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Abstract

In [LS90] Lapidot and Shamir provide a 3-round witness-indistinguishable (WI) proof of
knowledge for Graph Hamiltonicity (LS) with a special property: the prover uses the statement
to be proved only in the last round. This property has been instrumental in constructing round-
efficient protocols for various tasks [KO04, DPV04, YZ07, SV12]. In all such constructions, the
WI proofs are used to prove the OR composition of statements that are specified at different
stages of the main protocol. The special property of LS is used precisely to allow a player of the
main protocol to start a proof, even if only one of the statements of the OR relation is available,
thus saving rounds of communication.

If, on the one hand, using LS saves rounds, on the other hand, it necessarily requires NP
reductions to Graph Hamiltonicity. As such, even if each of the statements to be proved in the
main protocol admits an efficient Σ-protocol (e.g., the statement consists in proving knowledge
of a committed value), the reduced round complexity is paid for with a loss of efficiency. Hence,
round-efficient constructions that rely on LS are typically computationally inefficient.

A natural question is why one would go through the NP reduction to use LS, instead of com-
posing the Σ-protocols using the OR-composition technique introduced by Cramer, Damg̊ard
and Schoenmakers (CDS) [CDS94]. The answer is that the CDS technique requires both state-
ments to be available at the beginning of the protocol. Due to this limitation, constructions
that use the CDS technique have in some cases a worse round complexity than the ones based
on LS.

In this paper we introduce a new OR-composition technique for Σ-protocols that needs only
one statement to be fixed when the proof begins. This seemingly weaker property is sufficient to
replace the use of LS in many applications that do not need both theorems to be undefined when
the proof starts. In fact, we show how the new OR-composition technique can directly improve
the round complexity of the efficient perfect quasi-polynomial time simulatable argument system
of Pass [Pas03] (from four to three rounds) and of efficient resettable WI arguments (from five
to four rounds).

Our OR-composition technique can not compose arbitrary pairs of Σ-protocols. Nevertheless,
we provide a precise classification of the Σ-protocols that can be composed and show that all
the widely used Σ-protocols can be composed with our technique.
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1 Introduction

Witness-indistinguishable (WI) proofs. WI1 proofs are fundamental for the design of cryp-
tographic protocols, particularly when they are also proofs of knowledge (PoK). In a WIPoK the
prover P proves knowledge of a witness certifying the veracity of a statement x ∈ L to a verifier
V. WIPoKs can be used directly in some applications (e.g., in identification schemes) or can be a
building block for stronger security notions (e.g., for zero-knowledge proofs using the FLS [FLS90]
paradigm or for round-optimal secure computation [KO04]).

Round complexity of cryptographic protocols has been extensively studied both for its practical
relevance and for its natural and conceptual interest. Regarding WIPoKs, we know from Blum’s
protocol [Blu86] that 3-round WIPoKs exist for all NP languages under the sole assumptions that
one-way permutations exist. This result is obtained by designing a WIPoK for the language of
Hamiltonian graphs and then by leveraging on the NP-completeness of the language of Hamiltonian
graphs. Under stronger cryptographic assumptions, 2-round WI proofs, called ZAPs, and non-
interactive WI (NIWI) proofs have been shown in [DN00, GOS06, BP15]. Neither ZAPs nor NIWI
proofs are PoKs.

Since NP reductions are extremely expensive, several practical interactive PoKs have been
designed for languages that are used in real-world cryptographic protocols (e.g., for proving knowl-
edge of a discrete logarithm (DLog)). The study of such ad-hoc protocols mainly concentrates on
a standardized form of a 3-round PoK referred to as Σ-protocol [Dam10, Sch89].

Σ-protocols. A Σ-protocol for an NP language L with witness relation RL is a 3-round proof
system jointly run by a prover P and a verifier V in which P proves knowledge of a witness w for
x ∈ L. In a Σ-protocol the only message sent by V is a random string. Such proof systems have
two very useful properties: special soundness, which is a strong form of proof of knowledge, and
special honest-verifier zero knowledge (SHVZK). The latter property basically says the following: if
the challenge is known in advance, then by just knowing also the theorem, it is possible to generate
an accepting transcript without using the witness. This is formalized through the existence of a
special simulator, called the SHVZK simulator that, on input a theorem x and a challenge c, will
output (a, z) such that (a, c, z) is an accepting 3-message transcript for x and is indistinguishable
from the transcript produced by the honest prover when the challenge is c. Blum’s protocol for
Graph Hamiltonicity is an example of a Σ-protocol. Another popular example of Σ-protocols is
Schnorr’s protocol [Sch89] for proving knowledge of a discrete logarithm.

The security provided by the SHVZK property is clearly insufficient as it gives no immediate
guarantees against verifiers who deviates from the protocol. Despite of this, the success of Σ-
protocols and their impact in various constructions [Lin15, CPSV15, CPSV16, LP15, CG15, GK15,
ORV14, AOS13, SV12, OPV10, BPSV08, CV07, CDV06, Vis06, GMY06, CV05a, CV05b, DG03,
BFGM01, PS96] is a fact. This is due to a breakthrough of Cramer et al. [CDS94] that adds WI
to the security of Σ-protocol.

OR composition of Σ-protocols. Let L be a language that admits a Σ-protocol ΠL. In [CDS94]
it is shown how to use ΠL and its properties to construct a new Σ-protocol, ΠOR

L , for proving the
OR composition of theorems in L avoiding the NP reduction by crucially exploiting the honest-
verifier zero-knowledge (HVZK2) property of ΠL. The rationale behind the transformation can

1We will use WI to mean both “witness indistinguishability” and “witness indistinguishable”.
2HVZK requires the existence of a simulator that by receiving in input the theorem gives in output an accepting

triple (a, c, z). Clearly HVZK is implied by SHVZK.
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be informally explained as follows. The prover wishes to prove a statement of the form ((x0 ∈
L) ∨ (x1 ∈ L)). The näıve idea of simply running ΠL twice in parallel would not work because
the prover knows only one of the witnesses, say wb, and cannot compute two accepting transcripts
without knowing w1−b. However, due to the HVZK property, the prover can generate an accepting
transcript for x1−b ∈ L even without knowing w1−b, by running the HVZK simulator Sim associated
with ΠL. Indeed, Sim “only” needs in input the theorem x1−b and will output the entire transcript,
challenge included. The trick is then to generate the challenges for the two executions of ΠL, in
such a way that the prover can control the challenge of exactly one of them (but not both), and set
it to the value generated by Sim. Note that, if running the algorithm of Sim is as efficient as running
the algorithm of P, then the composed protocol is efficient. We stress that this OR-composition
technique preserves SHVZK and will refer to it as the CDS-OR technique.

A very interesting property of this transformation, besides the fact that it does not need NP re-
duction, is that if Sim is a simulator for perfect HVZK then ΠOR

L is WI (this was shown in [CDS94]).
This result was further extended by Garay et al. [GMY06] that noted that the CDS-OR technique
can be used also for Σ-protocols that are computational HVZK. In this case the relation proved is
slightly different, namely, starting with a relation RL and instances x0 and x1, the resulting ΠOR

L

protocol is computational WI for the relation

ROR
L = {((x0, x1), w) : ((x0, w) ∈ RL ∧ (x1 ∈ L)) ∨ ((x1, w) ∈ RL ∧ (x0 ∈ L))}.

Input-delayed proofs. Often in cryptographic protocols there is a preamble phase that has the
purpose of establishing, at least in part, a statement to be proven with a WI proof. In such cases,
since one of the statements is fully specified only when the preamble is completed, the WI proof can
start only after the preamble ends. Hence, the overall round complexity of protocols that follow
this paradigm amounts to the sum of the round complexity of the preamble and of the WI proof.

In [LS90], Lapidot and Shamir (and later on Feige et al. in [FLS90]) show a 3-round proof of
knowledge for Hamiltonian Graphs which has the special property that a prover can compute the
first round of the proof, without knowing the theorem to be proved (that is, the graph) but only
needs to know its size (that is, the number of vertices). Such a 3-round protocol is a Σ-protocol
(and thus satisfies the SHVZK property) and is a WI proof. We will refer to this protocol as LS.
Also, we will call input delayed a Σ-protocol where the prover computes the first message without
knowledge of the statement to be proved.

The input-delayed property directly improves the round complexity of all the cryptographic
protocols that follow the paradigm described above. The reason is that now the WI proof can start
even if the preamble that generates the statement is not completed yet. It is worthy to note that
in many applications the preamble serves as a mean to generate some trapdoor theorem, that is
used only in the security proof. The “honest” theorem instead is typically known already at the
beginning of the protocol. This technique has been used extensively and, most notably, it led to
the celebrated FLS paradigm that upgrades any WI proof system into a zero-knowledge (ZK) proof
system.

The input-delayed property of LS has been instrumental to provide round-efficient construc-
tions from general assumptions, such as: 4-round (optimal) secure 2PC where only one player
gets the output (5 rounds when both players get the output) [KO04], 4-round resettable WI argu-
ments [YZ07, SV12], 4-round (optimal) resettable ZK for NP in the BPK model [YZ07, SV12].

Despite being so influential to achieve round efficiency for cryptographic protocols, the power
of LS unfortunately vanishes as soon as practical constructions are desired. Indeed, similarly to
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Blum’s protocol, LS is crucially based on specific properties of Hamiltonian graphs. Thus, when
used to prove more natural languages, which is the case of most of the applications using WI proofs,
it requires to perform rather inefficient NP reductions.

Efficient protocols and limits of the CDS-OR technique. A natural question is what happens
if we want to avoid the NP reduction and we try to use the CDS-OR technique to construct input-
delayed adaptive WI proofs. A bit more specifically, we know that there exist Σ-protocols that are
input delayed. Schnorr’s protocol [Sch89] for DLog is such an example since the first message can
be computed without knowing the instance, but only a group generator. Thus the question is what
happens if we apply the CDS-OR technique to an input-delayed Σ-protocol. Do we obtain a WI
Σ-protocol that is input delayed as well?

Unfortunately, the answer is negative. The CDS-OR technique does not preserve the input-
delayed property, not even when used to compose two Σ-protocols that are both input delayed.
To see why, recall that the CDS-OR composition technique when applied to Σ-protocol ΠL for
language L requires the prover to compute two accepting transcripts, one of which is computed
by running the HVZK simulator Sim. Recall that Sim needs in input the theorem to be proved.
Hence, to prove knowledge of a witness for the compound theorem (x0 ∈ L ∨ x1 ∈ L), the prover,
who knows one witness, say wb, needs to know also x1−b already at the first round to be able to run
the simulator. Thus, in the CDS-OR technique the prover can successfully complete the protocol
if and only if both3 instances are specified already at the first round.

Because of this missing feature, the CDS-OR technique has limited power in allowing one to
obtain round-efficient/optimal cryptographic protocols, compared to the number of rounds obtained
by using LS. As such, in some cases when focusing on efficient constructions, the best round-
complexity that we can achieve using efficient Σ-protocols and avoiding NP reductions needs at
least one additional round, therefore requiring at least 5-round if one wants to match the previously
mentioned applications (e.g., 5-round resettable ZK for NP in the BPK model [YZ07, SV12] and
5-round resettable WI [YZ07, SV12]) argument systems.

Additionally, we note that the CDS-OR technique is the bottleneck in the round-complexity
of the 4-round straight-line perfect simulatable in quasi-polynomial time argument shown by Pass
in [Pas03]. This argument uses quasi-polynomial time simulation and, potentially, it would only
need three rounds as any Σ-protocol. The additional first round is required precisely to define the
trapdoor theorem. Hence, the following natural question arises:

Given a language L with an input-delayed Σ-protocol ΠL, is it possible to design an
efficient Witness Indistinguishable Σ-protocol ΠL

OR for proving knowledge of a witness
certifying that (x0 ∈ L ∨ x1 ∈ L) that does not require knowledge of both x0 and x1 to
play the first round?

1.1 Our Contribution

In this paper we answer the above question positively for a large class of Σ-protocols that includes
all Σ-protocols used in efficient constructions. Specifically, we propose a new OR-composition
technique for Σ-protocols that relaxes the need of having both instances fixed before the Σ-protocol
starts. Our technique allows the composition of Σ-protocols for different languages and leads
to improved round complexity in previous efficient constructions based on CDS-OR technique.

3To see why, note that the WI property requires that the prover would be able to prove any of the two theorems,
and thus potentially use the simulator on either x0 or x1.
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Namely, we describe the following two results that we obtain by making use of our new OR-
composition technique:

• Efficient 3-round straight-line perfect quasi-polynomial time simulatable argument system for
a large class of useful languages. The previous construction required four rounds [Pas03].

• Efficient 4-round rWI argument system. Previous constructions required five rounds [YZ07,
SV12].

Our new technique can also be used to replace LS towards obtaining efficient round-optimal
resettable zero-knowledge arguments in the BPK model (using the constructions of [YZ07, SV12]),
round-optimal secure two-party computation (using the construction of [KO04]) and 4-round non-
malleable commitments (using the construction of [GRRV14]).

Finally, we provide a precise classification of the Σ-protocols that can be used in our new OR-
composition technique. In the following paragraphs we first provide a high-level description our
OR-composition technique, then we discuss the applications in more details.

1.2 Our Techniques

Overview. We start by defining the setting we are considering. Let L0 and L1 be any pair
of languages admitting Σ-protocols Π0 and Π1. We want to construct a Σ-protocol ΠOR

L for the
language L = L0 ∨ L1. An instance of L is a pair (x0, x1) and we want only x0 to be specified
before ΠOR

L starts while x1 is specified only upon the last round of the protocol4. We assume that
Π1 is an input-delayed Σ-protocol and thus the first prover message of Π1 can be computed without
knowing x1. As mentioned earlier this property is satisfied by popular Σ-protocols such as the ones
for Discrete Log, Diffie-Hellman triples, and of course, LS itself.

Now, recall that the problem with the CDS-OR technique was that a prover needs to run Sim
to compute the first round of the protocol, and this necessarily requires knowledge of both theorems
before the protocol starts. We want instead that the prover uses only knowledge of x0.

We solve this problem by introducing a new OR-composition technique that does not require
the prover to run Sim on x1 already in the first round. Instead, our technique allows the prover to
wait and take action only in the third round when x1 is finally defined.

Our starting point is the well known fact that given any Σ-protocol there exists an instance-
dependent trapdoor commitment (IDTC) scheme where the witness for the membership of the
instance in the language can be used as a trapdoor to open a committed message as any desired
message, as in [DG03]. Our next observation is that, instead of having the prover send the first
round for protocol Π1 in the clear, we can have him send a commitment to it, and such commitment
can be computed using an instance-dependent trapdoor commitment based on Π0 with respect to
instance x0. Recall that this is possible, as in our setting we assume that Π1 is an input-delayed Σ-
protocol, so the prover can honestly compute the first message of Π1 without knowing x1. Therefore,
the first round of our ΠOR

L protocol, is simply an IDTC of a honest Π1’s first round.
Later on, upon receiving the challenge c from the verifier, and after the theorem x1 is defined,

the prover computes the third round as follows. If she has received a witness for x0, then she will
run Sim on input (x1, c) to compute an accepting transcript of Π1 for x1. Then, using the witness
w0 she will equivocate the commitment sent in the first round, according to the message output

4Like LS, we will just need the size of x1 to be known when ΠOR
L starts.
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by Sim. Otherwise, if she has received a witness for x1 then she does not need to equivocate: she
will honestly open the commitment, and honestly compute the third message of Π1. Therefore, the
third round of ΠOR

L , simply consists of an opening of the IDTC together with the third message of
Π1.

Now note that this idea works only if we have a special IDTC scheme that has the following
strong trapdoor property: a sender can equivocate even a commitment that has been computed
honestly. Unfortunately, this property is not satisfied in general by any trapdoor commitment
based on Σ-protocols, but only for some. This would restrict the class of Σ-protocols that we can
use as L0 in our technique. For example, this class would not contain Blum’s protocol.

Our next contribution is the construction of IDTC schemes that satisfy this strong trapdoor
property, for a large class of Σ-protocols. Towards this goal, we define the notion of a t-IDTC
scheme which are IDTCs for which the ability to open a commitment in t ways implies knowledge
of a witness for the instance associated with the commitment. Next, we construct 2-IDTC and
3-IDTC schemes based on two different classes of Σ-protocols, the union of which includes all the
Σ-protocols that are commonly used in cryptographic protocols. Finally, we provide a general OR-
composition technique for any pair of languages L0 and L1 such that L0 has a t-IDTC scheme and
L1 has an input-delayed Σ-protocol.

t-instance-dependent trapdoor commitment scheme. For integer t ≥ 2, a t-IDTC scheme
for a polynomial-time relation R admitting Σ-protocol ΠR is a triple (TCom,TDec,TFake) where
TCom, TDec are the honest commitment/decommitment procedures and TFake is the equivocation
procedure that, given a witness for an instance x, equivocates any commitment with respect to
x computed by TCom. The crucial differences between a t-IDTC scheme and a regular trapdoor
commitment scheme are: (a) the trapdoor property is strong in the sense that knowledge
of the trapdoor (that is, the witness of the instance x) allows to equivocate even commitments
that have been honestly computed; (b) the binding property is relaxed: in a t-IDTC scheme, the
sender can open the same commitment in t − 1 different ways, even without the trapdoor. This
relaxation allows us to build an IDTC scheme from a wider class of Σ-protocols, which will cover
all the Σ-protocols that have been used in literature.

Constructing a 2-IDTC scheme. A 2-IDTC scheme can be straight-forwardly constructed from
any Σ-protocol Π0 that has the following property: even if the first message a0 was computed by
the SHVZK simulator Sim, an accepting z0 can be efficiently computed, for every challenge c0, by
using knowledge of the witness and of the randomness used by Sim to produce a0. We call the
Σ-protocols that satisfy this property, chameleon Σ-protocols, and we denote by Psim the special
prover strategy that can answer any challenge even starting from a simulated a0.

More precisely, given a chameleon Σ-protocol Π0 for a language L0, one can construct a 2-IDTC
scheme as follows. Let x0 ∈ L0. To commit to a message m, the sender runs Sim(x0,m; r0) and
obtains a0, z0. The commitment is the value a0. The opening is the pair m, z0. The commitment is
accepted iff (x0, a0,m, z0) is accepting. To equivocate a0, as a message m′, run the special prover
algorithm Psim((x0,m, r0), w0,m

′) and obtain an accepting z0.

Constructing a 3-IDTC scheme. We now discuss a different committing strategy that works for
Σ-protocols in which the simulated first message a0 can only be continued for the challenge specified
by Sim, even if a witness is made available. Blum’s protocol for Hamiltonicity is an example of a
Σ-protocol with this property.

To commit to m, the sender sends a pair (a0, a
′
0) where, with probability 1/2, a0 is obtained
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by running Sim(x0,m) while a′0 is computed by running the prover of Π0, and with probability
1/2 the above order is inverted. One can think of a commitment as composed of two threads: a
simulated thread and a honest thread. To open the commitment, the prover sends m and z∗, and
the verifier accepts the decommitment if m, z∗ are accepting for one of the threads; namely, the
verifier checks that either (a0,m, z

∗) or (a′0,m, z
∗) is accepting for x0 ∈ L0. To equivocate (a0, a

′
0)

to a message m′, the sender simply continues the thread of the honest prover, using m′ as challenge
and computes z∗ using the witness. Clearly, a malicious sender can open in two different ways even
when x0 6∈ L. Nevertheless, three openings allow the extraction of the witness for x0.

When our OR-composition technique is instantiated with a 3-IDTC scheme we have that the re-
sulting protocol is still WI since no power is added to the verifier. However the protocol is not a
Σ-protocol since the special-soundness property is not guaranteed. The reason is that, in a 3-IDTC
scheme the sender can open the commitment in two different ways even without having the trap-
door (i.e., the witness for x0 ∈ L0). Therefore, for any challenge c sent by V, the fact that the
commitment of a1 can be opened in two ways gives a malicious prover P∗ two chances (a1, c, z1) and
(a′1, c, z

′
1) to successfully complete the protocol for a false statement x1. Nevertheless, this extra

freedom does not hurt soundness as both openings (i.e., a1 and a′1) are fixed in advance, and thus
when x1 is not an instance of the language there exist only two challenges c′ and c′′ that would
allow P∗ to succeed. When the challenge is long enough the success probability of P∗ is therefore
negligible.

Our construction when starting from a 3-IDTC scheme is 3-special sound (i.e., answering to 3
challenges allows one to compute a witness efficiently), and therefore it is a proof of knowledge
when the challenge is long enough.

1.3 Discussion

What really matters. Our new OR-composition technique works only when the theorem that
has not been defined yet (i.e., x1), admits an input-delayed Σ-protocol). We stress that this is not
a limitation for the applications that we have in mind. In fact, in all efficient protocols that make
use of input-delayed proofs that we are aware of, the preamble has always the purpose of generating
the trapdoor theorem. In practical scenarios5 L1 usually corresponds to DLog or DDH. The fact
that we can not have Blum’s Σ-protocol for L1 when L1 is the language of Hamiltonian graphs, is
therefore not relevant as the actual language of interest is L0.

Comparison with the CDS-OR technique. Notice that even in the following extremely sim-
plified case where:

1. two instances x0, x1 for the same language L,

2. L admits an input-delayed Σ-protocol ΠL which is also special HVZK;

3. ΠL is chameleon and thus one can compute the first message using Sim and then continue
with the prover to answer to arbitrary challenges,

4. the prover knows in advance the witness w and instance xb for which she will be able to
honestly complete the protocol.

5These are the only scenarios of interest for our work since if practicality is not desired than one can just rely on
the LS Σ-protocol and use NP reductions.
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Then the CDS-OR technique still fails in obtaining a Σ-protocol (or a WIPoK) for the OR compo-
sition of instances of L if any one of the instances is not known when the protocol starts.

Beyond Schnorr’s protocol. The works of Cramer [Cra96], Cramer and Damg̊ard [CD98], and
Maurer [Mau09, Mau15] showed that a protocol (referred to as the Pre-Image Protocol) for proving
knowledge of a pre-image of a group homomorphism unifies and generalizes a large number of
protocols in the literature. Classic Σ-protocols, such as Schnorr’s protocol [Sch89] and the Guillou-
Quisquater protocol [GQ88], are particular cases of this abstraction. We show that the Pre-Image
Protocol is a chameleon Σ-protocol and can thus be used in our construction.

What is in and what is out. As mentioned previously, the Σ-protocol for L1 can be any
input-delayed Σ-protocol. We now discuss which Σ-protocols can be used to instantiate L0 in our
OR transform. For this purpose, we identify four classes of Σ-protocols and we prove that any Σ-
protocol that falls in any of the first three classes can be used in our OR transform (by instantiating
either a 2-IDTC or a 3-IDTC scheme).

We also identify a class of Σ-protocols that is not suitable for any of our techniques. Luckily, we
have no example of natural Σ-protocols that fall in this class, and in order to prove the separation
we had to construct a very contrived scheme. The four classes are listed below.

• (Class 1) Σ-protocols that are Chameleon and do not require the witness to compute the first
round. This class of Σ-protocols can be used to construct both 2-IDTC and 3-IDTC schemes.

• (Class 2) Σ-protocols that are Chameleon and require the prover to use the witness already to
compute the first round. This class of Σ-protocols can be used to construct a 2-IDTC scheme.

• (Class 3) Σ-protocols that are not Chameleon but do not require the prover to use the witness
in the first round. This class of Σ-protocols can be used to construct a 3-IDTC scheme.

• (Class 4) Σ-protocols that are not Chameleon and require the witness to be used already in
the first round. This class of Σ-protocols can not be used in our techniques.

The input-delayed features. We stress here that our techniques allow to start and complete
an efficient OR composition of two Σ-protocols (with the discussed restrictions) provided that one
instance is known and another one will be known later. Having a witness for the first or the second
instance always allows P to convince V. This contrasts with the CDS-OR technique where knowing
a witness for x0 would block P immediately since P would need immediately x1 to continue, but
x1 will not be available until the third round.

1.4 Applications

Our new OR-composition technique does not provide the full power of LS because it needs one
theorem to be known before the protocol starts. However, as we show below, this seemingly weaker
property suffices to improve the round-complexity of some of the previous constructions based on
the CDS-OR technique. Such constructions aim to efficiently6 transform a Σ-protocol for a relation
R into a round-efficient argument with more appealing features.

6By efficiently we mean that no NP reduction is needed and only a constant number of modular exponentiations
are added. We do not discuss the practicality of the resulting constructions.
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Efficient 3-round straight-line perfect quasi-polynomial time simulatable argument
system. We achieve this result directly, using the construction of Pass [Pas03] and replacing the
CDS-OR technique with our technique. As a result the first round of the verifier of [Pas03] can be
postponed, therefore reducing the round complexity from four to three rounds. Our construction
works for all languages admitting a perfect chameleon Σ-protocol.

Efficient 4-round resettable WI arguments. It is well known [CGGM00] how to transform a
Σ-protocol into a resettable WI protocol: the verifier commits to the challenge c using a perfectly
hiding commitment scheme and sends it to the prover in the first round; the prover then com-
putes its messages with randomness derived by applying a pseudo-random function (PRF) on the
commitment received. Soundness follows directly from the soundness of the Σ-protocol due to the
perfect hiding of the commitment. WI follows from the fact that the protocol is zero knowledge
against a stand-alone verifier and thus concurrent WI. Then the use of the PRF and the fact that
all messages of the verifier are committed in advance upgrades concurrent WI to resettable WI.
This approach, however, generates a 5-round protocol.

Achieving the same result efficiently, namely, avoiding NP reductions, in only four rounds is
non-trivial. The reason is that if we attempt to replace the 2-round perfectly hiding commitment
with a non-interactive commitment, we lose the unconditional soundness property, and then it is
not clear how to argue about computational soundness. More specifically, black-box extraction
of the witness is not possible (black-box extraction and resettable WI can not coexist) and the
adversarial prover could try to maul the commitment of the verifier and adaptively generate the
first round of the Σ-protocol. In fact, even allowing complexity-leveraging arguments (and thus,
straight-line extraction), constructing a 4-round WI argument system that avoids NP reductions
and adds only a few modular exponentiations to the underlying Σ-protocol has remained so far an
open problem.

We solve this problem by using our new OR-composition technique. We have the verifier
commit to the challenge in the first round, but then later, instead of sending the decommitment,
she will directly send the challenge and prove that either the challenge is the correct opening of
the commitment or she solved some hard puzzle (in our construction, computing the Discrete Log
of a random group element chosen by the prover). The puzzle is sent by the prover in the second
round and it will be solved by the reduction in super-polynomial time in the proof of soundness.

This trick has been proposed in literature in various forms [Pas03, DPV04] and we are using the
form used in [DPV04] where the puzzle is sent only in the second round. [DPV04] must use the LS
transform and therefore needs NP-reduction. As explained earlier, going through LS was necessary
as the CDS-OR transform can be applied only if both statements are fixed at the beginning.

Our new OR transform solves precisely this problem, and it allows the verifier to start the proof
before the puzzle is defined, and this proof can be done efficiently without NP reductions.

Resettable WI follows from the CGGM transformation and the WI property of the proof gen-
erated by the prover. The groups used for the commitment of the challenge and for the puzzle sent
by the prover, will be chosen appropriately so that the hardness of computing discrete logarithms
are different and guarantee that our reductions work (i.e., we make use of complexity leveraging).

Further applications. Our new OR-composition technique can find various other applications.
Indeed, wherever there is a round-efficient (but otherwise inefficient) construction based on the
use of LS without a corresponding efficient construction with the same round complexity, then
our technique constitutes a powerful tool towards achieving computationally efficient and round-
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efficient constructions. For instance, the 4-round (optimal) resettable ZK argument systems in the
BPK model provided in [YZ07, SV12], consists (roughly) of the parallel execution of a (resettable)
WI protocol from the prover to the verifier, where the prover proves that either x ∈ L or he knows
the secret key associated to the public identity of the verifier, and a 3-round (resettably-sound) WI
protocol from the verifier to the prover, where V proves knowledge of the secret key associate to its
public key, or knowledge of the solution of a puzzle computed by the prover. When instantiated
with efficient Σ-protocols, such construction requires 5-rounds, where the additional round, from
the prover to the verifier, is used to send the puzzle necessary for the verifier to start a proof using
the CDS-OR technique. We observe that this setting closely resembles the setting of the 4-round
resettable WI (rWI) protocol that we provide in this paper. As such, one could directly instantiate
the proof provided by the prover of the BPK model, with our 4-round rWI protocol, and have the
verifier just prove knowledge of its secret keys, thus avoiding the need of the additional first round.

Other applications where our new OR-composition technique could be useful consist in replacing
the use of LS in the 4-round non-malleable commitment scheme of [GRRV14], and in the round-
optimal secure two-party computation protocol of [KO04].

1.5 Open Problems

Our OR-composition technique relaxes the requirement of CDS-OR of requiring knowledge of all
instances already at the beginning of the protocol. However still our result does not match the
power of LS where no theorem is required for the protocol to start. An immediate open question
is whether one can improve our OR transform so that the first round can be run without the
knowledge of any theorem.

Perhaps a first step in this direction would be to answer a related relaxed question, which is
to design an OR transform for proving (still preserving WI) knowledge of 1 out of n theorems and
that requires knowledge of (at least some) theorems only after the second round.

It would also be interesting to extend our technique in order to make it applicable to all Σ-
protocols.

2 Definitions

In this section we set-up our notation and review some standard definitions and assumptions that
will be used in the paper.

We denote the security parameter by λ.
If A is a probabilistic algorithm then A(x) denotes the probability distribution of the output

of A when it receives x as input. By A(x;R) instead we denote the output of A on input x when
coin tosses R are used as randomness.

A polynomial-time relation R is a subset of {0, 1}? × {0, 1}? for which membership of (x,w)
to R can be decided in time polynomial in |x|. We define the NP-language LR as LR = {x|∃w :
(x,w) ∈ R}. If (x,w) ∈ R, we say that w is a witness for instance x. Following [GMY06], we
define L̂R to be the input language that includes both LR and all well formed instances that do
not have a witness. More formally, LR ⊆ L̂R and membership in L̂R can be tested in polynomial
time. We implicitly assume that the verifier of a protocol for relation R executes the protocol only
if the common input x belongs to L̂R and rejects immediately common inputs not in L̂R.
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For two interactive machines A and B, we denote by 〈A(α), B(β)〉(γ) the output of B after
running on private input β with A using private input α, both running on common input γ.

2.1 Number-Theoretic Assumptions

We define group generator algorithms to be probabilistic polynomial-time algorithms that take as
input security parameter 1λ and output (G, q, g), where G is (the description of) a cyclic group
of order q and g is a generator of G. We assume that membership in G and its group operations
can be performed in time polynomial in the length of q and that there is an efficient procedure
to randomly select elements from G. Moreover, with a slight abuse of notation, we will use G to
denote the group and its description.

We consider the sub-exponential versions of the DLog and of the DDH assumptions that posit
the hardness of the computation of discrete logarithms and of breaking the Decisional Diffie-Hellman
assumption with respect to the group generator algorithm IG that, on input λ, randomly selects a
λ-bit prime q such that p = 2q + 1 is also prime and outputs the order q group G of the quadratic
residues modulo p along with a random generator g of G. The strong versions of the two assumptions
posit the hardness of the same problems even if p (and q) and generator g are chosen adversarially.
More precisely:

Assumption 1 (DLog Assumption). There exists a constant α such that for every probabilistic
algorithm A running in time 2λ

α
the following probability is a negligible function of λ

Prob
[

(G, q, g)← IG(1λ); y ← Zq : A(gy) = y
]
.

Assumption 2 (Strong DLog Assumption [CD08]). Consider a pair of probabilistic algorithms
(A0, A1) such that A0, on input 1λ, outputs (G, q, g), where G is the group of the quadratic residues
modulo p, where p is prime, p = 2q + 1, q is a λ-bit prime and g ∈ G, along with some auxiliary
information aux. There exists a constant α such that for any such pair (A0, A1) running in time
2λ

α
the following probability is a negligible function of λ:

Prob
[

((G, q, g), aux)← A0(1λ); y ← Zq : A1(gy, aux) = y
]
.

We next introduce the DDH Assumption and the Strong DDH Assumption which imply the
DLog Assumption and the Strong DLog Assumption, respectively.

Assumption 3 (DDH Assumption). There exists a constant α such that, for every probabilistic
algorithm A running in time 2λ

α
, the following is a negligible function of λ∣∣∣Prob

[
(G, q, g)← IG(1λ);x, y, z ← Zq : A((G, q, g), gx, gy, gz) = 1

]
−

Prob
[

(G, q, g)← IG(1λ);x, y, z ← Zq : A((G, q, g), gx, gy, gxy) = 1
]∣∣∣ .

Assumption 4 (Strong DDH Assumption). Consider a pair of probabilistic algorithms (A0, A1)
such that A0, on input 1λ, outputs (G, q, g), where G is the group of the quadratic residues modulo p,
where p is prime, p = 2q + 1, q is a λ-bit prime and g ∈ G, along with some auxiliary information
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aux. There exists a constant α such that, for any such pair (A0, A1) running in time 2λ
α

, the
following is a negligible function of λ∣∣∣Prob

[
((G, q, g), aux)← A0(1λ);x, y, z ← Zq : A1((G, q, g), gx, gy, gz, aux) = 1

]
−

Prob
[

((G, q, g), aux)← A0(1λ);x, y, z ← Zq : A1((G, q, g), gx, gy, gxy, aux) = 1
]∣∣∣ .

3 Σ-Protocols

We consider 3-move protocols Π for a polynomial-time relation R. Protocol Π is played by a prover
P and a verifier V that receive a common input x. P receives as an additional private input a
witness w for x and the security parameter 1λ in unary. The protocol Π has the following form:

1. P executes algorithm P1 on common input x, private input w, security parameter 1λ and
randomness R obtaining a = P1(x,w, 1λ;R) and sends a to V.

2. V, after receiving a from P, chooses a random challenge c← {0, 1}l and sends c to P.

3. P executes algorithm P2 on input x,w,R, c and sends z ← P2(x,w,R, c) to V.

4. V executes and outputs V(x, a, c, z) (i.e., V’s decision to accept (b = 1) or reject (b = 0)).

We call (P1,P2,V) the algorithms associated with Π and l the challenge length such that, wlog, the
challenge space {0, 1}l is composed of 2l different challenges.

The triple (a, c, z) of messages exchanged is called a 3-move transcript. A 3-move transcript is
honest if a, z correspond to the messages computed running the honest algorithms, respectively, of
P1 and P2, and c is a random string, in {0, 1}l. A 3-move transcript (a, c, z) is accepting for x if and
only if V(x, a, c, z) = 1. Two accepting 3-move transcripts (a, c, z) and (a′, c′, z′) for an instance x
constitute a collision if a = a′ and c 6= c′.

Definition 1 (Σ-protocol [CDS94]). A 3-move protocol Π with challenge length l is a Σ-protocol
for a relation R if it enjoys the following properties:

1. Completeness. If (x,w) ∈ R then all honest 3-move transcripts for (x,w) are accepting.

2. Special Soundness. There exists an efficient algorithm Extract that, on input x and a
collision for x, outputs a witness w such that (x,w) ∈ R.

3. Special Honest-Verifier Zero Knowledge (SHVZK). There exists a PPT simulator
algorithm Sim that takes as input x ∈ LR, security parameter 1λ and c ∈ {0, 1}l and outputs
an accepting transcript for x where c is the challenge. Moreover, for all l-bit strings c, the
distribution of the output of the simulator on input (x, c) is computationally indistinguishable
from the distribution of the 3-move honest transcript obtained when V sends c as challenge
and P runs on common input x and any private input w such that (x,w) ∈ R.

We say that Π is Perfect when the two distributions are identical.
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Not to overburden the descriptions of protocols and simulators, we will omit the specification
of the security parameter when it is clear from the context.

In the rest of the paper, we will call a 3-move protocol that enjoys Completeness, Special
Soundness and Honest-Verifier Zero Knowledge (HVZK7) a Σ̃-protocol. The next theorem shows
that SHVZK can be added to a 3-move protocol with HVZK without any significant penalty in
terms of efficiency.

Theorem 1 ([Dam10]). Suppose relation R admits a 3-move protocol Π′ that is HVZK (resp.,
perfect HVZK). Then R admits a 3-move protocol Π that is SHVZK (resp., perfect SHVZK) and
has the same efficiency.

Proof. Let l be the challenge length of Π′, let (P′1,P
′
2,V

′) be the algorithms associated with Π′ and
let Sim′ be the simulator for Π′. Consider the following algorithms.

1. P1, on input (x,w) ∈ R, security parameter 1λ and randomness R1, parses R1 as (r1, c
′′)

where |c′′| = l, computes a′ ← P′1(x,w, 1λ; r1), and outputs a = (a′, c′′).

2. P2, on input (x,w) ∈ R, R1 and randomness R2 parses R1 as (r1, c
′′), c, sets c′ = c ⊕ c′′,

computes z′ ← P′2(x,w, r1, c
′;R2), and sends it to V.

3. V, on input x, a = (a′, c′′), c and z′, returns the output of V′(x, a′, c⊕c′′, z′) to decide whether
to accept or not.

Consider the following PPT simulator Sim that, on input an instance x and a challenge c, runs
Sim′ on input x and obtains (a′, c′, z′). Then Sim sets c′′ = c ⊕ c′ and a = (a′, c′′) and outputs
(a, c, z′). It is easy to see that if Sim′ is a HVZK (resp. perfect HVZK) simulator for Π′ then Sim
is a SHVZK (resp. perfect SHVZK) simulator for Π.

Definition 2 ([BG92, Dam10]). Let k : {0, 1}∗ → [0, 1] be a function. A protocol (P,V) is a proof
of knowledge for the relation R with knowledge error k if the following properties are satisfied:

• Completeness If P and V follow the protocol on input x and private input w to P where
(x,w) ∈ R, then V always accepts.

• Knowledge soundness: There exists a constant c > 0 and a probabilistic oracle machine E,
called the extractor, such that for every interactive prover P ? and every x ∈ LR, the machine
E satisfies the following condition. Let ε(x) be the probability that V accepts on input x after
interacting with P ?. If ε(x) > k(x), then upon input x and oracle access to P ?, the machine
E outputs a string w such that (x,w) ∈ R within an expected number of steps bounded by

|x|c

ε(x)− k(x)
.

Theorem 2 ([Dam10]). Let Π be a Σ-protocol for a relation R with challenge length l. Then Π is
a proof of knowledge with knowledge error 2−l.

7Recall that HVZK requires the existence of a simulator that generates a full transcript. This is a seemingly
weaker requirement than SHVZK where the challenge is an input for the simulator.
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Definition 3 (Input-delayed Σ-protocol). A Σ-protocol Π = (P,V) with P running PPT algorithms
(P1,P2) is an input-delayed Σ-protocol if P1 takes as input only the length of the common instance
and P2 takes as input the common instance x, the witness w, the randomness R1 used by P1 and
the challenge c received from the verifier.

Definition 4 (Witness-delayed Σ-protocol). A Σ-protocol Π = (P,V) for a relation R with asso-
ciated algorithms (P1,P2,V) is a witness-delayed Σ-protocol if P1 takes as input only the common
instance x.

In a Chameleon Σ-protocol, the prover can compute the first message by using the simulator and
thus knowing only the input but not the witness. Once the challenge has been received, the prover
can compute the last message (thus completing the interaction) by using the witness w (which is
thus used only to compute the last message) and the coin tosses used by the simulator to compute
the first message.

Definition 5 (Chameleon Σ-protocol). A Σ-protocol Π for polynomial-time relation R is a Chameleon
Σ-protocol if there exists an SHVZK simulator Sim and an algorithm Psim satisfying the following
property:

Delayed Indistinguishability: for all pairs of challenges c0 and c1 and for all (x,w) ∈ R, the fol-

lowing two distributions {R ← {0, 1}|x|d ; (a, z0) ← Sim(x, c0;R); z1 ← Psim((x, c0, R), w, c1) :
(x, a, c1, z1)} and {(a, z1) ← Sim(x, c1) : (x, a, c1, z1)} are indistinguishable, where Sim is the
Special HVZK simulator and d is such that Sim, on input an λ-bit instance, uses at most
λd random coin tosses. If the two distributions above are identical then we say that delayed
indistinguishability is perfect, and Π is a Perfect Chameleon Σ-protocol.

We remark that a chameleon Σ-protocol Π has two modes of operations: the standard mode
when P runs P1 and P2, and a delayed mode when P uses Sim and Psim. Moreover, observe that
since Sim is a simulator for Π, it follows from the delayed-indistinguishability property that, for all
challenges c and c̃ and common inputs x, distribution

{R← {0, 1}|x|d ; (a, z̃)← Sim(x, c̃;R); z ← Psim((x, c̃, R), w, c) : (a, c, z)}

is indistinguishable from

{R← {0, 1}|x|d ; a← P1(x,w;R); z ← P2(x,w,R, c) : (a, c, z)}.

That is, the two modes of operations of Π are indistinguishable. This property make us able to
claim that if Π is WI when a WI challenger interacts with an adversary using (P1,P2), then Π
is WI even when the pair (Sim,Psim) is used. Finally, we observe that Chameleon Σ-protocols do
exist and Schnorr’s protocol [Sch89] is one example. When considering the algorithms associated
to a Chameleon Σ-protocol, we will add Psim.

3.1 Σ-protocols and Witness Indistinguishability

Definition 6. A 3-move protocol Π = (P,V) is Witness Indistinguishable (WI) for a relation R
if, for every malicious verifier V?, there exists a negligible function ν such that for all x,w,w′ such
that (x,w) ∈ RL and (x,w′) ∈ RL∣∣∣Prob

[
〈P(w, 1λ),V?〉(x) = 1

]
− Prob

[
〈P(w′, 1λ),V?〉(x) = 1

] ∣∣∣ ≤ ν(λ).
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The notion of a perfect WI 3-move protocol is obtained by requiring the two distributions to be
identical. We start by recalling the following result.

Theorem 3 ([CDS94]). Every Perfect Σ̃-protocol8 is Perfect WI.

For completeness, in Appendix A we show a Σ̃-protocol that it is not WI.

3.2 OR Composition of Σ̃-protocols: the CDS-OR Transform

In this section we describe the CDS-OR [CDS94] transform in details. Let Π be a Σ̃-protocol for
polynomial-time relation R with challenge length l, associated algorithms (P1,P2,V) and HVZK
simulator Sim. The CDS-OR transform constructs a Σ̃-protocol ΠOR with associated algorithms
(POR

1 ,POR
2 ,VOR

Σ ) for the relation

ROR =
{

((x0, x1), w) :
(

(x0, w) ∈ R ∧ x1 ∈ L̂R
)

OR
(

(x1, w) ∈ R ∧ x0 ∈ L̂R
)}

.

We describe ΠOR below.

Protocol 1. CDS-OR Transform.
Common input: (x0, x1).
P’s private input: (b, w) with b ∈ {0, 1} and (xb, w) ∈ R.

POR
1 ((x0, x1), (b, w);R1). Set ab = P1(xb, w;R1). Compute (a1−b, c1−b, z1−b)← Sim(x1−b). Output

(a0, a1).

POR
2 ((x0, x1), (b, w), c, R1). Set cb = c⊕c1−b. Compute zb ← P2(xb, w, cb, R1). Output ((c0, c1), (z0, z1)).

VOR
Σ ((x0, x1), (a0, a1), c, ((c0, c1), (z0, z1))). VOR

Σ accepts if and only if c = c0⊕c1 and V(x0, a0, c0, z0) =
1 and V(x1, a1, c1, z1) = 1.

Theorem 4 ([CDS94, GMY06]). If Π is a Σ̃-protocol for R then ΠOR is a Σ̃-protocol for ROR and
is WI for relation

R′OR =
{

((x0, x1), w) :
(

(x0, w) ∈ R ∧ x1 ∈ LR
)

OR
(

(x1, w) ∈ R ∧ x0 ∈ LR
)}

.

Moreover, if Π is a Perfect Σ̃-protocol for R then ΠOR is WI for ROR.

It is possible to extend the above construction to handle two different relations R0 and R1

that admit Σ̃-protocols. Indeed by Theorem 14 (see Appendix A for more details), we can assume,
wlog, that R0 and R1 have Σ̃-protocols Π0 and Π1 with the same challenge length. Hence, the
construction outlined above can be used to construct Σ̃-protocol ΠR0,R1

OR for relation

ROR =
{

((x0, x1), w) :
(

(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(

(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}
.

We have the following theorem.

8We remind the reader that we call a 3-move protocol that enjoys Completeness, Special Soundness and Honest-
Verifier Zero Knowledge (HVZK) a Σ̃-protocol.

15



Theorem 5. If Π0 and Π1 are Σ̃-protocols for R0 and R1, respectively, then ΠR0,R1

OR is a Σ̃-protocol
for relation ROR and is WI for relation

R′OR =
{

((x0, x1), w) :
(

(x0, w) ∈ R0 ∧ x1 ∈ LR1

)
OR
(

(x1, w) ∈ R1 ∧ x0 ∈ LR0

)}
.

Moreover, if Π0 and Π1 are Perfect Σ̃-protocols for R0 and R1 then ΠOR is WI for ROR.

We remark that if Π0 and Π1 are Σ-protocols then the CDS-OR transform yields a Σ-protocol
for ROR and the equivalent of Theorem 5 (and of Theorem 4) holds.

4 t-Instance-Dependent Trapdoor Commitment Schemes

In this section, for integer t ≥ 2, we define the notion of a t-Instance-Dependent Trapdoor Com-
mitment scheme associated with a polynomial-time relation R and show constructions for t = 2
and t = 3.

Definition 7 (t-Instance-Dependent Trapdoor Commitment scheme). Let t ≥ 2 be an integer and
let R be a polynomial-time relation. A t-Instance-Dependent Trapdoor Commitment (a t-IDTC,
in short) scheme for R with message space M is a triple of PPT algorithms (TCom,TDec,TFake)
where TCom is the randomized commitment algorithm that takes as input security parameter 1λ,
an instance x ∈ L̂R (with |x| = poly(λ)) and a message m ∈M and outputs commitment com, de-
commitment dec, and auxiliary information rand; TDec is the verification algorithm that takes as
input (x, com, dec,m) and decides whether m is the decommitment of com; TFake is the randomized
equivocation algorithm that takes as input (x,w) ∈ R, messages m1 and m2 in M , commitment
com of m1 with respect to instance x and associated auxiliary information rand and produces de-
commitment information dec2 such that TDec, on input (x, com, dec2,m2), outputs 1.

A t-Instance-Dependent Trapdoor Commitment scheme has the following properties:

• Correctness: for all x ∈ L̂R, all m ∈M , it holds that

Prob
[

(com, dec, rand)← TCom(1λ, x,m) : TDec(x, com, dec,m) = 1
]

= 1.

• t-Special Extract: there exists an efficient algorithm ExtractTCom that, on input x, com-
mitment com, pairs (deci,mi)

t
i=1 of openings and messages such that

– for 1 ≤ i < j ≤ t we have that mi 6= mj;

– TDec(x, com, deci,mi) = 1, for i = 1, . . . , t;

outputs w such that (x,w) ∈ R.

• Hiding (resp., Perfect Hiding): for every PPT (resp., unbounded) adversary A there
exists a negligible function ν (resp., ν(·) = 0) such that, for all x ∈ LR and all m0,m1 ∈M ,
it holds that

Prob
[
b← {0, 1}; (com, dec, rand)← TCom(1λ, x,mb) : b = A(x, com,m0,m1)

]
≤ 1

2
+ ν(λ).
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• Trapdoorness: the following two families of probability distributions are indistinguishable:

{(com, dec1, rand)← TCom(1λ, x,m1); dec2 ← TFake(x,w,m1,m2, com, rand) : (com, dec2)}

and
{(com, dec2, rand)← TCom(1λ, x,m2) : (com, dec2)}

over all families {(x,w,m1,m2)} such that (x,w) ∈ R and m1,m2 ∈M .

The perfect trapdoorness property requires the two probability distributions to coincide for all
(x,w,m1,m2) such that (x,w) ∈ R and m1,m2 ∈M .

Constructing a 2-IDTC scheme from a Chameleon Σ-protocol. Let Π = (P,V) with asso-
ciated algorithms (P1,P2,V,Psim) be a Chameleon Σ-protocol for polynomial-time relation R with
a security parameter 1λ. Let l be the challenge length of Π and let Sim be a SHVZK simulator
associated to Π. We construct a t-IDTC scheme (TComΠ,TDecΠ,TFakeΠ) for R with messages
space M = {0, 1}l for x ∈ L̂R as follows.

Protocol 2. 2-IDTC scheme from Chameleon Σ-protocol Π.

• TComΠ(1λ, x,m1): On input x and m1 ∈ M , pick randomness R and compute (a, z) ←
Sim(x,m1;R). Output com = a, dec = z and rand = R;

• TDecΠ(x, com, dec,m1): On input x, com, dec and m1, run b = V(x, com,m1, dec) and accept
m1 as the decommitted message iff b = 1.

• TFakeΠ: On input (x,w) ∈ R, messages m1,m2 ∈ M , for m2 and rand for com, output
z = Psim((x,m1, rand), w,m2).

Theorem 6. If Π is a Chameleon Σ-protocol for R then Protocol 2 is a 2-IDTC scheme for R.
Moreover, if Π is Perfect then so is Protocol 2.

Proof. Correctness follows directly from the Completeness property of Π.
2-Special-Extract. Suppose com is a commitment with respect to instance x and let dec1 and dec2

be two openings of com as messages m1 6= m2, respectively. Then, triplets (com,m1, dec1) and
(com,m2, dec2) are accepting transcripts for Π on common input x with the same first round;
that is, they constitute a collision for Π. Therefore, we define algorithm ExtractTCom to be the
algorithm that runs algorithm Extract (that exists by the special soundness of Π) on input the
collision. ExtractTCom returns the witness for x computed by Extract.
(Perfect) Trapdoorness. It follows from the Perfect Delayed-Indistinguishability property of Π as
well as the (perfect) Hiding property.

Constructing a 3-IDTC scheme. Let R be a polynomial-time relation as above admitting a
witness-delayed Σ-protocol Π with associated algorithms (P1,P2,V) and security parameter 1λ. Let
l denote the challenge length of Π. We construct a 3-IDTC scheme for message space M = {0, 1}l
for x ∈ L̂R, as follows.

Protocol 3. 3-IDTC scheme.

17



• TComΠ: On input 1λ, x and m1 ∈M , pick randomness R and compute (a0, z)← Sim(x,m1)
and a1 ← P1(x;R). Let com0 = a0 and com1 = a1. Output com = (comb, com1−b) for a
randomly selected bit b, dec = z and rand = R.

• TDecΠ: On input x, com = (com0, com1), dec and m1, accept m1 if and only if either V(x, com0,m1, dec) =
1 or V(x, com1,m1, dec) = 1.

• TFakeΠ: On input (x,w) ∈ R, messages m1,m2 ∈M , commitment com for m1 and rand for
com, output z ← P2(x,w, rand,m2).

Theorem 7. If Π is a witness-delayed Σ-protocol for R, with the associated algorithms (P1,P2,V),
then Protocol 3 is a 3-IDTC scheme for R. Moreover, if Π is Perfect then so is Protocol 3.

Proof. Correctness follows from the completeness of Π.
3-Special Extract. It follows from the special soundness of Π. Assume that the committer

generates 3 accepting openings dec1, dec2 and dec3, for distinct messages m1, m2 and m3, for the
same commitment com computed w.r.t. x. In this case, we have three accepting transcript for Π
and therefore at least two of them must share the same first message, i.e., it is a collision. Thus we
can run the extractor Extract for Π on the collision and obtain a witness for x.

Trapdoorness. It follows from the SHVZK property of Π. We prove this property via hybrid
arguments.

The first hybrid, H1 is the real execution, where a honest prover commits to a message following
the honest commitment and decommitment procedure, without using the trapdoor. More formally,
in the hybrid H1 the prover performs the following steps:

• On input x and m1,m2 ∈M , the prover selects random coin tosses R and computes (a0, z)←
Sim(x,m2), a1 ← P1(x;R). It picks b← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

The second hybrid H2 is equal to H1 with the difference that a0 is computed using the algorithm
P1 and z using P2. Formally:

• On input x and m1,m2 ∈M , the prover selects random coin tosses R = (r1, r2) and computes
a0 ← P1(x; r1), z ← P2(x,w, r1,m2) and a1 ← P1(x; r2). It picks b ← {0, 1} and sends
com = (ab, a1−b), dec = z, m2.

Due to the SHVZK property of Π, H1 is indistinguishable from H2. Now we consider the hybrid
H3 in which a1 is computed using Sim(x,m2). Formally:

• On input x and m1,m2 ∈ M , the prover selects random coin tosses R and computes a0 ←
P1(x;R), z ← P2(x,w,R,m2) and (a1, z) ← Sim(x,m1). It picks b ← {0, 1} and sends
com = (ab, a1−b), dec = z, m2.

Even in this case, we can claim that H3 is indistinguishable from H2 because of the SHVZK of Π.
The proof ends with the observation that H3 is the experiment in which a sender commits to a
message m1 and opens to m2 using the trapdoor.

If Π is a perfect SHVZK protocol, then the sequence of hybrids produces identical distributions.

18



5 Our New OR-Composition Technique

In this section we formally describe our new OR transform. Let R0 be a relation admitting a
t-IDTC scheme, I = (TComΠ0 ,TDecΠ0 ,TFakeΠ0), with t = 2 or t = 3, and R1 a relation admitting
an input-delayed Σ-protocol Π1 with associated algorithms (P1

1,P
1
2,V

1) and simulator Sim1. We
show a Σ-protocol ΠOR for the OR relation:

ROR = {((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ L̂R1) OR ((x1, w) ∈ R1 ∧ x0 ∈ L̂R0)}.

We denote by (POR
1 ,POR

2 ,VOR) the algorithms associated with ΠOR. We assume that the initial
common input is x0. The other input x1 and the witness w for (x0, x1) are made available to the
prover only after the challenge has been received. We let b ∈ {0, 1} be such that (xb, w) ∈ Rb and
assume that the message space of the t-IDTC scheme I includes all possible first-round messages of
Π1. Note that for the constructions of the t-IDTC scheme we provide, the message space coincides
with the set of challenges of the underlying Σ-protocol and, in Appendix A.1, we show that the
challenge length of a Σ-protocol can be easily expanded/reduced.

We remind that prover algorithm POR
2 receives as further input the randomness (R1, rand1)

used by POR
1 to produce the first-round message.

Protocol 4. Protocol ΠOR for ROR.
Common input: (x0, 1

λ), where 1λ is the security parameter.

1. POR
1 (x0, 1

λ). Pick random R1 and compute a1 ← P1
1(1λ;R1). Then commit to a1 by running

(com, dec1, rand1)← TComΠ0(1λ, x0, a1). Output com.

2. POR
2 ((x0, x1), c, (w, b), (rand1, R1)) (with (xb, w) ∈ Rb).

If b = 1, compute z1 ← P1
2(x1, w,R1, c) and output (dec1, a1, z1).

If b = 0, compute (a2, z2)← Sim1(x1, c), dec2 ← TFakeΠ0(x0, w, a1, a2, com, rand1) and output
(dec2, a2, z2).

3. VOR, on input (x0, x1), com, c, and (dec, a, z)) received from ΠOR, outputs 1 iff

TDecΠ0(x0, com, dec, a) = 1 and V1(x1, a, c, z) = 1;

Theorem 8. If R0 admits a 2-IDTC (resp., 3-IDTC) scheme and if R1 admits an input-delayed
Σ-protocol, then ΠOR is a Σ-protocol (resp., is a 3-round public-coin SHVZK PoK) for relation
ROR.

Proof. Completeness follows by inspection. We next prove the properties of Protocol 4 when
instantiated with a 2-IDTC and 3-IDTC schemes.

Proof for the construction based on the 2-IDTC scheme.

Special Soundness. It follows from the special soundness of the underlying Σ-protocol Π1 and the
2-Special Extract of the 2-IDTC scheme. More formally, consider a collision (com, c, (dec, a, z)) and
(com, c′, (dec′, a′, z′)) for input (x0, x1). We observe that:

• if a = a′ then (a, c, z) and (a′, c′, z′) is a collision for Π1 for input x1; then we can obtain a
witness w1 for x1 by the Special Soundness property of Π1;
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• if a 6= a′, then dec and dec′ are two openings of com with respect to x0 for messages a 6= a′;
then we can obtain a witness w0 by the 2-Special Extract of the 2-IDTC scheme.

SHVZK property. Consider simulator SimOR that, on input (x0, x1) and challenge c, sets (a, c, z)←
Sim1(x1, c) and (com, dec)← TComx0(a), and outputs (com, c, (dec, a, z)). Next, we show that the
transcript generated by SimOR is indistinguishable from the one generated by a honest prover.

Let us first consider the case in which the prover of ΠOR receives a witness for x1. In this case,
if we sample a random distribution (com, c, (dec, a, z)) of ΠOR on input (x0, x1) constrained to c
being the challenge we have that (a, c, z) has the same distribution as in random transcript of Π1

on input x1 constrained to c being the challenge; moreover, (com, dec) is a pair of commitment and
decommitment of a with respect to x0. By the property of Sim1, this distribution is indistinguishable
from (a, c, z) computed as Sim1(x1, c) which is exactly as in the output SimOR.

Let us now consider the case in which the prover of ΠOR receives a witness for x0. If we sample a
random distribution (com, c, (dec, a, z)) of ΠOR on input (x0, x1) constrained to c being the challenge
we have that (a, c, z) are distributed exactly as in the output of SimOR (that is by running Sim1 on
input x1 and c). In addition, in the output of SimOR, (com, dec) are commitment and decommitment
of a whereas in the view of ΠOR they are computed by means of TFake algorithm. However, the
two distributions are indistinguishable by the trapdoorness of the Instance-Dependent Trapdoor
Commitment.

Proof for the construction based on the 3-IDTC scheme.

3-Special Soundness. This property ensures that there exists an efficient algorithm that, given three
accepting transcripts, (a, c0, z0), (a, c1, z1), (a, c2, z2) with ci 6= cj for 1 ≤ i < j ≤ 3, for the same
common input, outputs a witness for x.

Consider three accepting transcripts for ΠOR and input (x0, x1):

(com, c1, (dec1, a1, z1)), (com, c2, (dec2, a2, z2))

and
(com, c3, (dec3, a3, z3)).

We observe that:

• if ai = aj for some i 6= j then (ai, ci, zi) and (aj , cj , zj) is a collision for Π1 for input x1; thus
we can obtain a witness w1 for x1 by the Special Soundness property of Π1;

• if ai 6= aj for all i 6= j, then, dec1 and dec2 and dec3 are three openings of the same com

with respect to x0 for messages a1, a2 and a3; then we can obtain a witness w0 for x0 by the
3-Special Extract of the 3-IDTC scheme.

We stress that having a long enough challenge, 3-special soundness implies the proof of knowledge
property.

SHVZK property. This is similar to the proof for the construction based on 2-IDTC.
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5.1 Witness Indistinguishability of Our Transform

In this section we discuss the adaptive WI property of ΠOR. Roughly speaking, adaptive WI means
that in the WI experiment the adversary A is not forced to choose both theorems x0 and x1 at
the onset of the experiment. Rather, she can choose theorem x1 and witnesses w0, w1 adaptively,
after seeing the first message of ΠOR played by the prover on input x0. After x1, w0, w1 have been
selected by A, the experiment randomly selects b← {0, 1}. The prover then receives x1 and wb and
proceeds to complete the protocol. The adversary wins the game if she can guess b with probability
non-negligibly greater than 1/2. More formally, we consider adaptive WI for polynomial-time
relation

RpOR =
{

((x0, x1), w) :
(

(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(

(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}
and for the weaker relation

RcOR =
{

((x0, x1), w) :
(

(x0, w) ∈ R0 ∧ x1 ∈ LR1

)
OR

(
(x1, w) ∈ R1 ∧ x0 ∈ LR0

)}
.

The adaptive WI experiment, ExpWIδA(x0, λ, aux) with δ ∈ {c, p}, is parameterized by PPT adver-
sary A and has three inputs: instance x0, security parameter λ, and auxiliary information aux for
A.

ExpWIδA(x0, λ, aux):

1. a = POR
1 (x0, 1

λ;R1), for random coin tosses R1;

2. A(x0, a, aux) outputs ((x1, w0, w1), c, state) such that ((x0, x1), w0), ((x0, x1), w1) ∈ RδOR;

3. b← {0, 1};

4. z ← POR
2 ((x0, x1), wb, R1, c);

5. b′ ← A(z, state);

6. If b = b′ then output 1 else output 0.

We set

AdvδA(x0, λ, aux) =

∣∣∣∣Prob
[

ExpWIδA(x0, λ, aux) = 1
]
− 1

2

∣∣∣∣
Definition 8. ΠOR is Adaptive Witness Indistinguishable (resp., Adaptive Perfect Witness Indis-
tinguishable) if for every adversary A there exists a negligible function ν such that for all aux and
x0 it holds that AdvcA(x0, λ, aux) ≤ ν(λ) (resp., AdvpA(x0, λ, aux) = 0).

Next, in Theorem 9, we prove the Adaptive Perfect WI of ΠOR when both Π0 and Π1 are perfect
SHVZK. When one of Π0 and Π1 is not perfect, we would like to prove that ΠOR is Adaptive WI.
In Theorem 10 we prove a weaker form of Adaptive WI in which the adversary is restricted in his
choice of witnesses (w0, w1) for relation RcOR. We leave open the problem of an OR-composition
technique that gives Adaptive WI when the Σ-protocol composed are not both perfect SHVZK.

Theorem 9. If Π0 and Π1 are perfect SHVZK then ΠOR is Adaptive Perfect Witness Indistin-
guishable.
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Proof. The proof considers the following three cases:

Case 1. (x0, w0) ∈ R0 and (x1, w1) ∈ R1;

Case 2. (x0, w0) ∈ R0 and (x0, w1) ∈ R0;

Case 3. (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

For each case we present a sequence of hybrids and prove that pairs of consecutive hybrids are
perfectly indistinguishable.

Case 1. The first hybrid experiment H1(x0, λ, aux) is the original experiment ExpWIpA(x0, λ, aux)
in which b = 1 (and thus P uses witness w1). That is,

• In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. a = P1
1(1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

• In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. set a′ = a;

2. z ← P1
2(x1, w1, c, R1);

3. set dec′ = dec;

4. output (dec′, a′, z).

The second hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the way a′ and dec′ are
computed. More specifically,

• Step 1 of ExpWIpA(x0, λ, aux) stays the same.

1. a = P1
1(1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

• In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. a′ = P1
1(1λ;R′1), for random coin tosses R′1;

2. z ← P1
2(x1, w1, c, R

′
1);

3. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

4. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based on Π0 guarantees
that H1(x0, λ, aux) and H2(x0, λ, aux) are perfectly indistinguishable for all λ.

The third hybrid experiment H3(x0, λ, aux) differs from H2(x0, λ, aux) in the way a′ and z are
computed. More specifically,

• Step 1 of ExpWIpA(x0, λ, aux) stays the same.

1. a = P1
1(1λ;R1), for random coin tosses R1;
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2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

• In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. (a′, z)← Sim1(x1, c);

2. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

3. (dec′, a′, z).

By the perfect SHVZK of Π1, we have that H2(x0, λ, aux) and H3(x0, λ, aux) are perfectly indistin-
guishable for all λ. The proof ends with the observation that H3(x0, λ, aux) is exactly experiment
ExpWIpA(x0, λ, aux) when b = 0.

Case 2. The first hybrid experimentH1(x0, λ, aux) is again the original experiment ExpWIpA(x0, λ, aux)
in which b = 1 (and thus P uses witness w1). The second hybrid experiment H2(x0, λ, aux) differs
from H1(x0, λ, aux) in the way TFake is executed (namely, using as input w0 instead of w1). More
specifically,

• Step 1 of ExpWIpA(x0, λ, aux) stays the same.

1. a = P1
1(1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

• In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. (a′, z) = Sim1(x1, c);

2. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

3. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based on Π0 implies
that H1(x0, λaux) is perfectly indistinguishable from H2(x0, λaux) for all λ. The proof ends with
the observation that H2(x0, λ, aux) is exactly experiment ExpWIpA(x0, λ, aux) when b = 0.

Case 3. The first hybrid experimentH1(x0, λ, aux) is again the original experiment ExpWIpA(x0, aux)
in which b = 1 (and thus P uses witness w1). The second hybrid experiment H2(x0, λ, aux) differs
from H1(x0, λ, aux) in the way z is computed (using as input w1 instead of w0 when P2 is executed).
More specifically,

• In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. a = P1
1(1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

• In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. z ← P1
2(x1, w0, c, R1);

2. output (dec, a, z)
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The Perfect WI property of Π1 implies that H1(x0, λ, aux) is perfectly indistinguishable from
H2(x0, λ, aux). The proof ends with the observation that H2(x0, λ, aux) is exactly the experiment
ExpWIpA(x0, λ, aux) when b = 0.

Next we consider the computational case in which one of the two components is not Perfect
SHVZK.

Theorem 10. If one of Π0 or Π1 is SHVZK then ΠOR is Adaptive Witness Indistinguishable with
respect to adversaries that output (x1, w0, w1) such that at least one of w0 and w1 is a witness for
x1 ∈ LR1.

Proof. We prove this theorem by considering the following two cases:

1. (x0, w0) ∈ R0 and (x1, w1) ∈ R1;

2. (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

Case 1. In this case the proof follows closely the one of Case 1 of Theorem 9, with the difference
that hybrids here are only computationally indistinguishable.

Case 2. In this case we show that there exists A′ for Case 1 that has the same success probability
of A. Suppose indeed that both w0 and w1 are witnesses for x1 and that A breaks the adaptive
WI property of ΠOR. Then, by definition of RcOR and by Definition 8, there exists A′ that has
in his description a witness w2 for x0. Indeed, the output of A interacting with P((x0, x1), w2)
would necessarily be distinguishable from the output of the interaction with either P((x0, x1), w0)
or P((x0, x1), w1). Therefore A′ would contradict Case 1 and thus there exists no successful A for
Case 2.

6 Applications

In this section, we describe the application of our new OR-composition technique for constructing
a 3-round straight-line perfect quasi-polynomial time simulatable argument system, a 4-round re-
settable WI argument system and an efficient 4-round resettable zero knowledge with concurrent
soundness argument system in the BPK model. For the last application we provide only an informal
protocol description.

6.1 A 3-Round Efficient Perfectly Simulatable Argument System

In [Pas03], Pass introduced relaxed notions of zero knowledge and knowledge extraction in which
the simulator and the extractor are allowed to run in quasi-polynomial time. Allowing the simulator
to run in quasi-polynomial time typically dispenses with the need of rewinding the verifier; that
is, the simulator is straight-line. In [Pas03], Pass first describes the following 2-round perfect ZK
argument for any language L: the verifier V sends a value Y = f(y) for a randomly chosen y where
f is a sub-exponentially hard OWF and the first round of a ZAP protocol. The prover P then sends
a commitment to (y′|w′) and uses the second round of the ZAP to prove that either y′ = f−1(y) or
w′ is a witness for x ∈ L. If language L admits a Σ-protocol ΠL then the above construction can be
implemented as an efficient 4-round argument with quasi-polynomial time simulation: the function
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f is concretely instantiated to be an exponentiation in a group in which the Discrete Log problem
is hard and the ZAP is replaced with the CDS-OR composition of ΠL and Schnorr’s Σ-protocol for
the Discrete Log.

Note that Schnorr’s Σ-protocol is input delayed and thus we can use it as Σ-protocol Π1 in our
OR transform in conjunction with any Chameleon Σ-protocol Π0. One drawback of reducing to
three round the result of [Pas03] is that we can use only a perfect Σ-protocolsince our goal is to
obtain perfect WI in just three rounds.

6.1.1 Preliminary Definitions

We start by providing some useful definitions.

Simulation in quasi-polynomial time. Since the verifier in an interactive argument is often
modeled as a PPT machine, the classical zero-knowledge definition requires that the simulator runs
also in (expected) polynomial time. In [Pas03], the simulator is allowed to run in time λpoly(log(λ)).
Loosely speaking, we say that an interactive argument is λpoly(log(λ))-perfectly simulatable if for
any adversarial verifier there exists a simulator running in time λpoly(log(λ)), where λ is the size of
the statement being proved, whose output is identically distributed to the output of the adversarial
verifier.

Definition 9 (One-way functions for sub-exponential circuits. [Pas03]). A function f : {0, 1}∗ →
{0, 1}∗ is called one-way for sub-exponential circuits if there exists a constant α such that the
following two condition holds:

• there exist a deterministic polynomial-time algorithm that on input y outputs f(y);

• for every probabilistic algorithm A with running time bounded by 2λ
α

, all sufficiently large
λ’s, and every auxiliary input z ∈ {0, 1}poly(λ)

Prob
[
y
R← {0, 1}∗ : A(f(y), z) ∈ f−1(f(y))

]
<

1

poly(2λα)
.

Now we define straight-line T (λ)-perfectly simulatable interactive arguments.
For our result we consider a one-way functions for sub-exponential circuits that is also one-to-

one.

Definition 10 (straight-line T (λ) simulatability, Def. 31 of [Pas04]). Let T (λ) be a class of
functions that is closed under composition with any polynomial. We say that an interactive ar-
gument (proof) (P,V) for the language L ∈ NP, with the witness relation RL, is straight-line
T (λ)-simulatable if for every PPT machine V? there exists a probabilistic simulator S with running
time bounded by T (λ) such that the following two ensembles are computationally indistinguishable
(when the distinguish gap is a function in λ = |x|)

• {(〈P(w),V?(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈ RL

• {(〈S,V?(z)〉(x))}z∈{0,1}∗,x∈L

We note that the above definition is very restrictive. In fact, the simulator is supposed to
act as a cheating prover, with its only advantage being the possibility of running in time T (λ),
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instead of in polynomial time. Trivially, it do not exist a straight-line T (λ)-simulatable proof for
non-trivial languages (this should be contrasted with straight-line simulatable interactive arguments,
which instead do exist).

The following theorem shows the importance of straight-line λpoly(log(λ))-perfect simulatability
by connecting it to concurrent composition of arguments.

Theorem 11. If the interactive argument Π = (P,V) is straight-line λpoly(log(λ))-simulatable then
it is also straight-line concurrent λpoly(log(λ))-simulatable.

6.1.2 The Protocol

For any NP-language L we consider the Σ-protocol Π for the relation RL. Also we consider the
Schnorr Σ-protocol ΠDLOG the following relation

DLOG = {((G, q, g, Y ), y) : gy = Y }

with the associated NP-language LDLOG, over groups G of prime-order q, and use our OR-composition
technique to obtain a new Σ-protocol ΠOR = (POR,VOR) for the relation

ROR =
{

((xL, xDLOG), w) :
(

(xL, w) ∈ RL ∧ xDLOG ∈ L̂DLOG

)
OR
(

(xDLOG, w) ∈ DLOG ∧ xL ∈ L̂RL
)}

with challenge length l = λ and associated algorithm POR
1 , POR

2 and VOR.
Let f be a sub-exponentially hard one-to-one one-way function implemented using DLog as

described before, with the only change that for some constant α, f is one-way w.r.t circuits of
size 2λ

α
. Let L ∈NP and k = 1

α + 1. Our 3-round straight-line quasi-polynomial time simulatable
argument system for x ∈ L is the following.

Protocol 5. A 3-round straight-line quasi-polynomial time simulatable argument system.
Common input: An instance x of a language L ∈NP with witness relation RL, and 1λ as security
parameter.
Private input: P has w as a private input, s.t. (x,w) ∈ RL.

Round 1. P → V:

1. On input a randomness R1, P uniformly chooses (p, q, g) where p = 2q + 1 is a safe prime
and g is a generator of a group Gq of size q. We remark that (p, q, g) are parameters selected
so that the function f(y) = gy is a one-to-one one-way function for some constant α w.r.t
circuits of size 2λ

α
.

2. P computes a← POR
1 ((x, 1λ

α
);R1).

3. P sends (p, q, g) and a to V.

Round 2. V → P:

1. V chooses y ← Zq and computes Y = gy.

2. V chooses c← {0, 1}l.

3. V sends c and Y to P.
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Round 3. P → V:

1. P computes z ← POR
2 ((x, ((p, q, g), Y )) , w, c, R1).

2. P sends z to V.

3. V accepts if and only if VOR((x, ((p, q, g), Y )) , a, c, z) = 1.

We remark that we are using the same assumption of [CD08] that allows the adversary of DLog
to generate the DLog parameters while the challenger selects the random element of the group.

Theorem 12. If ΠOR is a Σ-protocol for OR composition of RL and DLOG, then Protocol 5 is a
3-round straight-line perfectly λO(logk λ)-simulatable argument of knowledge.

Proof. Completeness follows directly from the completeness of ΠOR.

Soundness/knowledge extraction. We show that Π is an argument of knowledge; this directly
implies soundness. The claim follows from the fact that the argument system ΠOR used is a proof of
knowledge when the challenge is long enough. and from the fact that a PPT adversary only finds a
pre-image to Y (for f) with negligible probability. More formally, we construct a polynomial-time
extractor E for every polynomial-time P? for protocol Π. E internally incorporates P? and each
time ΠOR proves a new theorem it proceeds as follows. E invokes the extractor EOR for ΠOR. E
outputs whatever EOR outputs. By the proof knowledge property of ΠOR, the output of E will
either be a witness w for the statement proved, or the pre-image of Y . If E outputs w, we are done.
Otherwise, if it outputs y with non-negligible probability, then we can construct a reduction that
breaks the DLog assumption (still in the form proposed by [CD08]).

Quasi-polynomial time perfect simulation. Consider a straight-line simulator Sim that com-
putes the first round as the honest prover. This is possible because ΠOR does not need any witness
to computes the first round. After the simulator receives Y it checks that Y has a pre-image. Sim
thereafter performs an exhaustive search to find a pre-image y of a value Y for the function f . To
perform this task Sim tries all possible values y′ ∈ {0, 1}logk λ and checks if f(y′) = Y . This thus

takes time poly(2logk λ), since the time it takes to evaluate the function f is a polynomial in λ.
After having found a value y such that f(y) = Y , Sim uses y as witness to complete the execution of
ΠOR (instead of using a real witness for x, as the honest prover would do). Clearly the running time

of Sim is bounded by λO(logk λ). We proceed to show that the output of the simulator is identically
distributed to the output of any adversarial verifier in a real execution with an honest prover. Note
that the only difference between a real execution and a simulated execution is in the choice of the
witness used in the last stage of the protocol. Therefore, from the adaptive WI property of ΠOR

we have that the output of the simulated execution is identically distributed to the output of the
real execution.

6.2 Efficient Resettable WI Argument System

In this section, we show how to efficiently transform any Σ-protocol Π into a resettable WI (rWI)
argument system at the cost of adding only one extra round and a constant number of modular
exponentiations.
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Resettable witness indistinguishability was introduced in [CGGM00]. Very roughly, a resetting
verifier is a PPT adversary that is able to interact with the prover polynomially many times with
possibly distinct inputs forcing the prover to execute the protocol using the same randomness
several times. Namely, we can think of a prover under a reset attack as being equipped with a
vector of inputs x̄ and a vector of random tapes ~ω. The malicious verifier can adaptively start a
new interaction with the prover by specifying the input xi and the randomness ωj to be used in the
interaction. Moreover, the malicious verifier has complete control over the schedule of the messages.
A concurrent verifier is a restricted form of resetting verifier that cannot start two interactions with
the same randomness. A formal definition is found in [CGGM00].

An informal description. Let R be a polynomial-time relation with Σ-protocol Π. We describe
our 4-round rWI argument system ΠWI = (P,V) for R incrementally. The basic idea is to have V
commit to the challenge of Π in the first round of ΠWI. Subsequently, P and V play Σ-protocol Π
where at the second round (corresponding to the 3 round of ΠWI), V decommits to the challenge.

To prove soundness we need to construct an adversary A that plays against P? and opens
the commitment in more than one way so that we can use the special soundness of Π to reach a
contradiction. Instead, to prove rWI we need the commitment to be binding for V? so that reset
attacks are ineffective.

We would thus like to use the notion of a simulatable commitment of [MP03] in which the
commitment is not opened but the sender announces the decommitted value and then sender and
receiver engage in a Σ-protocol ΠMP in which the sender proves that the announced value is the
value committed. In order to let A open the commitment in two ways while still preserving binding
against V?, we could use our OR-composition technique combining ΠMP with Schnorr’s protocol,
obtaining ΠOR that lets the sender prove that either the announced value is correct or it knows
the DLog of a challenge sent by the receiver. A can break the DLog challenge running in super-
polynomial time therefore succeeding (before and after a rewind) in announcing two different values
m,m′ that are different from the committed one. Instead V? will not be able to decommit to a
different message since otherwise we could use V? to break in polynomial time the DLog challenge.

There is a caveat though. Our OR-composition technique requires at least one statement to be
known to the prover of ΠOR (i.e., V ∈ ΠWI) when the protocol starts. Clearly the DLog challenge
will arrive only at the second round, therefore the known statement must be that the commitment
corresponds to a message m. However the first rounds of ΠOR will be based on such a statement
that therefore can not be changed later and this makes A stuck on m.

The simultaneous needs of allowing A to switch from m to m′ and of using ΠOR on an fixed
statement forces us to use one more tool. We are again inspired by the simulatable commitment
of [MP03] since it is shown in [MP03] that the special HVZK simulator also works with false state-
ments (see the notion of simulation of “random bad commitments” in [MP03]) by deviating with
the distribution of the first round of ΠMP and, of course, still leaving the transcript indistinguish-
able. We will make use of such trick by letting A deviate in the same way, and applying our
OR-composition technique to obtain ΠOR using as statements the distribution of the first round of
ΠMP and the DLog challenge.

Putting all pieces together, we have that: 1) A is able to announce m first and m′ later by
deviating when computing the first round of ΠMP; 2) A is able to succeed in ΠOR despite having
deviated in ΠMP (this holds because A will break the DLog challenge); 3) ΠOR is an OR composition
of two statements such that one is fixed (i.e., the first round of ΠMP) when ΠOR starts. 4) V? can
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announce only the actually committed message since ΠOR forces him to run ΠMP correctly (we
would break the DLog challenge in polynomial time otherwise).

Let us now proceed more formally. Let Πdlog be an input-delayed Σ-protocol for the discrete
log polynomial-time relation

DLOG = {((G, q, g, Y ), y) : gy = Y }

over groups G of prime-order q; e.g., Schnorr’s Σ-protocol [Sch89].
Consider also the following polynomial-time relation

DDH =
{(

((G, q, g), A = ga, B = gb, C = gab), b
)

: Ab = C
}
.

over groups G of prime-order q. In the rest of the paper we will refer to a tuple ((G, q, g), A =
ga, B = gb, C = gab) as DH-tuple.

We now consider the protocol ΠOR, with the associated algorithm (POR
1 ,POR

2 ,VOR), for the
following polynomial-time relation

ROR =
{

((x0, x1), w) :
(
(x0, w) ∈ DLOG ∧ x1 ∈ L̂DDH

)
OR(

(x1, w) ∈ DDH ∧ x0 ∈ L̂DLOG

)}
.

We now denote by lOR the challenge length of the Σ-protocol ΠOR.
We denote by x the common input and by w the witness received by P s.t. (x,w) ∈ R. We also

consider a Σ-protocol Π, with the associated algorithm (P1,P2,V) for the polynomial-time relation
R.

Security parameters λ and λ̂ will be determined as part of the proof.
The security of our proposed rWI ΠWI = (P,V) for R is based on the well-known DDH assump-

tion and on a strengthening of it (see Assumption 4).

Protocol 6. (4-round efficient resettable WI from Σ-protocols)
Public input: instance x and security parameter 1λ.
Private input to P: witness w such (x,w) ∈ R.

Round 1: from V to P.

1.1 Committing to the challenge c of Π

V randomly selects (G, q, g) ← IG(1λ) and (Ĝ, q̂, ĝ) ← IG(1λ̂) (the actual value of λ̂ is deter-
mined in the proof of soundness) and sends them to P;

V randomly selects c← Zq and commits to it by randomly selecting r1 ← Zq and h← G and
setting g1 = gr1 and h1 = hr1+c;

V sends (g1, h1) to P;

1.2 Preparing first input for ΠOR.

V randomly selects r2 ← Zq and computes (g2, h2) by setting g2 = gr2 and h2 = hr2 ;

V sends xOR
0 = (G, g, h, g2, h2) to P;

1.3 Computing first round of ΠOR.

V randomly selects coin tosses R1, sets aOR = POR
1 (xOR

0 ;R1) and sends aOR to P;
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Round 2: from P to V.

2.1 Picking randomness.

P reads ω from its random tape, computes R̄ = Fω(x, xOR
0 , (g1, h1), (Ĝ, q̂, ĝ), aOR) and parses

it as R̄ = (R2, R3);

2.2 Computing first round of Π.

P sets a = P1(x,w;R2) and sends it to V;

2.3 Preparing second input for ΠOR and sending the challenge for ΠOR.

P randomly selects y ← Zq̂, sets Y = ĝy and sends it to V;

P randomly selects cOR ← {0, 1}lOR
and sends it to V;

Round 3: from V to P.

3.1 Opening commitment of challenge for Π.

V sends c to P;

V randomly selects challenge c1 ← Zq and sets z1 = r2 + c1 · r1;

V sends c1, z1 to P;

3.2 Computing third round of ΠOR.

V sets xOR
1 = (q̂, ĝ, Y ), wOR = r2 and computes and sends zOR ← POR

2 ((xOR
0 , xOR

1 ), cOR, wOR, R1);

Round 4: from P to V.

4.1 Verification of ΠOR.

If VOR((xOR
0 , xOR

1 ), aOR, cOR, zOR) = 0, P aborts;

4.2 Checking the decommitment.

If gz1 6= g2 · gc11 or hz1 6= h2 · hc11 · h−c·c1 , P aborts;

4.3 Compute third round of Π.

P computes z ← P2(x,w, c, R2;R3) and sends it to V;

V’s decision: V accepts if and only if V(x, a, c, z) = 1.

We observe that values (g2, h2) computed at the Step 1.2 by the V are actually the first round
of the Σ-protocol ΠMP, as described in the informal section. The transcript for that protocol is
completed by V at the steps 3.1 by computing the values c1 and z1. In the end, at the step 4.2, the
prover P verifier that the transcript is accepting for the protocol ΠMP with respect to a committed
message c.

Completeness is straightforward.
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Soundness. Let P? be an efficient algorithm and suppose that, for x 6∈ LR, P? makes the honest
verifier V accept. We consider the following three hybrid experiments H0,H1, and H2.

The first hybrid experiment H0(x) is simply the real game between of P? and the honest verifier
V.

In the second hybrid experiment, H1(x), P? interacts with a verifier V1 that, upon receiving
Y , computes its discrete log y and sets wOR = y at Step 3.2. Therefore, V1 uses y instead of r2 to
compute message zOR. H0(x) and H1(x) are indistinguishable because of the perfect adaptive WI
of ΠOR.

In hybrid H2(x), P? interacts with V2 that differs from V1 because it selects c and c′ at Step
1.1, commits to c′ and sends c at Step 3.1. More formally, we describe below Round 1 and 3 of V2.

Round 1: from V2 to P?.

1.1 Committing to the challenge c′ of Π.

V2 randomly selects (G, q, g)← IG(1λ), (Ĝ, q̂, ĝ)← IG(1λ̂), c, c′, r1 ← Zq, and h← G and sets
g1 = gr1 and h1 = hr1+c′ ;

V2 sends (G, q, g, h), (Ĝ, q̂, ĝ) and (g1, h1) to P?;

1.2 Preparing first input for ΠOR.

V2 randomly selects z1, c1 ← Zq and sets g2 = gz1 · g−c11 and h2 = hz1+c·c1 · h−c11 ;

V2 sends xOR
0 = (G, g, h, g2, h2) to P?;

1.3 Compute first round of ΠOR.

V2 randomly selects coin tosses R1, sets aOR = POR
1 (xOR

0 ;R1) and sends aOR to P?;

Round 3: from V2 to P?.

3.1 Open commitment of challenge for Π

V2 sends c to P?;
V2 sends c1, z1 to P?;

3.2 Compute third round of ΠOR.

V2 sets xOR
1 = (q̂, ĝ, Y ), wOR = y such that ĝy = Y and computes and sends zOR ←

POR
2 ((xOR

0 , xOR
1 ), cOR, wOR, R1) to P?;

We next show that, under the DDH assumption, the two hybrids are indistinguishable and we
will do so by describing a simulator B that, on input a tuple T = ((G, q, g), h, A,B), outputs the
view of P? in H1 or H2, depending on whether T is DH or not. Specifically, B executes the code
of V2 with the following modification: at step 1.1, g1 is set equal to A and h1 is set equal to B · hc.

Suppose now that T is a DH tuple; that is, there exists r1 ∈ Zq such that A = gr1 and B = hr1 .
Then it is easy to see that g1 and h1 are distributed exactly like in H1. Moreover, g2 and h2 have
the same discrete log with respect to g and h and c1 is random in Zp and z1 passes the verifications
in Step 4.2 of the honest prover. We can thus conclude that if T is DH then B’s output has the
same distribution as the view of V? in H1. Finally, suppose that T is not a DH tuple; that is there
exist r1 6= r′1 ∈ Zq such that A = gr1 and B = hr

′
1 . Then g1 and h1 are distributed as in H2 with

c′ = r′1 − r1 + c.
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The running time of the simulator B is dominated by the time needed to compute the discrete

log of Y which is O(2λ̂). Therefore we choose λ̂ small enough so that deciding whether a tuple with

security parameter λ is DH in time O(2λ̂) constitutes a contradiction of the DDH assumption.

We are now ready to show that it is possible to extract (in sub-exponential time) a witness w
for x 6∈ LR from P? with a positive probability thus reaching a contradiction. The extractor E
impersonates the verifier and interacts with P? in the following way.

Round 1: from E to P?.

1.1 Committing to the challenge c′ of Π.

E randomly selects (G, q, g) ← IG(1λ), (Ĝ, q̂, ĝ) ← IG(1λ̂), c′, r1 ← Zq, and h ← G and sets
g1 = gr1 and h1 = hr1+c′ ;

E sends (G, q, g, h), (Ĝ, q̂, ĝ) and (g1, h1) to P?;

1.2 Preparing first input for ΠOR.

E randomly selects r2, r
′
2 ← Zq, sets g2 = gr2 and h2 = hr

′
2 ;

E sends xOR
0 = (G, g, h, g2, h2) to P?;

1.3 Compute first round of ΠOR.

E randomly selects coin tosses R1, sets aOR = POR
1 (xOR

0 ;R1) and sends aOR to P?;

Round 3: from E to P?.

3.1 Open commitment of challenge for Π.

E randomly selects c← Zq and sends it to P?;
E sets c1 = (c− c′)/(r′2 − r2) and z1 = r2 + r1 · c1;

E sends c1, z1 to P?;

3.2 Compute third round of ΠOR.

E sets xOR
1 = (q̂, ĝ, Y ), wOR = y and computes and sends zOR ← POR

2 ((xOR
0 , xOR

1 ), cOR, wOR, R1);

3.3 receive z from P?;

3.4 Rewind P?.
Rewind P? exactly to the state before Round 3 is started;

3.1R Re-open commitment of challenge for Π

E randomly selects ĉ← Zq and sends it to P?;
E sets ĉ1 = (ĉ− c′)/(r′2 − r2) and ẑ1 = r2 + r1 · c1;

E sends ĉ1, ẑ1 to P?;

3.2R Compute third round of ΠOR.

E sets xOR
1 = (q̂, ĝ, Y ), wOR = r2 and computes and sends zOR ← POR

2 ((xOR
0 , xOR

1 ), cOR, wOR, R1);

3.3R receive ẑ from P?;

32



3.5 use z and ẑ to extract a witness w for x;

We make the following two observations. First of all, in both interactions of E with P? (the one
before the rewind and the one after the rewind), P? sees exactly the same distribution as in H2.
Therefore for each of the two interactions, P? has a non-negligible probability of making the verifier
accept. This implies that with non-negligible probability (a, c, z) and (a, ĉ, ẑ) are a collision for x
and therefore, by the properties of the Σ-protocol Π, it is possible to extract (in super-polynomial
time) a witness for x ∈ LR. Contradiction.

Proof of rWI. The idea of the proof for rWI is very simple. We consider the prover P1 that,
when instructed to use randomness with index j and input with index i and receives first message
msg, checks first if a tuple (j, i, msg, R) has been stored in a previous step. If such a tuple is found
then R is used as source of randomness; otherwise, a fresh R is selected and tuple (j, i, msg, R) is
stored. Clearly, by pseudo-randomness, P1 is indistinguishable from the honest prover P.

Now we observe that the resetting verifier V? is performing an attack on P1 in which two
distinct interactions use the same randomness iff they share j, the input and the first message.
More precisely, we say that interactions t1 and t2 between P1 and V? are a collision if they share
the input, the randomness used by P1 and the first message and V? opens the commitment in the
first messages in two different ways. If V? has a non-negligible probability of producing a transcript
then we can break the Strong DLog Assumption (see Definition 2). Consider algorithm DL that
receives as input (x̄, w̄0, w̄1) for which V? distinguishes H2(x̄, w̄0) from H2(x̄, w̄1). DL interacts with
V? and at the start of the interaction guesses two interactions t1 < t2 (in the hope they constitute
a collision). In all interactions other than t1 and t2, DL runs just like P1. When DL receives the
discrete log parameters from V? as part of the first message of interaction t1, it forwards them to
the challenger of the discrete log and receives Y (and the task is to compute the discrete log of
Y ) and uses it as part of the second message of interaction t1. When interaction t2 is activated
DL checks if the first message is the same as the first message of interaction t1. If this is the
case (and this happens with non-negligible probability) DL continues and sends the same second
message, including Y . Notice that V? expects to receive the same message since it thinks it is
interacting with P1 that is using the same randomness. Otherwise, DL aborts. Then DL rewinds
V? and sends a different challenge in each of the two interactions. In at least one of them V? has
opened the commitment to a different message than the one committed to by the commitment in
the first message. This means that V? has used knowledge of the discrete log of Y to complete the
interaction and thus DL can extract it.

Finally, let us consider the case in which V? produces a collision in his resetting attack only
with negligible probability. This means that V? is conducting a successful concurrent WI attack on
the argument system. Standard arguments show that this contradicts the WI of Π9.

6.3 Efficient 4-Round Resettable Zero Knowledge in the BPK model

LetR be a polynomial-time relation with Σ-protocol Π = (P,V). In this section we give an informal
description of an efficient 4-round argument system (ΠBPK) for R, that is resettable zero knowledge
and concurrently sound in the BPK model.

9We are implicitly using the fact that the Σ-protocol Π is WI. This is certainly true if Π is perfect [CDS94]. If Π
is only computational then we consider self OR composition of Π which by [GMY06] is WI.
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In our protocol we consider that each entry of the verifier’s identities file is an element of a
group G in which is hard to compute the discrete logarithm. ΠBPK = (P,V) for R consists of the
interleaved execution of two protocol: ΠWI, in which P acts a prover, and ΠOR, in which V acts as
a prover. ΠOR is the Σ-protocol obtained from the OR composition of two Schnorr’s Σ-protocols
Π0 and Π1. ΠOR is used by the verifier V to prove that she knows either the discrete logarithm of
a selected identity id, or the discrete logarithm of an elements sent by the prover P at the second
round of ΠBPK. ΠWI is used by the prover P to show that she know either the witness for the
theorem x to be proved or the discrete logarithm of id.

To prove concurrent soundness of ΠBPK we use the same arguments of Section 6.2, with the dif-
ference that at the end of the proof we can extract (in sub-exponential time) the discrete logarithm
of id (instead of a witness for x), and construct a reduction using complexity leveraging to break
the assumption that it is hard to compute the discrete logarithm of an elements in G.

To prove rZK we consider a simulator B that rewinds the verifier V to get the discrete logarithm
of id (used as a witness by V to run ΠOR) and uses this witness to complete the execution of the
protocol ΠWI. We observe that B works correctly only if the first round of ΠWI can be computed
without using the witness. In this case we have no problem, because we can construct ΠWI starting
form a Σ-protocol Π′ that enjoys this property. More specifically, Π′ is the result of an OR compo-
sition (using [CDS94]) of Π and of a Schnorr’s Σ-protocol that is delayed witness. It is easy to see
that the property of delayed witness of Schnorr’s Σ-protocol holds even in Π′ and in turn in ΠWI.
The last observation make us able to conclude the proof sketch.

7 Acknowledgments

We thank Berry Schoenmakers for various useful discussions on Σ-protocols.
The work of the third author was supported by the MACS project under NSF Frontier grant

CNS-1414119 and by NSF grant 1012798. This work was done in part while the third author was
visiting the Simons Institute for the Theory of Computing, supported by the Simons Foundation
and by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

Part of this work will appear in the proceedings of the Theory of Cryptography Conference
(TCC) 2016 [CPS+16].

References

[AOS13] Masayuki Abe, Tatsuaki Okamoto, and Koutarou Suzuki. Message recovery signature
schemes from sigma-protocols. IEICE Transactions, 96-A(1):92–100, 2013.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Identification pro-
tocols secure against reset attacks. In EUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 495–511. Springer, 2001.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances in
Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings, pages 390–420, 1992.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In International
Congress of Mathematicians, page 1444, 1986.

34



[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishabil-
ity from indistinguishability obfuscation. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pages 401–427, 2015.

[BPSV08] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi, and Ivan Visconti. Improved
security notions and protocols for non-transferable identification. In Computer Secu-
rity - ESORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in Com-
puter Science, pages 364–378, 2008.

[CD98] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In Hugo Krawczyk, editor, Advances in Cryptology
- CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in
Computer Science, pages 424–441. Springer, 1998.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable perfectly one-way functions. In
Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations, pages
449–460, 2008.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In YvoG. Desmedt, editor, Advances
in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 174–187. Springer Berlin Heidelberg, 1994.

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments: Minimal
assumptions and efficient constructions. In Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Pro-
ceedings, volume 3876 of Lecture Notes in Computer Science, pages 120–144. Springer,
2006.

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without ran-
dom oracles. In Public-Key Cryptography - PKC 2015 - 18th IACR International Con-
ference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA,
March 30 - April 1, 2015, Proceedings, pages 650–670, 2015.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 235–244,
2000.

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved OR composition of sigma-protocols. In Theory of Cryptography -
13th Theory of Cryptography Conference, TCC 2016, Tel Aviv, Israel, January 10-13,
2016, Proceedings, 2016.

35



[CPSV15] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. A trans-
form for nizk almost as efficient and general as the fiat-shamir transform without pro-
grammable random oracles. IACR Cryptology ePrint Archive, 770, 2015.

[CPSV16] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. A transform
for NIZK almost as efficient and general as the fiat-shamir transform without pro-
grammable random oracles. In Theory of Cryptography - 13th Theory of Cryptography
Conference, TCC 2016, Tel Aviv, Israel, January 10-13, 2016, Proceedings, 2016.

[Cra96] Ronald Cramer. Modular design of secure yet practical cryptographic protocols. PhD
thesis, University of Amsterdam, 1996.

[CV05a] Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and their appli-
cations. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages 298–310, 2005.

[CV05b] Giovanni Di Crescenzo and Ivan Visconti. Concurrent zero knowledge in the public-
key model. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture
Notes in Computer Science, pages 816–827. Springer, 2005.

[CV07] Dario Catalano and Ivan Visconti. Hybrid commitments and their applications to
zero-knowledge proof systems. Theor. Comput. Sci., 374(1-3):229–260, 2007.

[Dam10] Ivan Damg̊ard. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf, 2010.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA, pages 426–437, 2003.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 283–293, 2000.

[DPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round re-
settable zero knowledge with concurrent soundness in the bare public-key model. In
Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 237–253.
Springer, 2004.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 308–317. IEEE Computer Society, 1990.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret
and spend a coin. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 253–280, 2015.

36

http://www.cs.au.dk/~ivan/Sigma.pdf


[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge proto-
cols using signatures. Journal of Cryptology, 19(2):169–209, 2006.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Peters-
burg, Russia, May 28 - June 1, 2006, Proceedings, pages 339–358, 2006.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge proto-
col fitted to security microprocessor minimizing both transmission and memory. In
Christoph G. Günther, editor, Advances in Cryptology - EUROCRYPT ’88, Workshop
on the Theory and Application of of Cryptographic Techniques, Davos, Switzerland,
May 25-27, 1988, Proceedings, volume 330 of Lecture Notes in Computer Science, pages
123–128. Springer, 1988.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 41–50. IEEE
Computer Society, 2014.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
335–354, 2004.

[Lin15] Yehuda Lindell. An efficient transform from Sigma protocols to NIZK with a CRS and
non-programmable random oracle. In Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I, pages 93–109, 2015.

[LP15] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. J. Cryptology, 28(2):312–350, 2015.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Advances in Cryptology - CRYPTO, 1990.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Progress in Cryptol-
ogy - AFRICACRYPT 2009, Second International Conference on Cryptology in Africa,
Gammarth, Tunisia, June 21-25, 2009. Proceedings, pages 272–286, 2009.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Designs,
Codes and Cryptography, pages 1–14, 2015.

[MP03] Daniele Micciancio and Erez Petrank. Simulatable commitments and efficient concur-
rent zero-knowledge. In Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, pages 140–159, 2003.

37



[OPV10] Rafail Ostrovsky, Omkant Pandey, and Ivan Visconti. Efficiency preserving transfor-
mations for concurrent non-malleable zero knowledge. In Theory of Cryptography, 7th
Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11,
2010. Proceedings, pages 535–552, 2010.

[ORV14] Rafail Ostrovsky, Vanishree Rao, and Ivan Visconti. On selective-opening attacks
against encryption schemes. In Security and Cryptography for Networks - 9th Interna-
tional Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, volume
8642 of Lecture Notes in Computer Science, pages 578–597. Springer, 2014.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer
Science, pages 160–176. Springer, 2003.

[Pas04] Rafael Pass. Alternative variants of zero-knowledge proofs. Master’s thesis, Kungliga
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A More About Σ-Protocols

Theorem 13. For every relation R such that LR 6∈ BPP there exist Σ-protocols that are not WI.

Proof. Let Π′ = (P ′,V ′) be a Σ-protocol for the relationR with challenge length l and let (P′1,P
′
2,V

′)
be the triple of PPT algorithms associated to Π′. We use these algorithms to describe a Σ-protocol
Π with associated algorithms (P1,P2,V) that is not WI. Consider (x,w) ∈ R.

1. P1 on input (x,w) and randomness R1 parses it as (r1, cp) where cp is an l-bit string, computes
a′ ← P′1(x,w; r1), and outputs a = (a′, cp).

2. P2, on input (x,w), R1, a challenge c computes z′ ← P′2(x,w, r1, c) and if c = cp then it also
sets z = w otherwise it sets z = z′; finally it outputs z.

3. V, on input x, a = a′, cp, c and z, makes the following steps: in case c is different from cp it
outputs V′(x, a′, c, z) otherwise it output 1 iff (x, z) ∈ R.

We now check that Π is a Σ-protocol.

• Completeness: The completeness of Π follows from the completeness of Π′ except when c
is equal to cp. In this case P has a witness and sends it to V that still accepts.

• Special Soundness: Extract on input a collision (a = (a′, cp), c1, z1) (a = (a′, cp), c2, z2)
works as follows:

– if c1 and c2 are different from cp then it runs the extractor Extract′ of Π′ on input x and
a collision (a′, c1, z1) (a′, c2, z2) returning its output.

– if c1 is equal to cp, it outputs z1 while instead if c2 is equal to cp it outputs z2.

• SHVZK Sim(x, c) of Π works as follows:

– computes (a′, z′)← Sim′(x, c), where Sim′(x, c) is the simulator of Π′;

– picks cp ← {0, 1}l.
– if cp is equal to c then it aborts, otherwise it outputs (a = (a′, cp), z

′).

We prove that Π is computational SHVZK, namely: for any l-bit string c, the transcript given
in output by Sim(x, c) is computationally indistinguishable from a honest transcript where the
challenge is c and P runs on common input x and private input w such that (x,w) ∈ R.

Suppose there exists a distinguisher A for the SHVZK of Π, then we can show a distinguisher
A′ for the SHVZK of Π′.
A′ runs A that outputs a pair (x,w) and a challenge c. A′ then asks the challenger of SHVZK

to produce a transcript (either honest or simulated) for instance x, witness w and challenge c. A′
obtains from the challenger a pair (a′, z′) such that (a′, c, z′) is an accepting transcript. A′ picks
randomly an l-bit string c′, sets a = a′|c′, z = z′, feeds (a, z) to A, and outputs what A outputs.

We note that the success probability of A′ is statistically close to the one of A since the
probability that c is equal to c′ is negligible and this case is the only deviation among the two
distributions.

We finally note that Π′ is not WI since an adversarial verifier V? can obtain a witness by just
sending a challenge c that is equal to cp. As a consequence V? can get and output a witness for
x ∈ L during an execution with P. Clearly no PPT simulator can produce the same output unless
L ∈ BPP.
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A.1 Challenge Length of Σ-Protocols

In this section we show how one can reduce or stretch the size of the challenge in a Σ-protocol and
in a Σ̃-protocol.

Challenge-length amplification. The challenge of a Σ-protocol can be extended through par-
allel repetition.

Lemma 1. [CDS94, Dam10] Let Π be a Σ-protocol (resp. Σ̃-protocol) for relation R and challenge
length l. Running Π k-times in parallel for the same instance x corresponds to running Σ-protocol
(resp. Σ̃-protocol) for R with challenge length k · l.

Challenge-length reduction.

Lemma 2. [Dam10] Given a Σ-protocol of challenge length l for the relation R, is possible to
construct a Σ-protocol, for the same relation R with challenge length l′ where l′ < l.

We now show that Lemma 2 it is true even when we consider a Σ̃-protocol. One possibility to
obtain this result is to convert the Σ̃-protocol in a Σ-protocol, and then use Lemma 2. We show
how to obtain the same result without first converting the Σ̃-protocol to a Σ-protocol.

Lemma 3. For any Σ̃-protocol Π = (P,V), for a relation R with challenge length l, simulator Sim,
and the associated triple (P1,P2,V), there exists a Σ̃-protocol Π′ = (P ′,V ′), for the same relation
R, with challenge length l′, where l′ < l and with the same efficiency.

Proof. We show Π′ by presenting the associated triple (P′1,P
′
2,V

′) of efficient PPT algorithms.

1. P′1 on input (x,w) and randomness R1 computes and outputs a← P1(x,w;R1).

2. P′2 on input (x,w), c ∈ {0, 1}l′ , R1 and randomness R2, parses R2 as (pad,R′2) where pad is an
(l− l′)-bit string, sets c′ = c|pad, computes z ← P2(x,w,R1, c

′;R′2) and outputs z′ = (z, pad).

3. V′ on input x, a, z′ = (z, pad) and c, outputs the output of V(a, c|pad, z).

Completeness follows directly from the completeness of Π.

HVZK We can consider the simulator Sim′, that on input x runs as follows:

• runs (a, c, z)← Sim(x);

• sets pad equal to the last l − l′ bits of c, and sets c′ equal to the fist l′ bits of c;

• outputs (a, c′, (z, pad)).

Special soundness follows directly from the special soundness of Π.

From Lemma 1, 2 and 3, we can claim the following theorem.

Theorem 14. Suppose that relation R has a Σ-protocol (Σ̃-protocol) Π. Then, for any challenge
length l, R admits a Σ-protocol (Σ̃-protocol) Π′ with challenge length l′. If l′ ≤ l than Π′ is almost
as efficient as Π. Otherwise the communication and computation complexities of Π′ are l′/l times
the ones of Π.
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B Pre-Image Protocol

In this section we described the pre-image protocol for proving knowledge of a pre-image of a value
in the range of a homomorphic function. This protocol is an abstraction of a large class of protocols
like Schnorr’s [Sch89] protocol and Guillou-Quisquater [GQ88]. This abstraction is first described
in [Cra96, CD98] and later observed in [Mau15].

Let (G, ?) and (H,⊗) be two groups whose operations are efficiently computable, and let f :
G → H be a one-way homomorphism from G to H. That is, f(x ? y) = f(x)⊗ f(y).

The pre-image protocol Π for relation R = {(x,w) : x = f(w)} with associated algorithm
(P1,P2,V)) and with challenge length l is described below:

• Common input: (description of ) G and H and x ∈ H;

• Prover’s private input: w such that x = f(w).

• Algorithm P1.

On input (x,w) ∈ R and random coin tosses R1, P1 picks k ← G, sets a← f(k) and outputs
a.

• Algorithm P2.

On input (x,w) ∈ R, k, and challenge c, P2 computes and outputs z = k ? wc.

• Algorithm V.

On input (x, a, c, z), V outputs 1 iff f(z) = a⊗ xc.

The simulator Sim of Π on input instance x and challenge c works as follows:

• randomly pick z ← G;

• compute a = f(z)⊗ x−c;

• return (a, z).

Theorem 3 of [Mau15] describes the two conditions under which the pre-image protocol is a Σ-
protocol. Specifically, for integer y, u ∈ G and (x,w) ∈ R we have:

• gcd(c1 − c2, y) = 1, for all challenges c1 6= c2 ∈ {0, 1}l;

• f(u) = xy.

B.1 Pre-Image Protocol is a Chameleon Σ-Protocol

Theorem 15. The Pre-Image Protocol is a Chameleon Σ-protocol.

Proof. We describe algorithm Psim. Let (a, z̃) be the output of Sim on input x and challenge c̃.
PPT algorithm Psim on input x, c̃ and the witness w for x and challenge c, computes and outputs
z = z̃ ? w−c̃ ? wc.

The triple (a, c, z) is an accepting transcript because the test (f(z) = a⊗ xc) of V is successful.
Indeed we have

a⊗ xc = f(z̃)⊗ x−c̃ ⊗ xc = f(z̃)⊗ f(w)−c̃ ⊗ f(w)c = f(z̃ ? w−c̃ ? wc) = f(z).
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We show now the property of indistinguishability for Chameleon Σ-protocols. We prove that
for all pairs of challenges c̃ and c and for all (x,w) ∈ R the two following distributions are indis-
tinguishable:

• (a, c, z), where a = f(z)⊗ x−c;

• (a, c, z), where a = f(z̃)⊗ x−c̃ z = z̃ ? w−c̃ ? wc.

From the SHVZK property follows that the first distribution is perfect indistinguishable from
a real transcript a = f(k), c, z = k ? wc (where k is a random element of G) produced by Π.

We note that z̃ is a random element of G, so z̃ ? w−c̃ is also a random element of G, for this
reason we can set k̄ = z̃ ? w−c̃, and obtain that the second distribution a = f(k̄), c, z = k̄ ? wc is
identically distributed to a transcript given in output by Π.

C Classification of Σ-Protocols

In this section, we provide examples for the four classes of Σ-protocols mentioned in Section 1. Table
1 summarizes the classes of Σ-protocols that can be used to construct either a 2-IDTC scheme or a
3-IDTC scheme, or both, and the class of Σ-protocols that cannot be used to instantiate any of our
IDTC schemes.

(Class 1) (Class 2) (Class 3) (Class 4)

2-IDTC Yes Yes No No
3-IDTC Yes No Yes No

Table 1: Class of Σ-protocols and their compatibility with IDTC scheme.

Examples of Class 1 and Class 3 Σ-protocols. The Class 1 is the class of Σ-protocols that
are Chameleon and that are witness-delayed Σ-protocols. Schnorr’s Σ-protocol for DLog is an
example of Class 1 Σ-protocol. Indeed, its first round consists of the prover sending a random
group element. Moreover, even if this value is computed by a simulator, knowledge of the witness
and of the randomness used by the simulator suffices for the prover to answer any challenge.

The Class 3 is the class of Σ-protocols that are not Chameleon and that are witness-delayed
Σ-protocols. For instance, Blum’s Σ-protocol for Hamiltonian graphs belongs to Class 3. In fact
this Σ-protocol requires the prover only to know the graph to compute the first round.

An example of a Class 2 Σ-protocol. Recall that Class 2 is the class of Σ-protocols that
are Chameleon and that are not witness-delayed Σ-protocols. We construct a Class 2 Σ-protocol
Π = (P,V) for the relation DLOG = {((G, q, g, Y ), y) : gy = Y } by using Pedersen’s commitment
scheme [Ped91] as a 2-IDTC scheme. The TCom algorithm of the 2-IDTC scheme for DLOG based
on Pedersen’s commitment takes as input the description of a cyclic group G of order q, a generator
g of G and an element Y ∈ G. To commit to m, TCom selects r ← Zq uniformly at random and
returns com = gr · Y m, dec = r, rand = r. The decommitment algorithm TDec is straightforward
and the trapdoor algorithm TFake, knowing the discrete log of Y , can open the commitment com

as any message m′.
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We are now ready to describe our proposed Class 2 Σ-protocol for DLOG with common input
(G, q, g, Y ). In the first round, P computes (comp, dec

0
p, rand) ← TCom(G, g, Y, 0) and then uses

TFake to compute an opening dec1
p of comp as 1. Finally, P computes (com0, dec0, rand0) ←

TCom(G, g, Y, dec0
p) and (com1, dec1, rand1)← TCom(G, g, Y, dec1

p) and sends (comp, com0, com1) to

V that replies with a one bit challenge b. P answers by sending decbp and decb. The simulator Sim for

the Special HVZK receives an instance (G, q, g, Y ) and a bit b and computes (comp, dec
b
p, rand)←

TCom((G, q, g, Y ), b). Commitment decbp is committed twice obtaining com0 and com1 and only
comb is opened. Notice that, since Pedersen’s commitment is perfectly hiding, then the simulation
of Sim is perfect. Clearly, P needs the witness of Y for computing the first round. Moreover, the
proposed protocol is Chameleon since Sim commits twice to the same opening of the commitment
comp but then P, once the discrete log of Y becomes available, can computed dec1−b

p and then open

com1−b as dec1−b
p .

Examples of Class 4 Σ-protocols. Recall that Class 4 is the class of Σ-protocols that are not
Chameleon and that are not witness-delayed Σ-protocols.

As an example of a Class 4 Σ-protocol we consider the protocol obtained from the Class 2
Σ-protocol described in the previous paragraph in which dec0

p and dec1
p are committed by using

a (non-interactive) commitment scheme that is perfectly binding e computationally hiding instead
of a Pedersen’s commitment scheme. For example, the ElGamal encryption scheme can be used to
construct such a commitment scheme. In this case, the Σ-protocol obtained is only computational
HVZK.

D Efficiency

In this section we give a briefly comparison our OR transform and the CDS-OR transform in terms
of number of modular exponentiations that they involve.

For this comparison we consider a protocol ΠOR that proves the knowledge of one out of two
discrete logarithms. Therefore the OR transforms has on input Π0 and Π1 both corresponding to
Schnorr’s Σ-protocol.

We consider two cases:

• 1st case: Π0 is Schnorr’s Σ-protocol for relation DLOG = {((G′, q′, g′, Y ′), y′) : gy
′

= Y ′},
where q′ is prime and G′ is a group of order q′ of the quadratic residues modulo p′ s.t.
p′ = 2q′ + 1, where |p′| = 2048 and |q′| = 2047. Π1 is Schnorr’s Σ-protocol for relation
DLOG = {((G, q, g, Y ), y) : gy = Y }, where q is prime and G is a group of order q of the
quadratic residues modulo p s.t. p = 2q + 1, where |p| = 1024 and |q| = 1023.

• 2nd case: Π0 and Π1 are both like Π1 described in the 1st case.

In both cases we instantiate t−IDTC from Π0.
The execution of Schnorr’s Σ-protocol costs 1 modular exponentiation, while the execution of

the simulator of Schnorr’s Σ-protocol costs 2 modular exponentiations. By exponentiation mod p
or exponentiation mod p′, we indicate, respectively the exponentiation modulo a prime of 1024 bits
and the exponentiation modulo a prime of 2048 bits.

To evaluate the cost of our OR transform, we first note that the number of modular expo-
nentiations of our OR transform are different when it is instantiated using a 2−IDTC scheme or
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3−IDTC scheme, even when the 2−IDTC scheme and 3−IDTC schemes are constructed from the
same Σ-protocol. In particular if the scheme are constructed from Schnorr’s Σ-protocol run the
algorithm TCom costs 2 modular exponentiations in the case of 2−IDTC and it costs 3 modular
exponentiations in the case of a 3−IDTC.

From this observation follows that to compute the first round of our our OR transform we need
1 exponentiation mod p to compute the first round of Schnorr’s Σ-protocol plus the cost to execute
TCom.

To compute the third round of our OR transform we need 2 exponentiations mod p when we
run equivocal procedure TFake, because we need to execute again a simulator of Π1. Otherwise no
other exponentiations is required. Therefore in the worst case to compute the third round of our
OR transform we need 2 exponentiations mod p.

Summing up:

• in the 1st case our OR transform costs 3 exponentiations mod p plus 2 exponentiations mod
p′ if we use a 2−IDTC scheme (or 3 exponentiations mod p′ if we use a 3−IDTC scheme).

• in the 2nd case our OR transform costs 3 exponentiations mod p plus 4 exponentiations mod
p if we use a 2−IDTC scheme (or 6 exponentiations mod p if we use a 3−IDTC scheme). Note
that in this case to commit to a first round of Schnorr’s Σ-protocol where |a| = 1024 bits, we
need to run twice the TCom procedure.

The CDS-OR transform costs in both cases 3 modular exponentiations. In the 1st case the 2
exponentiations are mod p and 1 exponentiation is mod p′, in the 2nd case all the exponentiations
are mod p.
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