
Scalar Blinding on Elliptic Curves with Special

Structure

Scott Fluhrer

Cisco Systems

August 10, 2015

1 Abstract

This paper shows how scalar blinding can provide protection against side channel
attacks when performing elliptic curve operations with modest cost, even if the
characteristic of the field has a sparse representation. This may indicate that,
for hardware implementations, random primes might not have as large of an
advantage over special primes as previously claimed.

2 Background

Elliptic curves are a useful tool within cryptography. An Elliptic Curve is a
mathematical group, and some Elliptic Curves have this useful property: given
a group member (point) G and an integer k, the point H = kG can be computed
in time proportional to log k; however given two points G,H, computing the
integer k such that H = kG takes time proportional to

√
k (using the best

known algorithm). By selecting k (and the Elliptic Curve) to be an appropriate
size, we can make finding H given k and G (known as point multiplication)
relatively quick, while making finding k given H and G (known as the discrete
logarithm problem) infeasible.

The most common Elliptic Curves used in practice are defined over a prime
field GF (p), for a large (perhaps 256 bit) prime p (the characteristic) that we
pick when we generate the curve. One thing this means in practice is that
when we compute a point multiplication kG, we spend the majority of the time
computing the modular multiplication a×b (mod p) for two values a, b ∈ GF (p).

To accelerate this operation, one approach is to select a prime of the form
p = 2e − c, where c has a simple representation in binary, and is considerably
smaller than 2e. This allows us to accelerate the computation of the modular
reduction by taking advantage of the identity:

a · 2e + b ≡ a · c + b (mod 2e − c)

1



If the binary representation of c is simple enough, we can compute a · c without
doing a full multiply, and hence we can compute this modular reduction signif-
icantly faster than we could for an arbitrary prime. This allows us to compute
the modular multiplication of two numbers in not much more time than it takes
to perform a bignum multiplication of those two numbers. Examples of Ellip-
tic Curves that allow this optimization include the so-called NIST curves[6],
Curve25519[2], and the Microsoft NUMS curves[1].

If we instead select a random prime without such a special structure (such
as was done when defining the Brainpool curves[5]), there are still some opti-
mizations we can do beyond the obvious ’perform a multiply, and then perform
a generic modulo reduction’. We can implement Montgomery Multiplication,
which replaces the modulo operation with some multiplies and shifts; the net
result is that a multiplication followed by a modular reduction can be done in
the time of approximately two bignum multiplications; in other words, modular
multiplication of a special form prime can be done approximately twice as fast
as an arbitrary prime.

If this were the only consideration, the choice of whether we should use a
prime with special structure would be an obvious one. However, there is another
issue. Sometimes, Elliptic Curves are implemented by hardware that needs to
operate in hostile environments, and can be expected to be subject to side
channel attacks, such as Differential Power Analysis. In these types of attacks,
the cryptanalyst runs the system, performing the same operation repeatedly,
and takes careful measurements of power consumed (or EM radiation emitted)
on a cycle-by-cycle basis; by statistically combining these measurements, the
attacker hopes to recover the internal states (which includes the private key).

To combat these sorts of attacks, one of the strategies that we need to
employ is blinding; we include random data in our computations, and while
the end results is independent of the random value, the intermediate values are
strongly dependent, and thus the correlations between the intermediate states
and anything that the attacker wants (such as the private key) is much weaker.

One such method of blinding Elliptic Curve calculations (first published by
Coron[3]) takes advantage of a property of Elliptic Curve groups; we know an
integer n such that nG = 0 (this value n is known as the order of the point
G). Coron’s method to compute kG would be to select a random value t and
computing first nt + k, and then (nt + k)G. Everytime we would perform a
point multiplication, we would select a random t, and hence the bits of the
integer we’re giving to the point multiplication logic are independent of the
integer k we’re actually multiplying by. Because the time taken by the point
multiplication is proportional to the log of the integer, this blinding method
increases the time by a value proportional to be size of t; if we select (for
example) a 64 bit t, this increase is relatively small compared to the time we
would have taken computing kG anyways.

However, for primes with special structure, this straight-forward approach
turns out not to work as well. The order of the curve is always within the Hasse

2



Interval; that is, we have:

p + 1− 2
√
p ≤ hn ≤ p + 1 + 2

√
p

where h is the cofactor of the curve, and is usually a small power of 2.
What this implies is that n ≈ p/h, and if the upper bits of p have a sparse
structure, then the upper bits of n will as well. In other words, if p is a special
structure prime, and if t <

√
p, then some of the bits of nt + k will be strongly

correlated to some bits of k, and hence this supposed blinding operation does
leak some information about k. This would appear to imply that primes with
special structure would require significantly larger t values than random primes.
And because the time taken to do a point multiplication is proportional to the
length of the integer being multiplied, this would appear to imply that primes
with special structure can be slower than random primes when implemented on
hardware.

3 Scalar randomization with fields with special
structure

One common way to compute the point multiplication kG is to express k in
base b, as:

k = dib
i + di−1b

i−1 + di−2b
i−2 + ... + d2b

2 + d1b
1 + d0b

0

and then perform the computation:

kG = d0G + b · (d1G + b · (d2G + ... + b · (di−1G + b · (diG)))...)))

In the straight-forward way, this takes b− 2 additions to evaluate the values
(0G, 1G, 2G, ..., (b−1)G), and then i cycles of multiplying an intermediate point
by the small integer b and adding the point that corresponds to the next digit.
There are a number of variants to this approach, both to try to achieve constant
time, and to reduce the number of additions required (for example, by using the
digits in the range (−b/2, b/2), taking advantage of the fact that we can compute
the inverse −G cheaply within an Elliptic Curve group).

The obvious choice is to make b a power of two (so b = 2m); this yields two
immediate advantages:

� If k is already expressed in binary, the decomposition into the form (di, di−1, ..., d0)
is just extracting bits

� The operation of multiplying a point by b can be efficiently done by doing
m point doublings

However, if we look at that value of n expressed in such a base b if the prime
has special structure, we see a regular pattern. For example, the value of n

3



for the Elliptic Curve Curve25519 (which has the special form prime 2255 − 19)
expressed in base b = 32 is:

04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 20 27 27 28 29 29 08 23 23 19 19 11 05 16 04 19 03 03 09 14 15 11 20 31 13

Note the long string of zero’s at the beginning; these are what makes scalar
randomization less effective. As one might expect, tn ≈ t2252 + t2124.4, and if
t < 2128, then bits 251 and below of k + nt will be strongly correlated to the
corresponding bits of k (because the bits of nt with nontrivial contributions to
those bits of the sum will be zero). Other special form primes don’t have quite
as striking of a form (I chose Curve25519 because the form of its n makes it
quite obvious), but the other special form primes also have long strings of 0’s
or b− 1 digits at the beginning, which yields the corresponding weakness.

However, let us consider what happens if we consider a b which is not a power
of 2. For example, if we were to take the same n expressed in base b = 48, we
get:

01 28 34 41 23 00 42 31 16 04 20 44 19 13 01 16 37 17 42 41 16 36 22 39 40
06 14 29 09 44 17 13 24 04 31 28 46 05 19 16 46 07 18 12 42 13

Here, we don’t get any regular pattern, and this value would, at first glance,
appear random. And, in fact, if we look at the digits of k+nt (for modest random
t) expressed in base 48, we don’t detect any correlation between the digits of
that and the digits of k expressed in base 48. This implies that blinding with
this value (in base 48) is likely as effective as blinding based on a random prime
in base 32.

This is not only true of Curve25519; the same thing happens for the special
prime curve P256, which has n in base b = 32 as:

01 31 31 31 31 31 31 16 00 00 00 00 00 03 31 31 31 31 31 31 31 31 31 31 31
31 29 28 28 27 29 10 27 09 24 23 19 26 02 15 07 14 14 10 24 11 30 06 06 09 10
17

(where the streaks of 31’s and 00’s cause a similar effect to the long string
of 00’s in the Curve25519 n). In contrast, in base b = 48, it is:

25 27 29 39 32 12 33 29 24 47 03 05 12 17 33 24 45 02 26 34 11 37 13 27 43
25 45 05 37 02 04 08 39 09 42 06 04 27 15 01 47 30 12 25 23 01

Of course, once we consider nonpower-of-2 bases, we lose the two advantages
that we formally had; let us examine how we can accommodate the loss of these
two advantages.

4 Costs of point multiplication using a non-power-
of-2 base

The first thing we want to look at is how much more expensive it is to use a
base which is not a power of 2. After all, a base which is a power of 2 allows
us to implement the fixed multiplication by b by using a handful of doublings,
which is the most efficient method possible. However, it turns out there are
other bases that are almost as cheap.

4



To make a concrete comparison, we’ll outline the costs with both a power-
of-2 base, and a nonpower-of-2 base. In both cases we’ll assume that we’re
dealing with an Elliptic Curve with a 256 bit subgroup, and that we’ll use a 64
bit blinding value r, yielding an exponent which is 320 bits long. We’ll use the
radix method, using a balanced representation of the digits (that is, the digits
are values in the range [−b/2, b/2], and we’ll assume that the addition-by-0 is
masked somehow (whether the low-level addition routines handle it without a
special case, or because in that case we’ll add by an arbitrary point and discard
the result).

To implement this using radix b = 32 (which is optimal over all powers-
of-2 in this scenario), we’ll first compute the digits (−16G,−15G, ..., 15G, 16G)
with 7 doublings, 7 additions1 and 15 negations2. Then, we implement the
actual addition chain; in this case, 320 bits is 64 digits3; this is 63 rounds of
multiplying the current point by 32 (which is 5 doublings), and adding in the
next digit (which is a single addition); this step takes us 315 doublings, and 63
additions, for a total of 322 doublings, 70 additions, and 15 negations.

Now, let us look at the radix b = 48 case; computing the digits (−24G,−23G, ..., 24G)
requires 11 doublings, 11 additions and 23 negations. Then, we implement the
actual addition chain; in this case, 320 bits can be expressed in 58 base-48 digits;
this is 57 rounds of multiplying the current point by 48 (which can be imple-
mented by 5 doublings and an addition), and adding in the next digit (which
is a single addition); this step requires 285 doublings, and 114 additions, giving
us a grand total of 296 doublings, 125 additions and 23 negations.

If our Elliptic Curve representation makes addition as cheap as doubling
(which some do), and we ignore the negations (which are comparatively cheap),
then the base-32 method turns out to be 7.3% faster than the base-48 method.
If we instead assume that a doubling is 80% of the cost of an addition (another
common assumption), then the base-32 method turns out to be 10.4% faster
than the base-48 method. In other words, from this perspective, we can im-
plement the blinding on a special format prime, and be within 7-10% of the
performance of a random prime. These results are fairly stable if we tweak our
assumptions (e.g. change the size of the group order or the size of t)

When we multiply by a fixed point (for example, the curve generator G),
one common optimization is to precompute various multiples kiG for various
values ki, and use those to accelerate the point multiplication process. While
this works even better with bases that aren’t powers of 2 (as we no longer need
to perform multiplications by the fixed value b, and not restricting ourselves to
power of 2 bases often allows us to fine-tune the base better), this technique
does require us to store some precomputed tables, and hence is less likely to be
considered useful for a hardware implementation. Hence, other than this quick

1In some elliptic curve representations, the operation of adding a point to itself (doubling)
is cheaper than adding two distinct points (additions), hence we track those two operations
separately

2Negation is such a cheap operation within Elliptic Curves that we typically don’t count it
3Normally, it would be 65, because of the signed representation; however we could assume

that t is a signed value as well, and that would bring us to the 64 digit level

5



note, we will ignore the possibility.

5 Working with exponents in nonpower-of-2 bases

The other advantage that we discard if we work in an odd base is the fact that
have to do something to convert our multiplier (which is in binary) into the
base. The obvious approach would be to compute k+ tn in binary, and then do
a base conversion into our desired format. The problem with that is that the
digits of k + tn will be expressed as a temporary, and thus will be subject to
the same side channel attacks that we are trying to avoid.

However, there are ways to avoid this issue. To demonstrate this, we will
review two different representative protocols, and give a possibility of how this
can be addressed in both of them. These are certainly not the only algorithms
we would like to do point multiplication with; however these two should demon-
strate the range of options that are possible.

One note: the above point multiplication analysis assumed a balanced base-
48 notation, while the below will assume a standard base-48 notation. This is
because standard base-48 notation is easier to do arithmetic in, while it is not
difficult to convert to a balanced notation, if that would be helpful to the point
multiplication logic.

5.1 The case of ECDH/ECIES

The easiest case to handle is the case of ECDH and ECIES. In these cases, the
integer that we multiply by is just a random number that we pick, and has
no correlation with any other value (with the exception that we multiply two
different points by the same integer).

In this case, we can avoid the initial problem (how do we convert the binary
integer into base-48 without giving a side channel attack) simply by selecting
the initial random number in base-48. That is, we never explicitly express the
multiplier in binary; instead, we pick a series of random values between 0 and
47, and use those as the base 48 digits. As for how to select such a random value
between 0 and 47, it can be noted that a rejection method (where you generate
6 random bits as a value between 0 and 63 repeatedly until the selected value is
in range) is safe; it is not constant time, however the time taken is uncorrelated
the value eventually selected, and hence the timing doesn’t leak any data we
care about.

The other step is to apply the blinding factor, that is, compute k + nr is
a way that has minimal correlation to k; this can be done by computing nr in
binary, and then converting that to base-48 (and as nt has no correlation to k,
we have less concern about leaking data during the conversion process); once
that is done, we can perform a constant time addition of nr to k in base-48.

6



5.2 The case of ECDSA Signature Generation

Another case is where we are attempting to implement ECDSA, and in partic-
ular, the signature generation process. Here, we pick a random value k, and
compute both the x-coordinate of r = kG (for the generator point G), and
s = k−1(z + rd) (where z, r and d are integers).

Because we need to do computations on k beyond using it to do point multi-
plication, the strategy of generating it in base-48 is less attractive. The obvious
idea of computing k + bn, and then converting that to base-48 (for a random
blinding factor b), and then using our base-48 style point multiplication also
doesn’t work, because we initially express k + bn in binary, and the the inter-
mediate bits of that will be correlated to the bits of k, and that’s what we’re
trying to avoid.

However, it is still possible by adding a few extra blinding factors. Consider
this randomized procedure:

� Select random values a, b from the range [0, n), u from the range [1, n)
and t from the range (0, 264) (t will be the Coron blinding factor).

� Compute t1 = a + tn

� Convert both t1 and b into base-48, giving t3, and t4 Add t3 and t4 together
as base-48 numbers, giving t5

� Compute t5G (using the base-48 point multiplication algorithm outlined
earlier), with r being the x-coordinate of the resulting point

� Compute u1 = au mod n and u2 = bu mod n

� Compute u3 = u1 + u2 mod n, and then compute u4 = u−1
3 mod n

� Compute s = u4u(z+ rd) (where z, r and d have the normal meanings for
ECDSA; z is the hash, r is the x-coordinate computed previously, and d
is the ECDSA private key).

If you go through this procedure, it should be clear that this is the ECDSA
signature algorithm (with k = a + b mod n). It should also be clear that the
value of k is selected without a bias. In addition, the internal bits of all the
intermediate values are uncorrelated to the bits of k (in fact, except for t5,
the value of all intermediates are distributed independently of k), hence we
have achieved blinding against first order side channel attacks. In addition,
the operations that we have added over the straight-forward ECDSA signature
generation with Coron blinding (generating 2 log n additional random bits, three
additional multiplications, one additional binary addition, one addition in base-
48, and two base conversions) are relatively cheap (say, compared to computing
the multiplicative inverse), and so we haven’t increased the expense significantly.

7



6 Summary

In Requirements for Standard Elliptic Curves[4], the designers of the Brainpool
curves gives two justifications for selecting a random prime; one is that a special
prime does not give an special performance advantages in their environment,
and secondly, the special primes make blinding operations more difficult. This
paper has shown that the effort required to perform blinding when using a
special prime has been overestimated; there appears to be ways to perform the
required blinding at modest additional expense.

References

[1] C. Costello P. Longa-M. Naehrig B. Black, J. Bos, 2014.

[2] Daniel Bernstein. A state-of-the-art Diffie-Hellman function. Web Site, 2005.

[3] Jean-Sébastien Coron. Resistance Against Differential Power Analysis For
Elliptic Curve Cryptosystems. In Cryptographic Hardware and Embedded
Systems, pages 292–302. Springer Science Business Media, 1999.

[4] Dr. Joern-Marc Schmidt Dr. Torsten Schuetze Dr. Manfred Lochter, Dr.
Johannes Merkle. Requirements for Standard Elliptic Curves, 2014.

[5] M. Lochter and J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation. Technical report, mar 2010.

[6] NIST. RECOMMENDED ELLIPTIC CURVES FOR FEDERAL GOV-
ERNMENT USE. NIST Web Site, 1999.

8


	Abstract
	Background
	Scalar randomization with fields with special structure
	Costs of point multiplication using a non-power-of-2 base
	Working with exponents in nonpower-of-2 bases
	The case of ECDH/ECIES
	The case of ECDSA Signature Generation

	Summary

