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Abstract. D. Davies and S. Murphy found that there are at most 660 different probability
distributions on the output from any three adjacent S-boxes after 16 rounds of DES [3]. In
this paper it is shown that there are at most 72 different distributions for S-boxes 4, 5 and
6. The distributions from S-box triplets are linearly dependent and the dependencies are de-
scribed. E.g. there are only 13 linearly independent distributions for S-boxes 4, 5 and 6. A
coset representation of DES S-boxes which reveals their hidden linearity is studied. That may
be used in algebraic attacks. S-box 4 can be represented by significantly fewer cosets than
the other S-boxes and therefore has more linearity. Open cryptanalytic problems are stated.
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1 Introduction

The Data Encryption Standard (DES) is a symmetric block cipher from 1977. It has block size of
64 bits and a 56-bit key. DES in its original form is deprecated due to the short key. Triple DES
[10] however, is still used in many applications (e.g. in chip-based payment cards). It is therefore
still important to analyze its security. DES is probably the most analyzed cipher, and is broken by
linear [9] and differential [5] cryptanalysis. Even so, the most effective method in practice is still
exhaustive search for the key. There are also some algebraic attacks on DES that can break 6-round
DES [11].

Donald Davies and Sean Murphy described in [3] some statistical properties of S-boxes in DES.
They found that there are at most 660 different distributions on the output from any three adjacent
S-boxes after 16 rounds. These distributions divide the key space into classes where equivalent keys
make the output follow the same distributions. The correct class is found by identifying which
distribution a set of plaintext/ciphertext pairs follow. They used this to give a known-plaintext
attack. The time complexity of the attack is about the same as brute-force attack and requires
approximately 256.6 plaintext/ciphertext pairs. The attack was improved by Biham and Biryukov
[4] where the key can be found with 250 plaintext/ciphertext pairs with 250 operations. Later,
Kunz-Jacques and Muller [12] further improved the attack to a chosen-plaintext attack with time
complexity 245 using 245 chosen plaintexts.

In this paper we study new statistical and algebraic properties of DES. In Section 2 we show
Davies and Murphy’s results, using different notations than theirs. We also show a new exceptional
property of S4, and use this to show that there are fewer different distributions on the output from
S4S5S6 compared to other triplets. The new propertiey are related to the forth S-box in DES, and
is used to show that the number of different distributions on the output from S-box 4, 5 and 6 is



at most 72 (after 16 rounds). This divides the key space into fewer, but larger, classes compared to
Davies and Murphy’s results.

The distributions from S-box triplets are linearly dependent. We give a description of the rela-
tions between the distributions, and upper bound the number of linearly independent distributions
for each triplet. E.g. among the 72 different distributions for S-box 4, 5 and 6 there are only 13
linearly independent.

A coset representation of the DES S-boxes is suggested in Section 3. It is found that S-box 4
is abnormal again. It can be covered by 10 sub-cosets while the other S-boxes require at least 16.
Also, the coset representation of S-box 4 contains 6 sub-cosets of size 8, while the other S-boxes
contain at most one sub-cosets of such size. The coset representation of S-boxes makes it possible
to write the system of equations for DES in a more compact form than in [6,7].

Like the linear approximations discovered by Shamir [2] was later used by Matsui [9] to suc-
cessfully break DES, these new properties might improve some attacks in the future. Two open
problems are stated at the end of the paper. If solved that would improve statistical and algebraic
attacks on DES.

1.1 Notations

Let Xi−1, Xi denote the input to the i-th round and Xi, Xi+1 denote the i-th round output. So
X0, X1 and X17, X16 are plaintext and ciphertext blocks respectively, where the initial and final
permutations are ignored. Let Kj be 48-bit round key at round j. Then

Xj−1 ⊕Xj+1 = Yj , Yj = P (S(X̄j ⊕Kj)) , (1)

where X̄j is a 48-bit expansion of Xj , P denotes a permutation on 32 symbols, and S is a transform
implemented by 8 S-boxes. Let Si be a DES S-box, so

Si(u5, u4, u3, u2, u1, u0) = (v3, v2, v1, v0) , (2)

where uj and vj are input and output bits respectively.

2 (Ciphertext) ⊕ (plaintext) distributions and linear dependencies
between the distributions

By (1), the XOR of the plaintext/ciphertext blocks are representable as follows

X17 ⊕X1 = Y2 ⊕ Y4 ⊕ ...⊕ Y14 ⊕ Y16 , (3)

X16 ⊕X0 = Y1 ⊕ Y3 ⊕ ...⊕ Y13 ⊕ Y15 . (4)

When analysing (3) and (4) we assume the round function inputsX2, X4, . . . , X16 andX1, X3, . . . , X15

are uniformly random and independent respectively. That common assumption was already in [3].
We study the joint distribution of bits in X17⊕X1 and in X16⊕X0 which come from the output of
3 adjacent S-boxes in DES round function, and therefore in Yj . The output of 3 adjacent S-boxes
is called (Si−1, Si, Si+1)-output when i is specified.

When we look at reduced number of rounds in DES (k rounds), we see that Xk+1 ⊕ X1 and
Xk⊕X0 follows the distribution for the XOR of k/2 round-outputs (for even k). We will throughout
this paper use 2n to denote the number of rounds. n is the number if outputs that are XORed, and
full DES is represented by n = 8.



2.1 Definitions and a basic lemma

We can assume the input to Si is uniformly random then three distributions are related to each Si.
We use notation (2).

1. The distribution of u1, u0, v3, v2, v1, v0 is called right hand side distribution and we denote

p
(i)
y,r = Pr((u1, u0) = y and (v3, v2, v1, v0) = r).

2. The distribution of u5, u4, v3, v2, v1, v0 is called left hand side distribution and we denote

q
(i)
x,r = Pr((u5, u4) = x and (v3, v2, v1, v0) = r).

3. The distribution of u5, u4, u1, u0, v3, v2, v1, v0 is called LR distribution and we denote

Q
(i)
x,y,r = Pr((u5, u4) = x, and (u1, u0) = y, and (v3, v2, v1, v0) = r).

Obviously, p
(i)
y,r =

∑
xQ

(i)
x,y,r and q

(i)
x,r =

∑
y Q

(i)
x,y,r, the sums are over 2-bit x, y respectively.

Lemma 1. For any 2-bit x, y and any 4-bit r holds

p
(i)
y⊕2,r + p(i)

y,r =
1

32
, (5)

q
(i)
x⊕1,r + q(i)

x,r =
1

32
, (6)

Q(i)
x,y,r +Q

(i)
x,y⊕2,r +Q

(i)
x⊕1,y,r +Q

(i)
x⊕1,y⊕2,r =

1

64
. (7)

Proof. The equalities (5) and (6) were found directly from the values of p
(i)
y,r, q

(i)
x,r, for instance, see

those distributions listed for S4 in Appendix 1. Alternatively, by DES S-box definition, for any fixed
(u5, u0) the distribution of (v3, v2, v1, v0) is uniform. So (u0, v3, v2, v1, v0) and (u5, v3, v2, v1, v0) are
uniformly distributed and that implies (5) and (6) as A. Kholosha [1] later observed. The former
implies (7) as well.

2.2 (Si−1, Si, Si+1)-output distributions

We study the distribution of the output from three adjacent S-boxes Si−1, Si, Si+1 in DES round
function. An expression for that distribution slightly different from that in [3] is here presented.

Let (a5, a4, a3, a2, a1, a0), (b5, b4, b3, b2, b1, b0) and (c5, c4, c3, c2, c1, c0) be the input to three ad-
jacent S-boxes in one DES round. Then

(a1, a0)⊕ (b5, b4) = k and (b1, b0)⊕ (c5, c4) = k′ ,

where k and k′ are called the common key bits, they are both 2-bit linear combinations of
round-key-bits. By kj = (kj1, kj0) and k′j = (k′j1, k

′
j0) we denote the common key bits in round j.

Let (r, s, t) be a 12-bit output from Si−1, Si, Si+1 in one DES round. Then

Pr(r, s, t | k, k′) = 24 ×
∑
x,y

p
(i−1)
x⊕k,r Q

(i)
x,y,s q

(i+1)
y⊕k′,t . (8)

The distribution of (r, s, t) after 2n rounds is the n-fold convolution of Pr(r, s, t | k, k′):

Pr(r, s, t | k1, k
′
1, ..., kn, k

′
n) =

∑ n∏
i=1

Pr(ri, si, ti | ki, k′i) ,



where the sum is over (ri, si, ti) such that
⊕

i(ri, si, ti) = (r, s, t). By changing the order of sum-
mation and using (8) we get

Pr(r, s, t | k1, k
′
1, ..., kn, k

′
n) (9)

= 24n ×
∑

p
(i−1)
x1⊕k1,...,xn⊕kn,r

×Q(i)
x1,y1,...,xn,yn,s × q

(i+1)
y1⊕k′1,...,yn⊕k′n,t

,

the sum is over 2-bit x1, y1, ..., xn, yn, and where

p(i)
x1,...,xn,r =

∑
⊕

j rj=r

p(i)
x1,r1 × · · · × p

(i)
xn,rn ,

q
(i)
y1,...,yn,t =

∑
⊕

j tj=t

q
(i)
y1,t1 × · · · × q

(i)
yn,tn ,

Q(i)
x1,y1,...,xn,yn,s =

∑
⊕

j sj=s

Q(i)
x1,y1,s1 × · · · ×Q

(i)
xn,yn,sn .

Davies-Murphy’s results Lemma 1 implies

Lemma 2. For any 2-bit x1, y1..., xn, yn and 4-bit r, t

p
(i)
x1⊕k1,...,xn⊕kn,r

= p
(i)

x1⊕k10,...,xn−1⊕k(n−1)0, xn⊕2k, r
,

q
(i)
y1⊕k′1,...,yn⊕k′n,t

= q
(i)

y1⊕2k′11,...,yn−1⊕2k′
(n−1)1

, yn⊕k′, t
, (10)

where k and k′ are the parity of (k11, ..., kn1) and (k′10, ..., k
′
n0).

Each value for the vector (k1, k
′
1, ..., kn, k

′
n) can be mapped to a distribution on (r, s, t). Many

of these distributions are equal to each other. Lemma 2 is now used to give an upper bound on the
number of different distributions.

First, one can permute any (kj , k
′
j) and (ki, k

′
i) and get the same distribution. Also the distribu-

tion is defined by the parity of (k11, ..., kn1) and (k′10, ..., k
′
n0). There are 4 values for the two parity-

bits, and there are
(

3+n
n

)
combinations for the remaining 2n bits (k10, ..., kn0) and (k′11, ..., k

′
n1).

Therefore there are at most 4 ×
(

3+n
n

)
different distributions on the output from three adjacent

S-boxes. Table 1 lists the maximum number of different distributions after multiple rounds. Again,
16-round DES is specified by n=8.

Table 1. Upper bound on number of different distributions for 2n rounds

n 1 2 3 4 5 6 7 8

Upper bound 16 40 80 140 224 336 480 660



Exceptional property of S4 In this section we find an exceptional property of S4. In particular,
we prove

Lemma 3. For any 2-bit x, y, a and 4-bit r holds∑
h

p
(4)
x⊕a,h p

(4)
y⊕a,h⊕r =

∑
h

p
(4)
x,h p

(4)
y,h⊕r .

Proof. By Lemma 1, p
(4)
x⊕2,h + p

(4)
x,h = 1

32 for any 2-bit x and 4-bit h. It is easy to see the lemma is
true for a = 2. All other cases are reduced to a = 1 and x = y = 0. Let

f(h) =


0, if h /∈ {0, 6, 9, 15};
1, if h ∈ {0, 9};
−1, if h ∈ {6, 15} .

From S4 right hand side distribution values, see Table 5 in Appendix 1, we find

p
(4)
x⊕1, h + p

(4)
x, h =

1

32
+

(−1)x1f(h)

64
(11)

and then ∑
h

f(h)f(h⊕ r) = 4 f(r) , (12)

∑
h

p
(4)
x,h f(h⊕ r) =

(−1)x1 2 f(r)

64
, (13)

for any 4-bit r and any 2-bit x = (x1, x0). Hence∑
h

p
(4)
1,h p

(4)
1,h⊕r =

∑
h

(
1

32
+
f(h)

64
− p(4)

0,h

) (
1

32
+
f(h⊕ r)

64
− p(4)

0,h⊕r

)
=

∑
h

f(h)f(h⊕ r)
642

− 2
∑
h

p
(4)
0,h

f(h⊕ r)
64

+
∑
h

p
(4)
0,h p

(4)
0,h⊕r =

∑
h

p
(4)
0,h p

(4)
0,h⊕r .

The lemma is proved.

This surprising property holds because (11), (12),(13) are true simultaneously for the right hand

side distribution p
(4)
x,h.

Corollary 1. For any 2-bit x1, ..., xn and 4-bit r holds

p
(4)
x1⊕k1,...,xn⊕kn,r

= p
(4)

x1,...,xn−1,xn⊕k̄,r
,

where k̄ = k1 ⊕ · · · ⊕ kn.

Proof. By Lemma 3, ∑
h1⊕h2=r

p
(4)
x1⊕k1,h1

p
(4)
x2⊕k2,h2

=
∑

h1⊕h2=r

p
(4)
x1,h1

p
(4)
x2⊕(k1⊕k2),h2

for any x1, x2, k1, k2 and r. Therefore the corollary is true for n = 2. The general case follows
recursively.



The number of different (S4, S5, S6)-output distributions after 2n rounds Davies and
Murphy found that there are at most 4×

(
3+n
n

)
different distributions of the output from 3 adjacent

S-boxes after 2n rounds. In this section we show (S4, S5, S6)-output has at most (8n+ 8) different
distributions.

Lemma 4. Let (r, s, t) be (S4, S5, S6)-output after 2n rounds. There are at most 8n + 8 different
distributions (r, s, t) can follow.

Proof. By Corollary 1 and Lemma 2 the distribution of (r, s, t) only depends on
⊕n

j=1 kj ,
⊕n

j=1 k
′
j0

and common key bits (k′11, ..., k
′
n1), where the order of the last n bits is irrelevant. There are n+ 1

combinations for (k′11, ..., k
′
n1) and 8 possible values for the three parity bits. The maximum number

of different distributions is therefore at most 8n+ 8 as the lemma states.

We made a computer program that computed the actual number of different distributions for all
8 triplets. Table 2 lists the results for n = 1, ..., 8 together with the bound from Lemma 4 and
Davies-Murphy’s bound. Remark that 16-round DES is specified by n = 8.

Table 2. Number of different distributions for output of 3 adjacent S-boxes

n 1 2 3 4 5 6 7 8

8n + 8 16 24 32 40 48 56 64 72

(S4, S5, S6) 16 24 32 40 48 56 64 72

4×
(
3+n
n

)
16 40 80 140 224 336 480 660

(Si−1, Si, Si+1), i 6= 5 16 40 80 140 224 336 480 660

It is not clear wether or not fewer different distribution can improve Davies-Murphy’s attack.
Intuitively, distinguishing between few distributions should be easier than distinguishing between
many distributions (if the distance between them are approximately the same). At the same time,
the number of keys in the class representing a given distribution is larger, so more work is required
to identify the correct key in the class. Also, the triplet attack described by Davies and Murphy
does not perform better than the attack based on the two S-box pairs in the triplet. An attack on
S-box pairs S4S5 and S5S6 behave worse than the triplet attack on S6S7S8 and S7S8S1 (which is
the best attack on triplets) [3]. We do not know if it is possible to alter Davies-Murphy’s attack so
that fewer distribution would give an advantage.

2.3 Linear dependencies between the distributions after 2n rounds

In this section we describe linear relations between distributions on the output from three adjacent S-
boxes. We will see how (S4, S5, S6) compares to the other triplets. A distribution can be represented
by a row-vector (v0, ..., v212−1), where vj is the probability of the output j = (r, s, t).

Let M be a matrix whose rows are (Si−1, Si, Si+1)-output distributions. M is then called a
distribution matrix. A non-zero vector r such that rM = 0 is called a linear relation for M . Let



R be a matrix whose rows are linear relations for M , then R is called a relation matrix for M .
Then

rank(M) ≤ k − rank(R) , (14)

where k is the number of rows in M . There are five independent linear relations inside the right,
LR and left distribution that can be used to find linear relation between the rows of M . By Lemma
1,

p(i)
x,r − p

(i)
x⊕1,r + p

(i)
x⊕2,r − p

(i)
x⊕3,r = 0 , q(i)

x,r + q
(i)
x⊕1,r − q

(i)
x⊕2,r − q

(i)
x⊕3,r = 0 .

In other words, ∑
a

C1
a × p

(i)
x⊕a,r = 0 and

∑
a

C2
a × q

(i)
x⊕a,r = 0 , (15)

where C1 = (1,−1, 1,−1) and C2 = (1, 1,−1,−1). By Lemma 1, for any 2-bit x, y and 4-bit r∑
a

Q
(i)
x⊕a,y,r +Q

(i)
x⊕a,y⊕2,r =

1

32
, (16)

∑
b

Q
(i)
x,y⊕b,r +Q

(i)
x⊕1,y⊕b,r =

1

32
, (17)

Q(i)
x,y,r +Q

(i)
x,y⊕2,r +Q

(i)
x⊕1,y,r +Q

(i)
x⊕1,y⊕2,r =

1

64
. (18)

One now subtracts (16) and (16) after changing y ← y⊕ 1, (17) and (17) after changing x← x⊕ 2,
then (18) and (18) after changing y ← y ⊕ 1. So∑

k,k′

Ck,k′ ×Qx⊕k,y⊕k′,r = 0 , (19)

for any x, y and r, where C is any of

C3 = (1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1) ,

C4 = (1, 1, 1, 1, 1, 1, 1, 1, −1, −1, −1, −1, −1, −1, −1, −1) ,

C5 = (1, −1, 1, −1, 1, −1, 1, −1, 0, 0, 0, 0, 0, 0, 0, 0) .

For instance, C3 comes from∑
a

Q
(i)
x⊕a,y,r +Q

(i)
x⊕a,y⊕2,r −

∑
a

Q
(i)
x⊕a,y⊕1,r +Q

(i)
x⊕a,y⊕3,r = 0 .

Both (15) and (19) are used to build linear relations between the distributions of (r, s, t), the output
from three adjacent S-boxes after one round.

Lemma 5.

For any k′
∑
k

C1
k ×Pr(r, s, t | k, k′) = 0 , (20)

for any k
∑
k′

C2
k′ ×Pr(r, s, t | k, k′) = 0 , (21)

for C ∈ {C3, C4, C5}
∑
k,k′

Ck,k′ ×Pr(r, s, t | k, k′) = 0 . (22)



Proof. We will prove (20):

∑
k

C1
k ×Pr(r, s, t | k, k′) = 24 ×

∑
k

C1
k ×

(∑
x,y

p
(i−1)
x⊕k,r Q

(i)
x,y,s q

(i+1)
y⊕k′,t

)
= 24 ×

∑
x,y

∑
k

C1
k ×

(
p

(i−1)
x⊕k,r Q

(i)
x,y,s q

(i+1)
y⊕k′,t

)
= 24 ×

∑
x,y

Q(i)
x,y,s q

(i+1)
y⊕k′,t ×

(∑
k

C1
k × p

(i−1)
x⊕k,r

)
= 0 .

Similarly (21) is proved. We will prove (22).

∑
k,k′

Ck,k′ ×Pr(r, s, t | k, k′) = 24 ×
∑
k,k′

Ck,k′ ×

(∑
x,y

p(i−1)
x,r Q

(i)
x⊕k,y⊕k′,s q

(i+1)
y,t

)

= 24 ×
∑
x,y

∑
k,k′

Ck,k′ ×
(
p(i−1)
x,r Q

(i)
x⊕k,y⊕k′,s q

(i+1)
y,t

)

= 24 ×
∑
x,y

p(i−1)
x,r q

(i+1)
y,t ×

∑
k,k′

Ck,k′ ×Q(i)
x⊕k,y⊕k′,s

 = 0 .

Lemma 5 implies there are 11 linear dependencies between rows of the distribution matrix after
one round. The rank of the relation matrix is 10. We have also computed the rank of the distribution
matrix which is 6. Since there are 16 distributions in total, we have found all 10 independent linear
relations between the distributions. Lemma 5 is now used to build linear relations between the
distributions after 2n rounds.

Lemma 6. For any (k1, ..., kn), (k′1, ..., k
′
n), and i

∑
ki

C1
ki
×Pr(r, s, t | k1, k

′
1, ..., kn, k

′
n) = 0 , (23)

∑
k′i

C2
k′i
×Pr(r, s, t | k1, k

′
1, ..., kn, k

′
n) = 0 , (24)

∑
ki,k′i

Cki,k′i
×Pr(r, s, t | k1, k

′
1, ..., kn, k

′
n) = 0 , (25)

where C ∈ {C3, C4, C5} .



Proof. It is enough to prove (23) for i = 1.

∑
k1

C1
k1
×Pr(r, s, t | k1, k

′
1, ..., kn, k

′
n)

=
∑
k1

C1
k1
×

∑
⊕

j(rj ,sj ,tj)=(r,s,t)

n∏
j=1

Pr(rj , sj , tj | kj , k′j)

=
∑

⊕
j(rj ,sj ,tj)=(r,s,t)

n∏
j=2

Pr(rj , sj , tj | kj , k′j)
∑
k1

C1
k1
×Pr(r1, s1, t1 | k1, k

′
1) = 0 .

The proofs of (24) and (25) are similar.

Generating all relations from (23), (24) and (25) for all values of (k1, ..., kn), (k′1, ..., k
′
n), and i

will make a relation matrix too large to calculate the rank when n ≥ 4. We will instead consider
a distribution matrix M , where each distribution occurs only once. We then generate a relation
matrix for M . This way, by using (14), we find an upper bound on the rank of M for all triplets
and n ≤ 8, see columns 2 and 3 in Table 3. Triplet S4S5S6 have an an upper bound on the rank
which is lower than the other triplets. Full DES is specified by n = 8. We also computed the actual
rank of M for each triplet, see columns 4-11.

Table 3. Rank of the distribution matrix for each triplet

n S4S5S6
∗ SiSi+1Si+2

∗

i 6= 4
S1S2S3 S2S3S4 S3S4S5 S4S5S6 S5S6S7 S6S7S8 S7S8S1 S8S1S2

1 6 6 6 6 6 6 6 6 6 6

2 7 9 9 9 9 7 9 9 9 9

3 8 13 13 13 13 8 13 13 13 13

4 9 18 18 18 18 9 18 18 18 18

5 10 24 24 24 24 10 24 24 24 24

6 11 31 30 31 29 11 31 31 31 31

7 12 39 36 39 34 12 39 39 39 39

8 13 48 42 48 39 13 48 48 48 48

∗ Upper bound.

Each distribution is determined by a class of DES keys. Table 3 data suggests a strong statistical
dependence between ciphertexts generated with representatives of such classes. An open problem
is stated in the end of this paper, which if solved, could make use these statistical dependencies to
improve probability of success on Davies-Murphy’s attack.



3 S-box coset representation and DES equations

For each Si by (2) a set Ti of 10-bit strings

(u5, u4, u3, u2, u1, u0, v3, v2, v1, v0) (26)

is defined. They are vectors in a vector space of dimension 10 over field with two elements F2

denoted F 10
2 . Let V be any subspace of F 10

2 . For any vector a the set a⊕V is called a coset in F 10
2 .

Let dimV = s, then there are 210−s cosets associated with V . Also we say a⊕ V has dimension s
as well. Any coset of dimension s is a set of the solutions for a linear equation system

a⊕ V = {x |xA = b},

where A is a matrix of size 10× (10−s), and rankA = 10−s, and b is a row vector of length 10−s.
Any set T ⊆ F 10

2 may be partitioned into a union of its sub-cosets. We try to partition into
sub-cosets of largest possible dimension, in other words of largest size. Denote the set of such cosets
by M , it is constructed by the following algorithm. One first constructs a list of all sub-cosets in T
maximal by inclusion. Let C be a maximal in dimension coset from the list, then C is added to M
and the Algorithm recursively applies to T \ C. Let

M = {C1, . . . , Cr}.

Therefore x ∈ T if and only if x is a solution to the system xAk = bk associated with Ck ∈M .
The algorithm was applied to the vector sets Ti defined by DES S-boxes Si. Let the sets of

cosets Mi be produced. The results are summarised in Table 4, where 2a 4b 8c means Mi contains a
cosets of size 2, b cosets of size 4 and c cosets of size 8. The distribution is uneven. For instance, S4

Table 4. Coset distribution for S-boxes

i 1 2 3 4 5 6 7 8

coset dist. 26 413 24 414 26 411 8 44 86 416 26 413 26 411 8 24 412 8

# of cosets 19 18 18 10 16 19 18 17

admits exceptionally many cosets of size 8. Disjoint sub-cosets which cover Ti for each i = 1, . . . , 8
are listed in Appendix 2, where strings (26) have integer number representation

u529 + u428 + u327 + u226 + u125 + u024 + v323 + v222 + v12 + v0 .

3.1 More compact DES equations

Given one plaintext/ciphertext pair one constructs a system of equations in the key bits by intro-
ducing new variables after each S-box application, 128 equations for 16-round DES. By specifying
Si,

X̄ji ⊕Kji

P−1(Xj−1 i ⊕Xj−2 i)
=

[
0 . . . 63

Si(0) . . . Si(63)

]
, (27)



with 64 right hand sides, 10-bit vectors Ti written column-wise. Here X̄ji and Kji are 6-bit sub-
blocks of X̄j and Kj respectively. To find the key such equations are solved. That may be done
with methods introduced in [6], see also [7]. The complexity heavily depends on the number of right
hand sides.

We get a more compact representation, that is with lower number of sides. We use the previous
section notation. Let Mi contain r cosets. So x ∈ Ti if and only if x is a solution to exactly one of
the linear equation systems xAk = bk, k = 1, . . . , r. We cover the set of right hand side columns
in (27) with sub-cosets from Mi and get (27) is equivalent to[

X̄ji ⊕Kji

P−1(Xj−1 i ⊕Xj−2 i)

]
Ak = bk, k = 1, . . . , r (28)

in sense that an assignment to the variables is a solution to (27) if and only if it is a solution to
one of (28). The number of subsystems(also called sides) in (28), denoted by r, is between 10 and
19 depending on the S-box. For instance, in case of S4 the equation (28) has only 10 subsystems,
while (27) has 64. Such reduction generally allows a faster solution, see [8].

4 Conclusion and open problems

In the present paper new statistical and algebraic properties of the DES encryption were found.
They may have cryptanalytic implications upon resolving the following theoretical questions.

The first problem is within the statistical cryptanalysis. Let the cipher key space be split into n
classes K1, . . . ,Kn. Each class defines a multinomial distribution on some ≥ 2 outcomes, defined by
plaintext and ciphertext bits. Let P1, . . . , Pn be all such distributions computed a priori. Let ν(k)
denote a vector of observations on above outcomes for an unknown cipher key k. It is well known
that the problem “decide k ∈ Ki” may be solved with maximum likelihood method as in [3]. For
the classification of several observation vectors ν(k1), . . . , ν(ks) the same method is applied.

Open problem is to improve the method (reduce error probabilities) given the vectors P1, . . . , Pn

are linearly dependent. That would improve Davies-Murphy type attacks against 16-round DES as
for 660 different distributions on (Si−1, Si, Si+1) outputs (72 for (S4, S5, S6)) only ≤ 48 (13 for
(S4, S5, S6)) are linearly independent.

The second problem is related to algebraic attacks against ciphers. A new type time-memory
trade-off for AES and DES was observed in [6,7]. Let m be the cipher key size. Let ≤ 2l right hand
sides be allowed in the combinations by Gluing of the MRHS equations [6,7] during solution. Gluing
means writing several equations as one equation of the same type as (27). Then guessing ≤ m − l
key-bits is enough before the system of equations is solved by finding and removing contradictory
right-hand sides in pairwise agreeing of the current equations. The overall time complexity is at
least 2m−l × 2l = 2m operations as for each guess one needs to run over the right hand sides of
at least one of the equations. However coset representation allows reducing the number of sides
by writing them as (28). In case of DES the equation (27) for i = 4 is written with only 10 sides
instead of 64. For AES instead of 256 right hand sides one can do 64 for each of the equations,
see [8]. The combination of two equations (27) with Gluing has ≤ 212 right hand sides. With coset
representation the number of sides is at most 192 (at most 100 for the combination of two equations
from S4). Open problem is to reduce the time complexity of the above trade-off by using coset
representation.
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5 Appendix 1 - S4 right, left and LR distribution

Section 2.1 define the right, left and LR distribution. The tables below show these distributions for
S-box 4.

Table 5. Right hand side distribution of S-box 4 (each entry = 26 × p
(4)
x,r)

x\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 1 1 1 0 2 2 2 1 1 1 0 1 1

1 2 1 2 1 1 1 1 0 0 1 1 1 1 2 1 0

2 1 1 2 1 1 1 2 0 0 0 1 1 1 2 1 1

3 0 1 0 1 1 1 1 2 2 1 1 1 1 0 1 2



Table 6. Left hand side distribution of S-box 4 (each entry = 26 × q
(4)
x,r)

x\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 0 0 2 0 1 2 1 1 1 1 1 0 2 1 1

1 0 2 2 0 2 1 0 1 1 1 1 1 2 0 1 1

2 2 1 0 1 0 0 2 1 1 1 2 1 1 2 0 1

3 0 1 2 1 2 2 0 1 1 1 0 1 1 0 2 1

Table 7. LR distribution of S-box 4 (each entry = 26 ×Q
(4)
x,y,r)

x y\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 2 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0

1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

1 2 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1

1 3 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0

2 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0

2 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

2 2 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

2 3 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1

3 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1

3 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

3 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

3 3 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0



6 Appendix 2 - Disjoint sub-cosets for DES S-boxes

M1 = {{516, 626}, {678, 697}, {812, 827}, {841, 894}, {899, 922}, {944, 992},
{14, 36, 326, 364}, {16, 87, 175, 232}, {63, 77, 572, 590}, {97, 130, 545, 706},
{116, 158, 298, 448}, {178, 221, 938, 965}, {203, 241, 721, 747}, {259, 282, 653, 660},
{310, 379, 437, 504}, {348, 389, 783, 982}, {409, 425, 600, 616}, {467, 487, 851, 871},
{543, 759, 789, 1021}},

M2 = {{365, 490}, {855, 870}, {892, 912}, {949, 1007}, {15, 19, 33, 61}, {72, 84, 962, 990},
{110, 119, 134, 159}, {171, 178, 416, 441}, {195, 216, 676, 703}, {228, 254, 396, 406},
{265, 295, 475, 501}, {284, 304, 583, 619}, {322, 337, 737, 754}, {378, 453, 822, 905},
{512, 602, 931, 1017}, {541, 558, 795, 808}, {568, 625, 773, 844}, {650, 659, 717, 724}},

M3 = {{341, 497}, {605, 624}, {648, 697}, {707, 759}, {876, 974}, {978, 1020},
{10, 29, 110, 121}, {32, 134, 301, 395}, {73, 80, 207, 214}, {163, 229, 312, 382},
{180, 250, 662, 728}, {257, 359, 420, 450}, {274, 412, 779, 901}, {443, 479, 525, 617},
{529, 687, 788, 938}, {550, 570, 834, 862}, {801, 883, 949, 999},
{55, 147, 332, 488, 580, 736, 831, 923}},

M4 = {{45, 56, 290, 311}, {395, 401, 452, 478}, {711, 733, 968, 978}, {801, 820, 878, 891},
{7, 29, 328, 338, 683, 689, 996, 1022}, {78, 91, 257, 276, 749, 760, 930, 951},
{99, 117, 428, 442, 652, 666, 835, 853}, {128, 150, 495, 505, 608, 630, 783, 793},
{166, 191, 201, 208, 550, 575, 585, 592}, {234, 243, 357, 380, 522, 531, 901, 924}},

M5 = {{2, 30, 323, 351}, {44, 59, 230, 241}, {68, 82, 203, 221}, {97, 124, 170, 183},
{135, 148, 685, 702}, {264, 277, 577, 604}, {293, 304, 367, 378}, {397, 462, 657, 722},
{403, 416, 960, 1011}, {441, 472, 948, 981}, {489, 502, 516, 539}, {546, 744, 844, 902},
{568, 711, 869, 922}, {619, 650, 783, 1006}, {631, 765, 809, 931}, {790, 831, 848, 889}},

M6 = {{467, 504}, {591, 693}, {735, 762}, {795, 836}, {887, 897}, {918, 971},
{12, 26, 256, 278}, {33, 63, 74, 84}, {111, 114, 232, 245}, {137, 151, 162, 188},
{198, 301, 563, 984}, {217, 305, 642, 874}, {323, 349, 398, 400}, {356, 423, 830, 1021},
{382, 443, 521, 716}, {453, 491, 594, 636}, {532, 613, 800, 849}, {558, 665, 775, 944},
{680, 739, 941, 998}},



M7 = {{402, 481}, {534, 587}, {621, 632}, {848, 872}, {926, 946}, {979, 1020},
{29, 43, 143, 185}, {48, 66, 426, 472}, {91, 110, 329, 380}, {148, 160, 730, 750},
{200, 237, 513, 548}, {209, 250, 969, 994}, {259, 286, 652, 657}, {300, 341, 447, 454},
{307, 359, 675, 759}, {571, 605, 793, 895}, {778, 815, 896, 933},
{4, 119, 389, 502, 692, 711, 821, 838}},

M8 = {{446, 498}, {519, 684}, {806, 911}, {949, 1019}, {13, 17, 100, 120}, {34, 63, 649, 660},
{72, 134, 297, 487}, {154, 179, 857, 880}, {175, 203, 266, 366}, {215, 244, 530, 561},
{309, 323, 828, 842}, {342, 379, 965, 1000}, {389, 400, 460, 473}, {555, 765, 768, 982},
{580, 698, 877, 915}, {609, 631, 718, 728}, {93, 225, 284, 416, 606, 738, 799, 931}}.
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