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Abstract

The GHS attack is known to solve discrete logarithm problems
(DLP) in the Jacobian of a curve C0 defined over the d degree exten-
sion field kd of k := Fq by mapping it to the DLP in the Jacobian of
a covering curve C of C0 over k. Recently, classifications for all ellip-
tic curves and hyperelliptic curves C0/kd of genus 2,3 which possess
(2, ..., 2)-covering C/k of P1 were shown under an isogeny condition
(i.e. when g(C) = d · g(C0)). This paper presents a systematic clas-
sification procedure for hyperelliptic curves in the odd characteristic
case. In particular, we show a complete classification of elliptic curves
C0 over kd which have (2, ..., 2)-covering C/k of P1 for d = 2, 3, 5, 7.
It has been reported by Diem[6] that the GHS attack fails for elliptic
curves C0 over odd characteristic definition field kd with prime exten-
sion degree d greater than or equal to 11 since g(C) become very large.
Therefore, for elliptic curves over kd with prime extension degree d, it
is sufficient to analyze cases of d = 2, 3, 5, 7. As a result, a complete
list of all elliptic curves C0/k which possess (2, ..., 2)-covering C/k of
P1 thus are subjected to the GHS attack with odd characteristic and
prime extension degree d is obtained.

Keywords : Elliptic curve cryptosystems, Hyperelliptic curve cryptosystems,
Index calculus, GHS attack, Galois representation

1 Introduction

Recently, attacks against cryptosystems defined over extension fields are un-
der active research. On elliptic and hyperelliptic curves defined over exten-
sion fields Fqd , Gaudry [18] and Diem[9] showed algorithms to solve ECDLP
using Semaev’s summation polynomials[37], which were then extended in
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[10] and also to plane curves[36]. These attacks were investigated further in
[44][45][46]. Since these attacks are based on the properties of the extension
fields as defining fields, they are generic attacks or all curves defined over
such extension fields are subjected to the attacks. It was reported that un-
der certain conditions it is possible to solve the ECDLP in subexponential
time asymptotically. On the other hand, these attacks will be faster than
Pollard’s square-root algorithms only when the size of the definition field
becomes very large[45].

Meanwhile, a much more powerful attack is known as the GHS attack
which makes use of certain internal structure of elliptic and hyperelliptic
curves defined over extension fields. Weil descent was firstly introduced by
Frey[13] to elliptic curve cryptosystems. The idea was developed to the GHS
attack by Gaudry, Hess, Smart[19]. The original GHS attack against elliptic
curves has been extended to various classes of curves and generalized to
the cover attack[8][11]. These attacks can be described as to compute the
DLP in the Jacobian of a curve C0 defined over the d degree extension field
kd := Fqd of k := Fq by mapping it to the DLP in the Jacobian of a covering
curve C of C0 over k.

Analyses of the GHS attack until now were mainly based on genus anal-
ysis or evaluation of genus g(C) of the covering curve C as a function of ex-
tension degree d of the definition field kd of C0. For characteristic two case,
the genus g(C) was analyzed in [19][30][31][22][23]. In particular, extension
degrees within certain cryptographically useful range were investigated, and
the extension fields over which g(C) could be small are regarded as ”weak
fields”. For odd characteristic, Diem[6] obtained a lower bound of genus
g(C) when C0 are hyper-elliptic curves and showed that for elliptic curves
C0, g(C) will be very large if d ≥ 11 and d is a prime number.

On the other hand, these results by genus analysis do not guarantee but
only assume the existence of the covering curve C. All curves C0 defined on
the weak fields are recommended to be avoid in cryptosystems despite that
a curve could have and have not a covering.

In cryptographic applications, curves over extension fields with useful
structure are often desirable to achieve high performance in implementation.
Such curves include those over optimal extension fields(OEF), in the GLV
method and GLS curves etc. For an example, the OEF are often used to
obtain fast finite field arithmetic, since the extension degrees d = 3, 5, 7 are
suitable for processors with 32 or 64 bit word length. In fact, when the
extension degree d equals 3,5 or 7, it is still possible that there are elliptic
curves C0 defined over kd which have no covering curves so will be secure
against the GHS attack therefore usable in cryptosystems.

Therefore, problems still remained open e.g. which curves C0/kd are
subjected to the GHS attacks and how many of them exist, or given a
particular C0, how to tell if the covering curve actually exists.

Researches for family of such weak curves started right after the proposal
of the GHS attack. In particular, special classes of curves which have cov-
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ering so are subjected to the GHS attack have been reported in [19][15][42]
[41][8][32][33][34]. For d = 2, 3, 4, 5, 7, Diem also showed examples for hy-
perelliptic curves of genus 1,2,3 which have covering[6][11].

A particularly interesting situation is when there exist a covering curve
C/k of C0/kd and π/kd : C ↠ C0 such that

Res(π∗) : J(C) → Reskd/kJ(C0) (1)

defines an isogeny over k for π∗ : J(C) ↠ J(C0), here J(C) is the
Jacobian variety of C and Reskd/kJ(C0) is its Weil restriction. Then g(C) =
d · g(C0). This situation is called under the isogeny condition, which is the
most favorable case for the GHS attack when g(C) has the smallest possible
size.

Such curves were found in [41] from 3 families of Kummer extensions
which contain 4 classes of elliptic and hyperelliptic curves. In the table
in [11] of C0/kd by Diem, there are 9 classes under the isogeny condition,
among them 3 classes were in [41]. Recently, classifications for elliptic and
hyperelliptic curves of genus 1,2,3 which possess (2, ..., 2)-covering of P1 un-
der the isogeny condition were shown [21][28][32][33][34][38][39]. Density of
such weak curves was also obtained for certain cases. For example, it turned
out that more than a half of elliptic curves in Legendre form over odd char-
acteristic cubic extension field and three quarters in the even characteristic
case are subjected to the GHS attack[34][38][39]. Damage by the GHS attack
to these curves are also serious. In fact, security of cryptosystems designed
as 160bit key length will can be reduced to about 107bit key length.

Therefore, it is theoretically important and practically useful to have a
complete list of all curves which have covering curves therefore are subjected
to the GHS attack, in other words, to classify all these weak curves.

In order to answer the above question, we have to understand deeper
properties of each curve and its covering curve, thus need approaches dif-
ferent from genus analysis. In this paper, we use Galois representation and
ramification analysis to show a systematic procedure for classification of the
elliptic/hyperelliptic curves over kd with covering curves of P1 over k. In
particular, we show a complete classification of elliptic curves C0 over d de-
gree extension field kd which possess (2, ..., 2)-covering C/k of P1 in the case
of d = 2, 3, 5, 7 in the section 5.

Since it has been proved by Diem[6] that elliptic curves C0/kd with prime
d ≥ 11 have huge g(C) therefore are secure against the GHS attack, it is
then sufficient to classify the elliptic curves C0/kd with covering C/k for
d = 2, 3, 5, 7 in order to find all weak curves or to give a complete solution
to the classification for odd characteristic with prime extension degrees.
Therefore, the classification list in the section 5 provides a complete list of
elliptic curves of odd characteristic with prime extension degrees subjected
to the GHS attack. It turned out that there exist much more elliptic curves
C0/kd which possess (2, ..., 2)-covering C/k than expected.
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2 The GHS attack and (2, . . . , 2)-covering

Assume the Frobenius automorphism σkd/k extends to an automorphism σ in
the separable closure of kd(x). Under the assumption that σ has order d, the
Galois closure of kd(C0)/k(x) isK := kd(C0)·σ(kd(C0)) · · ·σd−1(kd(C0)) and
the fixed field of K by the automorphism σ is K ′ := {ζ ∈ K | σ(ζ) = ζ} ∼=
k(C). The original GHS attack maps the DLP in Cl0(kd(C0)) ∼= J(C0)(kd)
to the DLP in Cl0(K ′) ∼= J(C)(k) using the following composition of conorm
and norm maps

NK/K′ ◦ ConK/kd(C0) : Cl0(kd(C0)) −→ Cl0(K ′)

for elliptic curves in characteristic 2 case[19]. This attack has been extended
to various classes of curves. It is also conceptually generalized to the cover
attack by Frey and Diem[8][11]. When there exists an algebraic curve C/k
and a covering π/kd : C −→ C0, the DLP in J(C0)(kd) can be mapped to
the DLP in J(C)(k) by a pullback-norm map as in the following diagram.

J(C)(kd)

N
��

J(C0)(kd)
π∗

oo

N◦π∗
xxppp

ppp
ppp

p

J(C)(k)

Hereafter, we consider the following hyperelliptic curves over an extension
field kd in odd characteristic case given by

C0/kd : y2 = c · f(x) (2)

where c ∈ k×d and f(x) is a monic polynomial in kd[x]. Here, C0
2−→ P1(x) is

a degree 2 covering over kd. Then, C0 has an n-tuple

n︷ ︸︸ ︷
(2, ..., 2)-covering C of

P1 if C0 has a covering. Thus, assume that C0 has a (2, ..., 2)-covering C of
P1. Here, a (2, ..., 2)-covering of P1 is defined as a covering π/kd : C −→ P1

such that the covering group cov(C/P1) ∼= Fn
2 , where

cov(C/P1) := Gal(kd(C)/kd(x)). (3)

In language of function fields, such a covering is a tower of extensions such

that kd(x, y,
σ1
y, . . . , σ

n−1
y) ∼= kd(C) is a

n︷ ︸︸ ︷
(2, ..., 2) type extension with n ≤ d.

3 Classification procedures of elliptic/hyperelliptic
curves C0 with weak coverings

In this section, we show general procedures to classify all curves C0/kd which
possess the aforementioned (2, ..., 2)-covering C/k for given n, d. These pro-
cedures will output a complete list of such curves and their defining equa-
tions. The procedures will be applied to classify elliptic curves over kd with
prime extension degrees d of k in the next section.
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3.1 Classification of Galois representation

We intend to classify all n-tuple

n︷ ︸︸ ︷
(2, ..., 2)-coverings C/P1 with degree 2 sub-

covering C0/P1.

n︷ ︸︸ ︷
(2, ..., 2)︷ ︸︸ ︷

C → C0 → P1(x)︸ ︷︷ ︸
2

(4)

In order to do that, we consider the Galois group Gal(kd/k) acting on the
covering group cov(C/P1) ∼= Fn

2 .

Gal(kd/k)× cov(C/P1) → cov(C/P1) (5)

(σi, ϕ) 7→ σi
ϕ := σiϕσ−i (6)

Here, one has an inclusion from Gal(kd/k) into Aut(cov(C/P1)):

Gal(kd/k) ↪→ Aut(cov(C/P1)) ∼= GLn(F2). (7)

Hereafter, we use the same notation for σ and its representation. The rep-
resentation of σ for given n and d has the following form in general :

σ =


∆1 O · · · O

O ∆2
. . .

...
...

. . .
. . . O

O · · · O ∆s


}n1

}n2

}ns

, n =
s∑

i=1

ni (8)

where O stands for the zero matrix. The indecomposable subrepresentation

∆i :=


Ωi Ωi Ô · · ·

Ô Ωi
. . .

. . .
...

. . .
. . . Ωi

Ô · · · Ô Ωi


}ni/li
}ni/li

...
}ni/li

(9)

is an ni×ni matrix which has a form of an li×li block matrix. The subblock
matrix Ωi in it is an ni/li×ni/li matrix and Ô is the zero matrix of the same
size. Here, we denote the characteristic polynomial of Ωi as fi(x), the char-
acteristic polynomial of ∆i is Fi(x) = fi(x)

li , F (x) := LCM{Fi(x)} is the
minimal polynomial of σ. Denoting di :=ord(∆i), one has d = LCM{di}.

Now, denote the minimal polynomial of σ as F (x) = xn + an−1x
n−1 +

· · · + a1x + a0 ∈ F2[x], one has σn = an−1σ
n−1 + · · · a1σ + a0. The Galois

action of Gal(kd/k) on y can be expressed as

σn
y ≡

n−1∏
j=0

(σ
j
y)aj mod kd(x)

×. (10)
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Therefore

σn
y2 ≡

n−1∏
j=0

(σ
j
y2)aj mod (kd(x)

×)2. (11)

As a result, the following necessary and sufficient condition is obtained for
given n, d, σ :
C has a model over kd if and only if

F (σ)y2 ≡ 1 mod (kd(x)
×)2 and

G(σ)y2 ̸≡ 1 mod (kd(x)
×)2 for ∀G(x) | F (x), G(x) ̸= F (x). (12)

In the rest of this paper, we assume (12) holds or C has a model over kd.
Let S be the number of the ramification points C/P1 covering. By the

Riemann-Hurwitz genus formula,

2g(C)− 2 = 2n(−2) + 2n−1S, (13)

then

S = 4 +
d · g(C0) + e− 1

2n−2
. (14)

In general, we have to consider the following two types of Galois represen-
tations:

• Type A : ∃di s.t. di = d (= LCM{di})

• Type B : di ̸= d for ∀di

However, it turned out that only Type A appears in the cases of d = 2, 3, 5, 7.
For these cases, the representations of σ are classified as follows :

• d = 2, n = 2

σ =

(
1 1
0 1

)
∈ M2(F2), F (x) = x2 + 1

• d = 3, n = 3

σ =

 1 0 0
0 1 1
0 1 0

 ∈ M3(F2), F (x) = (x+ 1)(x2 + x+ 1) = x3 + 1

• d = 3, n = 2

σ =

(
1 1
1 0

)
∈ M2(F2), F (x) = x2 + x+ 1

• d = 5, n = 5

σ =

(
1 0
0T ∆

)
∈ M5(F2), ∆ ∈ M4(F2),

F (x) = (x+ 1)(x4 + x3 + x2 + x+ 1) = x5 + 1
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• d = 5, n = 4
σ =

(
∆

)
∈ M4(F2), F (x) = x4 + x3 + x2 + x+ 1

• d = 7, n = 7

σ =

 1 0 0
0T Γ1 O
0T O Γ2

 ∈ M7(F2), Γ1,Γ2 ∈ M3(F2),

F (x) = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x7 + 1

• d = 7, n = 6

σ =

(
Γ1 O
O Γ2

)
∈ M6(F2), Γ1,Γ2 ∈ M3(F2),

F (x) = (x3 + x+ 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x+ 1

• d = 7, n = 4

σ =

(
1 0
0T Γi

)
∈ M4(F2), Γ1,Γ2 ∈ M3(F2),

F (x) = (x+ 1)(x3 + x+ 1) or (x+ 1)(x3 + x2 + 1)

• d = 7, n = 3
σ =

(
Γ1

)
or

(
Γ2

)
∈ M3(F2), then F (x) = x3+x+1 or x3+x2+1

This classification of Galois representation will be applied to classify elliptic
curves over kd with prime extension degree d in the section 4.

The situation when both Type A and Type B exist which involves com-
posite extension degrees d will be reported later.

3.2 A condition for existence of C/k

Recall that C0 is a hyperelliptic curve over kd defined by y2 = c ·f(x) where
c ∈ k×d , f(x) is a monic polynomial in kd[x], F (x) = xn + an−1x

n−1 + · · ·+
a1x + a0 ∈ F2[x] is the minimal polynomial of σ. Thus σn = an−1σ

n−1 +
· · · + a1σ + a0 since F (σ) = 0. Now, define F̂ (x) ∈ F2[x] as a polynomial
such that

xd + 1 = F (x)F̂ (x) ∈ F2[x]. (15)

As mentioned previously, we assume that C is a model over kd. Then,
one has F (σ)f(x) ≡ 1 mod (kd(x)

×)2. Now, a model of C over k exists
if and only if the extension σ of the Frobenius automorphism σkd/k is an
automorphism of order d on kd(C) in the separable closure of kd(x). It is
shown by Diem[6] that σkd/k extends to an automorphism of order d on the
Galois closure of kd(C0)/k(x) when C0 is a hyperelliptic curve and d is odd
in the odd characteristic case. Furthermore, this condition was generalized
to all d ≥ 2 in [28]. By using Lemma 6.1 in [28], we can determine c ∈ k×d
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as follows :

When F̂ (1) = 0, if c is a square in k×d then C has a model over k.

When F̂ (1) = 1, c can be either a square or a non-square in k×d
in order that C has a model over k.

Example 3.1. When d = 2, n = 2,
x2 + 1 = (x+ 1)2, F (x) = (x+ 1)2, F̂ (x) = 1.
Since F̂ (x) = 1, F̂ (1) = 1. Therefore, c can be chosen as either 1 or a
non-square in k×2 and the curve C always has a model over k.

Example 3.2. When d = 3, n = 2,
x3 + 1 = (x+ 1)(x2 + x+ 1), F (x) = x2 + x+ 1, F̂ (x) = x+ 1.
Since F̂ (x) = x+1, F̂ (1) = 0. It follows that c needs to be a square c ∈ (k×3 )

2

(i.e. c = 1) for C to have a model over k.

Example 3.3. When d = 3, n = 3,
x3 + 1 = (x+ 1)(x2 + x+ 1), F (x) = x3 + 1, F̂ (x) = 1.
Since F̂ (x) = 1, F̂ (1) = 1. c could be either 1 or a non-square in k×3 and C
always has a model over k.

3.3 Ramification points analysis of C0/P1

Recall that the condition F (σ)f(x) ≡ 1 mod (kd(x)
×)2 and F̂ (x) ∈ F2[x] is

a polynomial such that xd + 1 = F (x)F̂ (x) ∈ F2[x]. We define the notation
as follows:

bi := 1 when there exists a ramification point (αqi , 0) on C0 (16)

bi := 0 otherwise for i = 0, . . . , d− 1. (17)

Here, α is either in kd (i.e. α ∈ kd \kv, v |̸= d) or in a certain extension of kd
(α ∈ kdτ \ kv, v |̸= dτ, ∃τ ∈ N>1) if f(x) contains all conjugates of αqi over
kd. Let Φ(x) := bd−1x

d−1 + · · · + b1x + b0. Then Φ(x) defines a minimal
Galois-invariant set of ramification points of C0/P1 over kd.

Now, since F (σ)f(x) ≡ 1 mod (kd(x)
×)2, one has F (x)Φ(x) ≡ 0 mod (xd+

1). Then, F (x)Φ(x) ≡ 0 mod (xd + 1) if and only if Φ(x) ≡ 0 mod F̂ (x).
Therefore, for given d and n, it follows that

Φ(x) ≡ a(x)F̂ (x) mod (xd + 1) (18)

where there exists a(x) ∈ F2[x] such that

GCD(a(x), F (x)) = 1 and deg a(x) < degF (x).

In fact, it can be proved that F̂ (x)F2[x]/(x
d + 1) ∼= F2[x]/(F (x)). This

suggests that one can find candidates of the ramification points of C0/P1

if a(x) ∈ F2[x] are determined for a given F̂ (x) ∈ F2[x]. Now, we in-
tend to derive all candidates of the ramification points {(αqi , 0)|bi = 1} on
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C0 for given d, n, σ. When d, n, σ are given, the minimal polynomial F (x)
of σ is determined as in the section 3.1. Thus, it is necessary to assume
GCD(F (x), a(x)) = 1 in order to obtain Φ(x) for given d, n, σ.

Next, we define an equivalence such that (b0, b1, . . . , bd−1) ∼ (bj , . . . , bd−1,
b0, . . . , bj−1) or the Φ(x) with these coefficients are equivalent. In other
words, equivalent Φ(x) have the coefficients invariant under cyclic permuta-
tions. Then all equivalent Φ(x)’s belong to the same class of C0.

Furthermore, xra(x)F̂ (x) ≡ a(x)F̂ (x) mod (xd + 1) if and only if xr +
1 ≡ 0 mod F (x) for 1 ≤ r ≤ d. Thus, one has r = d. Therefore, the number
of different Φ(x) in an equivalent class is N := #{(F2[x]/(F (x)))×}/d. This
means that one obtains all candidates of the ramification points of C0/P1 if
N different Φ(x)’s are found such that they are not cyclic permutations of
each other for given F̂ (x).

From these facts, we obtain a procedure to derive all candidates of the
ramification points {(αqi , 0)|bi = 1} on C0 for given d, n, σ.

Procedure 1:

1. Choose the polynomial a(x) = 1, then Φ(x) := F̂ (x) gives{
(αqi , 0)

∣∣{0, ..., d− 1} ∋ i s.t. bi = 1
}

as a candidate of ramification points of C0/P1.

Here, α is either in kd \ kv (v|̸=d) or in a certain extension kdτ \ kv
(v|̸=dτ, τ ∈ N>1) which happens only when f(x) contains all conju-

gates of αqi ∈ kdτ over kd. If N = 1, then this procedure is completed.
If N ≥ 2, then go to the next step.

2. Choose another polynomial a(x) ∈ F2[x] such thatGCD(a(x), F (x)) =
1 and deg a(x) < degF (x). Take Φ(x) := a(x)F̂ (x).

3. Check whether the coefficients of the new Φ(x) are cyclic permutation
of those Φ(x)’s obtained already (i.e. check whether (b0, b1, · · · , bd−1) ∼
(bj , · · · , bd−1 , b0, · · · , bj−1)) for all obtained Φ(x)’s. If yes, discard this
a(x). Go to step 2 again. If the new Φ(x) is not a cyclic permutation
of any of the old ones, add {(αqi , 0)|bi = 1} defined by Φ(x) to the
candidates of the ramification points.

4. Check whether N different a(x)’s under the equivalence are found. If
yes, then this procedure is completed. Otherwise, return to step 2.

Example 3.4. For d = 2, n = 2,
x2 + 1 = (x+ 1)2, F (x) = (x+ 1)2, F̂ (x) = 1.
Here, N = 1. Let a(x) = 1, then Φ(x) = a(x)F̂ (x) = 1. Thus, there exists
a candidate (α, 0) of ramification points on C0.
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Example 3.5. For d = 3, n = 2,
x3 + 1 = (x+ 1)(x2 + x+ 1), F (x) = x2 + x+ 1, F̂ (x) = x+ 1.
Similarly, N = 1. Let a(x) = 1, then Φ(x) = x + 1. Thus, C0 has
{(α, 0), (αq, 0)} as a candidate of ramification points.

Example 3.6. For d = 3, n = 3,
x3 + 1 = (x+ 1)(x2 + x+ 1), F (x) = x3 + 1, F̂ (x) = 1, N = 1.
Choose a(x) = 1, then Φ(x) = 1. Consequently, C0 has a candidate (α, 0)
of ramification points.

3.4 Defining equations of C0

Finally, we show a procedure to find the equations of C0/kd : y2 = c · f(x)
with (2, ..., 2)-covering C/k of P1 for given d, n, g(C0), e.

As mentioned previously, only Type (A) of Galois representations ap-
pears in the cases of d = 2, 3, 5, 7. In the following steps, we treat only Type
(A).

Procedure 2:

1. Calculate S = 4 + d·g(C0)+e−1
2n−2 for given d, n, g(C0), e.

2. List up all the candidates of the ramification points of C0/P1 by the
Procedure 1 for all subrepresentations of σ except the trivial represen-
tation 1.

3. Take into account of g(C0) and S, find f(x) from all combinations for
candidates of ramification points which satisfy the condition F (σ)f(x) ≡
1 mod (kd(x)

×)2. Here f(x) has to contain all conjugates x− αqi for
every ramification points if we choose α in an extension field over kd
(i.e. α ∈ kdτ \ kv where v|̸=dτ and τ ∈ N>1).

4. Determine c ∈ k×d so that C has a model over k as in the section 3.2.

In this way, one obtains all the defining equations of C0/kd : y2 = c ·f(x)
with (2, ..., 2)-covering C/k of P1. The above operations will be explained
in further details in the following section.

4 Classification of elliptic curves over kd with prime
extension degree d

Let S0 be the number of the ramification points of C0/P1.
By Abhyankar’s lemma [40], one can find the upper bound of S as follows :

dS0 ≥ S = 4 +
d · g(C0) + e− 1

2n−2
≥ max{d, 2g(C0) + 3}. (19)

Assume that S0 = 4 since we treat elliptic curves C0/kd alone from this
section.
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4.1 Case d = 2

In this case, we have

8 ≥ S = 4 +
2 · 1 + e− 1

20
≥ 5 since n = 2. (20)

Therefore, e lies in the range of

3 ≥ e ≥ 0. (21)

As an example, we consider the case of e = 3 below. By following the
procedure to determine defining equations in the section 3.4, we obtain a
class of elliptic curves

C0/k2 : y
2 = (x− α1)(x− α2)(x− α3)(x− α4) (22)

which has (2, 2)-covering C/k when e = 3.
The detailed steps of the Procedure 2 are shown as follows:

Example 4.1. d = 2, n = 2, e = 3

1. From d = 2, n = 2, g(C0) = 1, e = 3, one has S = 8.

2. σ =

(
1 1
0 1

)
: indecomposable, F (x) = x2 + 1, F̂ (x) = 1.

Now, N = 1. Choose a(x) = 1, then Φ(x) = a(x)F̂ (x) = 1. Thus, the
ramification point of C0/P1 takes the form of (α, 0) where α ∈ k2\k or
α ∈ k2τ \kv (v| ̸=2τ, τ ∈ N>1). Notice that f(x) contains all conjugates
of α ∈ k2τ \ kv over k2 in the latter case.

3. For g(C0) = 1 and S = 8, test all possibilities of f(x) which has
ramification points (α, 0). As a result, we obtain

f(x) = (x− α1)(x− α2)(x− α3)(x− α4)

where α1, α2, α3, α4 are in the following five cases:

α1, α2, α3, α4 ∈ k2 \ k ; (23)

α1, α2 := αq2

1 ∈ k4 \ k2, α3, α4 := αq2

3 ∈ k4 \ k2 ; (24)

α1, α2 := αq2

1 ∈ k4 \ k2, α3, α4 ∈ k2 \ k ; (25)

α1, α2 := αq2

1 , α3 := αq4

1 ∈ k6 \ k2 ∪ k3, α4 ∈ k2 \ k ; (26)

α1, α2 := αq2

1 , α3 := αq4

1 , α4 := αq6

1 ∈ k8 \ k4 . (27)

4. Since F̂ (1) = 1, c is a square in (k×2 )
2 or 1.

All defining equations for d = 2 including the above example can be found
in the classification list of the section 5.
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4.2 Case d = 3

From the classification of σ in the section 3.1, we know that only n = 3 or
2 are possible. Now, by (19), one has

14 ≥ e ≥ 0 when n = 3,

6 ≥ e ≥ 0 when n = 2.

Therefore, all values of possible e’s are

e = 0, 2, 4, 6, 8, 10, 12, 14 when n = 3,

e = 0, 1, 2, 3, 4, 5, 6 when n = 2

since S ∈ N.
As an example, we show the case of n = 3 and e = 4 below.

Example 4.2. d = 3, n = 3, e = 4

1. One has S = 7.

2. σ =

 1 0 0
0 1 1
0 1 0

 =

 1 0 0
0
0

∆

, ∆ : indecomposable .

The minimal polynomial of σ is F (x) = (x+ 1)(x2 + x+ 1) = x3 + 1,
then F̂ (x) = 1. Thus, N = 1. Choose a(x) = 1, then Φ(x) = 1.
Therefore, the only candidate of the ramification points of C0/P1 is
(α, 0).

Next, the minimal polynomial of the subrepresentation ∆ of σ is F (x) =
x2 + x + 1, then F̂ (x) = x + 1. As N = 1, Φ(x) = x + 1 when
a(x) = 1. Then C0/P1 has {(α, 0), (αq, 0)} as the candidates of rami-
fication points. Here, αqi ∈ k3 \k or αqi ∈ k3τ \kv (v|̸=3τ) for bi = 1.
In the latter case it is necessary that f(x) contains all conjugates of
αqi ∈ k3τ over k3.

3. From g(C0) = 1 and S = 7 and the above candidates (α, 0), {(α, 0), (αq, 0)},
we obtain f(x) = (x − α1)(x − αq

1)(x − α2)h1(x) where α1, α2 ∈
k3 \ k, h1(x) ∈ k[x], deg h1(x) = 1 or 0.

4. Since F̂ (1) = 1, c ∈ k×3 .

Consequently, the defining equation is obtained as C0/k3 : y2 = c(x −
α1)(x − αq

1)(x − α2)h1(x). In the same manner, we can treat also the case
of d = 3, n = 2.

Remark 4.1. d = 3, n = 2

Since σ =

(
1 1
1 0

)
, F (x) = x2 + x+ 1, F̂ (x) = x+ 1,

C0 has ramification points {(α, 0), (αq, 0)}. Under the assumption F (σ)f(x) ≡
1 mod (kd(x)

×)2, we can find the equation f(x). Then, we need to notice
that σ2+σ+1h1(x) ̸≡ 1 mod (kd(x)

×)2 when deg h1(x) ≥ 1.

12



Again, all results including the above example can be found in the clas-
sification list in the section 5.

4.3 Case d = 5, 7

Then, C0 has the following candidates of ramification points on P1 when
g(C0) = 1.

• d = 5, n = 5
F (x) = x5 + 1 = (x+ 1)(x4 + x3 + x2 + x+ 1), F̂ (x) = 1.
The candidates of ramification points on P1 are as follows :
{(α, 0)}, {(α, 0), (αq, 0), (αq2 , 0)}, {(α, 0), (αq, 0), (αq3 , 0)},
and {(α, 0), (αq, 0)}, {(α, 0), (αq2 , 0)} for the subrepresentation ∆ of
the section 3.1.

• d = 5, n = 4
Similarly, F (x) = x4 + x3 + x2 + x+ 1, F̂ (x) = x+ 1,
{(α, 0), (αq, 0)}, {(α, 0), (αq2 , 0)}, {(α, 0), (αq, 0), (αq2 , 0), (αq3 , 0)}.

• d = 7, n = 7
F (x) = x7 + 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1), F̂ (x) = 1,
{(α, 0)}, {(α, 0), (αqi , 0), (αqj , 0)} where (i, j) = (1, 2), (1, 4), (2, 4) ,
and {(α, 0), (αq, 0)}, {(α, 0), (αq2 , 0)}, {(α, 0), (αq3 , 0)}, {(α, 0), (αq2 , 0), (αq3 , 0)},
{(α, 0), (αq, 0), (αq3 , 0)} for the subrepresentation of σ.

• d = 7, n = 6
F (x) = (x3 + x+ 1)(x3 + x2 + 1), F̂ (x) = x+ 1,
{(α, 0), (αq, 0)}, {(α, 0), (αq2 , 0)}, {(α, 0), (αq3 , 0)},
{(α, 0), (αqi , 0), (αqj , 0), (αqℓ , 0)} where (i, j, ℓ) = (1, 2, 3), (1, 3, 4), (2, 4, 5).

• d = 7, n = 4
In this case, σ have the following minimal polynomials :

(a) F (x) = (x+ 1)(x3 + x+ 1), F̂ (x) = x3 + x2 + 1

(b) F (x) = (x+ 1)(x3 + x2 + 1), F̂ (x) = x3 + x+ 1

The candidates of the ramification points are :

(a) {(α, 0), (αq2 , 0), (αq3 , 0)}, (b) {(α, 0), (αq, 0), (αq3 , 0)}.

• d = 7, n = 3
In the similar manner, the following candidates are obtained :

(a) F (x) = x3 + x+ 1, F̂ (x) = (x+ 1)(x3 + x2 + 1),

{(α, 0), (αq, 0), (αq2 , 0), (αq4 , 0)}
(b) F (x) = x3 + x2 + 1, F̂ (x) = (x+ 1)(x3 + x+ 1),

{(α, 0), (αq2 , 0), (αq3 , 0), (αq4 , 0)}

13



Here, αqi ∈ kd \ k for bi = 1 or αqi ∈ kdτ \ kv (v|̸=dτ) when f(x) contains

all conjugate factors of αqi ∈ kdτ over kd. We can then classify C0/kd from
the above candidates for all possible e’s in (19). All classification results for
d = 5, 7 are listed in the section 5.

4.4 When d is a prime and d ≥ 11

Until now, we have classified elliptic curves C0 over kd which possess (2, ..., 2)-
covering C over k for d = 2, 3, 5, 7. In fact, even when d ≥ 11, it is possible
to classify elliptic curves C0/kd which possess covering curve C/k in the
same way.

In [6], upper and lower bounds of g(C) for elliptic curves C0 over kd
had been obtained to show that g(C) becomes so large that the GHS attack
fails for prime extension degree d ≥ 11. In particular, these bounds are for
d = 11, 20481 ≥ g(C) ≥ 1793, and for d = 17, 2097153 ≥ g(C) ≥ 833, then
the latter provides a lower bound for prime d ≥ 11.

Below, we show examples for d = 11, 17 in which it is possible to calculate
the upper and lower bounds of the g(C) explicitly and in more details based
on analysis of Galois representation.

For d = 11, since the polynomial factorization of x11 + 1 over F2 is

x11 + 1 = (x+ 1)(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1),

one knows that either n = 10 or 11. Then, by using (19), upper and the
lower bounds of g(C) are obtained as follows :

20481 ≥ g(C) ≥ 3585 for n = 11,

10241 ≥ g(C) ≥ 1793 for n = 10.

For d = 17, from

x17 +1 = (x+1)(x8+x5+x4+x3+1)(x8 +x7+x6 +x4+x2 +x+1),

one knows that either n = 9 or n = 8. Therefore, when C exists, tighter
upper and lower bounds of g(C) are obtained by (19) as follows :

8193 ≥ g(C) ≥ 1665 for n = 9,

4097 ≥ g(C) ≥ 833 for n = 8.

5 List of classification

Let C0/kd : y2 = c · hd(x)h1(x) where hd(x) ∈ kd[x] \ k[x] , h1(x) ∈ k[x]. η
denotes 1 or a non-square in k×d .

We present a list of complete classification for elliptic curves C0/kd with
(2,...,2)-covering C/k. Classes of such curves are referred as Cases. Expla-
nations on marks in the list are follows :
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1. ”References” in the line of a Case cites the papers where the curves
have been found before, while Cases with blank spaces are newly found
in this paper.

2. Marks ∗ in ”Remark” indicates that there are more than one possibility
for αi. For Cases without the mark ∗ in ”Remark”, αi ∈ kd \ k. For
Cases with the mark ∗ in ”Remark”, either αi ∈ kd\k or αi ∈ kdτ \kv
( v|̸=dτ, τ ∈ N>1) where the latter happens only when hd(x) contains

all conjugate factors of αqi ∈ kdτ over kd.

For Cases with the mark ∗ in ”Remark”, all possibilities of αi’s are as
follows :
Case 2 d = 2, n = 2, e = 1

α1, α2 ∈ k2 \ k ;

α1, α2 := αq2

1 ∈ k4 \ k2 .
Case 3 d = 2, n = 2, e = 2

α1, α2, α3 ∈ k2 \ k ;

α1, α2 := αq2

1 ∈ k4 \ k2, α3 ∈ k2 \ k ;

α1, α2 := αq2

1 , α3 := αq4

1 ∈ k6 \ k2 ∪ k3 .
Case 4 d = 2, n = 2, e = 3

α1, α2, α3, α4 ∈ k2 \ k ;

α1, α2 := αq2

1 ∈ k4 \ k2, α3, α4 := αq2

3 ∈ k4 \ k2 ;

α1, α2 := αq2

1 ∈ k4 \ k2, α3, α4 ∈ k2 \ k ;

α1, α2 := αq2

1 , α3 := αq4

1 ∈ k6 \ k2 ∪ k3, α4 ∈ k2 \ k ;

α1, α2 := αq2

1 , α3 := αq4

1 , α4 := αq6

1 ∈ k8 \ k4 .

Case 5 d = 3, n = 2, e = 0
α1, α2 ∈ k3 \ k ;

α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3 .
Case 9 d = 3, n = 3, e = 6

α1, α2 ∈ k3 \ k ;

α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3 .
Case 10 d = 3, n = 3, e = 8

α1, α2, α3 ∈ k3 \ k ;

α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3, α3 ∈ k3 \ k .
Case 11 d = 3, n = 3, e = 10

α1, α2, α3 ∈ k3 \ k ;

α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3, α3 ∈ k3 \ k ;

α1, α2 := αq3

1 , α3 := αq6

1 ∈ k9 \ k3 .
Case 12 d = 3, n = 3, e = 14

α1, α2, α3, α4 ∈ k3 \ k ;

α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3, α3, α4 := αq3

3 ∈ k6 \ k2 ∪ k3 ;
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α1, α2 := αq3

1 ∈ k6 \ k2 ∪ k3, α3, α4 ∈ k3 \ k ;

α1, α2 := αq3

1 , α3 := αq6

1 ∈ k9 \ k3, α4 ∈ k3 \ k ;

α1, α2 := αq3

1 , α3 := αq6

1 , α4 := αq9

1 ∈ k12 \ k4 ∪ k6 .

Case 14 d = 5, n = 4, e = 20
α1, α2 ∈ k5 \ k ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5 .
Case 20 d = 5, n = 5, e = 60

α1, α2 ∈ k5 \ k ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5 .
Case 21 d = 5, n = 5, e = 84

α1, α2, α3 ∈ k5 \ k ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5, α3 ∈ k5 \ k .
Case 22 d = 5, n = 5, e = 92

α1, α2, α3 ∈ k5 \ k ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5, α3 ∈ k3 \ k ;

α1, α2 := αq5

1 , α3 := αq10

1 ∈ k15 \ k3 ∪ k5 .
Case 23 d = 5, n = 5, e = 124

α1, α2, α3, α4 ∈ k5 \ k ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5, α3, α4 := αq5

3 ∈ k10 \ k2 ∪ k5 ;

α1, α2 := αq5

1 ∈ k10 \ k2 ∪ k5, α3, α4 ∈ k5 \ k ;

α1, α2 := αq5

1 , α3 := αq10

1 ∈ k15 \ k3 ∪ k5, α4 ∈ k5 \ k ;

α1, α2 := αq5

1 , α3 := αq10

1 , α4 := αq15

1 ∈ k20 \ k4 ∪ k5 .

Case 27 d = 7, n = 6, e = 154
α1, α2 ∈ k7 \ k ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7 .
Case 33 d = 7, n = 7, e = 378

α1, α2 ∈ k7 \ k ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7 .
Case 34 d = 7, n = 7, e = 538

α1, α2, α3 ∈ k7 \ k ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7, α3 ∈ k7 \ k .
Case 35 d = 7, n = 7, e = 570

α1, α2, α3 ∈ k7 \ k ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7, α3 ∈ k7 \ k ;

α1, α2 := αq7

1 , α3 := αq14

1 ∈ k21 \ k3 ∪ k7 .
Case 36 d = 7, n = 7, e = 762

α1, α2, α3, α4 ∈ k7 \ k ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7, α3, α4 := αq7

3 ∈ k14 \ k2 ∪ k7 ;

α1, α2 := αq7

1 ∈ k14 \ k2 ∪ k7, α3, α4 ∈ k7 \ k ;

α1, α2 := αq7

1 , α3 := αq14

1 ∈ k21 \ k3 ∪ k7, α4 ∈ k7 \ k ;
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α1, α2 := αq7

1 , α3 := αq14

1 , α4 := αq21

1 ∈ k28 \ k4 ∪ k7 .

3. Mark † in ”Remark” of a Case indicates that it does not include certain
its subcases, all of which are explained as follows:

• Case 9 does not include Case 6.
• Case 10 does not include Case 5.
• Case 11 does not include Case 8.
• Case 12 does not include Case 5 and Case 10.

• Case 14 does not include Case 13.
• Case 18 does not include Case 13 and Case 14.
• Case 19 does not include Case 15.
• Case 21 does not include Case 13, Case 14, and Case 18.
• Case 22 does not include Case 15 and Case 19.
• Case 23 does not include Case 13, Case 14, Case 18, and Case 21.

• Case 27 does not include Case 24 and Case 26.
• Case 31 does not include Case 24, Case 26, and Case 27.
• Case 32 does not include Case 25 and Case 28.
• Case 33 does not include Case 29.
• Case 34 does not include Case 24, Case 26, Case 27, and Case 31.
• Case 35 does not include Case 25, Case 28, and Case 32.
• Case 36 does not include Case 24, Case 26, Case 27, Case 31, and
Case 34.
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C0/kd : y2 = c · f(x) := c ·hd(x)h1(x), hd(x) ∈ kd[x] \ k[x] , h1(x) ∈ k[x]

Case d n e g(C) c hd(x) deg h1(x) Remark Reference

1 2 2 0 2 η x− α 3 , 2 [11][28][41]

2 2 2 1 3 η (x− α1)(x− α2) 2 , 1 ∗
3 2 2 2 4 η (x− α1)(x− α2)(x− α3) 1 , 0 ∗
4 2 2 3 5 η (x− α1)(x− α2)(x− α3)(x− α4) 0 ∗
5 3 2 0 3 1 (x− α1)(x− αq

1)(x− α2)(x− αq
2) 0 ∗ [6][11][28]

6 3 3 0 3 η (x− α)(x− αq) 2 , 1 [28][41]

7 3 3 2 5 η (x− α) 3 , 2 [41]

8 3 3 4 7 η (x− α1)(x− α2)(x− αq
2) 1 , 0

9 3 3 6 9 η (x− α1)(x− α2) 2 , 1 ∗ †
10 3 3 8 11 η (x− α1)(x− α2)(x− α3)(x− αq

3) 0 ∗ †
11 3 3 10 13 η (x− α1)(x− α2)(x− α3) 1 , 0 ∗ †
12 3 3 14 17 η (x− α1)(x− α2)(x− α3)(x− α4) 0 ∗ †
13 5 4 0 5 1 (x− α)(x− αq)(x− αq2)(x− αq3) 0 [6][11][28]

14 5 4 20 25 1 (x− α1)(x− αq
1)(x− α2)(x− αq

2) 0 ∗ †
1 (x− α1)(x− αq

1)(x− α2)(x− αq2

2 ) 0

1 (x− α1)(x− αq2

1 )(x− α2)(x− αq2

2 ) 0 ∗ †
15 5 5 12 17 η (x− α)(x− αq)(x− αq2) 1 , 0

η (x− α)(x− αq)(x− αq3) 1 , 0

16 5 5 20 25 η (x− α)(x− αq), 2 , 1

η (x− α)(x− αq2) 2 , 1

17 5 5 28 33 η (x− α) 3 , 2

18 5 5 44 49 η (x− α1)(x− α2)(x− αq
2)(x− αq2

2 ) 0 †
η (x− α1)(x− α2)(x− αq

2)(x− αq3

2 ) 0 †
19 5 5 52 57 η (x− α1)(x− α2)(x− αq

2) 1 , 0 †
η (x− α1)(x− α2)(x− αq2

2 ) 1 , 0 †
20 5 5 60 65 η (x− α1)(x− α2) 2 , 1 ∗
21 5 5 84 89 η (x− α1)(x− α2)(x− α3)(x− αq

3) 0 ∗ †
η (x− α1)(x− α2)(x− α3)(x− αq2

3 ) 0 ∗ †
22 5 5 92 97 η (x− α1)(x− α2)(x− α3) 1 , 0 ∗ †
23 5 5 124 129 η (x− α1)(x− α2)(x− α3)(x− α4) 0 ∗ †
24 7 3 0 7 1 (x− α)(x− αq)(x− αq2)(x− αq4) 0 [6][11][28]

1 (x− α)(x− αq)(x− αq3)(x− αq4) 0 [28]

25 7 4 10 17 η (x− α)(x− αq2)(x− αq3) 1 , 0

η (x− α)(x− αq)(x− αq3) 1 , 0

26 7 6 42 49 1 (x− α)(x− αq)(x− αq2)(x− αq3) 0

1 (x− α)(x− αq)(x− αq3)(x− αq4) 0

1 (x− α)(x− αq2)(x− αq4)(x− αq5) 0
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C0/kd : y2 = c · f(x) := c ·hd(x)h1(x), hd(x) ∈ kd[x] \ k[x] , h1(x) ∈ k[x]

Case d n e g(C) c hd(x) deg h1(x) Remark Reference

27 7 6 154 161 1 (x− α1)(x− αq
1)(x− α2)(x− αq

2) 0 ∗ †
1 (x− α1)(x− αq

1)(x− α2)(x− αq2

2 ) 0 †
1 (x− α1)(x− αq

1)(x− α2)(x− αq3

2 ) 0 †
1 (x− α1)(x− αq2

1 )(x− α2)(x− αq2

2 ) 0 ∗ †
1 (x− α1)(x− αq2

1 )(x− α2)(x− αq3

2 ) 0 †
1 (x− α1)(x− αq3

1 )(x− α2)(x− αq3

2 ) 0 ∗ †
28 7 7 122 129 η (x− α)(x− αq)(x− αq2) 1 , 0

η (x− α)(x− αq)(x− αq4) 1 , 0

η (x− α)(x− αq2)(x− αq4) 1 , 0

29 7 7 154 161 η (x− α)(x− αqi), i = 1, 2, 3 2 , 1

30 7 7 186 193 η x− α 3 , 2

31 7 7 314 321 η (x− α1)(x− α2)(x− αq
2)(x− αq2

2 ) 0 †
η (x− α1)(x− α2)(x− αq

2)(x− αq4

2 ) 0 †
η (x− α1)(x− α2)(x− αq2

2 )(x− αq4

2 ) 0 †
η (x− α1)(x− α2)(x− αq2

2 )(x− αq3

2 ) 0 †
η (x− α1)(x− α2)(x− αq

2)(x− αq3

2 ) 0 †
32 7 7 346 353 η (x− α1)(x− α2)(x− αqi

2 ) 1 , 0 †
i = 1, 2, 3

33 7 7 378 385 η (x− α1)(x− α2) 2 , 1 ∗ †
34 7 7 538 545 η (x− α1)(x− α2)(x− α3)(x− αqi

3 ) 0 ∗ †
i = 1, 2, 3

35 7 7 570 577 η (x− α1)(x− α2)(x− α3) 1 , 0 ∗ †
36 7 7 762 769 η (x− α1)(x− α2)(x− α3)(x− α4) 0 ∗ †

6 Conclusions

In this paper, we have shown procedures for classification of hyperelliptic
curves C0/kd with (2, ..., 2)-covering C/k. By application of the procedures,
we obtained a complete list of all elliptic curves C0/kd which posses (2, ..., 2)-
covering C/k with respect to the GHS attack of odd characteristic and prime
extension degree d. It is found out that the number of elliptic curves C0/kd
with (2, ..., 2)-covering C/k is much larger than was expected from the classes
of weak curves discovered until now. Meanwhile, when the extension degree
d increased, there are more of elliptic curves C0/kd possess covering curves
C with larger genera g(C) which affirm prediction based on known analysis
results.

Future research on security of elliptic curve-based cryptosystems against
the GHS attack include isomorphism and isogeny analysis between curves

19



and investigation on implementation and computational complexities on cov-
ering curves.
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