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Abstract. Side-channel attacks are powerful techniques to attack imple-
mentations of cryptographic algorithms by observing its physical param-
eters such as power consumption and electromagnetic radiation that are
modulated by the secret state. Most side-channel attacks are of divide-
and-conquer nature, that is, they yield a ranked list of secret key chunks,
e.g., the subkey bytes in AES. The problem of the key recovery is then
to find the correct combined key.
An optimal key enumeration algorithm (OKEA) was proposed by Charvil-
lon et al at SAC’12. Given the ranked key chunks together with their
probabilities, this algorithm outputs the full combined keys in the opti-
mal order – from more likely to less likely ones. OKEA uses plenty of
memory by its nature though, which limits its practical efficiency. Espe-
cially in the cases where the side-channel traces are noisy, the memory
and running time requirements to find the right key can be prohibitively
high.
To tackle this problem, we propose a score-based key enumeration algo-
rithm (SKEA). Though it is suboptimal in terms of the output order of
cadidate combined keys, SKEA’s memory and running time requirements
are more practical than those of OKEA. We verify the advantage at the
example of a DPA attack on an 8-bit embedded software implementation
of AES-128. We vary the number of traces available to the adversary and
report a significant increase in the success rate of the key recovery due
to SKEA when compared to OKEA, within practical limitations on time
and memory. We also compare SKEA to the probabilistic key enumera-
tion algorithm (PKEA) by Meier and Staffelbach and show its practical
superiority in this case. We propose a high-performance solution for the
entire conquer stage of side-channel attacks that includes SKEA and the
subsequent full key testing, using AES-NI on Haswell Intel CPUs.

1 Introduction

In a nutshell. Side-channel attacks are powerful techniques to extract cryp-
tographic keys from secure chips. With a few exceptions, they are divide-and-
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conquer attacks recovering individual small chunks of the key. For every chunk
of the key, the attack’s divide phase called a distinguisher will assign a rank-
ing value to every possible candidate. Depending on the attack technique, this
value can be a correlation coefficient or a probability value. The output of the
distinguisher is a set of lists of all key chunk candidates and their ranking values.

If the attacker can perform a sufficient number of measurements to reduce
noise, the conquer phase is trivial. The correct full key is obtained by taking
the top-ranking candidate. However, this is rare in practical settings with low
signal-to-noise ratio due to target complexity and countermeasures, and limited
time to perform the attack. In such practical settings, the correct key chunks
are not likely to be ranked on the top of the list, but somewhere close to the
top. Hence, to recover the full key, the attacker needs to perform the search
over different combinations of key chunk candidates. By taking into account
the ranking values coming from the distinguisher, the search can be made more
efficient. The problem is known as key enumeration. More generally, besides key
enumeration, the conquer phase also includes key verification.

Previous work and motivation. Though most research in side-channel at-
tacks focuses on the divide phase, there are several papers tackling the issue of
key enumeration. The most recent line of relevant research is the optimal key
enumeration algorithm (OKEA) proposed Charvillon et al. in SAC’12 [13, 14].
It is optimal with respect to the order of the full keys by their probabilities.
OKEA is superior to the very similar algorithm of Pan et al. from SAC’10 [9]
in terms of memory use, and to the probabilistic key enumeration algorithm
(PKEA) suggested by Meier and Staffelbach in EUROCRYPT’91 [8] (and well
applicable in the context of DPA and DFA) in terms of the amount of candidates
tried. A dedicated solution for the case of an attack recovering individual bits
was proposed by Dichtl in COSADE’10 [3]. The papers [7, 15] include solutions
to tackle the conquer phase as well.

The optimal key enumeration algorithm from [14] has some practical limi-
tations though. First, for practical cases, it consumes a lot of memory and its
performance is hampered by random memory access pattern. Second, it is diffi-
cult to efficiently parallelize on a multi-core CPU1. Thus, we are more interested
in the practical optimality, i.e., an optimality in terms of how much time on aver-
age it takes to find the key on a modern CPU. Previous papers lack a systematic
comparison with respect to this metric.

Quality versus speed. Two aspects are of great importance when searching for
a key: quality and speed. With quality we mean the relation between candidate
generation and the correctness probability of a key candidate. A brute force

1 We focus on a common non-specialized platform, namely, on a workstation with a
multi-core CPU. We are fully aware that dedicated platforms, in particular GPUs
and FPGAs, may bring faster smart brute force solutions; they are out of scope of
this work.
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algorithm that tries every key candidate in the plain numerical order is likely
to have a bad quality. This is because probable key candidates will not get
precedence over unprobable candidates. With speed we mean how fast subsequent
key candidates are generated. Typically the key verification can be done with
optimized hardware or software implementations of the cryptographic algorithm.
Ideally, the enumeration should be faster than the verification to benefit from
the optimization of the cryptographic implementation.

The overall performance of the approach, i.e. the time it takes to find the
correct key, depends on both quality and speed. In this paper we look at both
factors and find that a high quality may reduce speed and suboptimality may
minimize the search time.

Our contributions. The contributions of this paper are as follows. First, we
propose a new key enumeration algorithm, namely, the score-based key enumera-
tion algorithm (SKEA), that can find the full key in practice faster than OKEA.
Second, we provide a comprehensive comparison of OKEA, PKEA and SKEA
in terms of the practical runtime metric for DPA on an embedded 8-bit soft-
ware target. Finally, we propose a full solution for the conquer stage (including
key enumeration and testing) for AES that includes an efficient key verification
implementation using AES-NI extensions on Haswell CPUs.

Thus, our work aims to bridge the gap between theory and practice in key
enumeration and puts forward the importance of the practical metrics for esti-
mating implementation attack complexity.

Part of this work has been first presented in [6] and [1].

2 Background on key enumeration algorithms

Most side-channel attacks are based on a divide-and-conquer approach in which
a side-channel distinguisher is used to obtain ranking information about parts
(chunks) of the key (“divide”) which is then used to determine candidates for
the complete key (“conquer”). This complete key is the result of a function, e.g.
concatenation, of all the key parts. A key part candidate is a possible value of a
key part that is chosen because the attack suggests a good probability for that
value to be correct.

For instance, in a side-channel attack on the S-box step of a block cipher, such
a key part comprises all key bits corresponding to a single S-box. The complete
key recovered by the attack would be the concatenation of all such key parts in
one round.

The problem of finding (candidates for) the complete key based on the ob-
served side-channel information for the key parts is called the key enumeration
problem: For each of the m key parts, we are given a list of key part candidates,
each of which has a certain associated side-channel information (e.g., leakage).
We are then to enumerate candidates for the complete key, ideally in order of
likelihood according to the likelihood of the individual key part candidates.
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Several key enumeration algorithms have been proposed, among them the
classic probabilistic algorithm (PKEA) due to Meier and Staffelbach [8], peak
distribution analysis by Pan et al. [9], and the recent optimal key enumeration
(OKEA) by Veyrat-Charvillon et al. from SAC 2012 [14].

Ranking vs. likelihood. Both PKEA and OKEA require the discrete probability
distribution of each subkey part to be known and computable by the attacker.
In profiled side-channel attacks, the training phase allows the attacker to rank
the key part candidates k for each of the m key parts according to their actual
probabilities Pr(k | Li), with Li denoting the complete available side-channel
information for the i-th key part. In non-profiled attacks, the ranking of key
part candidates is performed according to certain statistics extracted from the
side-channel information, which might not reflect their actual likelihood. In [14],
a method called Bayesian extension has been proposed in order to convert the
ranking statistics into an equivalent probability value based on a certain leakage
model. It essentially does a Bayesian model comparison to obtain the conditional
probabilities Pr(k | Li) from the probabilities Pr(Li | k) which are obtained
according to the leakage model.

2.1 Probabilistic key enumeration (PKEA)

At EUROCRYPT 1991, Meier and Staffelbach [8] describe a probabilistic key
enumeration algorithm which we denote PKEA. In their work, the attacker is
assumed to have no knowledge about the key part distributions, but is able to
sample from them. The algorithm then simply samples key parts according to
their individual distributions and tests the resulting complete key candidates.

Besides its simplicity, one of its main advantages is that it only requires
a small constant amount of memory. On the other hand, the most likely key
candidates will occur many times due to the stateless nature of this algorithm,
which leads to unnecessary work duplication.

2.2 Optimal key enumeration (OKEA)

At SAC 2012, Veyrat-Charvillon et al. proposed a deterministic key enumeration
algorithm which guarantees to output the key candidates in nondecreasing order
of their likelihood [14]. Due to this property, it is referred to as an optimal key
enumeration algorithm, or OKEA.

This algorithm is based on the idea that if the key part candidates for the m
key parts are given in decreasing order of their probability, the m-dimensional
space of all complete key candidates can be enumerated in order of their likeli-
hood by only keeping track of the next most likely candidate in each dimension
(this set of key part candidates is called the Frontier set). By pruning already
enumerated complete key candidates and following a recursive decomposition for
higher dimensions than two, this algorithm generates key candidates in optimal
order without having to keep all possible key part combinations in memory at
any time.
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While constituting a significant improvement over both PKEA and the naive
enumeration approach, OKEA is usually memory-bound, which means that even
though keys are enumerated in optimal order, the memory required to keep track
of the (nested) Frontier sets can be prohibitive in practice before the correct key
is found, especially for higher dimensions such as m = 16 for attacks on the
AES. Furthermore, the way the recursive decomposition is performed and the
intermediate results are recombined also makes effective parallelization of OKEA
difficult.

3 Our score-based algorithm (SKEA)

In this section, we introduce SKEA, our proposed score-based algorithm for the
key enumeration problem. Like OKEA, it is a deterministic algorithm. Instead
of guaranteeing an optimal enumeration order, it is intended to be optimized for
practical applicability by only employing a fixed maximum amount of memory
(as opposed to OKEA’s dynamicly increasing memory usage) and by being easily
parallelizable.

3.1 Score concepts

SKEA works with scores which are assigned to each key part candidate based
on the likelihood that it will be part of the correct complete key according to
the available side-channel information.

Scores are integer values, and can be derived for instance from a correlation
value in a side-channel analysis attack, or the number of faults that match with
a candidate key part value in differential fault attack. SKEA can deal with
scores assigned from an arbitrary integer interval [smin, smax], and the size of
this interval will typically be chosen according to the required precision, since a
larger interval means more distinctive possible scores.2

We furthermore define the cumulated score as the sum of all the key part
scores comprising one complete key. SKEA generates candidate keys by descend-
ing cumulated scores. It starts by generating the key with the largest possible
cumulated score Smax, and proceeds by finding all keys with a score equal to
Smax − 1, and so forth. This property guarantees a certain quality, i.e. good key
candidates will be enumerated earlier than worse ones. Note that candidates
with the same score are generated in no particular order, so a lack of precision
in scores will lead to some decrease of quality.

An example with m = 4. For simplicity, we will explain the score concept
for m = 4 key parts with 4 candidates each (corresponding to 4 key parts of
2 bits each). This will also serve as a running example to illustrate the SKEA
algorithm. Figure 1 shows a simple example of a score table. The key consists of

2 For a standard power analysis attack on an 8-bit S-box in AES, computing the score
as b100ρ+ 0.5c for a correlation coefficient of ρ, resulting in an interval size of 200,
was found to yield good results (see Sect. 5).
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0 1 2 3

0 5 5 4 5

1 2 3 2 4

2 1 1 0 3

3 0 1 0 2

Key partS
core

Fig. 1. Example of a score table for m = 4 and a 2-bit S-box.

columns representing 4 key parts that can have only 4 values. The cells in the
columns contain the sorted scores. Row 0 shows the best scores for all key parts,
while row 3 shows the worst scores. A complete key candidate consists of the
concatenation of selected cells for all collumns, having a cumulated score equal
to the sum of the individual scores for each key part. We directly see that the
best cumulated score would be 19, resulting from the sequence {0, 0, 0, 0}, while
the worst cumulated score would be 3, resulting from the sequence {3, 3, 3, 3}.

3.2 Enumerating score paths

SKEA now makes use of the score table in order to enumerate key candidates
in order of decreasing cumulated scores. We refer to a combination of key part
candidates with cumulated score equal to s to a possible score path for score s.
Given a best possible cumulated score of Smax, we then must find all possible
score paths leading to a cumulated score of Smax, followed by Smax − 1, and so
on.

In order to find valid score paths conforming to a certain cumulated score,
SKEA makes use of a simple backtracking strategy. This algorithm essentially
performs a depth-first search, which is efficient because impossible paths can be
pruned early. The pruning is controlled by the score that must be reached for
the solution to be accepted.

We continue our toy example with m = 4 and 2-bit key parts from Sect. 3.1
by listing all possible score paths s for cumulated scores of 19, 18, 17, and 16 in
Fig. 2.

3.3 Efficiently eliminating incompatible score paths

To achieve a fast decision process during the backtracking, SKEA makes use of
precomputed tables containing possible ranges of key part selection indices that
may lead to score paths with the desired cumulated score. Suppose we are given
a score table S[i][k] containing the scores of candidate k for the i-th key part.

Cumulated minimum and maximum scores. First we compute tables for minimal
and maximal cumulated scores that can be reached by completing a path to the
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5 5 4 5

2 3 2 4

1 1 0 3
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5 5 4 5

2 3 2 4

1 1 0 3

0 1 0 2

5 5 4 5

2 3 2 4

1 1 0 3
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5 5 4 5

2 3 2 4

1 1 0 3

0 1 0 2

5 5 4 5

2 3 2 4

1 1 0 3

0 1 0 2

5 5 4 5

2 3 2 4

1 1 0 3

0 1 0 2

19 18 17

16

Fig. 2. Possible score paths conforming to cumulated scores of 19, 18, 17 and 16.

right:

cMin[i] = min
k

m−1∑
j=i

S[j][k], 0 ≤ i < m,

cMax[i] = max
k

m−1∑
j=i

S[j][k], 0 ≤ i < m.

When completing a score path from left to right, the cumulated minimum and
maximum score table gives the minimum and maximum score that can be added
by including cells from the current column, and to the right.

19 14 9 5

cMax

3 3 2 2

cMin

Fig. 3. Minimum and maximum cumulated scores

For our running example, these tables are given in Fig. 3. They show that
by adding only the rightmost column, a minimum of 2, and a maximum of 5
can be added to the score. Likewise, by adding the 2nd, 3rd, and 4th columns a
minimum of 3, and a maximum of 14 can be added to the cumulated score.

Key part index limits. Using the cumulated minimum and maximum tables,
we create two additional tables that hold the indices for completing the path
successfully for a certain desired cumulated score, when proceding from a score
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path up to a given key part index:

iMin[i][s] = arg min
k

m−1∑
j=i

S[j][k] ≥ s, 0 ≤ i < m, cMin[i] ≤ s ≤ cMax[i]

iMax[i][s] = arg max
k

m−1∑
j=i

S[j][k] ≥ s, 0 ≤ i < m, cMin[i] ≤ s ≤ cMax[i]

Min Max

5 0 0

4 1 1

3 2 2

2 3 3

Min Max

19 0 0

18 0 0

17 0 0

16 0 1

15 0 2

C
um

ulated score

Min Max

14 0 0

13 0 0

12 0 1

11 0 1

10 0 3

Min Max

9 0 0

8 0 0

7 0 1

6 0 1

Key part 0 Key part 1 Key part 2 Key part 3

Fig. 4. Minimum and maximum indices

In other words, these tables represent for a desired score which minimal and
maximal cell indices in the given column can be used.

For our running example, the corresponding tables are given in Fig. 4. For
instance, if a score of 12 is desired from key part 1 onward, only the candidate
key parts in row 0 and 1 will match.

Altogether, the preparation of these tables enables a fast pruning of impos-
sible paths, and speeds up the selection of proper candidates.

3.4 The SKEA algorithm

The full SKEA algorithm can then be presented as follows: Given the number of
key parts m and a score table S[i][k] for all key part candidates k for key part
number i, we first use Alg. 3.1 to precompute the tables containing the cumulated
minima, maxima and corresponding index selection limits. These tables are then
used for efficient pruning in a depth-first search identifying all possible score
paths conforming to a cumulated score equal to Smax, Smax− 1, . . . and so forth.
The full SKEA algorithm is described in Alg. 3.2.

4 Comparison methodology and setting

The primary goal of the comparison is to understand which enumeration algo-
rithm finds the full key faster on a typical workstation.



Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 9

Algorithm 3.1 Generating score bounds for SKEA

Input: Number m of key parts
Input: Score table S[i][k] holding score of candidate k for key part i (0 ≤ i < m)
Output: cMin[i], the global cumulative minima per key part index: For 0 ≤ i < m,

cMin[i] = mink

∑m−1
j=i S[j][k].

Output: cMax[i], the global cumulative maxima per key part index: For 0 ≤ i < m,
cMax[i] = maxk

∑m−1
j=i S[j][k].

Output: iMin[i][s], the minimum index for attaining a certain minimum score s start-
ing from key part i: iMin[i][s] = arg mink

∑m−1
j=i S[j][k] ≥ s.

Output: iMax[i][s], the maximum index for attaining a certain minimum score s start-
ing from key part i: iMax[i][s] = arg maxk

∑m−1
j=i S[j][k] ≥ s.

Algorithm 3.2 Scored-based key enumeration algorithm (SKEA)

Input: Number m of key parts
Input: Score table S[i][k] holding score of candidate k for key part i (0 ≤ i < m)
Output: List L of complete key candidates
1: cMin, cMax, iMin, iMax← Bounds(S) (using Alg. 3.1)
2: for s = cMax[0] downto cMin[0] do
3: i← 0
4: k[0]← iMin[0][s]
5: cs← s
6: while i ≥ 0 do
7: while i < m− 1 do
8: cs← cs− S[i][k[i]]
9: i← i+ 1

10: k[i]← iMin[i][cs]
11: end while
12: add complete key candidate k to L
13: while i ≥ 0 and k[i] ≥ iMax[i][cs] do
14: i← i− 1
15: if i ≥ 0 then
16: cs← cs + S[i][k[i]]
17: end if
18: end while
19: if i ≥ 0 then
20: k[i]← k[i] + 1
21: end if
22: end while
23: end for
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4.1 Methodology

We perform comparison between OKEA, PKEA, and SKEA in an experimental
setting. We run the algorithm implementations on a sample of lists obtained from
CPA of a SW AES implementation. We register the running time for finding the
correct full key. From the collected running times we estimate success rate [11]
of the full key recovery as a function of the running time and the number of
traces used to obtain the lists. This is our main comparison metric.

To make the comparison feasible, we limit the maximum running time and
maximum memory available to the algorithm implementations. The maximum
running time is set to 10 days on a single CPU core. The maximum memory
per core is set to 12 GB (the limitation imposed by the configuration of the
computing cluster we have at hand).

We note that the imposed limits introduce right censoring to the data we
measure. Therefore, computing obvious statistics such as average time to find
the key is not straightforward. This is why we choose to use success rate for com-
parison. Additionally, we analyze and compare the histograms of the obtained
data.

In addition to the execution time, we also register and analyze other param-
eters: the number of key candidates tried and the amount of memory required.
This lets us better understand the behavior of the algorithms.

At this point we compare only the enumeration running time. Full key verifi-
cation in the experiment is done by comparison to the known correct full key. Full
key verification for the real-life unknown key setting is addressed in Section 6.

4.2 Experimental setting

1. Obtaining the lists. We obtain the lists of correlation coefficients from
CPA of a SW AES implementation RijndaelFurious [10] running on an 8-bit
AVR microcontroller3. We acquire 2000 power consumption traces and per-
form 20 independent attacks with up to 100 traces. Each attack is performed
in an incremental way: we obtain the lists for the number of traces varying
from 10 to 100. Each attack for a given number of traces results in a set
of 16 lists with 256 correlation values each, together with the corresponding
key byte candidate values.

2. Converting the lists. We convert the correlation values according to the al-
gorithm requirements. For OKEA and PKEA we use the Bayesian extension
(see Sect. 2). For SKEA we use conversion to integer scores (see Sect. 3.1).

3. Algorithm implementations. For OKEA, we use the open-source imple-
mentation [12]. For PKEA and SKEA, we use our own implementations
in C. All the three implementations are single-threaded. Through a unified
wrapper, an implementation takes a set of 16 per-key lists and returns the
running time, the maximum memory used, and the number of key candidates

3 The target is chosen only for the sake of efficient comparison; real enumeration on
this target is hardly needed because very small amount of traces is required for
successful CPA.
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tried in case the correct key is found within the defined time and memory
limits. Otherwise, an out-of-time or out-of-memory notification is returned.
We build all the three algorithm implementations for x86 64 Linux with gcc

using full optimization (-O3).
4. Running the algorithms. We deploy the algorithms to a computing clus-

ter. The cluster consists of 42 IBM NeXtScale nx360 M4 nodes each having
2 Intel Xeon E5-2680 v2 CPUs and 128 GB RAM, and 64 HP ProLiant
SL2x170z G6 nodes each having 2 Intel Xeon X5550 CPUs and 24 GB RAM.
To ensure sufficient amount of memory available, we run one experiment in-
stance per node. We run enumeration experiments for the number of traces
starting from 60 down to 42 in steps of 2 or 3. With more than 60 traces,
enumeration is not required as the full key is successfully recovered by com-
bining the topmost key byte candidates from the lists. With less than 42
traces, the algorithms fail to recover the key in less than 10 core-days for all
the 20 experimental samples. For OKEA, all the unsuccessful cases are due
to out-of-memory error and not due to the 10-day limit.

5 Comparison results

First, we visualize the success rate of the full key recovery versus number of
traces for the attack in Figure 5. The figure shows success rate for different time
boundaries: 10 days (the maximum we could run), 1 day, and 1 hour. It can
be seen that SKEA provides distinctly higher success rate, especially when it is
possible to run key enumeration for longer time.

42 44 46 48 50 52 54 56 58 60
0

0.2

0.5

0.75

1

S
u
cc

e
ss

 r
a
te

10 days

42 44 46 48 50 52 54 56 58 60
Number of traces

1 day

42 44 46 48 50 52 54 56 58 60

1 hour

SKEA
OKEA
PKEA

Fig. 5. Success rate of the full key recovery

For all the 3 algorithms, we observe that the distributions of the running time
are significantly skewed. Namely, the full key is found in relatively short time,
or not found in 10 days. For SKEA, the distribution is relatively less skewed.
Figure 9 in Appendix A illustrates this.

Next, we compare the other observed parameters (memory use and the num-
ber of key tries) for SKEA and OKEA.
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We visualize the amount of memory used by the algorithms in Figure 6. We
show the data only for the successful experiments. It can be seen that SKEA
uses the same amount of memory (determined by the chosen score conversion
parameters) for every experiment, whereas OKEA memory use greatly varies
and is significantly larger for low number of traces. This is expected as OKEA
memory usage grows with the increase in the number of key tires. We note that
PKEA is memoryless.

42 45 48 50 52 55 58 60
Number of traces
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te
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OKEA
SKEA

Fig. 6. Memory use for successful cases

The number of full key candidates tried before the correct key is found (i.e.
the full key rank) is shown in Figure 7. As expected, SKEA tries more full key
candidates compared to OKEA, especially for the low number of traces.

To understand the relation between the full key rank and the running time,
for the experiments where both SKEA and OKEA succeed we calculate SKEA-
to-OKEA ratio of the full key rank and SKEA-to-OKEA ratio of the running
time. We present the scatter plot of the ratios in Figure 8. The gray lines are
boundaries where the corresponding ratios are equal to 1, i.e. the algorithms
take the same time resp. make the same number of tries to find the correct
key. The quadrants of the plot relative to the (1, 1) point have the following
interpretation.

– Bottom right: SKEA takes more time and makes less trials.
– Top right: SKEA takes more time and makes more trials.
– Bottom left: SKEA takes less time and makes less trials.
– Top left: SKEA takes less time and makes more trials.

It can bee seen that even when SKEA makes more trials, in most of the cases it
still finds the key faster than OKEA.
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Fig. 7. Number of key tries for successful cases

From our empirical comparison we conclude that in practice SKEA appears
to be more efficient than OKEA. In particular, it requires less memory, especially
when the number of trials (i.e. the full key rank) is high.

6 Combining with key verification

In this section, we discuss how to combine the score-based key enumeration
algorithm with an efficient key verification procedure. For concreteness, we focus
on AES-128 as the block cipher, and on general-purpose Intel CPUs equipped
with the AES-NI instruction set [4, 5].

The setting We consider an architecture in which both SKEA and the key
verification process are implemented in software on general-purpose CPUs. The
concrete CPU used in our experiments is an Intel Core i5-2400 (Sandy Bridge
microarchitecture) with four cores running at 3.1 GHz. For consistency, Turbo
Boost was disabled during our measurements.

The key candidates enumerated by SKEA are verified by trial encryption
of a small number of known plaintexts and comparing the encryption results
with the ciphertexts produced by the correct but unknown key. It is expected
that one or two blocks of known plaintext will typically be enough to uniquely
identify the key. We note that both the key enumeration (SKEA) and the key
verification can be parallelized.

In order to make optimal use of the available resources, it is desirable to
have a balanced throughput (measured in keys per second) between both the
key enumeration and key verification phases. On our platform, an optimized
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Fig. 8. SKEA-to-OKEA ratio of the full key rank versus SKEA-to-OKEA ratio of the
running time

implementation of SKEA achieves an enumeration throughput of about 225.7

keys per second. On the other hand, a straightforward implementation of AES
encryption using AES-NI instructions results in a key verification throughput
of only about 224.1 keys per second. This means that roughly three cores do-
ing key verifications would be necessary to match the performance of the key
enumeration on a single core.

The reason for this low AES throughput is that Intel’s AES instructions are
designed for encrypting large amounts of data with the same key. As a result, the
AES round function instructions are heavily pipelined, while the key schedule
helper instructions are not: On all microarchitectures from Sandy/Ivy Bridge to
Haswell, the aeskeygenassist instruction has a latency of 10 cycles with an
inverse throughput of 8. Since expanding an AES-128 master key requires 10
applications of aeskeygenassist plus some shifts and XORs, this amounts to
a latency of around 100 cycles per key.

6.1 Optimized parallel key verification

A solution to overcome this performance bottleneck is based on the observation
that one can avoid using aeskeygenassist by using the aesenclast instruction
plus pshufb for the S-box step of the key schedule, and then computing the LFSR
manually using SSE instructions [2]. By doing this for four keys in parallel, all
operations can be carried out on 128-bit XMM registers. In pseudocode, the AES
key schedule for four user-supplied keys k1, . . . , k4 is then computed as follows:

# register w0: first 32 bits of k1,...,k4
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# ...

# register w3: last 32 bits of k1,...,k4

# rk1,...,rk4 contain first round keys corresponding to k1,...,k4

loop from r=1 to 11:

pshufb tmp, w3, ROL8_MASK

aesenclast tmp, ZERO

aesenc block1, rk1

aesenc block2, rk2

aesenc block3, rk3

aesenc block4, rk4

pshufb tmp, SHIFTROWS_INV

pxor tmp, RC[r]

pxor w0, tmp

pxor w1, w0

pxor w2, w1

pxor w3, w2

# ... combine first 32 bits of w0,w1,w2,w3 in rk1

# using punpck(l/h)dq and shifts on Sandy/Ivy bridge

# or vpunpck(l/h)dq and vpblend on Haswell

# ... likewise for rk2, rk3, rk4

This way, one can keep the instruction pipeline at least partially filled. On
Sandy/Ivy Bridge, aesenc and aesenclast have a latency of 4; on Haswell,
the latency is 7. The reciprocal throughput is always 1. This means that the
pipeline can be filled completely on Sandy/Ivy Bridge, and to 5/7 on Haswell.
This optimized implementation of the AES key schedule results in an improved
throughput of about 225.5 keys per second on our test platform, yielding a factor
of 2.6 speed-up for the key verification process.

With this optimized key verification, we have roughly equal throughput for
both steps, which means that one core for key enumeration can be paired to one
core for key verification.

6.2 Combined performance measurements

We provide an overview of the performance of key enumeration, verification and
their combination on our test platform in Table 1. All measurements we averaged
over 200 executions of the algorithm.

Discussion. One can observe that the key enumeration throughput of SKEA
scales basically linearly with the number of available cores. The same essentially
holds for the key verification, both in the straightforward and the optimized
AES-NI implementations. When combining enumeration with verification on a
single core, the overall performance becomes limited by the extent to which AES
instructions and general purpose instructions needed for SKEA (ALU, memory
accesses) can be carried out concurrently while contending for the memory inter-
face. When both enumeration and verification can be assigned to separate cores,
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Table 1. Performance of combined key enumeration and verification using AES-NI on
a Core i5-2400. All numbers are given in keys per second.

1 core 2 cores 4 cores

(1) SKEA key enumeration 225.68 226.62 227.59

(2) Key verification (naive) 224.10 225.08 226.09

(3) Key verification (optimized) 225.46 226.44 227.41

(1) + (3) combined 223.87 225.39 226.41

however, the combined performance is essentially equal to the minimum of the
single-core performances of the two individual tasks. Being able to run two copies
of these in the 4-core setup again roughly doubles the achieved throughput. This
indicates that off-the-shelf general purpose CPUs can offer an attractive platform
for the combined key enumeration and verification.

Acknowledgements. We would like to thank Nicolas Veyrat-Charvillon and
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extension of non-profiled side-channel attacks introduced in [14].
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A Additional figures

Figure 9 shows empirical distributions (histograms) of the algorithm running
time versus the number of traces for the experiment described in Section 4. Bins
are spanned along the vertical axis showing the running time, the value of each
bin is represented by the color intensity, there 200 bins of width 4320 seconds
(1 hour 12 minutes). The last (topmost) bin accumulates cases that ran out of
time or (for OKEA) out of memory.
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Fig. 9. Empirical distributions of the algorithm running time


