
The Secret Structure of the S-Box of Streebog,

Kuznechik and Stribob

Alex Biryukov, Léo Perrin, Aleksei Udovenko

first.last-name@uni.lu

SnT, University of Luxembourg

August 12, 2015

Abstract

The last hash function and block cipher standardized by the Russian standard-
ization body (GOST) both use the same S-Box. It is also used by an independent
CAESAR candidate. This transformation is only specified as a look up table and
the reason behind its choice is unknown.

We managed to reverse-engineer this S-Box and describe its unpublished struc-
ture. Our decomposition allows a much more efficient hardware implementation
but the choice of the components used is puzzling from a cryptographic perspective.

This extended abstract does not explain how we found this decomposition. We
will describe our process in an extended version of this paper.

1 Our Target

We consider the permutation of 8 bits given in Appendix A and denote it 𝜋. This S-Box
is used by three distinct algorithms.

Streebog Sometimes spelled Stribog, it is the new standard hash function for the Rus-
sian Federation [Fed12]. Several cryptanalyses against this algorithm have been
published. In particular, it is actually possible to �nd collisions for a modi�ed
version of this hash function where only the round constants are changed [AY15].
To show that the constants were not chosen with malicious intentions, the design-
ers published a note describing how they were derived from a modi�ed version of
the hash function [Rud15]. While puzzling looking at �rst glance, the seeds used
actually correspond to Russian names written backward and encoded in cp1251.

Kuznyechik Sometimes spelled Kuznechik, it is the most recent block cipher stan-
dardized by the GOST. It was �rst mentioned in [SDL+14] and is now available
at [Fed15].

Stribob This CAESAR candidate [Saa14] made it to the second round of the compe-
tition. Its designer is not a�liated with the GOST but Stribob is based on the
permutation used in Streebog.

Using the statistical approach described in [BP15], we could rule out that this S-Box
was generated at random. Indeed, the probability for a random permutation to have at
most 15 occurrences of 8 in its di�erence distribution table (which is the case for 𝜋) is
equal to 2−82.7. Thus, this S-Box was neither generated at random nor picked from a
feasibly large pool of random S-Boxes according to some criteria.

1

2 A Secret Structure

Very little is known about the criteria used to choose or build this S-Box. In [SB14],
Saarinen et al. summarize a discussion they had with some of the designers of the GOST
algorithms at conference in Moscow:

We had brief informal discussions with some members of the Streebog and
Kuznyechik design team [...] the aim was to choose a �randomized� S-
Box that meets the basic di�erential, linear, and algebraic requirements.
Randomization was simply iterated until a �good enough� permutation was
found. This was seen as an e�ective countermeasure against yet-unknown
attacks [as well as algebraic attacks].

Actually, this S-Box was built using a secret structure which we managed to reverse-
engineer. Figure 1 shows how to compute 𝜋 and its components are described below.

Finite field multiplication �⊙� denotes a multiplication in the �nite �eld GF(24)
de�ned by the irreducible polynomial 𝑥4 + 𝑥3 + 1.

8-bit linear permutations The linear functions correspond to multiplications by the
following binary matrices:

𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝜔 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

4-bit non-linear functions The non-linear functions used are all given in Table 1.
Note that ℐ is the inversion in the �nite �eld used for the multiplications and that
𝜑 is not a bijection.

Multiplexer The outputs of 𝜈0 and 𝜈1 go in a multiplexer. If the value on the right
branch at that moment is equal to 0 then the output of 𝜈0 is selected. Otherwise,
this component returns the output of 𝜈1.

0 1 2 3 4 5 6 7 8 9 a b c d e f

ℐ 0 1 c 8 6 f 4 e 3 d b a 2 9 7 5

𝜈0 2 5 3 b 6 9 e a 0 4 f 1 8 d c 7

𝜈1 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

𝜑 b 2 b 8 c 4 1 c 6 3 5 8 e 3 6 b

𝜎 c d 0 4 8 b a e 3 9 5 2 f 1 6 7

Table 1: The non-linear functions needed to compute 𝜋.

We also provide a SAGE [S+13] script performing those computations in Appendix B.

2

𝜔

𝜎

𝜑 ⊙

𝜈1𝜈0

ℐ⊙

𝛼

Figure 1: Our decomposition of 𝜋. The �wires� transmit 4 bit.

3 Preliminary Comments on our Decomposition

To the best of our knowledge, it is the �rst time that �nite �eld multiplications are
used to build an S-Box. The only exceptions are the compact implementations of S-
Boxes based on the inverse function like in the AES [DR02, Can05]. However, this
S-Box cannot correspond to a monomial because if it were the case then each line of its
di�erence distribution table would be a permutation of the �rst one (see [BCC10]). It
is not the case.

An obvious issue with this structure is that multiplication by 0 is not invertible.
The designers of 𝜋 tackled in a di�erent way for each multiplication. First, a di�erent
data-path is used when a multiplication by 0 would occur. In the second multiplication,
the problem is prevented by using a function which has no pre-image for 0.

Table 2 summarizes the properties of the non-linear components of our decomposi-
tion. While it is not hard to �nd 4-bit permutations with a di�erential uniformity of 4,
we see that none of the components chosen do except the inverse function. We can thus
discard the idea that the strength of 𝜋 against di�erential and linear attacks relies on
the individual resilience of each of its components.

1-to-1 Best di�erentials and their prob-
abilities

Best linear approximations and
their probabilities

𝜑 No 1 → d (8/16) 3 → 8 (2/16), 7 → d (2/16)

𝜎 Yes f → b (6/16) 1 → f (14/16)

𝜈0 Yes 6 → c (6/16), e → e (6/16) 30 approximations (8± 4)/16

𝜈1 Yes 9 → 2 (16/16) 8 approximations (8± 6)/16

ℐ Yes 15 di�erentials (4/16) 30 approximations (8± 4)/16

Table 2: Linear and di�erential properties of the components of 𝜋.

Furthermore, we note that there exists a probability 1 di�erential in 𝜈1: 𝜈1(𝑥⊕ 9)⊕
𝜈1(𝑥) = 2. Besides, a di�erence equal to 2 on the left branch corresponds to a 1 bit
di�erence on bit 5 of the input of 𝜔, a bit which is left unchanged by this transformation.

We also simulated the implementation of 𝜋 in hardware.1 We used two di�erent

1We used Synospsy design_compiler (version J-2014.09-SP2) along with digital library
SAED_EDK90_CORE (version 1.11).

3

de�nitions of 𝜋: the look up table given by the designers and our decomposition. Table 3
contains both the area taken by our implementations and the delay, i.e. the time taken
to compute the output of the S-Box. For both quantities, the lower is the better. As we
can see, the knowledge of the decomposition allows us to divide the delay by 8 and the
area by 2.5.

Structure Area (𝜇𝑚2) Delay (ns)

naive implementation 3889.6 362.52

using the decomposition 1530.1 46.11

Table 3: Results on the hardware implementation of 𝜋.

4 Conclusion

The S-Box used by the last two Russian standards in symmetric cryptography has a
hidden structure which we managed to recover. The knowledge of this decomposition
gives us a signi�cantly more e�cient hardware implementation. However, it is based on
sub-components whose lack of cryprographic strength is puzzling.

A future paper will provide detailed explanations on the process we used to reverse-
engineer this S-Box.

5 Acknowledgment

We thank Yann Le Corre for studying the hardware implementation of the S-Box. We
also thank Oleksandr Kazymyrov for suggesting this target. The work of Léo Perrin is
supported by the CORE ACRYPT project (ID C12-15-4009992) funded by the Fonds
National de la Recherche (Luxembourg). The work of Aleksei Udovenko is supported
by the Fonds National de la Recherche, Luxembourg (project reference 9037104).

References

[AY15] Riham AlTawy and Amr M Youssef. Watch your constants: Malicious stree-
bog. IET Information Security, 2015.

[BCC10] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Di�erential prop-
erties of power functions. International Journal of Information and Coding
Theory, 1(2):149�170, 2010.

[BP15] Alex Biryukov and Léo Perrin. On Reverse-Engineering S-Boxes with Hid-
den Design Criteria or Structure. In Advances in Cryptology – CRYPTO
2015, Lecture Notes in Computer Science, page (to appear). Springer Berlin
Heidelberg, 2015.

[Can05] D. Canright. A very compact s-box for aes. In JosyulaR. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005,
volume 3659 of Lecture Notes in Computer Science, pages 441�455. Springer
Berlin Heidelberg, 2005.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

4

[Fed12] Federal Agency on Technical Regulation and Metrology (GOST). Gost r
34.11-2012: Streebog hash function, 2012. https://www.streebog.net/.

[Fed15] Federal Agency on Technical Regulation and Metrology (GOST). Block ci-
phers, 2015. http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.

pdf.

[Rud15] V. Rudskoy. Note on streebog constants origin, 2015. http://www.tc26.ru/
en/ISO_IEC/streebog/streebog_constants_eng.pdf.

[S+13] W.A. Stein et al. Sage Mathematics Software (Version 5.10). The Sage
Development Team, 2013. http://www.sagemath.org.

[Saa14] Markku-Juhani O Saarinen. Stribob: Authenticated encryption from gost
r 34.11-2012 lps permutation. IACR Cryptology ePrint Archive, 2014:271,
2014.

[SB14] Markku-Juhani O. Saarinen and Billy Bob Brumley. Whirlbob, the whirlpool
variant of stribob. Cryptology ePrint Archive, Report 2014/501, 2014. http:
//eprint.iacr.org/.

[SDL+14] Vasily Shishkin, Denis Dygin, Ivan Lavrikov, Grigory Marshalko, Vladimir
Rudskoy, and Dmitry Trifonov. Low-weight and hi-end: Draft Russian En-
cryption Standard. CTCrypt’14, 05-06 June 2014, Moscow, Russia. Prepro-
ceedings, pages 183�188, 2014.

A Definition of the S-Box

Table 4 contains the de�nition of 𝜋.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D

1. E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1

2. F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F

3. 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F

4. EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC

5. B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87

6. 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1

7. 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57

8. DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03

9. E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A

A. A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41

B. AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B

C. 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89

D. E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61

E. 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52

F. 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

Table 4: The S-Box in hexadecimal. For example, 𝜋(0𝑥7𝑎) = 0𝑥𝑐6.

5

https://www.streebog.net/
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf
http://www.tc26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://www.tc26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

B Generating 𝜋 from our Decomposition

from sage.all import *

X = GF(2).polynomial_ring().gen()

F = GF(2**4, name="a", modulus=X**4+X**3+1)

inv = [0x0,0x1,0xc,0x8,0x6,0xf,0x4,0xe,0x3,0xd,0xb,0xa,0x2,0x9,0x7,0x5]

nu_0 = [0x2,0x5,0x3,0xb,0x6,0x9,0xe,0xa,0x0,0x4,0xf,0x1,0x8,0xd,0xc,0x7]

nu_1 = [0x7,0x6,0xc,0x9,0x0,0xf,0x8,0x1,0x4,0x5,0xb,0xe,0xd,0x2,0x3,0xa]

sigma = [0xc,0xd,0x0,0x4,0x8,0xb,0xa,0xe,0x3,0x9,0x5,0x2,0xf,0x1,0x6,0x7]

phi = [0xb,0x2,0xb,0x8,0xc,0x4,0x1,0xc,0x6,0x3,0x5,0x8,0xe,0x3,0x6,0xb]

alpha = Matrix(GF(2), 8, 8, [

0,0,0,0,1,0,0,0, 0,1,0,0,0,0,0,1,

0,1,0,0,0,0,1,1, 1,1,1,0,1,1,1,1,

1,0,0,0,1,0,1,0, 0,1,0,0,0,1,0,0,

0,0,0,1,1,0,1,0, 0,0,1,0,0,0,0,0,

])

omega = Matrix(GF(2), 8, 8, [

0,0,0,0,1,0,1,0, 0,0,0,0,0,1,0,0,

0,0,1,0,0,0,0,0, 1,0,0,1,1,0,1,0,

0,0,0,0,1,0,0,0, 0,1,0,0,0,1,0,0,

1,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1,

])

def applymat8(x, mat):

y = mat * Matrix(GF(2), 8, 1, map(int, bin(x)[2:].zfill(8)))

return int("".join(map(str, y.T[0][:8])), 2)

def F_mult(x, y):

return (F.fetch_int(x) * F.fetch_int(y)).integer_representation()

pi = []

for x in xrange(256):

x = applymat8(x, alpha)

l, r = x >> 4, x & 0xf

l = (r == 0) * nu_0[l] + (r != 0) * nu_1[F_mult(l, inv[r])]

r = sigma[F_mult(r, phi[l])]

x = applymat8((l << 4) | r, omega)

pi.append(x)

print pi

6

	Our Target
	A Secret Structure
	Preliminary Comments on our Decomposition
	Conclusion
	Acknowledgment
	Definition of the S-Box
	Generating from our Decomposition

