given decoy generation algorithm
will on expectation achieve α = 50% and r̄ = (q+ 1)/2. A
perfect classifier will achieve α = 100% and r̄ = 1.

Figure 4 reports the average classification accuracy (α)
and average rank (r̄) (expressed as a percentage) across
our eighteen true / decoy password source pairs. For ex-
periments, we set q = 1,000. In other words, we drew
one password from the true password set and inserted it in
a randomly selected position among 999 decoys generated
from the decoy source. (We chose q = 1,000 as larger values,
e.g., q = 10,000, yielded similar results in preliminary exper-
iments, but resulted in significantly longer times generating
decoys and thus for overall experiment execution.)

Several outcomes of our experiments are notable. As
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expected, the uniform NLE UNIF does quite poorly, with
the classifier strongly distinguishing it from true passwords.
Also as expected, the adversary performs better in nearly all
cases against Myspace and Yahoo data than RY-tr, that is,
when the adversary trains on the true password source, and
the decoy generator designer does not. (As a sanity check,
given the use of RY-tr as a source of “decoy” passwords, and
RY-ts as a source of true passwords, i.e., a common source
for both, the adversary does no better than random guessing
in distinguishing true from “decoy.”)

It is important to observe that no decoy generator is
consistently superior to others across the board. For example,
WEIR resists attack best for Myspace and Yahoo data sets,
while PCFG is superior in the case of RY-ts. As all decoy
generators are trained on RY-tr, these results suggest that
WEIR generalizes better than PCFG, in the sense that it can
be deployed effectively to protect password sources different
from those on which it has been trained. Strikingly, in the
task of distinguishing decoys from true passwords drawn
from the the Myspace and Yahoo data sets, WEIR generates
decoys that are harder for the adversary than “decoys” (true
passwords) from RY-tr.

A. Evaluating complete password vaults

We now describe our evaluation of SG, our NLE for
generating full decoy vaults.

Our evaluation relies on a set of leaked password vault
contents that we obtained from an anonymous public post
to Pastebin. We refer to this data set as Pastebin. Pastebin
appears to have been gathered via malware running on a
number of clients, and is thus suggestive of the kind of data
an adversary might exploit. A limitation of the data set is that
it takes the form of unordered username / password pairs.
Thus the only way to ascertain that two passwords came
from the same vault is on the basis of a common or similar
associated usernames. We organized the passwords into
hypothesized vaults through a manual sanitization procedure
on Pastebin whose details we omit for brevity, but which
we will publish with our code.

Some statistics on Pastebin are given in Figure 5. Here
m denotes the number of passwords in a vault.

Adversarial classifier. To construct a classifier capable of
distinguishing true vaults from those generated by SG, we
make use of the following four feature vectors:

(1) Repeat count: A vector of three vault features: (1)
Number of unique passwords, (2) Number of pass-
words unique up to leet transformation and capital-
ization, and (3) Number of unique tokens inside a
vault. These counts are normalized by (divided by) the
number of passwords in the vault.

(2) Edit distance: A vector ~x =< ~x1, ~x2 . . . ~xk > of size
k, where ~xi denotes the number of passwords pairs
within edit-distance i (case insensitive). This feature

m Statistic Value

2 ≤ m ≤ 3

Users 100
Domains 140
Total no. of unique PWs 155
Avg. domains/users 2.06
Avg. PWs/user 1.60
Median PWs/user 2

4 ≤ m ≤ 8

Users 89
Domains 329
Total no. of unique PWs 378
Avg. domains/users 5.27
Avg. PWs/user 2.58
Median PWs/user 2

9 ≤ m ≤ 50

Users 87
Domains 887
Total no. of unique PWs 741
Avg. domains/users 15.01
Avg. PWs/user 4.21
Median PWs/user 4

Min. entropy of full data-set 6.13

Figure 5. Summary statistics for Pastebin password vault leak. Here, m
is the number of passwords in a vault.

aims to capture user “tweaking” of passwords across
sites, i.e., small modifications made to a password to
create unique per-site variants.

(3) n-gram structure: A vector ~x of size k, where ~xi is the
percentage frequency of the ith most popular n-gram
in the vault, for some n. (We use n = 5.) This feature
characterizes token reuse among passwords.

(4) Combined: By this we denote a combination of all
three aforementioned feature vectors.

In all individual vectors, we let k = 5. We experimented
with several ML engines, including random forest and
clustering, but the best-performing was a Support Vector
Machine (SVM). We construct four support vector machine
(SVM) classifiers with a radial basis function kernel, one for
each of the feature vectors given above.

Our training set consists of an equal number of labeled
decoy and true password vaults of equal size (m). We use
the Pastebin data set for true vaults. (See the “Users”
statistic in Figure 5 for the number of available instances.)
By analogy with our evaluation of single passwords, the
adversarial algorithm runs the SVM on q vaults in turn,
and orders these vaults according to the SVM-estimated
probability of being in the “true” class.

For each size m, let cm be the number of true vaults
in the Pastebin data-set with m passwords. We perform
(cm − 1)−fold cross-validation, meaning we set aside one
vault of size m for testing as the true vault and train on all
others; we repeat this process for every vault. To generate
decoy vaults for training and testing we generate uniformly
random bit strings and decode them using the appropriate
NLE.

As previously described, the success metric is r̄, the
average value over all true passwords vaults of the rank r
in the adversarially ordered list, expressed as a percentage.
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r̄ (average rank %)

Feature used MPW SG
Repeat count 0.6 37.4
Edit dist. 1.2 41.4
n-gram 0.6 38.5
Combined 1.0 39.7

r̄ (average rank %)

m MPW SG
2–3 13.2 32.8
4–8 0.8 38.0

9–50 0.3 38.9

Figure 6. Performance of ML attacks against NLEs. (Left) Average rank of
the real vault (r̄) over all vault sizes (m ∈ [2, 50]) for MPW and SG using
different feature types. (Right) Average rank r̄ of the true vault obtained
with Repeat-count feature vector, broken down by vault size m.

Figure 6 summarizes results for two full-vault NLEs.
Recall that the one labeled SG is the sub-grammar NLE built
from our PCFG. For comparison, we also consider a naı̈ve
one, labeled MPW, that outputs m independent applications
of the PCFG NLE. We set q = 1, 000. The table on the
left compares the different attacks across all vaults of size
2–50 against the two NLEs. As expected, treating passwords
as independent in MPW yields decoys that an attacker can
easily distinguish from a true vault, with r = 0.6% for two
of our adversarial algorithms. In contrast, our sub-grammar
approach SG achieves r > 30% in all of our presented
experiments.

The right table compares the performance of the Repeat-
count feature vector against MPW and SG by vault size.
This attack is quite effective against MPW, confirming the
observation that treating passwords within a vault indepen-
dently poorly models real vaults. This series of experiments
also brings to light the fact that the security of the NLE
degrades as the vault size m increases. Again, SG fares
much better.

VII. HONEY ENCRYPTION FOR VAULTS

Given the NLEs from Section V, we can now build an
encryption service for vaults. Our construction uses a similar
design as Juels and Ristenpart’s [25] honey encryption (HE)
construction, which composed a DTE with a conventional
password-based encryption scheme. But ours will necessar-
ily be more complicated. We will combine multiple different
DTEs (an NLE for human-generated and a regular DTE for
computer-generated passwords) and handle side information
such as domains in a privacy-preserving manner. We will
also need to handle adding new entries to an existing vault
and removing entries.

Abstractly, vault encryption takes as input a set of domains
~D = (D1, . . . , D`), associated passwords ~P = (P1, . . . , P`),
and a vector of bits ~h = (h1, . . . , h`) for which a 1 signifies
that the password was input by a user and a 0 signifies that
the password was randomly generated. The client selects
randomly-generated passwords by selecting uniformly from
a large set (of size about 290) that includes passwords
accepted by all the website policies that we tested.

We now present a basic HE scheme. This scheme hides
passwords, but takes the simple approach of storing domains

in the clear with the ciphertext.

Basic HE scheme. Upon input ~D, ~P ,~h, this scheme pro-
ceeds as follows. We first apply the sub-grammar NLE SG
to the subset of passwords in ~P for which hi = 1. To
each of the remaining passwords with hi = 0 we apply
the DTE UNIF. The result from both steps is a bit string
S = S0 ‖S1 ‖ · · · ‖S` with S0 the output from encoding the
sub-grammar and each Si either an encoding under PCFG
using the sub-grammar (hi = 1) or an encoding under UNIF
(hi = 0).

The string S is then encrypted as follows. First, derive a
key K = KDF(mpw, sa) for a freshly generated uniform
salt sa and where mpw is the user’s master password.
Here KDF is a password based key derivation function
(PBKDF) that is strengthened to be as slow as tolerable
during normal usage [27]. Then, encrypt each Si (for i = 0
to `) independently using AES in counter mode with key K
and a fresh random IV. This produces a sequence of ` + 1
CTR-mode ciphertexts ~C = (C0, . . . , C`). The final vault
ciphertext includes a (conventional) encoding of ~D,~h, sa, ~C.
Decryption works in a straightforward way.

This HE scheme is relatively simple (once the NLE and
DTE are fixed) and space efficient. However, ~D and ~h are
stored in the clear and this means that attackers obtaining
access to the ciphertext learn the domains for which the user
has an account as well as which passwords were randomly
generated. One approach to rectify this would be to specify
a DTE for encoding ~D. One could use popularity statistics
for domains, for example based on Alexa rankings. However
note that this may sacrifice security against offline brute-
force attacks in the case that an attacker knows with high
certainty the set of domains associated with a user’s vault.

This highlights a delicate challenge in the use of HE:
if an attacker can easily obtain knowledge about a portion
of the plaintext, it may be better to not apply HE to that
portion of the plaintext. We may view domain information
as such easily-obtainable side information that it is not worth
encrypting. To provide domain privacy, though, we must
do more. We now describe two approaches: HE-DH1 and
HE-DH2.

HE-DH1. In this scheme, we hide an individual user’s
domains in the set of all domains used by users and
include in each user’s vault “dummy” entries for unused
domains. To achieve privacy of domains the goal will be
that an attacker cannot distinguish between a dummy and
real entry. In the following, we fix a set of popular domains
~D∗ = (D∗1 , . . . , D

∗
s1). We require that ~D∗ be a superset of

all the domains used by users. We discuss how to achieve
this momentarily.

To encrypt an input ~D,~h, ~P we first encode the passwords
as described above for the basic scheme: apply SG to the
set of human-generated passwords and UNIF to each of the
computer-generated passwords. For any domain in ~D∗ but
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not in ~D, we generate a dummy encoding as follows. First
we choose a bit h to select whether this domain should have
a human-generated dummy entry or a computer-generated
one. We discuss how to bias this bit selection below. Then
we generate a random bit string of length equal to the length
of outputs of PCFG (if h = 1) or UNIF (if h = 0). We
then generate the full encoding S = S0 ‖S1 ‖ · · · ‖Ss1 by
inserting the per-password encodings or dummy encodings
to match the order from ~D∗. We then encrypt S as in the
basic scheme.

The distribution alluded to above for dummy encodings
does not affect confidentiality of mpw or ~P , but rather
confidentiality of the domains associated to a user and
whether the user has human or generated passwords for each
such domain. One can, for example, set this distribution to
be biased towards human-generated passwords.

Note that decryption with either the correct mpw or an
incorrect one produces s1 passwords. The s1 − ` honey
passwords corresponding to the dummy entries obscure from
an attacker which sites are in use by the user (even in the
extreme case that the attacker has guessed mpw somehow).
When mounting brute-force attacks, the dummy entries
might hinder attempts to perform online checks of recovered
passwords. In particular, if a domain’s login web page
follows best practices and does not leak whether a user has
an account there (regardless of correctness of the provided
password), then the attacker may not be able to distinguish
between the situation in which a certain domain is not used
by a user and the situation in which the decryption attempt
resulted in a honey password.

The downside of the above approach is that s1 may
need to be very large and for each user the storage service
(described below in Section VIII) must store O(s1) bits of
data. We can grow s1 over time by having clients inform the
service of when a new domain should be added to D∗ and
the server can insert dummy entries in previous vaults by
just inserting random bit strings in the appropriate location
for each vault ciphertext. (this is possible because a separate
CTR-mode encryption is used for each vault entry.) When
the system is first setup, an initial relatively small popular
domains list can be seeded with highly popular domains.

Another approach to reducing overheads is to bucket users
into separate groups, each group having their own popular
domains list. This enables tuning the size of vaults relative
to per-group domain confidentiality.

HE-DH2. In this scheme, we adopt an alternative approach
to dealing with the long tail of domains, and use a honey-
encrypted overflow table. Fix some number s2 > 0. For each
of the domains not in the current popular domain set, we
use the following procedure. First apply the PCFG (using
the sub-grammar or UNIF appropriately to the password to
get a bit string S′. Then hash the domain name and take
the result modulo s2 to yield an index j ∈ [0..s2 − 1]. Set

S∗s1+j+1 to S′. Some indices in [0..s2 − 1] will be unused
after handling all domains outside the popular domain set;
we fill these with dummy encodings. The additional s2 seeds
are each encrypted with CTR mode, making the final, full
ciphertext ~D∗,~h∗, sa, ~C. Note that now, ~C contains s1+s2+
1 individual CTR-mode encryption ciphertexts for the sub-
grammar and s1+s2 individual, possibly dummy, passwords.

By setting s2 large enough relative to the expected num-
ber of domains not in D∗ we can ensure that with high
probability no two domains hash to the same location. Note
that the domains associated with the overflow table are not
stored with the ciphertext. To decrypt, the requested domain
is checked to see if it is in D∗ and if not it is hashed to find
the appropriate entry in the last s2 HE ciphertexts.

Updating a vault. To update a password for a particular
domain in the basic scheme or HE-DH1, one first decrypts
the entire vault, changes the appropriate entry, and then en-
crypts the modified vault with fresh randomness (including
the salt). needed to ensure the sub-grammar is consistent
with the encoded content. For HE-DH2, one proceeds much
the same, also decrypting each of the s2 entries in the
overflow table. The appropriate domain’s entry is updated
(found either by looking in the popular domains list or,
failing that, hashing the domain to be updated to find it in
the overflow table). Finally, the modified vault is encrypted
(with fresh randomness).

Deletion of a password can be performed by converting
the appropriate entry into a dummy entry while also updating
the sub-grammar by removing any now unnecessary rules.

Security discussion. Our primary goal is confidentiality
of the plaintext passwords. All passwords are first encoded
using an appropriate DTE and then encrypted using a PBE
scheme. Should the user’s master password be strong, even
an offline brute-force attack is infeasible and, in particular, it
will require as much work to break any of the schemes above
as would be to break a conventional PBE encryption. Should
the user’s master password be weak, then by construction de-
crypting the ciphertext under any incorrect master password
gives back a sample from the DTE distribution. In particular,
we believe there to be no speed-up attacks that allow the
attacker to rule out a particular incorrect master password
without having to determine if the recovered plaintext is
decoy or not. As we showed in the previous section, our
NLE is good enough that distinguishing human-generated
passwords is challenging even for sophisticated adversaries.

The above is admittedly informal reasoning, and does
not rule out improved attacks. We would prefer a formal
analysis of plaintext vault recovery security akin to those
given for simpler honey encryption schemes in [25], which
would reduce security to solely depend on DTE quality.
Those techniques rely on a closed-form description of the
distribution of password vaults as produced by decoding
uniform strings. Unfortunately we do not know how to
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determine one; even estimating the distribution of single
passwords is impractical with sampled data [5]. Formal
analysis remains an interesting open question.

If an attacker obtains the encryptions of a vault before
and after an update, then security falls back to that of
conventional PBE. One simply decrypts both vaults under
each guessed master password, and with high probability
the contents of the two plaintext vaults will match (except
where updates occurred) with high probability only with the
correct master password. This is a limitation of all decoy-
based approaches we are aware of and finding a solution for
update security is an interesting open question.

Another security goal is domain hiding. As discussed
earlier, adding dummy ciphertexts (random bit strings) for
the latter two schemes for unused domains means that an
offline attacker will recover passwords for these domains as
well. The same reasoning extends to the use of the overflow
table. The complexity of the sub-grammar may leak some
information about the overall number of human-generated
passwords in-use, but not which of the domains marked as
having human-generated passwords are dummy encodings.

VIII. THE NOCRACK SYSTEM

We now turn to the design of the full honey-vault service
that we call NoCrack. Our architecture closely follows
deployed commercial systems, such as LastPass6. A web-
storage service exposes a RESTful web API over HTTPS
for backing up user vaults and synchronizing vaults across
devices. To achieve the security benefits of HE, however, we
must design this service carefully.

The challenge of password-based logins. One encounters
an interesting challenge when attempting to build a decoy-
based system which supports backup of user vaults: how
to authenticate users to the service that is responsible for
backing up their vaults. In particular, the status quo in
industry is for users to choose a username and service
password. The password would be sent over HTTPS to the
server, hashed, and stored to authenticate future requests.
But customers are likely to choose this service password to
be the same as their vault’s master password. If an attacker
compromises the storage service and obtains both a user’s
encrypted vault and the service password hash, they can
mount a brute-force attack against the service password
hash, learn the service password, and then decrypt the vault.

One might attempt to mitigate with this by securing
the password hash separately from vaults. Or one could
avoid backup of encrypted vaults entirely, but this would
leave users responsible and violate our goal of matching
features of existing services. We therefore go a different
route, and forego password-based login to the storage service
completely.

Device enrollment. A new user registers with the service

6http://www.lastpass.com

by providing an email address (also used as an identifier),
to which a standard proof-of-ownership challenge is sent.
To hinder abuse of the registration functionality, the service
can rate limit such requests and require solution of an
appropriate CAPTCHA [38]. The proof-of-ownership is an
email including a randomly generated 128-bit temporary
token (encoded in Base64 format, 22 characters long). The
user copies this temporary token into the client program
which submits the token over an enroll API call. The
server verifies the temporary token, and returns to the client
program a (long term) bearer token (also 128 bits) that can
be used as a key to authenticate subsequent requests using
HMAC. At this stage the client device is enrolled. Note that
all communication is performed over TLS.

Additional devices can be enrolled in a similar manner
by having an already-enrolled client device to generate a
token for the new device or sending a new temporary token
via email. Should a user lose all access to a device with a
current bearer token, they can easily obtain a new token via
the same enrollment process.

We note that two-factor authentication would be straight-
forward to support by requiring a proof-of-ownership of a
phone number or a correct hardware token-generated one-
time password to obtain a device bearer token.

Synchronizing with the server. An enrolled client device
can compare their local information with that stored under
their account on the server. This involves ensuring the client
and storage service have the same version of the vault,
which, in normal usage, is cached on the client device. To
save bandwidth, downloads and uploads can be done in an
efficient manner via any standard “diff” mechanism — in
particular our HE schemes support sending only portions of
the ciphertext at a time.

The client. We currently have only a command line client
supported, but future versions could easily integrate with
popular browsers via an extension. The client caches the
vault locally, but never stores it in the clear on persistent
storage. The client queries the service when run to determine
if it needs to synchronize the vault. At the beginning of
a browsing session, the user is prompted for the master
password and the vault is decrypted. To check for typos,
we can use dynamic security skins [16] (as suggested also
for use with Kamouflage), which show a color or picture
that is computed as a hash of the master password (but
never stored). The output of the KDF can be cached in
memory in order to decrypt individual domains as needed,
while the master password itself is expunged from memory
immediately.

Note that the HE scheme does not handle login names;
we assume that browser caching mechanisms can handle this
for a user if they desire. Should a login detectably fail for
the user due to master password typo and the user does not
observe the incorrect security skin, the client can prompt the
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Operation s = 2 200 2,000 20,000

Recover password 6.34 ms 6.41 ms 6.42 ms 6.50 ms
Add password 0.13 s 0.68 s 1.11 s 9.25 s

Vault size on disk 4.71 KB 164.00 KB 1.55 MB 15.26 MB

Figure 7. Running times (median over 100 trials) of operations for different
vault sizes s = s1 + s2. The final row is size of encrypted vaults on disk.

user to reenter their master password. By construction, there
might be dummy password entries in NoCrack for some
domains where the user does not have an account. The user
and/or the browser is responsible to distinguish the domains
where the user has an account.

Implementation and performance. We implemented a
prototype of NoCrack in Python-2.7. On the server side we
used Flask and Sqlite3. To normalize domains we use the
Python Public-Suffix library. All cryptographic operations
use PyCrypto-2.6.1. We use AES within CTR mode en-
cryption, and SHA-256 within PBKDF2 for key derivation.
Many of the operations are parallelizable; we use the Python
multiprocessing library for this but note that our prototype
implementation does not yet fully take advantage of paral-
lelization. The client and server consist of 3,102 total lines of
code as counted by the utility cloc (not counting libraries).
All experiments were performed on an Intel Core-i5 with
16 GB of RAM running Linux.

We provide some basic performance numbers for our
most complex honey encryption scheme HE-DH2, but em-
phasize that this is a naive implementation and some im-
provements will be easy. We fix various vault sizes s ∈
{2 , 200 , 2,000 , 20,000} and set s1 = s2 = s/2 (these are
the sizes of the popular domains table and overflow table,
respectively). We used integer representation size b = 128.
for encoding fractions. We start by generating a random ci-
phertext of size appropriate for the values of s1, s2 assuming
some short arbitrary domain size and that all passwords are
human generated (the worst-case for performance). We then
measure the time to recover a particular vault password as
well as to add a password to the vault. We report in Table 7
the median times over 100 trials. Variance in timing was
negligible.

Time for recovering a single password is fast, and agnostic
to the size of the vault. This is because our design allows
random access into the vault. Time for adding passwords
increases with s, since our scheme decrypts and decodes
all s entries, updates the new password, then re-encodes
and re-encrypts all s entries (this is required to keep the
sub-grammar synchronized with the contents of the vault.)
The bulk of the time is spent in encoding and re-encoding
passwords. This operation is still only around one second
for large vaults, and large vaults are needed only to support
domain hiding. The encrypted vaults are also of reasonable
size. We conclude that, while NoCrack does incur time and

space overheads relative to conventionally encrypted vaults,
the absolute performance is more than sufficient for the
envisioned usage scenarios.

IX. RELATED WORK

Honey objects. The use of decoy objects such as honeypots
or decoy documents [8], [9] is well-established in infor-
mation security practice. More closely related to our work
here are honeywords [26], decoy passwords associated with
each user in a password database. The honeywords system
involves fake individual passwords, rather than password
sets, and does not help with decoy security for password
vaults, our goal here.

We also note that decoy document and honeyword systems
are distributed: they assume explicit storage of secrets that
distinguish decoy from real objects in a trustworthy location
(a “honeychecker”) separate from the system containing the
decoy objects. See [24] for a discussion of the distinction
between such systems and those in which these secrets (e.g.,
master passwords) are provided by a user, as in NoCrack.

An early decoy system involving encryption under user-
furnished secrets was proposed by Hoover and Kausik [22];
it only supports encryption of specially crafted RSA private
keys. Honey encryption [25] introduced a general frame-
work for incorporating honey objects into encryption. As
explained earlier, it does not prescribe constructions for
specific message types, which gives rise to one of the major
technical challenges we faced in building NoCrack.

A detailed discussion of Kamouflage [4] was given in
Section II.

Password-based key derivation. Key stretching, where
one slows down key derivation, was first defined by
Kelsey et al. [30], and standardized later in PKCS#5 [27].
Boyen proposed halting password puzzles [11] in which the
key-derivation will run indefinitely on incorrect password
guesses and only terminates (after an unspecified length of
time) upon correct guesses. Another approach is to incor-
porate memory-hard functions, which require a significant
amount of RAM to compute efficiently, such as done in
scrypt [35]. Each of these techniques slows down offline
brute-force attacks, but do not force attackers to make online
queries.

Stateless password managers. Several schemes exist for
strengthening user passwords (and preventing direct pass-
word reuse) by hashing a master secret with domain names
to dynamically generate per-domain passwords. An early ex-
ample was the Lucent Personal Web Assistant (LPWA) [19];
later variants include PwdHash [36] and Password Multi-
plier, a scheme by Halderman et al. [20]. Chiasson et al.
conducted a usability study of both PwdHash and Password
Multiplier and found the majority of users could not success-
fully use them as intended to generate strong passwords [14].
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Another usability challenge is dealing with sites with a
password policy banning the output of the password hash;
for this reason NoCrack uses a simple set of rules for
computer-generated passwords.

Password managers. In addition to Kamouflage [4], several
academic proposals have sought to improve the usability
and security of stateful password managers. Passpet [41]
generates random passwords per-domain and allows users to
assign avatars to different websites to easily identify which
passwords are used with which website. Tapas [33] is a
prototype two-factor password manager which distributes
passwords into shares between a computer and a mobile
phone.

Karole et al. [28] performed a usability evaluation com-
paring three common approaches to password vaults: online
services, phone applications, and USB tokens. Interestingly,
they found that the online service was by far the easiest
for participants to use, although participants stated a clear
preference for the phone-based solution because most didn’t
want to entrust all of their passwords to a cloud-based
service. These findings are a compelling justification for
NoCrack, which enables the convenience of cloud-based
password vault backup with higher security against com-
promise.
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APPENDIX

A. Constructing a PCFG

For completeness we describe our PCFG construction
process, which uses techniques, with a few small embel-
lishments, from prior work [37], [39]. We start by creating
a parser for passwords based on some dictionaries and/or
manual tuning. The parser itself uses a base PCFG. Using
it, the passwords in a password leak are parsed into ‘tokens’
and the frequency of each token and each token combination
is computed to generate a trained PCFG.

The process starts with input a password corpus (a list
of passwords selected by real users in the wild) as well
as a source dictionary. The dictionary is a list of words
which we might expect to appear as or within passwords,
with accompanying information about such words’ expected
likelyhood of occurrence. We construct a dictionary from
the following two sources. The first, denoted D1, is the
Wiktionary [1] list of the top 30,000 English words along
with their frequency count as found in books of Project
Gutenberg up through April 16, 2006. The second, denoted
D2, is a list of Facebook first and last names and frequencies
compiled by SkullSecurity [10]. After removing names with
frequency less than five the final size of D2 was 1,678,411.
The Facebook first and last names capture not only names,
surnames of persons, cities and popular entities but also a
comprehensive list of popular words used by internet users.
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For example, D2 covers modified spellings of words like
‘gurl’, acronyms like ‘ciao’ or ‘afaik’, etc.

Of course one could use other dictionaries for different
languages, cultures, etc., but we leave the evaluation of such
localization to future work.

The base weighted CFG. After manual inspection of the
RockYou password corpus, we constructed an underlying
grammar (CFG) for the base CFG of the following form:
S → W | D | Y | K | R | WW | WD | WY

| WYD | WDY | WK | . . .
W → <english-words>T | <names>T
D → <dates> | <numbers>
Y → <symbols>
K → <keyboard-sequence>
R → <repeated-characters>
T → Capitalize | ALL-CAPS | all-lower

| L33t

where “. . .” signifies all remaining combinations of the
non-terminals W, D, Y, R and K. The variables on the
right hand side of each rule written within angle brackets
(<.*>) are terminal place-holders. <english-words>
and <names> are placeholders for sets of non-termanals
associated to D1 and D2 respectively, while the rest of
the placeholders are initialized with regular expressions. We
explain the placeholders below in detail. The grammar is
ambiguous (i.e., it can parse a password in multiple ways):
‘password2015’ could be parsed as {‘pass’, ‘word’, ‘2015’}
or {‘password’, ‘2015’}. Obviously the latter seems like a
more meaningful parsing. To disambiguate among different
parse trees we assign some heuristic cost to each rule and
we used the parse tree that incurs minimal cost. The costs
can be seen as weighting various parsings, which is why we
refer to the resulting CFG as weighted.

For the placeholder <english-words>, we specify a
non-terminal rule for each word in D1. The cost of each rule
for X ∈ D1 is 1− fX∑

X fX
, where fX denotes the frequency

count of X in D1. For the placeholder <names>, the cost
function is defined analogously, but using D2.

For the remaining non-terminals, we created simple reg-
ular expressions or rules that recognizes the underlying
languages as closely as possible. Non-terminal <dates>
produces dates in common formats (e.g. ‘08232013’,
‘19790925’, 2008 etc). We created a simple regex to parse
dates; we found through hand tuning that we achieved the
most reliable parsing by setting the cost of a date string str
to be |str|

8 where |str| is the string’s length. The constant 8
was chosen as the most popular date-based password length
in practice and also the maximum length date that our regex
will accept.

The non-terminal <keyboard-sequence> includes
patterns of standard US keyboard sequences (e.g.
‘qwerty’, ‘zxcvbn’ etc). We achieved the most
reliable parsing by setting the cost of a sequence str to be

proportional to c
|str| where c is the number of lateral changes

in direction performed while typing ‘str’ on a standard US
keyboard, a basic metric of typing complexity.

The non-terminal <repeated-characters> tries to
predict whether a string is a sequence of identical characters,
such as ‘aaaaaaa’,‘0000000’; we set the cost of this

rule to
(

# unique characters in str
|str|

)|str|
.

The non-terminal T leads to one of four special terminals
that symbolize transforms applied in a post-processing step
to the preceding string str generated by W. ALL-CAPS
capitalizes all letters in the preceding string; Capitalize
capitalizes the first letter; and all-lower sets all letters
to lowercase. L33t applies a number of leetspeak trans-
formations or selected capitalization. The cost for each of
these rules is set to c

|str| , where c is 0 for all-lower,
1 for ALL-CAPS and Capitalizes, and the number of
transformed characters for L33t.

The resulting base weighted CFG permits the parsing of
passwords in a password corpus, yielding insight into the
structure of human-generated passwords. We consider for a
given input the parse tree with the lowest cost under the
heuristic explained above (i.e., sum of costs for rules in the
parse tree). To identify the minimum cost parse tree we use a
standard bottom-up dynamic programming approach similar
to CYK [18]. Below, the term “parse tree” refers to the parse
tree with minimum cost unless explicitly stated otherwise.

The trained PCFG. We now explain how we train a
PCFG on the RockYou corpus, bootstrapping from the base
weighted CFG.

We first fix some definitions used in this process. A
production rule l→ r can be specified as a pair (l, r). Every
edge in a parse tree is a rule. A rule set is a lexicographically
ordered set of rules with the same left-hand-side. A rule list
is an ordered list of rules generated by depth-first search of
the parse-tree of a string / password (with siblings taken in
left to right order).

A CFG is completely specified as a set of rule sets. A
PCFG is completely specified by an admissible assignment
of probabilities to CFG rules. Let S be a rule set of size
|S| and pS(l → r) be the probability of a rule l → r in S.
An admissible assignment of probabilities has the property
that

∑
(l→r)∈S

pS(l → r) = 1. We refer to the probability

distribution over rules in a rule set S for a given admissible
assignment as its induced probability distribution.

To train a PCFG on our training corpus, we first parse each
password using the base weighted CFG to obtain a parse tree
for each password. The aggregate set L = {R1, . . . , Rw} of
all rules in all these parse trees specifies a CFG. A rule set
S in this CFG is simply a set of all rules with a common
left-hand side.

To specify a PCFG based on this CFG, we make use of
the count of repetitions of each rule in L to construct an
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admissible assignment of probabilities. Let fl→r denote the
number of repetitions (the “frequency”) of rule l → r in L
and fS denote the total number of repetitions of all rules
in S. Letting pS(l → r) = fl→r/fS yields an admissible
assignment. We refer to this PCFG as the trained PCFG.

The non-terminals in the trained PCFG are as in the base
PCFG, except that any special placeholder non-terminals that
used post-processing (e.g., L33t) are at this stage replaced
by a concrete (finite) set of non-terminals and/or terminals.

B. Securely Encoding Fractions

We have to define an encoding scheme for floating point
numbers. We focus on empirically derived distributions, for
which each probability that needs encoding is a fraction p/q
where p is the frequency count and q is some cumulative
total number of values observed. We have that p ≤ q. In
such cases, encoding can be done by choosing a large b-bit
number subject to the constraint that it should be equal
to p modulo q. For correctness, b has to be larger than
number of bits in the binary representation of q. Encoding
and decoding are defined below:

encodeq(p):
1. x←$ {0, 1}b
2. r ← x+ p− (x mod q)
3. if r ≥ 2b then
4. r ← r − q
5. return r

decodeq(r):
1. p← r mod q
2. return p

Correctness is straightforward: by construction, 0 ≤ r < 2b

and so

r mod q = (x+ p− (x mod q)) mod q

= (x mod q) + (p mod q)− (x mod q)

= p mod q .

In terms of security of encoding, we want the output
values of the encoding scheme to be uniformly distributed
over {0, 1}b when p is uniformly selected from [0, q − 1].
Otherwise an adversary can possibly rule out master pass-
words using the fact that encoded strings are distributed
differently from uniform bits during decryption (under the
wrong master password). Just for convenience we define
h = 2b mod q and l = b 2b

q c. (Thus, lq + h = 2b.) Now,
consider four random variables A,B,C and D defined as
follows: A and B are uniform distributions over {0, 1}b and
Zq , respectively; C = A− (A mod q); and D is the output
of the encode function for a randomly chosen p ∈ [0, q−1].
Note that D is almost equal to C +B, but for the potential
additional modification made should C+B has value equal
to or larger than 2b (see the conditional of line 3 of encode).
Note also that C always takes values of the form kq for some
k ∈ Zl+1. So, we have that the probability mass function

for C is defined by:

Pr [C = kq ] =

{
q
2b if 0 ≤ k < l
h
2b if k = l

Using this, we can see that for D it holds that:

Pr [D = r ] =


1
2b if r ∈ [0, (l − 1)q + h)
1
2b + h

2bq
if r ∈ [(l − 1)q + h, lq)

h
2bq

if r ∈ [lq, 2b)

The statistical distance between A and D, denoted by
∆(A,D), can then be calculated as follows.

∆(A,D) =
∑

x∈{0,1}b
|Pr [A = x ]− Pr [D = x ]|

=
(q − h)h

2bq
+
h(q − h)

2bq

≤ 2(q − q/2)(q/2)

2bq
≤ q

2b+1

In a similar way we can show using a union bound that,
while encoding m fractions, together the encoded values
deviate from a uniform distribution over such values by at
most mqmax/2

b+1, where qmax is the largest q we shall need
during encoding of fractions and 2b � qmax. We found that
we never encountered q more than 232, and do not need
m > 104. Setting b = 128, and plugging in qmax = 232 and
m = 104 gives that the statistical distance from uniform for
m encodings is strictly less than 2−83, which suffices for
our purposes.
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