
1

Using State Space Encoding To Counter Biased
Fault Attacks on AES Countermeasures

Sikhar Patranabis, Abhishek Chakraborty, Debdeep Mukhopadhyay, and P.P. Chakrabarti
Department of Computer Science and Engineering

IIT Kharagpur, India
{sikhar.patranabis, abhishek.chakraborty, debdeep, ppchak}@cse.iitkgp.ernet.in

Abstract—Biased fault attacks such as the Differential Fault
Intensity Analysis (DFIA) have been a major threat to cryp-
tosystems in recent times. DFIA combines principles of side
channel analysis and fault attacks to try and extract the key using
faulty ciphertexts only. Biased fault attacks have also been shown
to weaken traditional redundancy based countermeasures, such
as Concurrent Error Detection (CED) techniques, that provide
security against classical fault attacks such as Differential Fault
Analysis (DFA). While these countermeasures are effective under
the assumption that the adversary uses a uniform fault model,
they are vulnerable to attacks using biased fault models. Till date,
no effective countermeasure against such biased fault attacks
has been reported in literature. In this work, we propose a
countermeasure strategy that combines the principles of redun-
dancy with that of fault space transformation to achieve security
against both classical and biased fault attacks. The novelty in the
proposed countermeasure lies in the concept of transforming the
fault space, that reduces the probability that the adversary can
bypass the redundant checks by introducing the same fault in
the original and redundant computations. All claims have been
validated via practical experiments on a SASEBO GII board.

Index Terms—Cryptanalysis, Time Redundancy, Biased Faults,
AES

I. INTRODUCTION

Side channel analysis (SCA) attacks such as the Differential
Power Analysis (DPA) and the Correlation Power Analy-
sis(CPA), as well as active fault analysis attacks (FA) such
as Differential Fault Analysis(DFA) and Differential Fault
Intensity Analysis (DFIA) on cryptographic devices have
raised serious issues regarding the security of cryptosystems
which were previously considered robust and secure owing to
their strong mathematical algorithms. Security against classical
cryptanalytic attacks such as linear and differential cryptanal-
ysis is no longer a sufficient criteria for an algorithm to
be termed as secure. Several newly devised cryptosystems
employing AES block ciphers that are secure against classical
cryptanalysis have been rendered vulnerable by SCA and FA
owing to leakages from their implementations.

Active fault analysis of block ciphers has been studied
extensively in literature since the seminal work by Boneh
et.al [10] in 1996 that demonstrated fault attacks on the RSA
cryptosystem. Their work triggered an extensive study of fault
analysis with respect to all popular cryptosystems, including
symmetric key systems such as the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES).AES
is the standard secret key algorithm today and is employed

extensively for security in a number of consumer products and
dedicated hardware such as smart cards, servers, FPGAs, and
TV set-top boxes. Although AES is secure against classical
cryptanalysis [28], a hardware implementation of AES, unless
carefully designed, could result in security vulnerabilities. An
adversary could inject malicious faults into a cryptographic
device and build correlations between faulty and fault free
ciphertexts to be able to drastically reduce the search key
space and extract the key in a short time. This technique of
using faulty and fault free ciphertext pairs to extract the key
is popularly known in literature as Differential Fault Analysis
(DFA). DFA of of AES has been studied extensively [20],
[33], [37], [42], [43] and has been demonstrated to be both
practical and inexpensive [4], [5], [21], [29]. An adversary can
inject both transient faults and permanent or stuck-at faults
into AES implementations using clock glitches [2], [3], [46],
power glitches [6], [12], [32], [49], laser guns [1], [11], [12]
and even electromagnetic pulses [13]. While most DFAs focus
on the AES data path, DFA of the AES key schedule has also
been proposed. State of the art DFA techniques use a variety
of practically achievable fault models to extract the key in
an efficient manner and may require as few as a single fault
injection to recover the entire key [50].

Recent literature has focused on an alternate variety of
active fault analysis that requires only faulty ciphertexts in-
stead of pairs of faulty and fault free ciphertexts. The idea
was first proposed by Fuhr et.al in FDTC 2013 [17] and was
further extended by Ghalaty et.al to Differential Fault Intensity
Analysis (DFIA) that combines fault analysis with DPA. The
approaches are similar in their use of biased fault models to try
and recover the secret key. The basic idea is to make several
key hypotheses on the affected state bytes in order to retrieve
a key dependent state value whose distribution is strongly
biased. An alternative approach to DFIA, namely the Fault
Differential Entropy(FDE) has been proposed in [24]. FDE
also requires only faulty ciphertexts and uses fault differentials
to distinguish the correct key hypothesis. Similar to DFIA,
this technique also exploits the bias in the underlying fault
model and has been found to weaken several classical CED
techniques. The advantage of using biased fault models is that
while correct key hypothesis produces small changes to the
faulty state, incorrect ones infer big, random changes. The
usage of appropriate distinguisher functions therefore allows
recovery of the correct key with a practically feasible number
of fault injections. However, none of these works present a

2

mathematical basis to quantify the bias of a fault model or
compare the degree of bias of various fault models.

With fault attacks now being an established and potent threat
to cryptosystems, sound countermeasures against them must
be introduced into cryptographic devices. Countermeasures
against DFA come in two major flavors - detection based
countermeasures and infection based countermeasures. Detec-
tion based measures essentially use concurrent error detection
(CED) [12] and are used for both reliability and security
purposes. CEDs use four major types of redundancies that
have been studied in literature - information [7], [30], [41],
[53], time [38], [39], hardware [26], [39] and hybrid [22], [23],
[31], [47] redundancies. Detection based countermeasures are
vulnerable to attacks to the comparison step itself. In this
paper, we explore other variety of fault attack that could
render CEDs vulnerable. In particular, we focus on the time
and hardware redundancy countermeasures for AES-128. Both
time and hardware redundancy are described in literature as
effective classical fault tolerance technique that work well
against fault attack models where the fault distribution is
uniform. In this paper, we analyze the security of both schemes
in the light of biased fault models and demonstrate that the
bias in the fault model indeed weakens the countermeasure
significantly.

The other important challenge is to develop countermeasure
schemes to counter biased fault attacks. Since most biased
fault attacks such as DFIA combine principles of side channel
analysis with active fault analysis, it would be interesting
to investigate the effectiveness of standard countermeasures
to SCA against biased fault attacks. One such technique is
masking. Masking involves concealing any intermediate value
related with the key with a mask that is is randomly chosen
and varies from encryption to encryption []. In this paper, we
demonstrate that masking fails to counter biased fault attacks
on time and hardware redundancy countermeasures. This also
motivates developing alternative countermeasure schemes that
can effectively counter biased fault attacks.
Contributions. This paper demonstrates that naive
implementations of classical detection based countermeasure
techniques, specifically the time and hardware redundancy
countermeasures, are vulnerable to biased fault attacks. In
order to obtain a faulty ciphertext by attacking a time or
hardware redundant implementation of AES, the adversary
must introduce exactly the same fault in both the original
and redundant computations corresponding to the same
round. When the fault distribution is unbiased (as classically
assumed) the probability of occurrence of this event is very
low. But a biased fault model augments this probability to
the extent that it is feasible to obtain sufficient number of
faulty ciphertexts to recover the key, while using only a
practical number of fault injections. The paper first proposes a
mathematical quantification of the bias of a fault model using
the variance of the probability distribution of various faults in
the fault model. The paper then proposes a second order fault
analysis of the time and hardware redundancy countermeasure
implementations using a practically achievable biased fault
model. We then explore possible countermeasure strategies
against our proposed attack strategy. A popular choice of

countermeasure against side channel attacks such as DPA is
boolean masking. We demonstrate in this paper that although
biased fault attacks are essentially a form of side channel
analysis, masking fails to counter these attacks since it
does not transform the fault space between the original and
redundant rounds. The paper then proposes an alternative
countermeasure scheme against biased fault attacks. The
proposed scheme uses the concept of fault space mapping to
thwart the adversary from being able to inject the same faults
in the original and redundant rounds to beat the time and
hardware redundant schemes. All results have been validated
via simulations and real life experiments on a Spartan 3A
FPGA on a SASEBO GII platform.

Organization. The rest of the paper is organized as follows.
Section II introduces the time and hardware redundancy coun-
termeasures and mentions briefly the attack strategy used in the
paper. Section IV then presents a mathematical quantification
of the bias of the fault model using the variance of the proba-
bility distribution. Section III presents a practically achievable
precise cum biased fault model obtained via clock glitches
that can be used to attack the countermeasure schemes. This
is followed by a description of the actual attack procedure
in Section V. We then focus on countermeasure techniques
against our proposed attack. Section VII demonstrates that
boolean masking fails to counter biased fault attacks. An
alternative countermeasure scheme is developed in Section
VIII using the concept of fault space transformation. Finally,
the effectiveness of the countermeasure scheme is verified via
practical experiments performed on a Spartan 3A FPGA on a
SASEB0 GII platform in Section IX followed by conclusions
in Section X.

II. PRELIMINARIES

A. Fault Attacks on AES

Recent research has focused on two broad categories of
fault analysis of AES - attacks that require correct and faulty
ciphertext pairs, and attacks that require faulty ciphertexts
only. The first category principally includes Differential Fault
Analysis(DFA). In DFA, the adversary compares the response
of the cipher with and without fault injections [8], [44], [51],
[34]. The other category of fault attacks on AES require only
faulty ciphertexts to retrieve the key, as proposed by Fuhr et.
al. [18]. The attack uses stuck-at fault models and depends
on the degree of control the adversary has on the distribution
of the injected fault. A very similar approach proposed by
Ghalaty et. al. is the Differential Fault Intensity Analysis
(DFIA) [19] that uses a biased but slightly less restrictive
single byte fault model. Both these approaches make several
key hypotheses on the affected state bytes in order to retrieve
a hypothetical value whose distribution is strongly biased. An
alternative approach to DFIA, namely the Fault Differential
Entropy(FDE) has been proposed in []. FDE also requires only
faulty ciphertexts and uses fault differentials to distinguish
the correct key hypothesis. Similar to DFIA, this technique
also exploits the bias in the underlying fault model and has
been found to weaken several classical CED techniques. Table

3

TABLE I: Fault Attacks on AES: State of the art

Attack Nature Fault Model No. of Faulty Ciphertexts Key Search Space Fault Source
Clock Power Laser EM

DFA

Faults are injected in any round and at any location

Random 2128 2128

Faults are injected in round 0 into AddRoundKey

Single Bit [9] 128 1

Faults are injected between the 7th round MixColumns output and the 8th round MixColumns input

Single Byte [43] 2 240 [49] [15] [14]
Single Byte [42] 2 232 [15] [14]
Single Byte [50] 1 28 [15] [14]
Multiple Byte DM0 [46] 1 232 [46] [14]
DM1 [46] 1 264 [46] [14]
DM2 [46] 1 296 [46] [14]
DM3 [46] 1 2128 [46] [14]

Faults are injected between the 8th round MixColumns output and the 9th round MixColumns input

Single Bit [20] ≈ 50 1 [1] [14]
Single Byte [16] ≈ 40 1 [6] [15] [14]
Single Byte [40] 6 1 [15] [14]
Multiple Byte DM0 [40] 6 1 [14]
DM0 [40] 1.5 1 [14]

Faults are injected in the 10th round

Single Byte [36] ≈ 36 212 [36]

DFIA

Faults are injected just after the penultimate AddRoundKey operation

Single Byte [18], [19] 10-14 212 [19]

Faults are injected just after the ante-penultimate AddRoundKey operation

Single Byte [18] 14-80 234

Faults are injected in the 7th round

Diagonal Fault (Stuck-at) [18] 4-10 232

I summarizes the different versions of fault attacks on AES
reported in literature.

In this paper, we demonstrate that biased fault attacks can
be used to weaken both the time and hardware redundancy
techniques. Biased fault models expose a significant vulnera-
bility of the classical detection based countermeasures. Unlike
in a uniform fault distribution, a biased fault distribution
implies that the adversary can introduce the same fault in
both the normal and the redundant computation cycles with
high probability. This reduces the number of fault injections
required per faulty ciphertext and makes the attack practically
feasible. As in DFIA, our attack achieves the desired fault
distribution using clock glitches at various frequencies. We
then propose a countermeasure scheme that uses fault space
transformations to thwart biased fault attacks on CEDs.

B. The Time and Hardware Redundancy Countermeasures

Figures 1a and 1b illustrate the use of time and hardware
redundancy respectively in fault detection. Time redundancy
is a fault tolerance technique that uses additional time to
perform the functions of a system multiple times and compares

the results to detect faults if any. A particular advantage
of this approach is its low area overhead. The basic time
redundancy technique has essentially three important aspects
- repetition of function computation, storage of results of
original and redundant computations and comparison of results
for fault detection. Hardware redundancy, on the other hand,
uses two copies of the same hardware that operate in parallel
and the results are compared after each operation. Hardware
redundancy has greater area footprint as compared to time
redundancy but is more efficient in terms of time requirement.
Both time and hardware redundancy belong to a broad class
of detection based countermeasures, also known as concurrent
error detection(CED) techniques against DFA []. Some notable
CEDs using time redundancy proposed in literature include
re-computation [39] as well as double data rate computation
[38]. Hardware redundancy based CEDs have been proposed
in [26], [39].

A popular second order fault attack against CEDs already
mentioned in literature involves injecting a fault in the state
of the implementation, followed by a second fault injection to
bypass the detection step []. An interesting alternative to this

4

Fig. 1: The Target Concurrent Error Detection Techniques

(a) Time Redundancy (b) Hardware Redundancy

approach is to explore the possibility of bypassing the fault
detection step by injecting the same fault in both the original
and redundant computations. This is difficult to achieve for
a classical uniform fault model. However, it seems to be a
rather promising technique in a biased fault setting where not
all faults occur with equal probability.

III. FAULT MODEL AND FAULT INJECTION SET UP

In this section, we describe the fault model used for our
attack and the fault injection set up employed to achieve this
fault model.

A. Fault Model

Depending on the type and method of fault injection, differ-
ent types of faults may occur with varying granularity such as
single bit upsets, multi bit upsets, single and multi byte upsets,
and diagonal upsets. Some previous works have considered
random effect on one byte, where a single state byte may have
changed to any random value [25], [8], [35], [51]. However,
such a fault model has a uniform distribution. More recent
work [19] has demonstrated that single-bit, two-bit, three-bit
and four-bit upsets are achievable using clock glitches, and that
one can control the granularity of fault injection by varying
the fault intensity. We have ourselves verified that such faults
can be achieved in hardware implementations of AES-128 via
introduction of clock glitches at varying frequencies (refer
III-B).

For further discussions in this paper , we distinguish be-
tween major classes of faults that covers the entire possible
fault state. Table IIa summarizes these categories. Our exper-
iments have shown that SBU is the most suitable fault model
for our attacks on time or hardware redundant AES implemen-
tations. However, we also present results for SBDBU, SBTBU
and SBQBU to show the impact of fault model granularity on
the performance of our attacks. Note that the degree of control
that the attacker has on the fault location impacts the fault

models in terms of the number of possible fault (N) under
that fault model. We distinguish between the following two
situations - Situation-1 when the attacker has perfect control
over the faulty byte and Situation-2 when the attacker does
not have control over the faulty byte.

In the case of single byte faults, if k be the number of bit
upsets in the target byte, then the number of possible faults
in either scenario is different. In Situation-1, any k bits of the
fixed target byte is affected, so number of possible faults is(
8
k

)
. In Situation-2, however k bits of any target byte could be

affected, so number of possible faults is 16
(
8
k

)
, which is 16

times greater than in Situation-1.
Table IIb captures the number of possible faults under

various fault models in both situations. Evidently, precision in
terms of fault location restricts the set of possible faults under
a fault model significantly. Note that n is the total number of
faults possible under the fault model.

B. Fault Injection Set Up

Figure 2 describes our set up for fault injection in a CED
based implementation of AES-128.The set up consists of
an FPGA (Spartan-3A XC3S400A), a PC and an external
arbitrary function generator (Tektronix AFG3252). The FPGA
has a DUT (Device Under Test) block, which is a time or
hardware redundant AES implementation. Faults are injected
using clock glitches and the fault intensity is controlled by
increasing/decreasing the glitch frequency. The system has two
clock signals - clkslow and clkfast, derived from an external
clock signal clkext via a Xilinx Digital Clock Manager (DCM)
module. The clkext is generated by the external function
generator and can take frequency values up to 120 MHz. The
clkslow signal has the same frequency as clkext and is used
for fault-free operation of the DUT. The clkfast signal has a
frequency equal to twice the frequency of clkext and is used
to create the glitches for fault injection. The appropriate signal
is fed to the DUT via a MUX. The select line of the MUX

5

TABLE II: Fault Model Description

(a) The Fault Model

Symbol Fault Model
FF Fault Free

SBU Single Bit Upset
SBDBU Single Byte Double Bit Upset
SBTBU Single Byte Triple Bit Upset
SBQBU Single Byte Quadruple Bit Upset

OSB Other Single Byte Faults
MB Multiple Byte Faults

(b) Impact of fault location precision

Fault Model
Faults Possible(n) Faults Possible(n)

(Situation-1) (Situation-2)

SBU 8 128
SBDBU 28 448
SBTBU 56 896
SBQBU 70 1120

OSB 93 1488

Fig. 2: Fault Injection Setup

is the clksel signal which is output by the trigger generator
and is set to high when clkfast is to be fed to the DUT. The
faulty states of the registers were monitored using Chipscope
Pro 12.3 analyzer.

We injected faults in both the original and redundant com-
putations of the target round of the DUT by varying the clkext
over a wide range of frequencies. The target rounds were
chosen to be rounds 8 and 9 respectively. Since the Chipscope
pro 12.3 Analyzer limits the number of observable samples
at a given frequency to 1024, we observed 512 samples for
the original computation and 512 samples for the redundant
computation. Table IIIa summarize the average fault patterns
obtained in either case, while Table IV elucidates the common
frequency ranges between either round where each type of
fault model is predominant.

TABLE IV: Fault Models and Corresponding Frequency Ranges

Fault Model Frequency Range (Original and redundant computations)
(MHz)

FF < 125.3
SBU 125.3-125.4

SBDBU 125.6-125.7
SBTBU 126.0-126.1
SBQBU 126.3-126.4

OSB 126.5
MB > 127.2

IV. QUANTIFYING THE BIAS OF A FAULT MODEL

In this section, we present a formal quantification of the
degree of bias of a fault model. A fault model may be defined

as a two tuple (F ,P) where F is the fault space and P is
the fault probability distribution followed by the model. Let
the set of faults that can occur under a given fault space
F is given by F = {f1, . . . , fi, . . . , fn}, where n is the
total number of faults possible under the fault model. Let
F be a discrete random variable that denotes the outcome
of a single fault injection under this fault model, and let
pi be the probability of occurrence of fault fi given by
pi = Pr[F = fi]. Evidently, the fault model follows the
probability distribution P = {p1, . . . , pi, . . . , pn}. Also, let
V ar denote that variance of P . From the standard definition
of variance of a probability distribution V ar =

∑n
i=1 pi

2

n − 1
n2 .

We now propose the following definition for the degree of bias
of a fault model.

Definition 1: The degree of bias of a fault model is defined
to be equal to the variance V ar of the probability distribution
P followed by the fault model.

1) Justification for the definition:: In literature, a fault
model is said to be unbiased or uniform if all faults under this
fault model occur with equal probability. If the fault model
does not satisfy the above criteria is said to be biased. For a
uniform fault model, pi = pj = 1

n∀i, j and V ar = 0. Thus
according to our definition, the bias of a uniform fault model
is 0. On the other hand, for a biased fault model V ar is a
finite non-zero value and so is the bias. In the most biased
scenario, the outcome of the fault injection is deterministic,
that is, exactly one fault occurs with a probability of 1 and
all the rest have a zero probability of occurrence. in such a
scenario the variance V ar = 1

n −
1
n2 . We claim that this is

6

TABLE III: Fault Distribution

(a) Fault Distribution Pattern - Time Redundancy

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB(MHz)

125.0 512 0 0 0 0 0 0

125.1 503 9 0 0 0 0 0

125.2 489 22 1 0 0 0 0

125.3 456 50 6 0 0 0 0

125.4 425 59 22 6 0 0 0

125.5 396 45 43 28 0 0 0

125.6 354 34 112 32 0 0 0

125.7 303 23 101 85 0 0 0

125.8 260 11 55 86 0 0 0

125.9 208 5 46 147 6 0 0

126.0 176 1 39 228 68 0 0

126.1 143 0 18 211 136 4 0

126.2 115 0 10 94 178 15 0

126.3 101 0 8 95 251 49 8

126.4 65 0 9 45 232 141 20

126.5 32 0 5 16 131 187 141

126.6 13 0 3 8 98 101 289

126.7 5 0 1 4 32 112 358

126.8 0 0 1 2 5 105 399

126.9 0 0 1 2 3 88 421

127.0 0 0 0 1 2 33 476

127.1 0 0 0 0 1 12 499

127.2 0 0 0 0 0 0 512

127.3 0 0 0 0 0 0 512

127.4 0 0 0 0 0 0 512

127.5 0 0 0 0 0 0 512

(b) Fault Distribution Pattern - Hardware Redundancy

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB(MHz)

70.0 512 0 0 0 0 0 0

70.1 512 0 0 0 0 0 0

70.2 504 8 0 0 0 0 0

70.3 475 34 3 0 0 0 0

70.4 460 47 5 0 0 0 0

70.5 416 63 29 4 0 0 0

70.6 378 38 71 25 0 0 0

70.7 345 29 120 32 0 0 0

70.8 299 21 164 28 0 0 0

70.9 234 14 120 144 2 0 0

71.0 216 4 39 247 6 0 0

71.1 189 2 35 220 66 0 0

71.2 130 0 15 180 176 11 0

71.3 105 0 10 104 278 15 0

71.4 83 0 10 66 227 100 26

71.5 50 0 8 46 157 162 90

71.6 27 0 5 16 113 125 226

71.7 21 0 4 10 98 118 261

71.8 13 0 3 6 50 103 337

71.9 7 0 3 5 21 107 369

72.0 5 0 3 2 10 99 393

72.1 2 0 1 1 8 44 456

72.2 1 0 0 1 6 19 485

72.3 1 0 0 0 2 8 501

72.4 0 0 0 0 1 5 506

72.5 0 0 0 0 0 0 512

the maximum possible value of V ar and prove our claim as
follows.

V ar =

∑n
i=1 pi

2

n
− 1

n2

≤
∑n
i=1 pi
n

− 1

n2

=
1

n
− 1

n2

Thus it is indeed justified to use the variance of the
probability distribution V ar to estimate the degree of bias of
a fault model. The usefulness of this metric lies in the fact that
it not only allows one to analytically evaluate fault models in
terms of their bias but also makes it possible to compare two
fault models with respect to their relative degree of bias.

A. The Fault Collision Probability

In order to get a faulty ciphertext in time or hardware
redundant AES, the same fault fi must occur in both the
original and redundant computations. Let Forg and Fred be the
random variables denoting the outcome of fault injections in
the original and redundant rounds respectively. Since the fault
injection in the original and redundant rounds are independent,
we have Pr[Forg = fi, Fred = fj] = pipj . We focus on the
event where Forg = Fred. Let the probability of this event be

denoted by p̃.

p̃ =

n∑
i=1

Pr[Forg = fi, Fred = fi] =

n∑
i=1

pi
2. (1)

Evidently, this is also the probability of leakage of faulty
ciphertexts. Our objective is to find if there is a correlation
between the biased nature of the fault distribution and this
probability of fault co-occurrence. Since the degree of bias
of the fault model is quantified using the variance of the
probability distribution as per our definition, the following
relation is of interest and demonstrates that with increase in
degree of bias, the fault collision probability increases.

p̃ = nV ar +
1

n
(2)

Both time and hardware redundancy countermeasures, if
naively implemented, would fail to detect the occurrence of
a fault as long as the adversary could inject the same fault
in both the original and redundant computations. The use of
a biased fault model would make the probability of success
fairly high for such an attack and would allow recovery of the
key using practically feasible number of fault injections.

V. DESCRIPTION OF THE ATTACK

In this section, we describe the detailed procedure of the
performed attacks on a time and hardware redundant versions
of AES. The attack essentially extends DFIA [19] to two target

7

TABLE V: Notations used in the attack procedure

P Plaintext
C Fault-free ciphertext
q A specific fault instance
Q The total number of faulty ciphertexts obtained
F The total number of fault injections(inclusive of all fault models)
C′q The faulty ciphertext under fault q
r A round of AES
k A key hypothesis
K The correct key

Sr
K The fault free cipher state in round r for key K

S′rk,q A guess for the faulty cipher state in round r
under fault q and key hypothesis k

rounds instead of just one, and also uses an additional dis-
tinguisher function - the Squared Euclidean Imbalance (SEI)
to identify the correct key hypothesis. The attack procedure
introduces the fault into either round 8 or round 9 of AES, and
exploits the biased nature of the introduced fault to decipher
the key. Please refer to Table V for the notations used for
describing the attack procedure. Note that our fault model for
the attack only comprises SBU, SBDBU, SBTBU and SBQBU
(refer Table IIa), i.e, all the fault models are single byte fault
models.

Fig. 3: Attack Steps

A. General Attack Procedure

We first present the general steps of the attack, irrespective
of the round in which the fault is introduced. A more round-
specific treatment of the attack is presented following the
general discussion. The steps of the attack on the time and
hardware redundant implementations of AES are also eluci-
dated in Figure 3. Please not that here round r refers to the
target round of the original AES and not the time or hardware
redundant versions. This is done for the purpose of clarity in
presenting a common description of the attack procedure.

Step 1: In this step the adversary induces faults fi
and fj in both the normal and redundant computation
of the target round r. However, the adversary can get
the desired faulty ciphertext C ′fi only if fi and fj
are identical; otherwise the ciphertext is randomized.
Note that a random ciphertext cannot distinguish
between correct and incorrect key hypotheses and

so, does not contribute to key hypothesis testing. This
only increases the number of fault injections required
to recover the key. We consider NC to be the number
of non-random faulty ciphertexts and NF to be the
overall number of fault injections.
Step 2: Once the adversary collects the value of
faulty ciphertext C ′fi , he can compute the value
of faulty state S′rk,fi under key hypothesis k. He
computes this value for every possible key hypothesis
k.(Note that it is sufficient to hypothesize only those
bytes of k that affect the faulty byte of S′rk,fi
since our fault model allows only single byte faults).
After doing this for several collected ciphertexts, the
adversary uses a distinguisher to identify the correct
key hypothesis.
Step-3: The adversary chooses the key hypothesis
k that minimizes/maximizes the appropriate distin-
guisher function for the chosen fault model. A de-
tailed description of the distinguisher functions is
presented in V-B. If no satisfactory key guess can be
made, NC is to be increased and the test repeated.
Note that in time or hardware redundant AES with
suppression, the number of fault injections NF is
greater than NC as not all fault injections yield a
faulty ciphertext.

B. Distinguisher Functions

Distinguisher functions are used by the adversary to decide
on the correct key byte(s) by selecting the key hypothesis
that corresponds to the expected bias in the faulty state. For
our attacks, we use two well known distinguisher functions
- Hamming Distance [19] and Squared Euclidean Imbalance
[18], [45]. Equations 3 and 4 describe these functions, with k
as the key hypothesis and b as the affected byte of the AES
state.

H(k) =

NC∑
i=1

i−1∑
j=1

HD(S′rk,fi , S
′r
k,fj) (3)

S(k) =

NC∑
i=1

255∑
δ=0

(
#{b | S′rk,fi [b] = δ}

NC
− 1

256
)2 (4)

C. The Attack on the Countermeasure Implementations of
AES-128

We describe the fault attack procedure where the faults
are introduced in rounds 8 and 9 of AES, and the choice of
distinguisher function is made accordingly.

1) Attack on the 8th round:
Fault Location: The fault fi is injected just after
the ante-penultimate AddRoundKey operation of the
AES, modifying a random byte b of S8

K [18]. The
injection occurs in both the original and redundant
rounds of computation.
Attack Procedure: Equation 6 summarizes the rela-
tion between the faulty ciphertext and the faulty state.
The adversary can hypothesize on 4 bytes of K10 and

8

TABLE VI: Summary of the Attack Procedure

Fault Model Target Round Key Search Space Distinguisher Used
Single Byte Round 9 212 Hamming Distance
Single Byte Round 8 234 Hamming Distance

Squared Eucledian Imbalance

one byte of K9 to get the corresponding states and
then use the SEI distinguisher to identify the correct
key hypothesis, because the Hamming Distance is
found to require more faulty ciphertexts in this case
to arrive at the key hypothesis.
Attack Complexity: The attack requires 232 key
hypotheses for recovering 4 bytes of the key [18], and
a total of 4 such sets for recovering the entire key,
leading to an overall requirement of 4 × 232 = 234

hypotheses. Once again, both time and hardware
redundancy demand that the actual number of attacks
be greater than the required number of faulty cipher-
texts.
S′

9
K,fi = SB−1(SR−1(C ′fi ⊕K10)) (5)

S
′8

K,fi
= SB

−1
(SR

−1
((MC

−1
((SB

−1
(SR

−1
(C
′
fi
⊕K10))⊕K9))))

(6)

2) Attack on the 9th round:
Fault Location: The fault fi is injected just after
the penultimate AddRoundKey operation of the AES,
modifying a random byte b of S9

K . The injection
must occur in both the original and redundant rounds
of computation.
Attack Procedure: Since the last round involves no
MixColumns operation, we have Equation 7. The
adversary collects several faulty ciphertexts C ′1, . . . ,
C ′N on the same P and hypothesizes on one byte
of the key to obtain 256 guesses of the faulty state
S′9k,fi - one for each key hypothesis k. This is
followed by the computation of H(k) to identify the
correct key hypothesis. It should be noted that the
SEI distinguisher is useless in this context, as the
distance to the uniform distribution will be the same
for each hypothesis [18].
Attack Complexity: The attack requires 256 key
hypotheses for recovering each byte of the key.

S′
9
K,fi = SB−1(SR−1(C ′fi ⊕K10)) (7)

Table VI summarizers the overall attack procedure in brief.

VI. ATTACK SIMULATIONS

In this section, we present some simulation results of our
proposed attacks on software implementations of the time
and hardware redundancy countermeasures for AES-128. The
simulation studies are divided into two major halves. In the
first half, we assume the same fault for the original and
redundant rounds so that each fault injection gives us a faulty
ciphertext, i.e., NC is same as NF . Our aim here is to estimate
the number of faulty ciphertexts required to recover the full

TABLE VII: Number Of Faulty Ciphertexts Required To Guess the Entire Key With
99% Probability

Round Fault Model NC

8

SBU 320-340
SBDBU 580-600
SBTBU 1000-1040
SBQBU 1900-2000

9

SBU 288-320
SBDBU 608-640
SBTBU 832-880
SBQBU 1360-1440

key under different fault models. In the second half, we vary
the probability distribution for each fault model to confirm the
correlation of the bias with the fault collision probability, as
described by Equation 2. We quantify the bias of the fault
model using the variance of the fault probability distribution,
and the fault collision probability by the number of fault
injections required per faulty ciphertext.

A. Simulation: Part-1

In this part of the simulation, we assume identical faults in
both the original and redundant computation rounds and aim
to estimate the average number of faulty ciphertexts required
to recover the entire key. Note that since the actual attack
procedure is independent of the countermeasure scheme being
targeted (time or hardware redundancy), the simulation results
are presented for a general attack on either countermeasure
scheme.

In the simulation, a byte of the state at the desired attack
point is chosen at random and then fault is introduced into a
certain number of bits belonging to that byte, varying from
1 to 4. Note that these bits are also chosen at random. We
simulate the attacks in rounds 8 and 9 respectively. In each
case, the appropriate distinguisher function is used to choose
the key hypothesis. Table VII summarizes the number of faulty
ciphertexts required for each fault model to guess the entire
128-bit key with 99% accuracy for the attacks on rounds 8
and 9.

B. Simulation: Part-2

In the second half of the simulation, we varied the degree
of bias for each fault model by controlling the variance
of the fault probability distribution for each model and ob-
served the average number of fault injections required per
faulty ciphertext, computed over a set of 100 ciphertexts. In
this experiment, the assumption was that the countermeasure
suppresses the ciphertext on fault injection. Our experiment
considered two distinct scenarios, in which the adversary
has perfect and no control respectively over the target byte
in which the fault is to be induced. For the first scenario,
the fault was injected only in a fixed target byte, while in
second scenario, the target byte was randomly chosen. In either
scenario, we simulated the fault probability variance using a
normal distribution with mean 1/n and the desired variance,
where n is the total number of faults achievable under the
corresponding fault model. Figures 4a and 4b summarize the
simulation observations over a wide range of fault distribution

9

Fig. 4: Number of Fault Attacks per Faulty Ciphertext vs Variance of Fault Probability Distribution

(a) Adversary has perfect control over target byte

(b) Adversary has no control over target byte

variances, in both scenarios. These observations show that with
increase in bias of the fault distribution, the number of fault
injections that are required per faulty ciphertext drops rapidly.
This in turn confirms our hypothesis that increasing the bias
of the fault model enhances that fault collision probability.

VII. DOES MASKING PROTECT AGAINST BIASED FAULT
ATTACKS?

Biased fault attacks such as the DFIA tend to combine
principles of DPA with active fault analysis to identify the
secret key. In literature, one of the most popular and effective
countermeasures against side channel analysis techniques such
as the DPA is masking. In this section, we explore the security
of masked implementations of the time and hardware redun-
dancy countermeasures against biased fault attacks. Masking
involves concealing any intermediate value related with the key
with a mask m, where m is randomly chosen and varies from
encryption to encryption. The intermediate value v is trans-
formed into its randomized counterpart vm = v ∗m such that

the value of m is not known to the adversary. A special subset
of masking is the boolean masking in which the operation ∗
is the XOR operation. In the following discussion, we focus
on countermeasures that incorporate boolean masking at the
algorithmic level. Masking is a very popular countermeasure
technique against power analysis, since masking with a ran-
dom value is assumed to destroy any correlation that the power
consumption of the device has with the actual key-dependent
data.

A. The Masked Countermeasure Implementation

Figure 5 schemetically describes the basic boolean masking
mechanism, which may then be applied to both the time and
hardware redundancy countermeasures. The key-dependent
input to each round is masked with a random mask value. In
order to conceal the power leakage from both registers R0 and
R1, the content of both these registers needs to be masked. Let
SrK be the unmasked fault free cipher state after r using key
K, and let mr

0 and mr
1 be the mask values for the original

10

Fig. 5: A Schemetic for the Masked Countermeasure

and redundant computations after round r, respectively. By
round r, we of course refer to the round r of the original AES
algorithm. We denote the corresponding masked states for R0

and R1 by Ŝr0,K and Ŝr1,K respectively. Since boolean masking
is used, we have Ŝr0,K = SrK ⊕mr

0 and Ŝr1,K = SrK ⊕mr
1.

Thus, for fault free computations, the following invariance
must be satisfied for each round r.

Ŝr0,K ⊕mr
0 = Ŝr1,K ⊕mr

1 (8)

In fact, this is the very condition that is used by the
countermeasure to detect the occurrence of a fault. We note
that the very definition of masking demands that the generation
of the mask value corresponding to each round be independent
of the register content in that round.

B. Biased Fault Attack on the Masked Countermeasure Imple-
mentation

We now demonstrate that masking fails to thwart biased
fault attacks on the countermeasure schemes. We first point
out that our proposed biased fault attack on the AES counter-
measures has two major phases:

1) Bypassing the detection step after fault injection by
injecting identical faults in the original and redundant
rounds

2) Distinguish th correct key hypothesis by exploiting the
underlying bias of the faulty cipher state

Suppose that the adversary introduces faults f0 and f1 in the
registers R0 and R1 after the original and redundant computa-
tions corresponding to round r of the original AES algorithm.
The algorithm fails to detect the fault if the invariance 8 holds
even after the fault injection. We now investigate the scenario
when this may happen.

(Ŝr0,K ⊕ f0)⊕mr
0 = (Ŝr1,K ⊕ f1)⊕mr

1

⇒ (Ŝr0,K ⊕mr
0)⊕ f0 = (Ŝr1,K ⊕mr

1)⊕ f1
⇒ SrK ⊕ f0 = SrK ⊕ f1
⇒ f0 = f1

(9)

Thus, even in the presence of masking, the adversary
could still inject the same fault in the original and redundant
computations of the masked scheme, and bypass the detection

step. Moreover, the biased nature of the underlying fault model
implies that the adversary could still inject the same fault in
both the original and redundant rounds with a high probability.
Thus, masking has effectively no impact on the probability that
the adversary successfully bypasses fault detection.

The other half of the attack is also valid on the masked
implementation of the countermeasure schemes. As in our
previous example, suppose that the adversary introduces the
fault f0 in the original computation corresponding to round r,
and has bypassed the detection step by introducing the same
fault in the redundant computation as well. The corresponding
faulty cipher state is given by (Ŝr0,K ⊕ f0) = (ŜrK ⊕ f)⊕mr

0.
Since mr

0 is computed independent of the cipher state R0

after each round r, the introduction of the fault does not alter
the mask values generated in the subsequent rounds of the
algorithm. Correspondingly, the computation proceeds as if
the correct value after round r was ŜrK ⊕ f instead of ŜrK .
This in turn implies that a correct key hypothesis will yield
the biased faulty state, while all other key hypotheses will
yield random states, and the adversary can use an appropriate
distinguisher function (such as HW or SEI) to identify the
correct hypothesis.

Remark: A major reason as to why masking fails in coun-
tering biased fault attacks is that it does not transform the fault
space for the original and redundant rounds. This allows the
adversary to exploit the biased nature of the underlying model
and introduce the same fault in the original and redundant
rounds. In the next section, we explore a countermeasure
scheme that tries to thwart biased fault attacks by transforming
the fault space. Essentially, the idea is to ensure that injecting
the same random fault f in the registers R0 and R1 would
not amount to an equivalent fault injection in the original
and redundant computation rounds. This reduces the success
probability of the attack considerably.

VIII. COUNTERING BIASED FAULTS : TRANSFOMATION
OF FAULT SPACE

In this section we present a countermeasure strategy based
on fault space transformation to prevent biased fault attacks on
the time and hardware redundancy countermeasure schemes.
The basic idea is to prevent the adversary from being able to
exploit the underlying bias in the fault model to inject the same
fault in both the state registers R0 and R1. One such strategy
is to have different encodings for the state registers R0 and
R1 in each state of the FSM. This would automatically imply
that injecting the same random fault fi in the registers R0 and
R1 would not amount to an equivalent fault injection in the
original and redundant computation rounds. It is important to
note that the presence of the detection step necessitates the
existence of a bijective mapping between the state spaces for
the registers; otherwise the comparison of the register values
is not possible. This in turn implies that there is an equivalent
bijective mapping between the fault spaces F0 and F1 for
the two registers, that is for each fault fi ∈ F0 there is an
equivalent fault fj ∈ F1 such that fi ≡ fj . Thus, for the first
phase of the attack on the updated FSM, the adversary must
inject equivalent faults in the registers R0 and R1. We now
present this idea formally.

11

Fig. 6: Fault Space Transformation

A. The Motivation: Transforming the Fault Space

As discussed in section III the adversary must use a precise
cum biased fault model in order to be able to induce the same
fault in both the original and redundant computations corre-
sponding to a single round of AES. We stress the importance of
fault model precision here to improve the success probability
of the attack. If the fault space is too large, the probability
of fault collision reduces in practical set-ups. To validate this,
we performed experimental studies on real life implementa-
tions of time and hardware redundancies on a SPARTAN-
3A FPGA. The faults were introduced using set-up violations
achieved via clock glitches at various frequencies. Figure 7
demonstrates that as the fault precision reduces (that is the
fault spreads across multiple bytes), the probability of fault
collision reduces. In fact, beyond 16 affected bits, it becomes
practically infeasible to even achieve a single occurrence of
fault collision. The mathematical intuition behind this could
be explained as follows. If the fault space F consists of a
total of n possible faults, the maximum variance of the fault
probability distribution followed by the corresponding fault
model is given by V armax = 1

n−
1
n2 which is a monotonically

decreasing function for n > 2. Since the variance is also a
measure for the bias of the fault model, it is amply clear that
less precise fault models are inherently less biased than precise
fault models.

The above discussion thus leads to the conclusion that
multi-byte faults cannot be used practically for attacking
even naive time and hardware redundancy countermeasure
implementations. Single byte fault models are the adversary’s
best options if she has to have a feasible chance of extracting
the key. In our proposed countermeasure scheme against such
biased fault attacks, we aim to exploit this fact by ensuring
that single byte faults in R0 are mapped to equivalent multiple
byte faults in R1. Thus a smaller fault space F0 is mapped
to an equivalent fault space F1, which in turn is a subspace
of a much larger fault space F∗, as demonstrated in Figure 6.
This significantly lowers the probability that the adversary can
inject equivalent faults in both R0 and R1 in the augmented
state machine setting. It is easy to see that the reverse scenario
in terms of fault space mapping is not possible, that is, a
larger fault space can never be mapped to a smaller or a
more precise one. Since the mapping between the fault spaces
is a bijection, they will always have the same cardinality.
Moreover, using low cost fault injection techniques such as

clock glitches, it is practically infeasible for the adversary to
target a fixed subset of multiple byte faults on R0 that are
mapped to single byte faults in R1. Thus transformation of
the fault space significantly reduces the success probability of
random fault injections. We now prove this formally in the
following discussion for both uniform and biased fault model
settings. We first state an important assumption that is used in
the formal analysis.

Assumption 1: The adversary can guarantee the occurrence
of a fault in the larger fault space F∗ but not in the subspace
F1.

This is a fairly reasonable assumption and we present a
small example here to justify it. Suppose the chosen fault space
mapping maps all single byte faults to a specific subspace of
four byte faults. Then the adversary can use a specific clock
glitch frequency to inject four byte faults in the redundant
computation with a reasonably high probability. However,
using the same fault injection technique, she cannot in any
way enhance the probability of occurrence of specifically those
four byte faults that are part of the smaller subspace under this
mapping. These faults would still have the same probability
of occurrence as they had in the larger fault space comprising
of all four byte faults.

Let W : (0, 1)
128 → (0, 1)

128 be a bijective mapping
such that R1 = W (R0) under fault free operation of both
the time and hardware redundancy countermeasures. Under
uniform fault assumption, each fault fi ∈ F0 has probability
of occurrence 1

|F0| and each fault fj ∈ F1 has probability
of occurrence 1

|F∗| , as per the aforementioned assumption.
Hence, probability of fault collision between two random fault
injections f̂0 and f̂1 is given by p̃ =

∑|F0|
i=1 Pr[f̂0 = fi, f̂1 =

W (fi)] =
1
|F∗| which is a very small value for a large fault

space F∗. Note that we set pr[f̂1 = W (fi)] =
1
|F∗| . This is

in accordance with the assumption stated above.

The analysis for the biased scenario is much more inter-
esting. We may assume that the probability distribution of
faults in the fault spaces F0 and F∗ are independent and
have no correlation. This is a reasonable assumption because
in a practical set-up the distribution patterns of faults under
different fault models such as single byte and multi byte
fault models are in general not correlated. Since F2 is a
subset of F∗ determined by the transformation W over which
the adversary has no control, it is safe to assume that the
probability distributions of faults in the fault spaces F0 and
F1 are also independent. Also, the choice of the transformation
function W is not known under the adversary’s control. Any
chosen mapping W maps F0 to a subset F1 of F∗ such that
|F1| = |F0|. There are

(|F∗|
|F0|
)

such subspaces. A particular

fault fj ∈ F∗ occurs in
(|F∗|−1
|F1|−1

)
of thee subspaces. Thus,

given a random fault fi ∈ F0 and a random fault fj ∈ F∗,
the expectation of Pr[fj =W (fi)]) over all possible choices
of W (assuming the adversary has no control over W)is given

12

Fig. 7: Effect of Fault Precision

0 5 10 15

0

2

4

6

8

10

·10−2

Number of Faulty Bits

A
ve

ra
ge

V
ar

ia
nc

e

(a) Variance v/s Number of Faulty Bits

0 5 10 15

0

2

4

6

8

10

·105

Number of Faulty Bits

A
ve

ra
ge

Fa
ul

t
In

je
ct

io
ns

pe
r

Fa
ul

ty
C

ip
he

rt
ex

t

(b) Attack Efficiency v/s Number of Faulty Bits

as follows:

E(Pr[fj =W (fi)]) =

(|F∗|−1
|F0|−1

)(|F∗|
|F0|
)
|F0|

=
1

|F∗|

(10)

Let pj be the probability of occurrence of the fault fj ∈ F∗.
Given the adversary has perfect knowledge of first fault
injection f̂0 = fi ∈ F0, and using Assumption 1, we have
the following expected probability of fault collision.

E(Pr[f̂1 =W (fi)]) =

|F∗|∑
j=1

E(Pr[fj =W (fi)]Pr[f̂1 = fj])

=

|F∗|∑
j=1

E(Pr[fj =W (fi)])pj

=
1

|F∗|

|F∗|∑
j=1

pj

=
1

|F∗|
(11)

Finally, the expected probability of fault collision p̃ between
two random fault injections f̂0 and f̂1 in a biased set up is
given by the following equation.

E(p̃) = E(
|F0|∑
i=1

Pr[f̂0 = fi, f̂1 =W (fi)])

=

|F0|∑
i=1

E(Pr[f̂0 = fi, f̂1 =W (fi)])

=

|F0|∑
i=1

E(Pr[f̂0 = fi]Pr[f̂1 =W (fi)])

=

|F0|∑
i=1

E(Pr[f̂0 = fi])E(Pr[f̂1 =W (fi)])

=

|F0|∑
i=1

E(Pr[f̂0 = fi])(
1

|F∗|
)

=
1

|F∗|

|F0|∑
i=1

E(Pr[f̂0 = fi])

=
1

|F∗|
E(
|F0|∑
i=1

Pr[f̂0 = fi])

=
1

|F∗|

(12)

The fact that the two probability distributions are independent
is used in line 3 of the derivation. Thus, even though the
fault models are individually biased, the fact they are mu-
tually independent causes the expected collision probability to
remain the same as in the unbiased scenario. In a real life
attack scenario, the chosen transformation W will be known
to the attacker. However, the mathematical formulation tells
us that there exists such transformations where the probability
of fault collision is even worse that the unbiased scenario.
Thus, to summarize, the chosen transformation must satisfy
the following condition:

1) The fault spaces F0 and F1 should have highly uncorre-
lated probability distributions.

2) The expected probability of fault collisions should be low.
Intuitively, in a biased fault model scenario, this implies
that the most probable faults should not get mapped to
the most probable faults in the larger fault space F∗.

13

We note that both of these conditions are expected to
be satisfied in a practical scenario for most choices of W .
Thus, changing the state encoding to transform the chosen
adversarial fault space F0 to a large target fault space F∗
would reduce the success probability of the adversary even
in a biased scenario. Our next step is to formally present the
augmented FSM framework that incorporates this countermea-
sure scheme. We also discuss good choices of transformation
functions that help achieve our desired goal of reducing the
fault collision probability.

Figures 8a and 8b represent the modified time and hardware
redundancy countermeasure schemes that incorporate the state
encoding transformation. It is easy to see the equivalence
between the fault classes for the original and redundant
computations with this modified scheme. Consider a fault
free state of computation during an intermediate round of
the computation. Let the content of the register R0 be x.
The content of register R1 would therefore be W (x). Now
suppose the adversary injects equivalent faults f0 and f1 in the
registers R0 and R1 respectively. We now have the following
relationship between the faults f0 and f1.

x⊕ f0 =W−1(W (x)⊕ f1)
⇒W (x)⊕ f1 =W (x)⊕W (f0)

⇒ f1 =W (f0) (13)

Thus the fault space has been transformed under the mapping
W .

B. Choice of the Transformation Function - Using MDS
Matrices

We now look at a possible strategy for designing the
transformation function W that would map a restricted fault
space F0 for the register R0 to a subspace F1 of a much
larger fault space F∗ for the state register R1. We propose the
use of Maximum Distance Separable (MDS) matrices [27] for
W . An MDS matrix is a matrix representing a function with
special diffusion properties and has many useful applications
in cryptography, especially in designing multipermutations to
prevent cryptanalysis [52]. Formally, an m2 × m1 matrix A
over a finite field K is an MDS matrix if it is the transformation
matrix of a linear transformation f(x) = Ax from Km1toKm2

such that no two different (m1 + m2) tuples of the form
(x, f(x)) coincide in m1 or more components. Equivalently,
the set of all (m1+m2) tuples (x, f(x)) is an MDS code,that
is, a linear code of dimension m1, length m1 + m2 and
minimal distance m2 + 1, that reaches the singleton bound.
MDS matrices are used in a number of block ciphers such as
AES and Twofish [48] as well as state-of-the art lightweight
ciphers. The property of the MDS matrices that is most
appealing in the context of our preceding discussion on fault
space transformation, is that they provide perfect diffusion
[27]. For an MDS mapping from Km1 to Km2 changing
t components of the input changes at least m1 − t + 1
components of the output.

We now investigate the usefulness of the diffusion property
of MDS matrices with respect to our fault space transformation

motive. We refer in the following discussion to the modified
countermeasure schemes in Figures 8a and 8b respectively.
Suppose that the linear transformation W is a m2×m1 MDS
mapping over a field K from Km1toKm2 . Let the adversary
injects a t byte fault f0 in the register R0, and let f1 be the
corresponding fault to be injected in the register R1 so that the
countermeasure fails to detect the fault injection. By equation
13, f1 = W (f0). By the MDS diffusion property, the t byte
fault f0 is mapped to an at least a m2 − t + 1 byte fault f1.
For the special case of a single byte fault, the transformed
fault space comprises of faults that affect at least m2 bytes of
the output. Thus the precision of the output fault space F1 is
much lower, making it very difficult to have the random fault
generator RandF∗ generate the desired fault with even reason-
able probability. Note that we use RandF∗ instead of RandF1

because the adversary cannot specifically generate the faults in
F1 in a practical scenario. Thus using MDS matrices for the
fault space mapping significantly reduces the attack probability
on the time and hardware redundancy countermeasures. The
question is which MDS matrix to choose. A possible choice
is to use the Rjindael MDS matrix used in the MixColumns
operation for AES-128.

1) Using the Rjindael MixColumns: The Rjindael Mix-
Columns operation used in AES consists of multiplying a
input vector of length 4 by a 4× 4 MDS matrix in the finite
field GF(28). The matrix is presented below for reference.
Each column is treated as a polynomial over GF(28) and
is then multiplied modulo x4 + 1 with a fixed polynomial
c(x) = 0x03x3 + x2 + x+ 0x02.

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

The MixColumns operation takes four bytes as input and

produces 4 bytes as output, where each input byte affects
all four output bytes. This implies that if a single byte of
the input vector is changed, all 4 bytes of the output are
affected. From the point of view of fault injections, if the
adversary were to inject a single byte fault in the input
vector, the MixColumns would diffuse the fault across all four
bytes of the output vector. Thus essentially, the fault model
transformation takes place from a single byte fault to a four
byte fault. Since fault models beyond single byte faults are
of no practical significance to the adversary for attacking the
time and hardware redundancy countermeasures due to lack of
precision, it is sufficient to consider the diffusion property of
MixColumns for single byte faults. Thus, in accordance with
our previous discussion F0 is the set of all single byte faults,
F∗ is the set of all 4 byte faults and F1 is the image of F0

in F∗ under the MixColumns mapping. Even if the adversary
were to know precisely which byte of R0 was affected by the
injected fault (and the corresponding bytes of R1 that would
need to be affected for an equivalent fault), the size of F∗ is
too huge for the adversary to be able to precisely introduce
only those faults that are in F1. This is immediately apparent
from the ratio of the sizes of the fault spaces F1 and F∗ given
by 255

232−4.224−6.216−4.28−1 ≈ 6.032 × 10−8. Moreover, it has

14

Fig. 8: The Augmented Concurrent Error Detection Techniques

(a) Time Redundancy
(b) Hardware Redundancy

been practically observed in our experiments that the variance
V ar of the probability distribution of the fault model reduces
as the fault precision reduces, as demonstrated in Figure 7b.
Thus even if the fault model is biased, the size of the fault
space plays a major role in making fault collisions practically
infeasible.

C. A Common Countermeasure against both Classical and
Biased Fault Attacks

Current literature focuses on two major varieties of fault
attacks against block ciphers - classical fault attacks such
as the DFA that assume uniform fault models, and more
recent fault attacks such as the DFIA and the FDE that use
biased fault models. Classical DFA is successfully thwarted
by concurrent error detection (CED) techniques, that use
redundancies to try and detect the fault. As demonstrated in
Section V, CEDs are weakened in the presence of biased
fault models due to the enhanced fault collision probability.
Our proposed countermeasure technique, on the other hand,
provides a way to modify CEDs to successfully thwarts both
classical as well as biased fault attacks. The argument for
this claim is fairly straight forward. In classical DFA, the
adversary requires at least one pair of faulty and fault-free
ciphertexts. There is no assumption made about the underlying
bias of the fault model; classical concurrent error detection
techniques successfully thwart DFA under the assumption of
uniform fault models. Our proposed countermeasure scheme
relaxes this assumption by allowing the adversarial fault model
to be biased. Since the fault space is transformed for the
redundant computation in the CED, the underlying bias of the
original fault model fails to ensure that the adversary is able
to introduce equivalent faults in the original and redundant
rounds with high probability. The same argument applies for
biased fault attacks such as the DFIA and FDE as well. In
both DFIA and FDE, the adversary attempts to exploit the
underlying bias of the fault model to try and recover the key.

However, as already discussed, our proposed countermeasure
nullifies the effect of the bias in the fault model by fault
space transformation, and hence thwarts both these attack
schemes. This scheme, to the best of our knowledge, is the
first to counter any fault attack that targets the cipher state,
irrespective of the underlying fault model. Moreover, since no
other fault attack technique that formidably compromises the
security of block ciphers by targeting the cipher state has been
reported in literature, this countermeasure technique seems to
provide comprehensive coverage against state of the art fault
attacks. It is important to note that we focus here precisely on
those fault attacks that involve injecting faults in the cipher
state. Faults that change the execution sequence via techniques
such as instruction skips are outside the scope of this work,
and are hence not included in this discussion.

D. Impact of the additional MixColumns operation on the
classical security of the cipher

In the proposed countermeasure scheme, the redundant com-
putation computing to each round of AES has been augmented
by an additional MixColumns operation. It is natural to ques-
tion if this disturbs the classical security of the cipher against
linear and differential cryptanalysis. However, it is important
to note that the redundant round output is never made visible
to the adversary and is used only for internally detecting the
presence of a fault. The final output is the output of the original
computation corresponding to each round, which has the same
SPN structure as AES itself. The addition of the MixColumns
operation in the redundant round thus provides no differential
or linear trail that the adversary could potentially exploit to
gain information about the key. Consequently, the security of
the cipher against classical cryptanalysis is not compromised.

IX. EXPERIMENTAL RESULTS

In this section, we present experimental results to validate
the security of our proposed countermeasure scheme. All

15

experiments have been conducted on a Spartan 3A FPGA, on
a SASEBO GII platform. The implementation is a register-
transfer level Verilog definition of AES with each round
implemented using a original and a redundant round. For the
time redundant implementation, each round is repeated twice,
and thus, a total of 20 rounds are needed for the computation.
The hardware redundant implementation, on the other hand,
duplicates the original AES hardware, and runs the two in
parallel for 10 rounds. The countermeasure implementations
have already been described in Figures 8a and 8b. The
plaintext and key are randomly chosen 128 bit values. If the
output of original and redundant round of computations is
different, i.e., if a fault is detected by the countermeasure,
the state register is immediately randomized.

The experimental section is divided into two broad parts.
The first part demonstrates the proposed fault attack is indeed
feasible on time and hardware redundant implementations of
AES. The second part shows the effect of introducing the fault
space transformation on the number of fault injections required
per faulty ciphertext.

A. Practical Demonstration of the Attack

In this section we present the practical results of our
proposed fault attack in Section V. The attack procedure is
identical for both the time and hardware redundancy counter-
measure schemes.

1) Attack on Round-8:: A total of 4 bytes of the AES
state were affected one by one after the anti-penultimate
AddRoundKey operation, since each byte of the faulty state
can be guessed by hypothesizing 4 bytes of the Round 10
key K10. Again, the external clkfast was increased gradually
from 125.3 MHz to 126.4 MHz to achieve the for different
fault models. Once sufficient number of faulty ciphertexts had
been collected for each of the 4 bytes, the entire key was
deciphered using the appropriate Squared Euclidean Imbalance
computation for each byte for all the key hypotheses.

2) Attack on Round-9:: Each of the 16 bytes of the AES
state were affected one by one after the penultimate Ad-
dRoundKey operation to guess the 16 bytes of the Round 10
key K10. The external clkfast was increased gradually from
125.3 MHz to 126.4 MHz to achieve the four different fault
models. Once sufficient number of faulty ciphertexts had been
collected for each byte, the entire key was deciphered using
the appropriate Hamming Weight computation for each byte
for all the key hypotheses.

B. Fault Location Precision

We performed 2 types of attacks - Type-1 in which the
adversary has perfect control over the byte in which the fault
is to be introduced and Type-2 in which the adversary only
knows that the fault injected is a single byte fault without
any knowledge of the byte affected. The second type of
experiments demands much lesser control over the actual fault
injection, but is weaker as observed in the experimental results,
and demands a significantly larger number of fault injections.
For the first type, only the target byte should be affected by the
clock glitch while in the second, the entire AES state should be

Fig. 9: Modified Fault Injection Setup: adversary has control over affected byte

subjected to the clock glitch. We describe the set up changes
to be made for either scenario in greater detail. Suppose that
the adversary wishes to affect only byte w of the AES state.
She can achieve this precision by modifying the fault injection
set up slightly to allow clkfast to affect only byte w while all
other bytes are driven by clkslow. This ensures that in the event
of a clock glitch, only byte w is affected. This is illustrated in
Figure 9. Type-2 is the normal fault injection scenario where
all bytes are allowed to be affected by clkfast.

For each scenario, we repeated the experiment 100 times,
with the same randomly chosen key and the randomly chosen
plaintext and took the average values for the number of faulty
ciphertexts as well as the number of fault injections required
to recover the key as well. Tables VIIIand IX demonstrates the
number of faulty ciphertexts and the number of fault attacks
required for recovering the entire key under the attack on
rounds 8 and 9, for both the scenarios where the adversary has
and does not have control over the fault location. The variance
of fault distribution presented for each model was experimen-
tally observed. In both tables, we compare the experimentally
required number of fault injections with the expected number
of fault injections according to the simulation. It is evident that
the experimentally obtained data corroborates the simulation
results very well, thus confirming the hypothesis that with
more bias, our proposed fault attack can break the time
redundancy countermeasure with very less number of fault
injections, as compared to unbiased faults.

C. The Fault Space Transformation

In this section, we focus on the effect of introducing the
MixColumns operation in the redundant computation for each
round, on the efficiency of the biased fault attack. The results
are presented in Figures 10 and 11 for 512 samples obtained
at different frequencies for both the time and hardware imple-
mentations of AES-128. Quite evidently, for each fault model,
the transformation not only causes the frequency ranges for
equivalent faults in the original and redundant computations
to be drastically different, but also affects the occurrence
probability of various faults to be different. The phenomenon
could be easily explained as follows. The transformation of
the fault space due to the additional MixColumns operation in
the redundant computation causes all single byte faults in the

16

TABLE VIII: Experimental Results : Attack on Time Redundancy

Round Fault Model Fault Variance
NC

NF (simulation) NF (experimental)
Type-1 Type-2 Type-1 Type-2 Type-1 Type-2

8

SBU 9.5× 10−2 3.6× 10−3 304.75 340.48 647.52 387.67 687.91
SBDBU 1.4× 10−2 9.2× 10−4 625.12 1456.25 1506.25 1448.45 1652.30
SBTBU 9.7× 10−3 4.9× 10−4 1020.49 1815.60 2315.40 1974.86 2395.83
SBQBU 3.2× 10−3 5.9× 10−5 1878.55 7868.82 28038.54 8003.14 30201.41

9

SBU 9.2× 10−2 3.5× 10−3 304.24 385.88 603.11 387.98 632.71
SBDBU 8.8× 10−2 7.9× 10−4 624.65 641.18 1487.36 647.82 1556.69
SBTBU 8.1× 10−2 6.7× 10−4 832.32 873.56 2054.00 878.23 2489.25
SBQBU 7.5× 10−2 3.5× 10−5 1328.22 1788.84 17239.10 1809.25 20145.66

TABLE IX: Experimental Results : Attack on Hardware Redundancy

Round Fault Model Fault Variance
NC

NF (simulation) NF (experimental)
Type-1 Type-2 Type-1 Type-2 Type-1 Type-2

8

SBU 1.1× 10−1 2.5× 10−3 300.25 336.75 715.25 323.19 693.81
SBDBU 9.4× 10−2 1.3× 10−3 651.10 1425.68 1386.30 1455.37 1498.53
SBTBU 5.6× 10−3 6.2× 10−4 989.80 1857.35 2245.40 1824.57 2168.68
SBQBU 4.5× 10−3 3.9× 10−5 1723.96 7535.65 32489.35 7503.24 35582.15

9

SBU 9.5× 10−2 1.9× 10−3 304.24 390.40 601.23 377.38 598.71
SBDBU 7.7× 10−2 8.3× 10−4 618.75 646.88 1488.25 664.25 1605.79
SBTBU 7.6× 10−2 2.8× 10−4 882.85 891.69 2007.84 828.98 2145.36
SBQBU 3.4× 10−2 5.6× 10−5 1299.35 1850.61 25532.45 1913.34 25220.50

124 126 128 130 132 134 136

0

10

20

30

40

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(a) Fault Space Transformation : SBU

124 126 128 130 132 134 136

0

20

40

60

80

100

120

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(b) Fault Space Transformation : SBDBU

124 126 128 130 132 134 136

0

50

100

150

200

250

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(c) Fault Space Transformation : SBTBU

124 126 128 130 132 134 136

0

100

200

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(d) Fault Space Transformation : SBQBU

Fig. 10: Effect of Fault Space Transformation on the Time Redundancy Countermeasure

17

original computation to be mapped to a certain subset of the
space of four byte faults in the redundant computation. These
faults therefore have a different frequency range of occurrence
as compared to the single byte faults. Moreover, due to the
inherent bias in the fault model, the probability distribution of
four byte faults is non-uniform. As is apparent from the fault
frequency plots, the target subset of four byte faults have very
low probability of occurrence.

One might argue that in the time redundant set-up, he
adversary could still introduce equivalent faults by injecting
two clock glitches with two different frequencies. We note
however that the required difference between the glitch fre-
quencies in fairly low (in the range of 4 MHz), and it would
require extremely high precision fault injection equipment to
inject faults at precisely these two frequency ranges. Further,
even if the adversary were to hypothetically manage the
fault injection, the probability that the desired equivalent fault
would be injected is still very low. With respect to hardware
redundancy, injecting faults with two different frequencies
is only possible if the two copies of the hardware were to
be supplied external clocks from different sources. However,
since in this discussion, we assume that the clock supply to
both the circuits is the same, this attack is not possible.

X. CONCLUSIONS

In this work, we have proposed a common countermea-
sure against classical and biased fault attacks. Our proposed
countermeasure scheme combines the traditional principle of
redundancy (which is found to be successful against uniform
fault attacks) with that of fault space transformation to counter
both variety of fault attacks. The work first proposes a formal
quantification of the bias of a fault model using the variance of
the fault probability distribution. It then shows that although
traditional concurrent error detection (CED) techniques ensure
security against uniform fault models, they are significantly
weakened in the presence of practically achievable biased
fault models. The work then establishes that even standard
countermeasure techniques against side channel analysis such
as masking fail to thwart biased fault attacks. Finally, the
concept of fault space transformation is introduced as a
possible countermeasure technique against biased fault attacks.
The idea is to ensure that the adversary cannot introduce
identical faults in the original and redundant computations as
she did earlier to bypass the fault detection step. This is done
by introducing an additional linear operation in the redundant
computation corresponding to each round, which means that
the adversary must now inject equivalent faults albeit in differ-
ent fault spaces to beat the detection step. This in turn makes
biased fault attacks infeasible, while also countering traditional
fault attacks such as DFA. The effectiveness of our proposed
countermeasure has been validated via simulations and real life
experiments on a Spartan 3A FPGA on a SASEBO GII board.
To the best of our knowledge, this is the first countermeasure
scheme to provide security against both differential as well as
side-channel based fault attacks.

REFERENCES

[1] Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L.,
Tria, A.: How to flip a bit? In: IOLTS. pp. 235–239 (2010)

[2] Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When
Clocks Fail: On Critical Paths and Clock Faults. Smart Card Research
and Advanced Application pp. 182–193 (2010)

[3] Amiel, F., Clavier, C., Tunstall, M.: Fault analysis of dpa-resistant
algorithms. In: Fault diagnosis and tolerance in cryptography, pp. 223–
236. Springer (2006)

[4] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE
94(2), 370–382 (2006)

[5] Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection
attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE 100(11), 3056–3076 (2012)

[6] Barenghi, A., Hocquet, C., Bol, D., Standaert, F.X., Regazzoni, F., Ko-
ren, I.: Exploring the feasibility of low cost fault injection attacks on sub-
threshold devices through an example of a 65nm aes implementation.
In: RFID. Security and Privacy, pp. 48–60. Springer (2012)

[7] Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis
and detection procedures for a hardware implementation of the advanced
encryption standard. Computers, IEEE Transactions on 52(4), 492–505
(2003)

[8] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key
Cryptosystems. dvances in Cryptology CRYPTO’97,Springer pp. 513–
525 (1997)

[9] Blömer, J., Seifert, J.P.: Fault Based Cryptanalysis of the Advanced En-
cryption Standard (AES). In: Wright, R.N. (ed.) Financial Cryptography,
Lecture Notes in Computer Science, vol. 2742, pp. 162–181. Springer
(2003)

[10] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking
Cryptographic Protocols for Faults. In: Fumy, W. (ed.) Advances in
Cryptology – EUROCRYPT 1997, Lecture Notes in Computer Science,
vol. 1233, pp. 37–51. Springer (1997)

[11] Canivet, G., Clédière, J., Ferron, J.B., Valette, F., Renaudin, M., Leveu-
gle, R.: Detailed analyses of single laser shot effects in the configuration
of a virtex-ii fpga. In: On-Line Testing Symposium, 2008. IOLTS’08.
14th IEEE International. pp. 289–294. IEEE (2008)

[12] Canivet, G., Maistri, P., Leveugle, R., Clédière, J., Valette, F., Renaudin,
M.: Glitch and laser fault attacks onto a secure aes implementation on
a sram-based fpga. Journal of Cryptology 24(2), 247–268 (2011)

[13] Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic
transient faults injection on a hardware and a software implementations
of aes. In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2012
Workshop on. pp. 7–15. IEEE (2012)

[14] Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic
transient faults injection on a hardware and a software implementations
of aes. In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2012
Workshop on. pp. 7–15. IEEE (2012)

[15] Demming, R., Duffy, D.J.: Introduction to the Boost C++ Libraries;
Volume I-Foundations. Datasim Education BV (2010)

[16] Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on aes.
In: Applied Cryptography and Network Security. pp. 293–306. Springer
(2003)

[17] Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault Attacks on AES
with Faulty Ciphertexts Only. In: Fischer, W., Schmidt, J.M. (eds.) Fault
Diagnosis and Tolerance in Cryptography – FDTC 2013, pp. 108–118.
IEEE Computer Society (2013)

[18] Fuhr, T., Jaulmes, E., Lomne, V., Thillard, A.: Fault Attacks on AES
with Faulty Ciphertexts Only. 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography(FDTC).IEEE pp. 108–118 (2013)

[19] Ghalaty, N., Yuce, B., Taha, M., Schaumont, p.: Differential Fault
Intensity Analysis. 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography(FDTC).IEEE (2014)

[20] Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A.
(eds.) Advanced Encryption Standard – AES, Lecture Notes in Computer
Science, vol. 3373, pp. 27–41. Springer (2005)

[21] Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Smart Card
Research and Advanced Applications VI, pp. 159–176. Springer (2004)

[22] Guo, X., Karri, R.: Invariance-based concurrent error detection for
advanced encryption standard. In: Proceedings of the 49th Annual
Design Automation Conference. pp. 573–578. ACM (2012)

[23] Guo, X., Karri, R.: Recomputing with permuted operands: A concurrent
error detection approach. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 32(10), 1595–1608 (2013)

18

64 66 68 70 72 74 76

0

20

40

60

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(a) Fault Space Transformation : SBU

64 66 68 70 72 74 76

0

50

100

150

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(b) Fault Space Transformation : SBDBU

64 66 68 70 72 74 76

0

50

100

150

200

250

Fast Clock Frequency (in MHz)

Fa
ul

t
O

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(c) Fault Space Transformation : SBTBU

64 66 68 70 72 74 76

0

50

100

150

200

Fast Clock Frequency (in MHz)
Fa

ul
t

O
cc

ur
re

nc
e

Fr
eq

ue
nc

y

Original Computation
Redundant Computation

(d) Fault Space Transformation : SBQBU

Fig. 11: Effect of Fault Space Transformation on the Hardware Redundancy Countermeasure

[24] Guo, X., Mukhopadhyay, D., Jin, C., Karri, R.: Security analysis of
concurrent error detection against differential fault analysis. Journal of
Cryptographic Engineering pp. 1–17 (2014)

[25] Hemme, L.: A Differential Fault Attack against Early Rounds of (triple-
)DES. Cryptographic Hardware and Embedded Systems, CHES 2004,
Springer pp. 254–267 (2004)

[26] Joye, M., Manet, P., Rigaud, J.B.: Strengthening hardware aes imple-
mentations against fault attacks. IET Information Security 1(3), 106–110
(2007)

[27] Junod, P., Vaudenay, S.: Perfect diffusion primitives for block ciphers.
In: Selected Areas in Cryptography. pp. 84–99. Springer (2005)

[28] Kaminsky, A., Kurdziel, M., Radziszowski, S.: An overview of crypt-
analysis research for the advanced encryption standard. In: MILI-
TARY COMMUNICATIONS CONFERENCE, 2010-MILCOM 2010.
pp. 1310–1316. IEEE (2010)

[29] Karaklajic, D., Schmidt, J.M., Verbauwhede, I.: Hardware designer’s
guide to fault attacks. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on 21(12), 2295–2306 (2013)

[30] Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against
fault-injection attacks on smart cards implementing the advanced encryp-
tion standard. In: Dependable Systems and Networks, 2004 International
Conference on. pp. 93–101. IEEE (2004)

[31] Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric block
ciphers. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 21(12), 1509–1517 (2002)

[32] Khelil, F., Hamdi, M., Guilley, S., Danger, J.L., Selmane, N.: Fault
analysis attack on an fpga aes implementation. In: New Technologies,
Mobility and Security, 2008. NTMS’08. pp. 1–5. IEEE (2008)

[33] Kim, C.H.: Differential fault analysis against aes-192 and aes-256 with
minimal faults. In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2010 Workshop on. pp. 3–9. IEEE (2010)

[34] Kim, H.: Differential Fault Analysis against AES-192 and AES-256 with
Minimal Faults. 2010 Workshop on Fault Diagnosis and Tolerance in
Cryptography(FDTC),IEEE pp. 3–9 (2010)

[35] Kim, H.: Improved Differential Fault Analysis on AES Key Schedule.
IEEE Transactions on Information Forensics and Security 7(1), 41–50
(2012)

[36] Lashermes, R., Reymond, G., Dutertre, J.M., Fournier, J., Robisson, B.,
Tria, A.: A dfa on aes based on the entropy of error distributions. In:
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2012 Workshop
on. pp. 34–43. IEEE (2012)

[37] Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J.,
Ohta, K.: Fault sensitivity analysis. In: Cryptographic Hardware and
Embedded Systems-CHES 2010, pp. 320–334. Springer (2010)

[38] Maistri, P., Leveugle, R.: Double-Data-Rate Computation as a Coun-
termeasure against Fault Analysis. IEEE Transactions on Computers
57(11), 1528–1539 (2008)

[39] Malkin, T., Standaert, F., Yung, M.: A Comparative Cost/Security
Analysis of Fault Attack Countermeasures. 2005 Workshop on Fault
Diagnosis and Tolerance in Cryptography(FDTC),IEEE pp. 109–123
(2005)

[40] Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method
of differential fault attack against aes cryptosystem. In: Cryptographic
Hardware and Embedded Systems-CHES 2006, pp. 91–100. Springer
(2006)

[41] Mozaffari-Kermani, M., Reyhani-Masoleh, A.: Concurrent structure-
independent fault detection schemes for the advanced encryption stan-
dard. Computers, IEEE Transactions on 59(5), 608–622 (2010)

[42] Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced
Encryption Standard. In: Preneel, B. (ed.) Progress in Cryptology –
AFRICACRYPT 2009, Lecture Notes in Computer Science, vol. 5580,
pp. 421–434. Springer (2009)

[43] Piret, G., Quisquater, J.J.: A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and Khazad. In: Walter,
C.D., KoÇ, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2003, Lecture Notes in Computer Science, vol. 2779,
pp. 77–88. Springer (2003)

[44] Piret, G., Quisquater, J.J.: A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and KHAZAD. Crypto-
graphic Hardware and Embedded Systems, CHES 2003, Springer pp.
77–88 (2003)

[45] Rivain, M.: Differential Fault Analysis on DES Middle Rounds. Clavier
and Gaj[8] pp. 457–469

[46] Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack

19

on the advanced encryption standard. IACR Cryptology ePrint Archive
2009, 581 (2009)

[47] Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance
concurrent error detection scheme for aes hardware. In: Cryptographic
Hardware and Embedded Systems–CHES 2008, pp. 100–112. Springer
(2008)

[48] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.:
The Twofish encryption algorithm: a 128-bit block cipher. John Wiley
& Sons, Inc. (1999)

[49] Selmane, N., Guilley, S., Danger, J.L.: Practical setup time violation
attacks on aes. In: Dependable Computing Conference, 2008. EDCC
2008. Seventh European. pp. 91–96. IEEE (2008)

[50] Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of
the advanced encryption standard using a single fault. In: Information
Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication, pp. 224–233. Springer (2011)

[51] Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential Fault Analysis of
the Advanced Encryption Standard Using a Single Fault. Information
Security Theory and Practice.Security and Privacy of Mobile Devices in
Wireless Communication, Springer pp. 224–233 (2011)

[52] Vaudenay, S.: On the need for multipermutations: Cryptanalysis of md4
and safer. In: Fast Software Encryption. pp. 286–297. Springer (1995)

[53] Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low cost concurrent error
detection for the advanced encryption standard. In: Test Conference,
2004. Proceedings. ITC 2004. International. pp. 1242–1248. IEEE
(2004)

	Introduction
	Preliminaries
	Fault Attacks on AES
	The Time and Hardware Redundancy Countermeasures

	Fault Model and Fault Injection Set Up
	Fault Model
	Fault Injection Set Up

	Quantifying the Bias of a Fault Model
	Justification for the definition:
	The Fault Collision Probability

	Description of the Attack
	General Attack Procedure
	Distinguisher Functions
	The Attack on the Countermeasure Implementations of AES-128
	Attack on the 8th round
	Attack on the 9th round

	Attack Simulations
	Simulation: Part-1
	Simulation: Part-2

	Does Masking Protect against Biased Fault Attacks?
	The Masked Countermeasure Implementation
	Biased Fault Attack on the Masked Countermeasure Implementation

	Countering Biased Faults : Transfomation of Fault Space
	The Motivation: Transforming the Fault Space
	Choice of the Transformation Function - Using MDS Matrices
	Using the Rjindael MixColumns

	A Common Countermeasure against both Classical and Biased Fault Attacks
	Impact of the additional MixColumns operation on the classical security of the cipher

	Experimental Results
	Practical Demonstration of the Attack
	Attack on Round-8:
	Attack on Round-9:

	Fault Location Precision
	The Fault Space Transformation

	Conclusions
	References

