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Abstract

In this paper we study the question of what security is achievable for stand-alone two-party com-
putation in four-rounds. Our starting point point is the Katz-Ostrovsky lower bound [KO04] which
determines that the exact round complexity of achieving a secure two-party computation protocol is five.
To get around this lower bound we consider two relaxations of the standard simulation-based security
definition, where each relaxation implies a different security guarantee.

Specifically, we analyze our protocols in the presence of malicious non-aborting adversaries (for
which we obtain full security) and malicious aborting adversaries (for which we obtain 1/p-security,
which implies that the simulation fails with probability at most 1/p + negl). We further prove that our
security guarantee is tight with respect to the party that obtains the input first.
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1 Introduction

Secure two-party computation enables two parties to mutually run a protocol that computes some function
f on their private inputs, while preserving a number of security properties. Two of the most important
properties are privacy and correctness. The former implies data confidentiality, namely, nothing leaks by the
protocol execution but the computed output. The latter requirement implies that the protocol enforces the
integrity of the computations made by the parties, namely, honest parties learn the correct output. Feasibility
results are well established [Yao86, GMW87, MR91, Bea91], proving that any efficient functionality can
be securely computed under full simulation-based definitions (following the ideal/real paradigm). Security
is typically proven with respect to two adversarial models: the semi-honest model (where the adversary
follows the instructions of the protocol but tries to learn more than it should from the protocol transcript),
and the malicious model (where the adversary follows an arbitrary polynomial-time strategy), and feasibility
holds in the presence of both types of attacks.

An important complexity measure of secure computation that has been extensively studied in litera-
ture, is the round-complexity of secure protocols. In the stand-alone setting, Yao [Yao86] presented the first
constant-round secure two-party computation protocol in the semi-honest model. In contrast, Goldreich, Mi-
cali and Wigderson [GMW87] showed how to obtain protocols that tolerate malicious adversaries which re-
quires non-constant number of rounds, followed by Lindell [Lin01] who gave the first constant-round secure
two-party protocol tolerating such attacks. In an important characterization, Katz and Ostrovsky [KO04] de-
termined that the exact round complexity of achieving a secure two-party computation protocol is five (and
four if only one of the parties receives an output). More precisely, they constructed a five-round protocol
to securely compute arbitrary functionalities and showed that there cannot exist any four-round black-box
construction that securely realizes the coin-tossing functionality. More recently, Ostrovsky, Richelson and
Scafuro [ORS15] strengthened this construction by demonstrating a five-round protocol where the underly-
ing cryptographic primitives are used only in a “black-box” way. Both the results also provide a four-round
protocol for single-output functionalities. While these results only consider the stand-alone model, assum-
ing some trusted-setup such as a common reference string (CRS), it is possible to construct round-optimal
(i.e. two-round) secure two-party protocols; see [HK07] for just one example.

In the context of secure two-party computation, zero-knowledge is a fundamental example of a two-
party functionality [GMR89] for which its round complexity has been widely studied, starting with the
work of Goldreich and Oren [GO94] who showed that two-round computational zero-knowledge proofs
are impossible for languages outside BPP. Goldreich and Krawczyk [GK96] extended this impossibility
result to three-round protocols that are black-box zero-knowledge, whereas Katz [Kat12] showed that only
languages in MA admit four-round zero-knowledge proofs. On the positive side, Feige and Shamir [FS90]
demonstrated how to achieve four-round zero-knowledge arguments for any language in NP.1 A relaxation
of zero-knowledge, referred to as witness-indistinguishable proofs only requires that no malicious verifier
be able to distinguish which witness is used in the proof. For this relaxed notion, Feige and Shamir [FS90]
showed how to construct three-round protocols. Dwork and Naor [DN07] showed that starting from a non-
interactive zero-knowledge proof it is possible to construct a two-round witness-indistinguishable proofs (or
ZAPs). Moreover, based on non-standard assumptions, Barak, Ong and Vadhan [BOV07] showed how to
construct non-interactive witness-indistinguishable proofs.

Motivated by the progress in zero-knowledge proofs, the main question we address in this work is
whether it is feasible to achieve any meaningful security for two-party computation in four-rounds. Specifi-
cally, in this work we investigate the following question:

What security is achievable for stand-alone two-party computation in four-rounds?

1Loosely speaking, an argument is an interactive proof system where the soundness property is only required to hold against
efficient adversaries.
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Towards understanding this question, we begin with the observation that the security model considered
in [KO04] for proving their lower bound, rules out black-box four-round secure protocols for the coin-
tossing functionality. An important artifact of the lower bound is that they only consider simulators that are
allowed to make a fixed polynomial number of oracle queries to the adversary, which, in particular, cannot
depend on the adversary’s behavior (e.g., running time or abort probability). To get around their lower
bound, it is quite conceivable that it is possible to construct a four-round protocol, as well as a simulator
whose running time is polynomially related to, say for instance, the inverse of the abort probability of
the adversary. However, such a scenario might require a priori “non-black-box” information regarding
the adversary and we do not pursue this approach in this work. Instead, we consider two relaxations of
the standard simulation-based security definition that get around this lower bound, where each relaxation
implies a different security guarantee.

Concretely, the first relaxation is to only consider non-aborting adversaries. We stress that Katz-Ostrovsky
crucially relies in their lower bound on aborting adversaries as they construct an adversary which aborts with
probability that is correlated with the number of queries made by the simulation. Hence, ruling out such
attack strategies invalidates their lower bound. In particular, we note that when considering non-aborting
adversaries, security is still required in the presence of malicious adversaries with simulation-based security.

A second relaxation we consider is to weaken the indistinguishability requirement. Namely, in the
real/ideal paradigm definition when comparing an ideal simulated execution to the real execution, this re-
laxation implies that the ideal execution is defined as in the original definition yet the simulation notion is
relaxed. More concretely, the two executions are now required to be distinguishable with probability at most
1
p + negl, where p(·) is some specified polynomial. This relaxation has been considered in the past in the
context of achieving coin-tossing [Cle86, MNS09] and fairness for arbitrary functionalities [GK10]. Then,
in case of malicious (possibly aborting) adversaries we require that our protocol admits 1

p -security.
To summarize this discussion, our protocols enjoy the best of both worlds given the limitations imposed

by [KO04]. Namely, they achieve full simulation in the presence of non-aborting attack strategies, and
1
p -security in the presence of aborting strategies.

1.1 Our Results

Our first result concerns with the coin-tossing functionality where we show that it is possible to achieve both
simulation against non-aborting adversaries as well as 1/p-security in the presence of aborting adversaries.
More precisely, we prove the following theorem:

Theorem 1.1 (Informal). Assuming the discrete logarithm problem is hard, there exists a four-round proto-
col that securely realizes the coin-tossing functionality in the presence of non-aborting adversaries. More-
over, the protocol achieves 1/p-security in the presence of aborting adversaries.

We remark that if we allow our simulator to run in expected polynomial-time, we actually obtain perfect
simulation against one of the parties and 1/p-security against the other (even against aborting adversaries).
On the other hand, if we require strict polynomial-time simulation, where this polynomial is independent of
the adversary’s running time, our protocol achieves 1/p-security relative to both corruption cases. We further
provide an abstraction for this protocol using a two-round cryptographic primitive denoted by homomorphic
trapdoor commitment scheme, where the commitment transcript, as well as the trapdoor are homomorphic.
This abstraction captures additional commitment schemes with security under a larger class of hardness
assumptions such as RSA and factoring.

Next, we consider the oblivious-transfer (OT) functionality which is a complete primitive for secure two-
party computation. We recall that in [ORS15], Ostrovsky, Richelson and Scafuro showed how to construct
a four-round oblivious-transfer protocol, while upon combining it with the result of Ishai et al. [IKO+11],
they obtained a five-round secure two-party protocol. In this work, we obtain the following theorem:
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Theorem 1.2 (Informal). Assuming the Decisional Diffie-Hellman problem is hard, there exists a four-
round oblivious-transfer protocol, where the receiver learns the output in three rounds, that is secure in
the presence non-aborting adversaries. Furthermore, our protocol achieves 1/p-security in the presence of
aborting senders.

Since the receiver learns the output in the third round, we show how to combine this with the protocol of
[IKO+11] to obtain a four-round secure two-party computation with analogous security guarantees. Finally,
we show that achieving 1/p-security against aborting receivers is impossible under black-box construction.
More formally, we prove the following theorem:

Theorem 1.3 (Informal). Assuming NP ̸⊆ BPP, there exists no black-box construction of a three-round
secure computation protocol for arbitrary functionalities where only one party receives the output with
1/p-security against the receiver (of the output).

Our proof follows by extending the [GK96] lower bound that shows that three-round black-box zero-
knowledge proofs (or arguments) with 1/p-security exist only for languages in BPP. In that sense, our
protocols are optimal with respect to the relaxations considered in this work.

1.2 Our Techniques

Coin tossing. We briefly sketch the technical details of our constructions, beginning with our coin tossing
protocol. In this protocol we make use of an extension variant of of Pedersen’s trapdoor commitment
scheme [Ped91]. Basically, party P1 generates a set of generators for P2’s commitment scheme using
pairs of shares, and then reveals the discrete logarithm of half of the shares by responding to a random
challenge given by P2. Looking ahead, this allows to construct a simulator that extracts a trapdoor for this
commitment scheme using rewinding which, in turn, allows the equivocation of the committed message.
Forcing a particular outcome when P2 is corrupted is carried out by first observing the decommitted value
of P2 and then rewinding, where in the second execution the simulator programs its input according to
the outcome it received from the trusted party. Note that this commitment scheme is captured under our
abstraction for trapdoor commitment schemes.

Oblivious transfer. As a warmup, our first OT protocol employs a common paradigm for securely realizing
this functionality. Namely, the receiver picks two public keys for which it knows only one of the correspond-
ing secret keys, and sends them to the sender. The sender is next using these keys to encrypt its OT inputs.
If indeed the receiver knows only one of the secret keys, then it will not be able to decrypt both inputs.
Thus, the main challenge in designing OT protocols with security in the presence of malicious adversaries
has always been regarding the way to enforce the receiver to choose its public keys correctly. In this work
we enforce that by asking the public key for the unknown secret key to take a particular form, for which the
receiver does not know the trapdoor associated with it (concretely, this trapdoor is a discrete logarithm of
some generator picked by the sender). Enforcing this choice is carried out by a witness-indistinguishable
proof-of-knowledge (WI-PoK), that further allows to extract the bit b for which the receiver indeed knows
the corresponding secret key (which implies input extraction of the receiver’s input).

On a very high-level, our security guarantee against malicious receivers is achieved by first obtaining a
three-round protocol that is defensibly private with respect to malicious receivers [Hai08, HIK+11] and then
combining it with a zero-knowledge proof-of-knowledge (ZK-PoK) protocol in order to achieve full security
against malicious (non-aborting) adversaries. Loosely speaking, an OT protocol is said to be defensibly-
private with respect to the receiver if no adversarial receiver can distinguish the sender’s input corresponding
to input 1− b from a random input, while outputting a valid defense, i.e. random coins τ that are consistent
with the view for input b. Given a defensibly-private OT protocol, obtaining a protocol that guarantees

3



full security against a malicious non-aborting receiver is obtained by combining it with a ZK-PoK protocol
where the receiver proves knowledge of a valid defense. (We stress that in our actual protocol, a witness-
indistinguishability proof as opposed to a zero-knowledge proof will be sufficient).

In case the sender aborts then we can only ensure privacy with respect to the receiver’s inputs. This is
because the sender cannot learn anything about the receiver’s input, as the simulation is perfect. In order
to enhance the security guarantee with respect to the malicious sender we construct another OT protocol,
relying on the recent protocol from [ORS15]. More concretely, our first observation is that the previous
protocol is already 1/p-secure for p = 1 + 1

3 . To see this, we first mention that in our warmup protocol
the sender picks two trapdoors and the receiver is allowed to choose one of them to be opened by the
sender. Specifically, security against malicious receivers still holds since one of the trapdoors remains
hidden. Simulation, on the other hand, is achieved by rewinding and extracting both the trapdoors. In case
of abort, it is not guaranteed that the simulator can extract both the trapdoors. Nevertheless, we can achieve
1/p = 3

4 -security with respect to malicious (possibly aborting) senders. Namely, suppose that for some
trapdoor the sender aborts with probability at most 1

2 when it is asked to reveal it, then in expectation the
simulator needs to rewind the sender just 2 times in order to extract that trapdoor. If both trapdoors satisfy
this condition then the simulator can easily extract both of them.

Now, suppose this is not the case, then it would have to be the case that the sender aborts with probability
at least 1

2 when it is asked to open one of the trapdoors. Then, the overall probability with which the sender
aborts is 1

4 (as each trapdoor is requested to be revealed with probability 1
2 ). In order to achieve 3

4 -security, it
suffices to output a distribution that is 3

4 -close to the real distribution. As the sender aborts with probability at
least 1

4 a simulator that simply outputs all the views on which the sender aborts already achieves 3
4 -security.

With this observation, we show that in order to get 1
p -security for an arbitrary polynomial p, we amplify

the indistinguishability via parallel repetition. More precisely, by repeating the basic protocol O(κp) times,
where κ is the security parameter, we can show that if the adversary does not abort with probability at
least O(1p), then the simulation can extract most of the trapdoors. This idea is used in conjunction with the
combiner of Ostrovsky, Richelson and Scafuro [ORS15] to ensure that the simulator extracts the sender’s
inputs if and only if the receiver successfully extracts it, or in other words, prevents any form of input
dependent attacks.

1.3 Related Work

Notably relevant to our work is the two-round OT protocol [NP01] developed by Naor and Pinkas that
obtains one-sided simulation with respect to the sender, whereas the receiver’s security is obtained via an
indistinguishability argument. The broader notion of input-indistinguishable computation, introduced by
Micali, Pass and Rosen [MPR06], considers a weaker security notion for two-party computation which
requires that no party should be able to distinguish two views generated based on distinct set of inputs for
the other party but yield the same output. Their main motivation was to develop a meaningful notion of
security that supports the design of protocols that can be proven secure in a concurrent setting in the plain
model (i.e. assuming no trusted setup). In a later work [HK12], Halevi and Kalai introduced a general
framework for two-round OT protocols, considering the weaker security notion of input indistinguishability
that does not support input extraction, and design protocols based on smooth projective hashing.

Another weaker security notion is that of covert security, introduced by Aumann and Lindell in [AL10],
which models covert adversaries that may deviate arbitrarily from the protocol specification in an attempt to
cheat. In their weaker definition, the simulator is allowed to fail, as long as it is guaranteed that the real and
ideal output distributions are distinguishable with a probability that is related to the probability of detecting
cheating. We note that our security notion directly implies covert security as the simulator may only fail in
case the adversary aborts, which is always detected as cheating.

In the context of round optimal secure computation, Faust et al. [DFH12] built a general two-round two-
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party protocol with polylogarithmic communication in the circuit’s size based on extractable hash functions.
In a recent work, Ishai et al. [IKKPC15] study two-round secure multi-party computation in an honest
majority setting (in the presence of a single corrupted party).

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by n. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) . We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a ← A the random sampling of a from a distribution
A, and by [n] the set of elements {1, . . . , n}.
Computational indistinguishability. We specify the definitions of computational indistinguishability and
computational 1

p -indistinguishability.

Definition 2.1. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for every PPT

distinguisher D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and all sufficiently
large n ∣∣Pr [D(X(a, n), 1n) = 1]− Pr [D(Y (a, n), 1n) = 1]

∣∣ < 1

µ(n)
.

Definition 2.2. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two distribution en-

sembles. We say that X and Y are computationally 1
p -indistinguishable, denoted X

1/p
≈ Y , if for every PPT

distinguisher D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and all sufficiently
large n ∣∣Pr [D(X(a, n), 1n) = 1]− Pr [D(Y (a, n), 1n) = 1]

∣∣ < 1

p(n)
+

1

µ(n)
.

Statistical distance. Next we specify the distance measure of statistical closeness.

Definition 2.3. Let Xn and Yn be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}n. The statistical distance between Xn and Yn is

SD(Xn, Yn) =
1

2

∑
ω∈Ω
|Pr[Xn = ω]− Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤ ε(n). We say that
Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is negligible in n.

2.2 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Discrete logarithm. The classic discrete logarithm assumption is stated as follows.

Definition 2.4 (DL). We say that the discrete logarithm (DL) problem is hard relative to G, if for any PPT
adversary A there exists a negligible function negl such that

Pr [x← A(G, p, g, gx)] ≤ negl(n),

where (G, p, g)← G(1n) and the probability is taken over the choice of x← Zp.

5



Decisional Diffie-Hellman. The decisional Diffie-Hellman assumption is stated as follows.

Definition 2.5 (DDH). We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G, if
for any PPT distinguisher D there exists a negligible function negl such that∣∣∣Pr [D(G, p, g, gx, gy, gz) = 1]− Pr [D(G, p, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where (G, p, g)← G(1n) and the probabilities are taken over the choices of x, y, z ← Zp.

2.3 Commitment Schemes

Statistically hiding commitment schemes maintain two important security properties of hiding and biding,
where the flavour of the hiding property is statistical. More formally,

Definition 2.6. A commitment scheme is a pair of probabilistic polynomial-time algorithms, denoted (Sen,Rec)
(for sender and receiver), satisfying the following:

• Inputs: The common input is a security parameter 1n. The sender has a secret input m ∈Mn.

• Hiding: For every probabilistic polynomial-time algorithms Rec∗ interacting with Sen and every two
messages m,m′ ∈Mn, the random variables describing the output of Rec∗ in the two cases, namely
⟨Sen(m),Rec∗⟩(1n) and ⟨Sen(m′),Rec∗⟩(1n), are statistically close.

• Binding: A receiver’s view of an interaction with the sender, denoted (r, m̄), consists of the ran-
dom coins used by the receiver (namely, r) and the sequence of messages received from the receiver
(namely, m̄).

Let m,m′ ∈ Mn. We say that the receiver’s view (of such interaction), (r, m̄), is a possible m-
commitment if there exists a string s such that m̄ describes the messages received by Rec when Rec
uses local coins r and interacts with Sen which uses local coins s and has input (1n,m). We denote
m̄ by View⟨Sen(m),Rec⟩(1n).

We say that the receiver’s view (r, m̄) is ambiguous if is it both a possible m-commitment and a
possible m′-commitment.

The binding property asserts that, for all but a negligible fraction of the coins toss of the receiver,
there exists no sequence of messages (from the sender) which together with these coin toss forms an
ambiguous receiver view. Namely, that for all but a negligible function of the r ∈ {0, 1}polyn there is
no m̄ such that (r, m̄) is ambiguous.

2.3.1 Trapdoor Commitment Schemes

Loosely speaking, a trapdoor commitment scheme is a commitment scheme that meets the classic binding
and hiding security properties specified in Definition 2.6, yet it allows to decommit a commitment into any
value from the message space given some trapdoor information. In this paper we view the commit phase of
the trapdoor commitment schemes as a two-round protocol πCOM = (πRec, πSen) where the receiver sends
the message πRec and the sender responds with message πSen (that is, the receiver knows the trapdoor,
where in the simulation, the simulator extracts this trapdoor from the receiver in order to equivocate its
commitment). Formally stating,

Definition 2.7. A two-round trapdoor commitment scheme is a pair of probabilistic polynomial-time algo-
rithms, denoted (Sen,Rec) (for sender and receiver), satisfying the following:
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• Inputs: The common input is a security parameter 1n. The sender has a secret input m ∈Mn.

• (Sen,Rec) is a commitment scheme in the sense of Definition 2.6 with perfect hiding.

• For any probabilistic polynomial-time algorithm Rec∗ there exists a polynomial-time algorithm S =
(S1,S2) such that for any sequence of messages {mn}n∈N where mn ∈ Mn for all n, the following
holds:

On input 1n simulator S1 (playing the receiver) outputs πRec and a trapdoor td.

Simulator S2 is defined as follows:

– First, on input 1n and randomness R, S outputs πS
Sen in response to πRec such that the

distributions of {πS
Sen}n∈N and {πSen}n∈N are identical.

– Next, on input td, message mn and randomness R, simulator S2 outputs coins s such that
πS
Sen = Sen(1n, πRec,mn; s).

Homomorphic trapdoor commitment schemes. We consider trapdoor commitments that are homomor-
phic in the sense that given two receiver’s messages π1

Rec and π2
Rec that are defined relative to some group G,

it is possible to combine them into a single receiver’s message πRec = π1
Rec · π2

Rec. Moreover, the trapdoor
can be homomorphically updated as well. One such example is Pedersen’s commitment scheme that is based
on the hardness of Discrete logarithm [Ped91]. Loosely speaking, given a group description G of prime
order p, and two generators g, h, a commitment of m ∈ Zp is computed by c = gmhr for a random r ← Zp.
Moreover, the knowledge of logg h enables to open c into any message in Zp. Note that given two generators
h0 and h1 one can assemble a new generator h0h1 for which the trapdoor will be logg h0 + logg h1.

Two additional trapdoor commitment schemes that fit to our framework are number-theoretic based con-
structions in composite order groups. Concretely, we consider two constructions in Z∗

N for RSA composite
N with security based on the RSA and factoring hardness assumptions. Notably, the trapdoor information
of these constructions does not require the knowledge of the factorization of N , thus N can be part of the
group description handed to the parties at the onset of the protocol (similarly to the group description G in
the prior example). Loosely speaking, a commitment to a message m ∈ Ze in the RSA-based construction
is computed by gmre mod N , where r is picked at random from Z∗

N , g = xe mod N and (N, e) can be
considered as the public parameters (such that e is relatively prime to φ(N)). Moreover, the trapdoor picked
by the receiver is x. Clearly, given g1 = xe1 mod N and g2 = xe2 mod N , then g1g2 = (x1x2)

e mod N .
An additional factoring-based trapdoor construction implies a commitment to a message m ∈ Z2t by

gmr2
τ+t

mod N for a random r, such that g = x2
τ+t

mod N and (N, τ, t) can be considered as the public
parameters. Moreover, the trapdoor picked by the receiver is x. The detailed descriptions of these commit-
ment schemes are found in [Fis01].

2.4 Witness Indistinguishability

A proof system between a prove and a verifier is witness indistinguishable if the proof does not leak infor-
mation about which witness the prover is using, even if the verifier is malicious. In the following, we let
⟨P(y),V(z)(x)⟩ denote the view of verifier V when interacting with prover P on common input x, when P
has auxiliary input y and V has auxiliary input z.

Definition 2.8. [FS90] Let L ∈ NP and let (P,V) be an interactive proof system for L with perfect
completeness. We say that (P,V) is witness-indistinguishable (WI) if for every PPT algorithm V∗ and every
two sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x and w2
x are both witnesses for x ∈ L, the following

ensembles are computationally indistinguishable:
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1. {⟨P(w1
x),V(z)⟩(x)}x∈L,z∈{0,1}.

2. {⟨P(w2
x),V(z)⟩(x)}x∈L,z∈{0,1}.

2.5 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input (si)i∈S , S where |S| > t and outputs either a secret s′ or
⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in F = GF (2κ). We
present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial f(·) of degree t in the polynomial-field
F[x] with the condition that f(0) = s and output f(1), . . . , f(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

We will additionally rely on a property of this secret-sharing scheme that has been observed by Ostrovsky,
Richelson and Scafuro in [ORS15]. Towards that, we view the Shamir secret-sharing scheme as a linear
code generated by the following n× (t+ 1) Vandermonde matrix

A =


1 12 · · · 1t

1 22 · · · 2t

...
...

...
...

1 n2 · · · nt


More formally, the shares of a secret s that are obtained via a polynomial f in the Shamir scheme, can be
obtained by computing Ac where c is the vector containing the coefficients of f . Next, we recall that for any
linear code A, there exists a parity check matrix H of dimension (n− t−1)×n which satisfies the equation
HA = 0(n−t−1)×(t+1), i.e. the all 0’s matrix. We thus define the linear operator ϕ(v) = Hv for any vector
v. Then it holds that any set of shares s is valid if and only if it satisfies the equation ϕ(s) = 0n−t−1.

3 A 4-Round Coin Tossing Protocol from Discrete Logarithm

In this section we present a four-round coin tossing protocol that is based on the hardness of the discrete log-
arithm problem. Namely, the parties use an extension of Pedersen’s trapdoor commitment scheme [Ped91]
that is based on n generators. Basically, party P1 generates the generators for P2’s commitment scheme
using pairs of shares, and then reveals the discrete logarithm of half of the shares by responding to a random
challenge given by P2. Looking ahead, this allows to construct a simulator that extracts a trapdoor for this
commitment scheme using rewinding which, in turn, allows the equivocation of the committed message.
Forcing a particular outcome when P2 is corrupted is carried out by first observing the decommitted value
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of P2 and then rewinding, where in the second execution the simulator programs its input according to the
outcome it received from the trusted party.

We note that for both corruption cases, we construct universal simulators (namely, simulators that do
not depend on the code of the adversary), that run in strict polynomial-time and induce 1

p -security. The
simulator for a corrupted P1 can be modified into an expected time simulator with full security as in the
usual sense. The security of P2 cannot be further enhanced as it learns the coin tossing outcome after in the
third round, and may choose to abort right after. Essentially, the problem in acute when the adversary’s non-
aborting probability in the last message is negligible, as it prevents from generating a view that is consistent
with the coin-tossing outcome even using rewinding. Conditioned on this event, we prove that the difference
between the simulated and real views is at most 1/p(n).

We are now ready to present our protocol in details.

Protocol 1 (Protocol πCOIN).

Public parameters: The description of a group G of prime order p and a generator g.

The protocol:

1. P1 → P2: Pick random elements r10, r
1
1, . . . , r

n
0 , r

n
1 ← Zp and sends P2 the pairs (h1

0, h
1
1), . . . , (h

n
0 , h

n
1 ),

where hi
b = gr

i
0 for all b ∈ {0, 1} and i ∈ [n].

2. P2 → P1: Pick random elements m, s1, . . . , sn ← Zp and compute

σ = gm(h1
0h

1
1)

s1 · · · (hn
0h

n
1 )

sn .

Select random bits e1, . . . , en and send σ, e1, . . . , en to P1.

3. P1 → P2: Pick a random m′ ← Zp and send m′, r1e1 , . . . , r
n
en to P2.

4. P2 → P1: Compute the coin tossing outcome as m+m′ mod p and send m, s1, . . . , sn to P1.

Theorem 3.1. Assume that the discrete logarithm assumption holds in G. Then Protocol 2 securely com-
putes FCOIN in the presence of static, malicious adversaries (in the sense of Definition A.4 with 1

p security).

Proof: We consider each corruption case separately.

P1 is corrupted. On a high-level, in order to simulate P1 we construct a simulator S that extracts the
trapdoor for one of the pairs hi0, h

i
1 sent in the first message, namely, the discrete logarithm of both elements

in the pair with respect to g, and then uses that to equivocate P2’s commitment in the last message. More
precisely, for any probabilistic polynomial-time adversary A controlling P1 we define a simulator S that is
given an input mo from FCOIN and proceeds as follows:

1. S internally invokes A. Upon receiving the first message from A, it feeds A with a second message
generated using the honest P2’s strategy. Let σ, e1, . . . , en be the message fed to A and m, s1, . . . , sn
be the randomness used to generate the forth message (which is determined by the second message).

2. If A aborts before providing the third message, S halts outputting ⊥. If A provides a third message,
then S stalls the main execution and proceeds to rewind A. Specifically, S rewinds A to the second
message and supplies a different second message by sampling uniformly random coins for the honest
P2’s strategy. Let ẽ1, . . . , ẽn be the bits sent within the rewinded second message. If A responds,
then S finds an index j such that ẽj ̸= ej . Note that such an index j implies that S now has t0 and
t1 such that hj0 = gt0 and hi1 = gt1 . Else, if A aborts then S rewinds A to the second message and
tries another freshly generated second message. S repeats this procedure np(n) times and outputs fail
if (1) the challenges ẽ1, . . . , ẽn are identical to e1, . . . , en in any of the attempts or, (2) in case all the
attempts were unsuccessful.
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3. Finally, S proceeds to complete the main execution conditioned on not outputting fail. Let m′ be part
of the third message supplied by A and let σ be the message fed to A as part of the second message.
S computes

s̃j = (m−mo +m′ + (t0 + t1)sj)/(t0 + t1) mod p

and for all other i, s̃i = si. As the final message S feeds A with (mo −m′), s̃1, . . . , s̃n.

We first argue for the correctness of the simulation. This follows from the ability to equivocate the
commitment employed by P2 once the discrete logarithm of one of the hi0h

i
1 elements is known to the

simulator. More formally, let j be as in the simulation for which the simulator obtains t0 and t1 such that
hj0 = gt0 and hi1 = gt1 . Moreover, let σ = gm(h10h

1
1)

s1 · · · (hn0hn1 )sn as computed by the simulator in the
second message of the simulation (note that σ is fixed once for the entire simulation and is never modified).
We focus our attention on the product gm(hj0h

j
1)

sj , where sj is the randomness revealed by the simulator in
the third message. An important observation here is that it is sufficient to equivocate this product in order
to equivocate the entire commitment. Namely, if the simulator can come up with two distinct pairs (m, sj)

and (m̃, s̃j) such that gm(hj0h
j
1)

sj = gm̃(hj0h
j
1)

s̃j , then it is possible to conclude two distinct openings with
respect to the commitment used by P2 by reusing the same {si}i̸=j . Finally, since the simulator obtains t0
and t1 as above, it can conclude the discrete logarithm of hj0h

j
1 relative to g which corresponds to t0 + t1.

Putting it all together, the simulator can easily equivocate ℓ = gm(hj0h
j
1)

sj into the message mo−m′ (which
will imply that the two shares yield mo), by computing s̃j as follows. Consider the linear equation implied
in the exponent of ℓ which equals m+ (t0 + t1)sj , then m+ (t0 + t1)sj = mo −m′ + (t0 + t1)s̃j , which
implies that s̃j = (m−mo +m′ + (t0 + t1)sj)/(t0 + t1) mod p. Next we prove that,

Claim 3.1. There exists a negligible function negl(·) for which S outputs fail with probability at most 1
p(n) +

negl(n).

Proof: First, we consider a hybrid simulator S̃ that instead of rewinding only np(n) times, repeatedly
rewinds until it successfully obtains two responses from A relative to the third message. Moreover, S̃ does
not abort if the same challenge message occurs for a second time. We will next argue that the expected
running time of S̃ is polynomial. Let ε denote the probability thatA answers correctly on the third message.
We consider two cases: (1) A aborts in the first simulated run (which occurs with probability 1− ε). In this
case the simulator outputs ⊥. (2) A does not abort in the first simulated run (which occurs with probability
ε). In this case the expected number of rewinding attempts S̃ performs beforeA provides another valid third
message is 1

ε . Therefore, the expected number of times of S̃ rewinds A is

(1− ε) + ε
1

ε
= O(1).

Next, we bound the probability of the strict simulator S outputting fail by computing the probability that
it outputs fail in each of the cases. (1) The probability that A does not provide a third message within
the np(n) attempts can be bounded using the Markov inequality, as the probability that S̃ carries out more
than np(n) rewinding attempts is at most O(1)

np(n) < 1
2p(n) . (2) Next, the probability that S fails due to the

event that the same challenge occurred twice can be bounded using a union bound argument which yields a
value bounded by np(n) × 1

2n . We conclude that the overall probability that S outputs fail is bounded by
1

2p(n) +
np(n)
2n < 1

p(n) . �

Claim 3.2. The following two distribution ensembles are computationally 1
p(n) -indistinguishable,

{
ViewπCOIN,A(z)(n)

}
n∈N,z∈{0,1}∗

1/p
≈

{
ViewFCOIN,S(z)(n)

}
n∈N,z∈{0,1}∗ .
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Proof: Finally, we wish to claim that the adversary’s view in both real and simulated executions is identi-
cally distributed conditioned on the event that S does not output fail or abort. Note that the adversary’s view
is comprised from σ, e1, . . . , en in the second message, and mo −m′, s1, . . . , sj−1, s̃j , sj+1, . . . , sn in the
fourth message. Moreover, the second message is generated as in the real execution (and thus is distributed
identically to the corresponding message in the real execution), whereas the fourth message is generated by
first producing a real execution message and then equivocating the outcome commitment. We claim that the
fourth simulated message is identically distributed to the fourth real message. On a high-level, this is due to
the fact that mo and m′ are picked uniformly at random by FCOIN and S, respectively, and so mo −m′ is
a uniformly distributed element in Zp. Moreover, s̃j depends on the distribution of sj which is uniformly
random in Zp as well.

More formally, our construction implies that the real and simulated views are indistinguishable relative
to the partial views where the adversary aborts before sending the third message. It is therefore suffices
to show that the adversary’s views are indistinguishable conditioned on not aborting in the simulation.
More precisely, we prove that the distribution of mo − m′, s̃1, . . . , s̃n in the simulated view is identically
distributed to the real view conditioned on mo being the outcome of the coin tossing functionality, m′ being
the adversary’s share, σ being the second message and the adversary not aborting in the third message. It
follows from our simulation that the distributions of s̃i for i ̸= j are identical as in both executions these
values are sampled uniformly. Now, given that these values are already fixed, there exist unique values m
and s̃j that can be sent as part of the fourth message, which yield a consistent view with mo. Hence, the
views are identically distributed.

From Claim 3.1 we know that the probability S aborts is at most 1
p(n) + negl(n). Therefore,

Pr[ViewFCOIN,S(z)(n) ̸= ⊥] ≥ 1− 1

p(n)
− negl(n).

Combining this claim with the fact that the simulated non-aborted view is identical to the real view, we
obtain for every PPT distinguisher D there exists a negligible function negl(·) such that for all sufficiently
large n ∣∣Pr [D(ViewFCOIN,S(z)(n)) = 1

]
− Pr

[
D(ViewπCOIN,A(z)(n)) = 1

] ∣∣ < 1

p(n)
+

1

negl(n)
.

�
P2 is corrupted. Informally, in case P2 is corrupted the simulator extracts the committed message from A
and then provides a share in the third message that is consistent with mo and A’s share. More precisely, for
any probabilistic polynomial-time adversaryA controlling P2 we define a simulator S that is given an input
mo from FCOIN and proceeds as follows:

1. S internally invokes A and computes the first message of the protocol as would have computed by
the honest P1. Namely, S picks random elements r10, r

1
1, . . . , r

n
0 , r

n
1 ← Zp and sends A the pairs

(h10, h
1
1), . . . , (h

n
0 , h

n
1 ), where hib = gr

i
0 for every b ∈ {0, 1} and i ∈ [n]. Let σ, e1, . . . , en be the

message replied by A.

2. Next, S performs the following np(n) times:

• S picks a random m′ ← Zp and sends m′, r1e1 , . . . , r
n
en to P2.

If at any iteration A provides a valid fourth message m, s1, . . . , sn, then S rewinds A to the third
message. Next, upon receiving mo from the ideal functionality, S supplies A with a third message
mo −m, r1e1 , . . . , r

n
en and completes the execution. If A aborts in all the np(n) attempts, S simply

outputs the transcript from the first iteration.
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We first prove that if the discrete logarithm assumption is hard in G thenA cannot open σ in two different
valid ways as it violates this hardness assumption.

Claim 3.3. Assume that the discrete logarithm assumption holds in G. Then, except with negligible proba-
bility, A cannot provide two tuples m1, s

1
1, . . . , s

1
n and m2, s

2
1, . . . , s

2
n for which m1 ̸= m2, that correspond

to valid openings of σ.

Proof: Assume for contradiction that there exists an adversaryA that can provide two valid distinct decom-
mitments in the fourth round of the protocol with non-negligible probability. We show how to construct an
adversary B that violates the discrete logarithm assumption relative to G. On a high-level, upon given input
(g′, h′), B sets g = g′ and picks all (hi0, h

i
1) pairs honestly with the exception that hjb = h′ for a randomly

chosen b ∈ {0, 1} and j ∈ [n]. Next, given two openings m1, s
1
1, . . . , s

1
n and m2, s

2
1, . . . , s

2
n, B computes

the discrete logarithm of h′ with respect to g = g′. More precisely, denote by tib the discrete logarithm of hib
with respect to g for all b ∈ {0, 1} and i ∈ [n], i.e., hib = gt

i
b . Then it must hold that

m1 + (t10 + t11)s
1
1 + . . .+ (tn0 + tn1 )s

1
n = m2 + (t10 + t11)s

2
1 + . . .+ (tn0 + tn1 )s

2
n

as A provides two openings to the same commitment σ. Therefore, it is simple to compute

tjb =
[
m1 −m2 +

∑
i̸=j

(ti0 + ti1)(s
1
i − s2i ) + tj1−b(s

1
j − s2j )

]/
(s2j − s1j )

which implies that B violates the discrete logarithm assumption relative to G. �
Claim 3.4. The following two distribution ensembles are computationally 1

p -indistinguishable,{
ViewπCOIN,A(z)(n)

}
n∈N,z∈{0,1}∗

1/p
≈

{
ViewFCOIN,S(z)(n)

}
n∈N,z∈{0,1}∗ .

Proof: Let q be the probability of which A sends the fourth message. We consider two cases:

Case q > 1
p(n) : In this case, the probability that S fails to extract m within the np(n) trials is negligible in

n. Moreover, it is easy to argue that whenever S extracts m, then the distribution generated by S is
identically distributed to the real view conditioned on the adversary not equivocating. Specifically, as
this event only occurs with negligible probability (as shown in Claim 3.3), the real and ideal views are
statistically close.

Case q < 1
p(n) : In this case, let t be the probability that S fails to extract m within the np(n) trials. Let Da

be the distribution of the real view of the adversary conditioned on it aborting in the fourth step, and let
Db be the real view conditioned on the adversary not aborting. Then we can express the distribution
of A’s real view as a mixture of distributions as follows:2

(1− q)Da + qDb.

The simulator on the other hand will generate a distribution as follows:

(1− t)Da + t((1− q)Da + qDb).

Then the statistical distance between the two distributions can be computed as the difference

||(q − tq)Da + (tq − q)Db||1 = q(1− t)||(Da −Db)||1

which is bounded from above by q < 1
p(n) . Hence the real and simulated view are 1

p -indistinguishable.

� �
2More precisely, the real view can be obtained by first selecting Da with probability q and Db otherwise, and then the selecting

a random view in the particular distribution.
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3.1 An Abstraction using Homomorphic Trapdoor Commitment Schemes

We further demonstrate how to abstract the protocol from Section 3 based on an homomorphic two-round
trapdoor commitment scheme (cf. Section 2.3.1), denoted by πCOM = (πSen, πRec).

Protocol 2 (Protocol πCOIN).

The protocol:

1. P1 (playing the role of the receiver) generates 2n pairs of instances of the first message in πCOM denoted by
((π0

Rec1
, π1

Rec1
), . . . , (π0

Recn
, π1

Recn
)) (with independent fresh randomness), and sends these pairs to P2.

2. For all j ∈ [n], P2 first combines each pair (π0
Recj

, π1
Recj

) into a single instance π̃Recj (relying on the homo-
morphic property of πCOM). Next, it shares its coin tossing share m2 into n shares m1

2, . . . ,m
n
2 and commits to

these shares by computing the response to π̃Recj , denote these responses by (πSen1 , . . . , πSenn). P2 additionally
sends a random challenge e← {0, 1}n.

3. Let e = (e1, . . . , en). Then P1 reveals the randomness it used for computing π
ej
Recj

for all j ∈ [n], and further
sends its coin tossing share m1.

4. P2 verifies that P1 generated the first message correctly with respect to challenge e. If all the verifications
are accepting P2 opens its commitments from Step 2 and P1 verifies the validity of this opening. If all the
verifications are accepting the parties output m1 + m2 (where addition is computed in the corresponding
group). Otherwise, P1 aborts.

Intuitively speaking, Protocol 2 is proven similarly to the proof of Protocol 1. Namely, when P1 is cor-
rupted the simulator extracts one of the trapdoor pairs of the commitment scheme that enables to equivocate
the corresponding receiver’s share. On the other hand, when P2 is corrupted, then the simulator behaves
identically to the simulator of P2 for Protocol 1. That is, the simulator extracts the committed message
from the adversary and then rewinds it, providing a new third message that is consistent with mo. It is
simple to verify that Protocol 2 abstracts Protocol 1, that is formally described above in Section 3. Two
additional constructions with security under the RSA and the factoring hardness assumptions are captured
by our abstraction as well; see Section 2.3.1 for more details.

4 A Warmup: Non-Aborting 4-Round Two-Party Computation

In this section we present our protocol that securely computes functionality FOT : ((s0, s1), b) 7→ (−, sb)
in the plain model in the presence of malicious attacks. Our construction implies a four-round oblivious
transfer protocol that further induces a four-round two-party protocol with the following security guarantee.
Namely, the receiver learns its output already at the third round and the last round is needed in order to
extract its input. Namely, in case either party does not abort then we can realize FOT under the standard
simulation based security. On the other hand, in case the sender aborts, it cannot deduce any information
about b since the receiver’s input is information theoretically hidden. Finally, in case the receiver aborts,
our guarantee is a defensible private OT with respect to malicious receivers ([HIK+11]). We begin by
introducing our OT protocol and then explain how to extend it into general two-party computation.

4.1 Building Blocks

Our protocol relies on the following cryptographic building blocks:

Proof of validity. The receiver in our protocol uses a standard Σ-protocol WI-PoK for proving the knowl-
edge of the discrete logarithm of one of the public keys it forwards the sender. The protocol ensures that
there is at least one public key for which the receiver knows the discrete logarithm relative to some generator
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(where this corresponds to the public key for which the receiver does not know the secret key). Concretely,
we consider a Σ-protocol πWI

DL for the following language [CEvdG87],

LDL = {(g, h,G, p)| ∃u ∈ Zp such that h = gu}.

We note that this proof is given for compound statements. Namely, the parties hold two statements
for which the prover only knows one of the witnesses, but not both. It is a common technique by now to
combine two Σ-protocols (even distinct ones) in a way that ensures that the prover knows at least one of the
witnesses [CDS94]. We note that the compound proof implies a perfect WI-PoK (namely, the view that is
produced with respect to one witness is identical to a view that is produced with respect to the other witness).
Consequently, even an unbounded verifier cannot tell which witness is used by the prover for proving the
compound statement.

The El-Gamal PKE [Gam85] (see Appendix A.1.1). Intuitively speaking, the receiver chooses group
elements that will be later viewed by the sender as El Gamal public keys. The key point is that the receiver
must pick these elements in two distinct ways, which will be verified by the sender using the WI-PoK πWI

DL .
If indeed the receiver completes this proof correctly, then we can prove that there exists a public key for
which the receiver does not know the trapdoor secret key. This will allow us to claim the privacy of one of
the sender’s inputs. On the other hand, if the receiver cheats then it may learn both of the sender’s inputs.
Nevertheless, in this case it will always be caught.

4.2 Our OT Protocol

We are now ready to describe our protocol for secure computation. We construct a four-round OT protocol
that guarantees full security assuming that the adversary does not abort. Next, we show how to combine
our OT protocol with the [IKO+11] protocol that requires two rounds of communication in the FOT-hybrid
model. That would imply secure two-party computation in four-round with full security in the plain model
whenever the adversary does not abort.

Protocol 3 (Protocol πOT).
Public parameters: The description of a group G of prime order p.

Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.

The protocol:

1. Sen → Rec :

(a) Sen picks a random generator g ← G and computes h0 = gr0 and h1 = gr1 where r0, r1 ← Zp.

(b) Sen sends g, h0, h1 to Rec.

2. Rec → Sen :

(a) Rec generates two public-keys according to the El Gamal PKE as follows: PKb = gm and PK1−b =
(h0h1)

m̃ where m, m̃← Zp. Rec sets SK = m.

(b) Rec sends PK0, PK1 to Sen.

(c) Rec sends the first message of the WI-PoK for proving the knowledge of the discrete logarithms of either
PK0 or PK1 with respect to (h0h1) (namely, Rec sends the first message with respect to πWI

DL for the
compound statement with PK0 and PK1 being the statements).

(d) Rec sends a challenge bit β.

3. Sen → Rec :

(a) Sen computes ciphertexts c0, c1 as follows: c0 = (gu0 , PKu0
0 · s0) and c1 = (gu1 , PKu1

1 · s1) where
u0, u1 ← Zp.
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(b) Sen sends c0, c1 to Rec

(c) Sen sends the second message eSen for the WI-PoK protocol πWI
DL given by the receiver (recall that this

message is a random challenge).

(d) Sen sends rβ = logg(hβ)

4. Rec → Sen :

(a) Upon receiving the sender’s ciphertexts c0 = ⟨c0[1], c0[2]⟩ and c1 = ⟨c1[1], c1[2]⟩, Rec computes sb by
decrypting cb under SKb. More precisely, it computes sb = cb[2]/(cb[1])

SK.

(b) Rec sends the last message for the WI-PoK protocol πWI
DL .

Theorem 4.1. Assume that the Decisional Diffie-Hellman assumption holds in G and that πWI
DL is as above.

Then, Protocol 3 securely realizes FOT in the presence of non-aborting static, malicious adversaries.

Proof overview. First, in case the sender is corrupted the simulator plays the role of the honest receiver with
input b = 0 and extracts both r0 and r1. Next, the simulator uses these values in order to equivocate the
public keys it sends to the adversary in the second message. Namely, upon extracting the discrete logarithms
of both h0 and h1 the simulator knows the secret keys for both public keys and can decrypt both ciphertexts.

On the other hand, in case the receiver is corrupted, security is proven via a reduction to the IND-CPA
security game of the El Gamal PKE. Namely, the simulator first extracts the receiver’s secret exponent m̃
and the bit b (from the WI-PoK πWI

DL), and uses that information to complete the IND-CPA reduction by
plugging in an external public key instead of (h0h1)m̃ and a ciphertext that either encrypts s1−b or a random
independent message.

Correctness. On a high-level, correctness follows from the correctness of the El Gamal PKE. Namely, given
that the receiver knows the secret key m for PKb, it can decrypt ciphertext cb.

Proof: We consider each corruption case separately.

Sen is corrupted. Recall that when the sender is corrupted we need to prove that it cannot learn anything
about the bit b while extracting both s0 and s1. More precisely, consider any probabilistic polynomial-time
adversary A controlling Sen. We define a simulator S that proceeds as follows:

1. S invokes A on its input and randomness of appropriate length.

2. Upon receiving from A the first message, S computes the second message honestly with input b = 0.

3. Upon receiving A’s third message, S records rβ . Next, it stalls the main execution and proceeds to
rewind A. Specifically, S rewinds A to the second message and supplies a bit 1− β. Upon receiving
r1−β , S completes the main execution honestly using b = 0 and decrypts both ciphertexts as follows.
S uses SK0 = SK to decrypt c0 as the honest receiver would do. Moreover, S fixes SK1 = (r0+r1)m̃
and uses SK1 to decrypt c1.

4. Finally, S forwards (s0, s1) to FOT and halts, outputting whatever A does.

Clearly, S runs in strict polynomial-time. We first prove the correctness of simulation. Specifically, we
need to prove that the simulator correctly extracts s1. Recall that for b = 1 the honest receiver computes
s1 = c1[2]/(c1[1])

SK. Then we claim that this is equivalent to the computation carried out by the simulator,
as SK amounts in this case to the discrete logarithm of PK1 relative to generator g. Next, we prove that,

Claim 4.1. The following two distribution ensembles are identical,{
ViewπOT,A(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗ ≡

{
ViewFOT,S(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗ .
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Proof: The proof follows due to the fact that the receiver’s bit b is information theoretically hidden given
PK0, PK1 and the WI-PoK transcript of πWI

DL . More concretely, given any pair (PK0, PK1) there always
exist m0, m̃0 and m1, m̃1 for which PK0 = gm0 = (h0h1)

m̃0 and PK1 = gm1 = (h0h1)
m̃1 . Moreover,

the WI-PoK πWI
DL is a perfect witness indistinguishable proof, which implies that even an unbounded verifier

cannot extract b (as discussed above, this is the issue even for the compound proof, since the receiver proves
that it knows a discrete logarithm relative to either PK0 or PK1). �
Rec is corrupted. In this case we need to prove that the corrupted receiver cannot learn anything about the
sender’s other input s1−b while extracting b. More precisely, for any probabilistic polynomial-time adversary
A controlling Sen we define a simulator S that proceeds as follows:

1. S invokes A on its input and randomness of the appropriate length.

2. S plays the role of the honest sender with arbitrary inputs (s′0, s
′
1). Upon completing the execution

successfully, S stalls the main execution and proceeds to rewind A. Specifically, S rewinds A to the
third message and supplies a different second message for πZK

DL by sampling uniformly random new
challenge e′Sen. If eSen = e′Sen, i.e., the challenge is identical, then S aborts. Otherwise, it feeds the
challenge to A as part of the second message. Finally, S runs the extractor for the WI-PoK πWI

DL and
extracts the bit b and the discrete logarithm of PK1−b.

Specifically, let γ be such that the simulator extracts m̃ with respect to PKγ . Then S fixes the bit
b = 1− γ.

3. S submits b to FOT, receiving back sb.

4. S rewinds A to the third message and computes it based on sb and random s1−b.

5. S halts, outputting whatever A does.

Note first that the simulator runs in polynomial-time and that the probability it aborts is negligible. Moreover,
we prove that the simulated and real views are computationally indistinguishable via a reduction to the
security of the El Gamal PKE. Namely, we prove the following claim,

Claim 4.2. The following two distribution ensembles are computationally indistinguishable,{
ViewπOT,A(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗

c≈
{

ViewFOT,S(z)(n, (s0, s1), b)
}
n∈N,s0,s1,b,z∈{0,1}∗ .

Proof: Assume by contradiction that these two views are distinguishable by a PPT distinguisher D. We
construct an adversaryA′ that breaks the security of the El Gamal PKE as follows. Recall thatA′ externally
communicates with a challenger that provides to it a public key PK = ⟨g, h⟩ and a challenge ciphertext.
Upon receiving PK and (s0, s1) as the auxiliary input, A′ picks a random bit β′ and sets hβ′ = gx for
some random x ← Zp. In addition, A′ sets h1−β′ = h/hβ′ . A′ invokes A internally and forwards it
the first message of the protocol g, h0, h1. Upon receiving A’s second message, A′ aborts if β′ ̸= β.
Else, A′ completes the execution using arbitrary (s0, s1). Upon completing the execution successfully, A′

extracts b and the discrete logarithm of PK1−b exactly as done in the simulation. Finally, A′ submits to its
challenger the two messages sm̃

−1

1−b and t for t← Zp, receiving back a challenge ciphertext c = ⟨c′0, c′1⟩ that
encrypts one of these plaintexts at random. A′ computes ⟨(c′0)m̃, (c′1)

m̃⟩ (and rerandomizes the ciphertext by
multiplying the outcome with a random encryption of zero), and plugs the outcome instead of the ciphertext
that encrypts s1−b and halts. Finally, A′ invokes D on the joint distribution of (s0, s1) and the adversary’s
output and outputs whatever D does.

We now consider two cases:
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1. In the first case the challenge c′ is an encryption of sm̃
−1

1−b . We claim that in this case the adversary’s
view is distributed as in the real execution. This is because the challenge ciphertext ⟨(c′0)m̃, (c′1)

m̃⟩
corresponds to a random ciphertext that encrypts the plaintext s1−b relative to PK1−b.

2. On the other hand, in case the challenge c′ is an encryption of a random element t, then the adversary’s
view is distributed as in the simulation, as the simulator does not know s1−b and hence uses a random
input instead of the real value.

In both cases, the first message of the reduction is identically distributed to the first message in the
corresponding execution. Moreover, the distribution of the first message for β′ = 0 is identical to the
distribution for the case that β′ = 1.

More formally, assume that∣∣∣Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1]− Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]
∣∣∣ ≥ ε(n).

Then, it holds that

Pr[ADVΠ,A′(n) = 1] ≥ 1

2
+

ε(n)

2

condition on the event for which β′ = β. This is proven as follows,

Pr[ADVΠ,A′(n) = 1] =
1

2

(
Pr[ADVΠ,A′(n) = 1|b = 0] + Pr[ADVΠ,A′(n) = 1|b = 1]

)
=

1

2

(
Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 0] + Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]

)
=

1

2

(
1− Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1] + Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]

)
=

1

2
+

1

2

∣∣∣Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]− Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1]
∣∣∣

≥ 1

2
+

ε(n)

2
.

� �

4.3 Obtaining Secure Two-Party Computation

First we observe that we can repeat our OT protocol in parallel guaranteeing the same security. Then, obtain-
ing general secure two-party computation is carried out by embedding the two-round protocol of [IKO+11]
within our second/third messages of our OT protocol. Namely, upon receiving the third message, the re-
ceiver computes the OT outcome and uses this to compute the outcome of the [IKO+11] protocol. It then
sends this outcome together with the OT last message to the sender, that concludes the outcome of the gen-
eral computation upon verifying the OT message correctly. We remark that we obtain a secure two-party
protocol with the same security guarantees, namely, security against malicious non-aborting senders and
malicious non-aborting receivers.

In more details, in order to achieve simulation when the sender is corrupted, we observe that, upon
extracting the trapdoors, it is possible to set up the OT part in the second message from the receiver in
such a way that the sender’s inputs to the OT can be extracted with perfect simulation. Then relying on the
simulation of the [IKO+11] simulator in the FOT-hybrid we carry out the rest of the simulation. To achieve
simulation when the receiver is corrupted, we consider a simulator that honestly generates the sender’s
messages with arbitrary inputs for the functionality being computed and then extracts the receiver’s inputs
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to the OT by rewinding the WI-PoK. Using the inputs to the OT, we then rely on the simulation of the
malicious receiver in the FOT-hyrbid in the [IKO+11] protocol. Thus, we obtain the following theorem:

Theorem 4.2. Assuming the Decisional Diffie-Hellman problem is hard, there exists a four-round secure
computation protocol for any functionality that is secure in the presence non-aborting adversaries.

5 4-Round Two-Party Computation with 1/p Sender Security

In this section we extend our protocol from Section 4 and demonstrate how to achieve 1/p-simulation with
respect to corrupted aborting senders. Our protocol is inspired by the recent result of Ostrovsky, Richelson
and Scafuro [ORS15] and relies on the following additional building blocks: let (1) Commit be a statistically
binding commitment scheme, (2) let (Share,Rec) be a (M + 1)-out-of-2M Shamir secret-sharing scheme
over Zq, together with a linear map ϕ : Z2M

q → ZM−1
q such that ϕ(v) = 0 iff v is a valid sharing of some

secret. We further note that the WI-PoK πWI
DL that is given by Rec in Protocol 3, is extended here to handle

the parallel case. Namely, the receiver proves the validity of one of the public keys it generates within each
pair, in parallel. On a high-level, we modify Protocol 3 as follows.

• We repeat Protocol 3 in parallel 3M times to obtain 3M oblivious transfer parallel executions. We
divide this set of executions into two sets of M and 2M executions.

• The sender chooses first two random inputs x0, x1 ∈ Zq and secret shares them using the Shamir
secret-sharing scheme to obtain shares [x0] and [x1]. Next, for b ∈ {0, 1} it picks M pairs of vectors
that add up to [xb]. It is instructive to view them as matrices A0, B0, A1, B1 ∈ ZM×2M

q where for
every row i ∈ [M ] and b ∈ {0, 1}, it holds that Ab[i, ·] ⊕ Bb[i, ·] = [xb]. Next, the sender commits
to each entry of each matrix separately in the third message of the protocol. To check the validity of
the shares the sender additionally sends matrices Z0, Z1 in the clear, such that the row Zb[i, ·] is set to
ϕ(Ab[i, ·]), along with the third message of the protocol where it commits to the entries of A0, A1, B0

and B1. Finally, it sends C0 = x0 + s0 and C1 = x1 + s1.

• In the first set of M OT executions, the sender’s input to the ith execution is the decommitment
information of the entire ith row

((A0[i, ·], A1[i, ·]), (B0[i, ·], B1[i, ·])) ,

whereas the receiver sets its input to these executions as c1, . . . , cM at random. Upon receiving its
output for the OT, the receiver proceeds as follows: If ci = 0, then the receiver checks whether
ϕ(Ab[i, ·]) = [zbi ], and if ci = 1 it checks whether ϕ(Bb[i, ·]) + Zb[i, ·] = 0. This is referred to as the
shares validity check.

• In the second set of 2M OT executions, the sender’s input to the jth OT execution is the decommit-
ment information of the entire jth column

((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])) .

Looking ahead, if the receiver’s input is b, then upon receiving its output for a particular column j
it checks that for all i, Ab[i, j] ⊕ Bb[i, j] agree on the same value. We refer to this as the shares
consistency check.

• In the second set of OTs, the receiver sets its input as follows. It selects a random subset T1−b ⊆ [2M ]
of size M/2 and defines Tb = [2M ]/T1−b. Then, for every j ∈ [2M ], Rec sets bj = β if j ∈ Tβ . The
bj values serve as the inputs to the OT for the next 2M executions.
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• Finally, the receiver first checks if all the rows obtained from the first set of OT executions pass the
shares validity check. Next, it checks if all the columns in T1−b and a random subset of size M/2
from Tb pass the shares consistency check. If so, it finds M + 1 columns in Tb that pass the shares
consistency check, extracts the share that corresponds to each such column and then uses these M +1
shares to reconstruct xb. Finally, the receiver uses xb and Cb to compute sb.

• Additionally, we modify the WI-PoK to a proof for a statement that captures all parallel executions
simultaneously, i.e. the statements of all OT executions are combined using the logical AND.

The security guarantees of this protocol are 1/p-simulation against malicious senders and full security
against non-aborting malicious receivers. We remark that the receiver’s simulation essentially follows a
similar approach as in the simulation of Protocol 3, where it rewinds the WI-PoK protocol in order to extract
the receiver’s inputs to all the parallel OT executions and then setting the input that the receiver cannot obtain
to a random string (one at a time), concluding that there will not be enough information for any receiver to
extract s1−b. On the other hand, the sender simulation needs to achieve 1/p-simulation. The high-level idea
is to apply techniques from the simulation in [ORS15], given that the simulator extracts sufficiently enough
shares of the sender’s inputs to the parallel OTs. The core of our argument and the main technical part of this
protocol is to show that if an adversarial sender does not abort before sending the third message too often
(i.e. < 1− 1

p ) then the simulator can extract the trapdoor by rewinding sufficiently many times. Namely, in
this case, we show that the simulator can extract the discrete logarithm of both h0 and h1 with respect to g
in at least 1− 1

3p fraction of the OT executions. Then we can show that the simulator succeeds in extracting
the sender’s inputs s0, s1 with very high-probability.

5.1 Our OT Protocol

We are now ready to describe our protocol for secure computation. We construct a four-round OT protocol
with the stronger guarantee of 1

p -security in the presence of (possibly aborting) malicious senders.

Protocol 4 (Protocol πOT).

Public parameters: The description of a group G of prime order p.

Inputs: The sender Sen holds s0, s1 and the receiver Rec holds a bit b.

The protocol:

1. Sen → Rec :

(a) Let N = 3M . Then, for i ∈ [N ], Sen picks random generator gi ← G and computes hi,0 = gri,0 and
hi,1 = g

ri,1
i where ri,0, ri,1 ← Zp.

(b) Sen sends the N tuples {gi, hi,0, hi,1}i∈[N ] to Rec.

2. Rec → Sen :

(a) Rec samples uniformly at random c1, . . . , cM ← {0, 1}. The ci values serve as the input to the first M
OT executions.

(b) Rec selects a random subset T1−b ⊆ [2M ] of size M/2. Define Tb = [2M ]/T1−b. For every j ∈ [2M ],
Rec sets bj = α if j ∈ Tα. The bj values serve as the inputs to the OT for the next 2M executions.

(c) According to its input for the 3M OT executions, Rec generates N = 3M pairs of El Gamal PKE’s as
follows:

• For every i ∈ [M ], PKi,ci = gmi
i and PKi,1−ci = (hi,0hi,1)

m̃i where mi, m̃i ← Zp. Rec sets
SKi = mi.

• For every j ∈ [2M ], PKM+j,bj = g
mM+j

M+j and PKM+j,1−bj = (hM+j,0hM+j,1)
m̃M+j where

mM+j , m̃M+j ← Zp. Rec sets SKM+j = mM+j .
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(d) Rec sends {PKi,0, PKi,1}i∈[N ] to Sen.

(e) Rec sends the first message of the WI-PoK for proving the knowledge for every i ∈ [N ] of the discrete
logarithms of either PKi

0 or PKi
1 with respect to (hi,0hi,1).

(f) Rec sends a challenge string β = (β1, . . . , βN ).

(g) Rec sends the first message for the statistically-binding commitment scheme com.

3. Sen → Rec :

(a) Sen picks two random strings x0, x1 ← Zq and secret shares them using the Shamir’s secret-sharing
scheme. In particular, Sen computes [xb] = (x1

b , . . . , x
2M
b ) ← Share(xb) for b ∈ {0, 1}. Sen commits

to the shares [x0], [x1] as follows. It picks random matrices A0, B0 ← ZM×2M
q and A1, B1 ← ZM×2M

q

such that ∀i ∈ [M ]:
A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

Sen computes two matrices Z0, Z1 ∈ ZM×M−1
q and sends them in the clear such that:

Z0[i, ·] = ϕ(A0[i, ·]), Z1[i, ·] = ϕ(A1[i, ·]).

(b) Sen sends the committed matrices (comA0 , comB0 , comA1 , comB1) to Rec where each element of each
matrix is individually committed using com.

(c) For i ∈ [M ], Sen computes ciphertexts ci,0, ci,1 where ci,0 is an encryption of the decommitment of the
rows A0[i, ·] and A1[i, ·] under public key PKi,0 and ci,1 is an encryption of the decommitment of the
rows B0[i, ·] and B1[i, ·] under public key PKi,1. Sen sends {ci,0, ci,1}i∈[M ] to Rec.

(d) For j ∈ [2M ], Sen computes ciphertexts c̃j,0, c̃j,1, where c̃j,b is an encryption of the decommitment of the
columns Ab[·, j], Bb[·, j] under public key PKM+j,b. Sen sends {c̃j,0, c̃j,1}j∈[2M ] to Rec.

(e) Sen sends the second message eSen for the WI-PoK protocol πWI
DL given by the receiver (recall that this

message is a random challenge).

(f) Sen sends rβi = loggi(hi,β) for all i ∈ [N ].

(g) Sen sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to Rec.

4. Rec → Sen :

(a) Decryption Phase: Upon receiving the all the sender’s ciphertexts the receiver decrypts them to obtain
the OT outputs. These include decommitments to A0[i, ·], A1[i, ·] for every i ∈ [M ] when ci = 0 and
decommitments to B0[i, ·], B1[i, ·] when ci = 1. They also include columns Abj [·, j], Bbj [·, j] for every
j ∈ [2M ].

(b) Shares Validity Check Phase: For i = 1, . . . ,M , if ci = 0 check that Z0[i, ·] = ϕ(A0[i, ·]) and Z1[i, ·] =
ϕ(A1[i, ·]). Otherwise, if ci = 1 check that ϕ(B0[i, ·]) +Z0[i, ·] = 0 and ϕ(B1[i, ·]) +Z1[i, ·] = 0. If the
tokens do not abort and all the checks pass, the receiver proceeds to the next phase.

(c) Shares Consistency Check Phase: For each b ∈ {0, 1}, Rec randomly chooses a set Tb for which
bj = b at M/2 coordinates. For each j ∈ Tb, Rec checks that there exists a unique xi

b such that
Ab[i, j] + Bb[i, j] = xj

b for all i ∈ [M ]. If so, xj
b is marked as consistent. If all shares obtained in this

phase are consistent, Rec proceeds to the reconstruction phase. Else it aborts.

(d) Reconstruction Phase: For j ∈ [2M ]/T1−b, if there exists a unique xj
b such that Ab[i, j]+Bb[i, j] = xj

b,
Rec marks share j as a consistent column. If R obtains less than M + 1 consistent columns, it aborts.
Otherwise, let xj1

b , . . . , x
jM+1

b be any set of M+1 shares obtained from consistent columns. Rec computes
xb ← Reconstruct(xj1

b , . . . , x
jM+1

b ) and outputs sb = Cb ⊕ xb.

(e) Rec sends the last message for the WI-PoK protocol πWI
DL .

Theorem 5.1. Assume that the Decisional Diffie-Hellman assumption holds in G and that πWI
DL is as above.

Then, Protocol 4 securely realizes FOT in the presence of non-aborting static, malicious receivers and
aborting static malicious senders (in the sense of Definition A.4 with 1

p security) .
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Proof: We consider each corruption case separately.

Sen is corrupted. Recall that when the sender is corrupted we need to prove 1/p-indistinguishability. More
precisely, we need to define a simulator that produces a view of the malicious sender A while extracting
both s0 and s1, where the view and the value learned by the honest receiver is 1/p-indistinguishable from
the sender’s real view and the receiver’s output in a real execution. More precisely, for any probabilistic
polynomial-time adversary A controlling Sen we define a simulator S that proceeds as follows:

1. S invokes A on its input and randomness of appropriate length.

2. Upon receiving from A the first message, S computes the second message honestly with input b = 0.
If A aborts before sending the third message then S outputs the view of A and halts.

3. Otherwise, upon receiving A’s third message, S records the set {rβi
}i∈[N ]. Next, it stalls the main

execution and proceeds to rewind A. Specifically, S rewinds A to the second message and proceeds
as follows:

• For every i ∈ [N ] and γ ∈ {0, 1}, S rewinds A for T = N4p attempts, where in each such
attempt S supplies a uniformly random second message according to the receiver’s strategy with
input b = 0, where βi = γ. In each rewinding, S collects the correct discrete logarithms within
A’s reply.

4. If upon concluding the rewinding phase S does not obtain the discrete logarithm of both hi,0 and hi,1
for at least 1− 1/3p fraction of i ∈ [N ], then it halts outputting fail.

5. Otherwise, let I ⊆ {1, . . . ,M} and J ⊆ {M +1, . . . , 3M} be the sets of indices for which it extracts
both the discrete logarithms. We remark that S does not try to extract the sender’s inputs in the first
M executions, namely, for indices in I . Next, S rewinds A back to the second message and for every
j ∈ J generates public keys so that it can extract both the sender’s inputs. For all other executions,
it follows the honest receiver’s strategy corresponding to the input b = 0. S completes the execution
by using the witness corresponding to b = 0 for the receiver in the WI-PoK.3 Upon completion, it
performs the share consistency check and the share validity check as the honest receiver would and if
either of them fail, then the simulator halts outputting the view of A.

6. Otherwise, it decrypts all ciphertexts for which it knows the corresponding secret keys. For each
b ∈ {0, 1} and j ∈ J , if there exists a unique xjb such that Ab[i, j] + Ab[i, j] = xjb, S marks column
j −M as consistent. If it obtains at least M +1 shares for xb from consistent columns it reconstructs
xb, and then obtains sb from xb and Cb. If not, it sets sb = ⊥.

7. Finally, S forwards (s0, s1) to FOT and halts, outputting whatever A does.

�
Clearly, S runs in strict polynomial-time. We next prove the correctness of simulation. On a high-level,

the second message in all the rewinding attempts is generated identically to the second message of the real
execution, and is independent of the bit b that the receiver enters. This follows by repeating Protocol 3 in
parallel, for which the indistinguishability argument is similar. Let s ∈ ω(log n). Two cases arise:

1. The abort probability of the sender is higher than 1 − 1
Np . In this case, 1/p-indistinguishability is

achieved directly as the simulation outputs views on which the sender aborts with at least the same
probability as such views occur in the real view. Now, since this accounts for a probability mass of at
least 1− 1

Np > 1− 1
p , 1/p-indistinguishability follows.

3This is possible because for indices outside J it has the correct witness, and for indices in J it has witnesses corresponding to
both inputs of the receiver.

21



2. The abort probability of the sender is at most 1− 1
Np . In this case by setting M > sp, for s being some

superlogarithmic function in n, we argue that except with negligible probability (roughly, 2−O(s)), the
simulator will be able to obtain the discrete logarithms of both hi,0 and hi,1, i.e., the trapdoors, for
at least 1 − 1

3p fraction of the indices i ∈ [3M ] via rewinding. This is formally proven in Claim 5.1.
Just as in the previous protocol, we have that for every index in {M + 1, . . . , 3M} that the simulator
obtains a trapdoor, it will be able to extract both of the sender’s inputs. Specifically, as M > sp, we
can conclude that the simulator fails to obtain the trapdoor of at most 1

3p × 3M = s indices. This
means that among the indices in {M + 1, . . . , 3M} it obtains trapdoors for at least 2M − s indices.

Next, from the shares consistency check we can conclude that with very high probability all but s
columns contain shares that are consistent. From the shares validity check we can conclude that with
very high probability there is a single row ib corresponding to each b ∈ {0, 1} such that Ab[i, ·] +
Bb[i, ·] contains valid shares of some secret. Combining these checks, we can conclude that there
are at least 2M − s columns that are consistent, i.e., the shared value in each row is the same and
therefore must equal Ab[ib, ·] + Bb[ib, ·]. Furthermore, from the statistically binding property of the
commitment scheme Commit we can conclude that for any one of these consistent columns, there can
be only one value for the shares that can be extracted by both the receiver and the simulator.

In this case, we can now conclude that, using the trapdoors, the simulator obtains at least 2M − s− s
shares for both inputs among the consistent columns. Since M > sp we have that 2M − 2s > M +1
(for p > 2) and from M + 1 valid shares it can extract sb for each b ∈ {0, 1}.

Claim 5.1. We say that i ∈ [N ] is extractable, if S manages to extract the discrete logarithms of both
hi,0 and hi,1 with respect to gi. If the adversary A does not abort before sending the third message with
probability at least 1

Np , then except with negligible probability, at least 1 − 1
3p fraction of the indices are

extractable.

Proof: On a high-level we follow a Yao-type amplification argument [Yao82]. First, we observe that
the distribution of the second message fed to A in any rewinding attempt is perfectly distributed to the
real distribution. Next, suppose that A does not abort with probability at least 1

N3p
both when its view

is conditioned on βi = 0 and when it is conditioned on βi = 1, for some index i. Then we show that
i is extractable except with negligible probability. This is because for every i and every value of βi the
simulator makes N4p rewinding attempts, thus the probability that it fails to find a successful execution

where the adversary A responds is at most
(
1− 1

N3p

)N4p
= O(e−s). Therefore, it suffices to show that

this condition holds for more than 1− 1
3p indices i for which A does not abort with probability at least 1

N3p
both when its view is conditioned on βi = 0 and when it is conditioned on βi = 1. This is because using the
preceding argument, we can conclude that at least 1 − 1

3p fraction of indices are extractable and the proof
of the claim follows.

Suppose for contradiction that there are more than 1
3p fraction of indices for which the condition does

not hold. This means that for a set of 1
3pN = s indices, denoted by S, and values {γj}j∈S such that for

every j ∈ S, when conditioned on βj = γj , the probability that the adversary aborts is greater than 1− 1
N3p

.
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We now estimate the overall probability that A does not abort.

Pr[A does not abort ] = Pr[A does not abort | ∃ j ∈ S s.t. βj = γj ] Pr[ ∃ j ∈ S s.t. βj = γj ]

+ Pr[A does not abort | ∀ j ∈ S, βj ̸= γj ] Pr[ ∀ j ∈ S, βi ̸= γi]

≤ N

N3p
× Pr[ ∃ j ∈ S s.t. βj = γj ] + 1× Pr[ ∀ j ∈ S, βj ̸= γj ]

≤ N

N3p
+

1

2s

≤ 1

2N2p
.

This is a contradiction since we assumed that A does not abort with probability at least 1
Np . �

Finally, to argue 1/p-indistinguishability, we consider two cases:

Case: non-aborting probability of A is greater than 1
pN . First, we observe that the sender’s view in the

simulation is statistically close to the real view. This follows using an argument analogous to our
previous protocol as the public-keys in the second message (even those generated by the simulation
using the trapdoors) and the perfect WI-PoK perfectly hide the receiver’s input. It therefore suffices
to argue that the receiver’s messages can be generated while extracting the sender’s input. Using the
preceding argument, we have that the simulation will always succeed in extracting the trapdoors of at
least 1− 1

3p fraction of the parallel OT executions. Since M > sp, we can conclude that the simulator
fails to obtain the trapdoor of at most 1

3p × 3M = s indices. This means that among the indices in
{M + 1, . . . , 3M} it obtains trapdoors for at least 2M − s indices. Recall that, after extraction, the
simulator rewinds the sender to the second message and generates the receiver’s message by setting
up the public-keys as follows: for every index in J the simulator uses the trapdoor and sets the public-
keys so that it can extract both of the sender’s inputs. For the rest of the indices, it simply sets the
receiver’s input bit to 0.

Next, from the shares consistency check we can conclude that with very high probability all but s
columns contain shares that are consistent. Moreover, the share validity check makes the receiver
check if Zb[i, ·] = ϕ(Ab[i, ·]) holds or Zb[i, ·] + ϕ(Bb[i, ·]) = 0 holds. If for a row both conditions
hold, then we have the ϕ(Ab[i, ·]) + ϕ(Bb[i, ·]) = 0 and Ab[i, ·] +Bb[i, ·] must contain a valid vector
of shares. Now even if one of these two conditions fail to hold for more than s rows, the sender will
be caught with probability 1− 2−s. Therefore, there are at least M − s rows for which ϕ(Ab[i, ·]) +
ϕ(Bb[i, ·]) = 0. For our argument, it suffices to have just one row ib corresponding to each b ∈ {0, 1}
such that Ab[i, ·] + Bb[i, ·] contains valid shares of some secret. Combining these checks, we can
conclude that there are at least 2M − s columns that are consistent, i.e., the shared value in each row
is the same and must equal Ab[ib, ·]+Bb[ib, ·]. Furthermore, from the statistically binding property of
the commitment scheme Commit we can conclude that for any one of these consistent columns, there
can be only one value for the shares that can be extracted by both the receiver and the simulator.

In this case, we can now conclude that, using the trapdoors, the simulator obtains at least 2M − s− s
shares for both inputs among the consistent columns. Since M > sp we have that 2M − 2s > M +1
(for p > 2) and from M + 1 valid shares it can extract sb for each b ∈ {0, 1}. Furthermore, the
sender’s input extracted by the honest receiver while holding the input b and the input extracted by the
simulator have to be the same as both of them have to correspond to the shares in the row ib.

Case: non-aborting probability of A is at most 1
pN . From the first step of the simulation we know that all

views on which A aborts are simulated at least with the same probability as in the real view. Now, if
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the non-aborting probability is smaller than 1
pN then the probability mass of aborting views is at least

1− 1
pN > 1− 1

p and we achieve 1/p-indistinguishability.

Thus, we have the following claim.

Claim 5.2. The following two distribution ensembles are identical,

{
ViewπOT,A(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗

1/p
≈

{
ViewFOT,S(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗ .

Proof: The proof follows essentially using the same ideas from the previous protocol. �

Rec is corrupted. In this case we need to prove that any non aborting corrupted receiver cannot learn
anything about the sender’s other input s1−b while extracting b. More precisely, for any probabilistic
polynomial-time adversary A controlling Rec we define a simulator S that proceeds as follows:

1. S invokes A on its input and randomness of the appropriate length.

2. S plays the role of the honest sender with arbitrary inputs (s′0, s
′
1). Upon completing the execution

successfully, S stalls the main execution and proceeds to rewind A. Specifically, S rewinds A to the
third message and supplies a different second message for πZK

DL by sampling uniformly random new
challenge e′Sen. If eSen = e′Sen, i.e., the challenge is identical, then S aborts. Otherwise, it feeds the
challenge to A as part of the second message. Finally, S runs the extractor for the WI-PoK πWI

DL and
extracts the inputs to all the OT executions along with the discrete logarithm of the corresponding key.

3. Among the executions M +1, . . . , 3M , S finds that bit b that occurs at least M +1 times and submits
b to FOT, receiving back sb. Recall that since the receiver is a non-aborting adversary, it completes
the protocol without allowing the honest sender to abort. In other words, it convinces the sender in the
WI-PoK with probability 1. Therefore, since a witness will be extracted from the proof-of-knowledge,
the input of the receiver in the parallel OTs are well defined. Specifically, S extracts the adversary’s
inputs to these OT executions as in the simulation for Protocol 3.

4. S rewinds A to the third message and computes it based on sb and random s1−b.

5. S halts, outputting whatever A does.

Note first that the simulator runs in polynomial-time and that the probability it aborts is negligible.
Moreover, we prove that the simulated and real views are computationally indistinguishable via a reduction
to the security of the El Gamal PKE. We provide a brief proof sketch below:

• From the proof of Protocol 3, using the privacy argument of the El Gamal PKE, we know that if
for a particular OT execution the sender (played by the simulator) extracted the receiver’s input as
γ, then the sender’s input that corresponds to the bit 1 − γ can be replaced by a random value. We
consider a sequence of hybrids where we replace at least one input in each of the 3M executions with
a random input. More formally, for every j ∈ {1, . . . ,M}, depending on what value is extracted for
each of the ci, and every b ∈ {0, 1}, we replace the sender’s input containing the decommitment of
Ab[i, ·] with random or that containing the decommitment of Bb[i, ·] with random. Next, for j ∈ {M+
1, . . . , 2M} depending on the value extracted as bi for the receiver, we replace the input containing the
decommitment of (A0[·, j−M ], B0[·, j−M ]) random or the other input containing the decommitment
of (A1[·, j −M ], B1[·, j −M ]) random. Next, in another sequence of hybrids, for every value that is
set to random we also replace the corresponding commitment to a random value.
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• Next, we argue that at least M shares of x1−b (out of the 2M shares) are hidden, where b is the
adversary’s input as extracted in the simulation. To this end, for any column j and row i such that
bj ̸= 1 − b, only one of the entries A1−b[i, j] or B1−b[i, j] is revealed (while the other entry is set to
random, depending on the choice of ci). This is because when bj = b, the information regarding the
1− bth matrices is available only from the rows being revealed. Next, note that A1−b[i, j], B1−b[i, j]
are individually distributed uniform at random, therefore A1−b[i, j]+B1−b[i, j] is hidden. Now, since
bj ̸= 1−b for at least M values of j we conclude that at least M shares of x1−b are hidden. Therefore,
at most M shares can be recovered but M shares information theoretically hide x1−b.

Therefore, we conclude that

Claim 5.3. The following two distribution ensembles are computationally indistinguishable,{
ViewπOT,A(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗

c
≈

{
ViewFOT,S(z)(n, (s0, s1), b)

}
n∈N,s0,s1,b,z∈{0,1}∗ .

5.2 Obtaining Secure Two-Party Computation with 1/p-Security

Obtaining general secure two-party computation is carried out analogous to Protocol 3 by embedding the
two-round protocol of [IKO+11] within our second/third messages of our OT protocol. It follows just as
before that we obtain a two-party computation protocol secure against malicious non-aborting adversaries.

Recall that, in our previous protocol, to achieve simulation when the receiver is corrupted, we consider
a simulator that honestly generates the sender’s messages with arbitrary inputs for the functionality being
computed and then extracts the receiver’s inputs to the OT by rewinding the WI-PoK. By relying on precisely
the same strategy, we can obtain the receiver’s inputs in this protocol and then complete the simulation by
relying on the simulator for the malicious receiver in [IKO+11] protocol.

To achieve simulation when the sender is corrupted, we combine the following two observations:

• First, using the approach from our previous protocol, it follows that whenever the simulator extracts
the required trapdoor, it is possible to generate the OT part in the second message from the receiver in a
way that it is identically distributed to the real receiver’s message while at the same time extracting the
sender’s inputs to the OT. Furthermore, whenever the extraction of the sender’s inputs is successful,
we can rely on the simulation of the [IKO+11] simulator in the FOT-hybrid to complete the rest of the
simulation.

• Second, we observe that, if the sender aborts before sending the third message, no extraction needs to
be carried out since no inputs need to be feed to the FOT-functionality.

We can now conclude that our simulation achieves 1/p-security against malicious senders, by using the
same two cases as we considered for the OT protocol based on the abort probability of the sender. More
precisely,

Case: non-aborting probability of A is greater than 1
pN . In this case, we know that except with prob-

ability O(1p) the simulator extracts the required trapdoors and we achieve perfect simulation with
probability at least 1−O(1p).

Case: non-aborting probability of A is at most 1
pN . If the non-aborting probability is smaller than 1

pN

then the probability mass of aborting views is at least 1− 1
pN > 1− 1

p and since no extraction needs
to be carried out we achieve 1/p-indistinguishability.

Therefore, we have the following theorem:
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Theorem 5.2. Assuming the Decisional Diffie-Hellman problem is hard, there exists a four-round two-
party secure computation protocol for any functionality that achieves security in the presence non-aborting
adversary for one of the parties and 1

p -security against the other party.

6 On the Impossibility of Black-Box 3-Round 2PC with 1/p-Security

In this section, we show that constructing a 3-round secure two-party computation protocol (of single-output
functionalities) with 1/p-security against a corrupted receiver is impossible. More formally, we prove that

Theorem 6.1. Unless NP ⊆ BPP, there exists no 3-round black-box construction of a secure two-party
computation protocol with 1/p-security against the receiver to realize arbitrary polynomial time computable
functionalities.

Proof: We rely on the following lemma, that essentially follows from the three-round lower bound for
zero-knowledge (ZK) interactive proofs of Goldreich and Krawczyk [GK96].

Lemma 6.1. Unless NP ⊆ BPP, there exists no black-box 3-round zero-knowledge interactive proofs for
all of NP with 1/p-security.

Given the proof of Lemma 6.1, the theorem follows as a corollary. Consider an arbitrary NP-language
L with witness relation RL. Then, for any x ∈ {0, 1}∗ consider the functionality fx : {0, 1}∗ → {0, 1}
that on input w from P1 outputs RL(x,w) to party P2. In essence, a secure computation protocol for this
functionality yields a zero-knowledge interactive proof. Moreover, it follows from the simulation-based
definition of the 1/p-security that if the original secure computation protocol is only 1/p-secure, we get a
zero-knowledge proof that is 1/p-secure.

We now provide a brief overview of why Lemma 6.1 holds. We first recall the lower bound of Goldreich
and Krawczyk. Suppose that there exists a 3-round ZK proof for an arbitrary NP language L. Consider a
pseudo-random function family F = {fn}n∈{0,1}∗ .4 Then define a malicious verifier V ∗

n that incorporates a
function fn from the PRF family F , and generates its second message of the ZK protocol by first generating
randomness τ by applying fn to the prover’s first message and the running the honest verifier’s code V with
random tape set to τ . Consider the simulator S that simulates this family of malicious verifiers V∗n. The
main idea here is that using the simulation S and V∗n we can show that either L ∈ BPP or the interactive
proof is not sound. On a high-level, from the pseudorandomness of the family F it follows that the real
view generated by V∗n is indistinguishable from the view that is generated by the real verifier V . Hence,
given input x ∈ L, SV∗

n produces a convincing view for the verifier with probability q negligibly close to 1.
Moreover, on input x ̸∈ L, SV∗

n either produces a convincing view or not. Concretely,

• If it does not produce a view with probability close to q for any x ̸∈ L, then we can use SV∗
n as a

BPP-decider for the language L by simply estimating the probability with which SV∗
n(x) outputs a

convincing view.

• If it does produce a view with some probability close to q for some x ̸∈ L, then we can construct
a malicious prover P∗ that convinces the honest verifier V of the statement x with non-negligible
probability, which contradicts the soundness of the interactive proof. First, we observe that the view
output by SV∗

n is indistinguishable from the output of S Ṽ where Ṽ uses a truly random function
instead of a PRF function fn to generate the randomness. Specifically, given input x, P∗ internally

4For simplicity, we present the proof with PRF’s. However, to get an unconditional result as stated in the lemma, we can rely
on m-wise independent hash-function family where m is polynomially related to the expected running time of the simulator S.
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simulates S Ṽ(x) by emulating the random function queries.5 It then randomly chooses a session
from the internal emulation and forwards the messages exchanged between S and Ṽ to the external
honest verifier. It follows that the view generated internally by P is identically distributed to the view
generated by S Ṽ(x). Furthermore, if the view output by S is the session forwarded externally to the
honest verifier, then it implies that the external verifier essentially accepts.6 Finally, suppose that the
simulation runs in time T , then it follows that P∗ guesses the correct session to forward outside with
probability q

T . Therefore, it convinces the external verifier with probability close to q
T . Now, since T

is some polynomial, it follows that P∗ convinces V on an input x ̸∈ L with non-negligible probability
and this violates soundness.

We now conclude the proof of the lemma by making the observation that even if the simulation was only
1/p-indistinguishable, then q = 1− 1

p and the success probability of P∗ is still non-negligible. �
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A Preliminaries – Appendix

A.1 Public Key Encryption Schemes (PKE)

We specify the definitions of public key encryption and IND-CPA.

Definition A.1 (PKE). We say that Π = (Gen,Enc,Dec) is a public key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2), we
consider the following IND-CPA game denoted by ADVΠ,A(n):

(PK, SK)← Gen(1n).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b←R {0, 1}.
b′ ← A2(c, history).

Return 1 if b′ = b, and 0 otherwise.
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Definition A.2 (IND-CPA). A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversary A = (A1,A2)
there exists a negligible function negl such that

Pr[ADVΠ,A(n) = 1] ≤ 1

2
+ negl(n)

where the probability is taken over the random coins used by A, as well as the random coins used in the
experiment.

A.1.1 The El Gamal PKE

A useful implementation of homomorphic PKE is the El Gamal [Gam85] scheme that is multiplicatively
homomorphic. In this paper we exploit the additive variation. Let G be a group of prime order p in which
DDH is hard. Then the public key is a tuple PK = ⟨G, p, g, h⟩ and the corresponding secret key is SK = s,
s.t. gs = h. Encryption is performed by choosing r ← Zp and computing EncPK(m; r) = ⟨gr, hr · m⟩.
Decryption of a ciphertext C = ⟨α, β⟩ is performed by computing m = β · α−s and then finding m by
running an exhaustive search.

A.2 Knowledge Extraction

In this paper we are interested in witness indistinguishable and zero-knowledge proofs that are proofs of
knowledge (PoK) which imply the existence of a knowledge extractor that extracts the witness w used by
the prover.

Definition A.3. Let R be a binary relation and κ → [0, 1]. We say that an interactive function V is a
knowledge verifier for the language L with knowledge error κ if the following two conditions hold:

Non-triviality: There exists an interactive machine P such that for every (x,w) such that w is a witness for
x ∈ L, all possible interactions of V with P on common input x and auxiliary input w are accepting.

Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such that for
every interactive function P , every x ∈ L, and every machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by Px,y,r that uses randomness r (where the probability is
taken over the coins of V). If p(x, y, r) > κ(|x|), then, on input x and with access to oracle
Px,y,r, machine K outputs a witness s for x ∈ L within an expected number of steps bounded
by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

It is known that any Σ-protocol is a WI-PoK. One such example is the protocol for proving the knowl-
edge of Hamiltonian cycle in a graph, which is an NP-complete problem.

A.3 Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation and refer to [Gol04, Chapter 7]
for more details and motivating discussions. A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
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functionality and denote it f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2). That is, for every
pair of inputs (x, y), the output-vector is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings
where P1 receives f1(x, y) and P2 receives f2(x, y). We use the notation (x, y) 7→ (f1(x, y), f2(x, y)) to
describe a functionality. We prove the security of our protocols in the settings of malicious computationally
bounded adversaries. Security is analyzed by comparing what an adversary can do in a real protocol execu-
tion to what it can do in an ideal scenario. In the ideal scenario, the computation involves an incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Informally, the protocol is secure if any adversary
interacting in the real protocol (i.e., where no trusted third party exists) can do no more harm than what it
could do in the ideal scenario. In this paper we follow the 1

p -secure computation definition from [GK10]
which presented a simulation based definition for which the difference between the real and the simulated
distributions differ within 1

p .

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we do
not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary, and
the adversary then decides whether the honest parties would receive their outputs from the trusted party or an
abort symbol⊥. Let f be a two-party functionality where f = (f1, f2), letA be a non-uniform probabilistic
polynomial-time algorithm, and let I ⊂ [2] be the set of corrupted parties (either P1 is corrupted or P2 is
corrupted or neither). Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and security
parameter n, denoted IDEALf,A(z),I(n, x, y), is defined as the output pair of the honest party and the
adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time algorithm and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted REALπ,A(z),I(n, x, y),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition A.4. Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every I ⊂ [2],

{
IDEALf,S(z),I(n, x, y)

}
n∈N,x,y,z∈{0,1}∗

1/p
≈

{
REALπ,A(z),I(n, x, y)

}
n∈N,x,y,z∈{0,1}∗

where n is the security parameter.

The F-hybrid model. In order to construct some of our protocols, we will use secure two-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when
constructing a protocol π that uses a subprotocol for securely computing some functionality F , we consider

31



the case that the parties run π and use “ideal calls” to a trusted party for computing F . Upon receiving
the inputs from the parties, the trusted party computes F and sends all parties their output. Then, after
receiving these outputs back from the trusted party the protocol π continues. Let F be a functionality and
let π be a two-party protocol that uses ideal calls to a trusted party computing F . Furthermore, let A be a
non-uniform probabilistic polynomial-time algorithm. Then, the F-hybrid execution of π on inputs (x, y),
auxiliary input z toA and security parameter n, denoted hybπF ,A(z)(n, x, y), is defined as the output vector
of the honest parties and the adversary A from the hybrid execution of π with a trusted party computing F .
By the composition theorem of [Can00] any protocol that securely implements F can replace the ideal calls
to F .
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