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Abstract

In [1], a class of constructions was defined based on layers of secure
online ciphers interleaved with simple mixing layers (like reversing and
block-shifting). Here we show that an SPRP construction proposed in
the work cited is insecure. Howevewr, the same construction is secure
under the assumption that the underlying construction is online-but-last
ciphers. We include a simpler proof for beyond-birthday security of other
constructions proposed in the same work.

1 Introduction

Online ciphers can process plaintexts on the fly, outputting a ciphertext block as
soon as the corresponding plaintext block is processed. This makes them a very
useful option in many situations where the efficiency of real-time encryption is
necessary. ECB and CBC (specified as a mode of operation in [7]) are early
examples of online ciphers, and more sophisticated examples can be found in [2]
and [6]. However, there are other situations which demand SPRP [3] security.
To avoid designing an SPRP from scratch as a new primitive, [1] suggests using
two or more passes of a secure online cipher, interleaved with simple publicly
known blockwise-linear mixing layers. Here we examine some of the results
in [1]. Of other ways of using multiple passes of an online cipher for SPRP
security, [4] serves as an example.

Let E be a secure online cipher, E ′ be a secure online-but-last cipher, and rev
be a blockwise-reversing layer. Our main results are summarised below:

• [1] claims that E ◦ rev ◦ E is SPRP secure. We disprove this, by providing
a 4-query SPRP attack.
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• We show that E ′ ◦ rev ◦ E ′ is SPRP secure upto the birthday bound.

• We state a simple method of obtaining a online-but-last security from
online security.

• [1] shows that E ◦rev◦E ◦rev◦E achieves beyond-birthday security against
an SPRP adversary. We provide a simpler proof of this result, and obtain
cleaner bounds.

• Finally, [1] shows that E ◦ rev ◦ E ◦ rev ◦ E achieves an even better SPRP
security when all plaintexts are at least 2m blocks long. Once again we
provide a simpler proof of this result (through a minor modification of the
former proof), and obtain cleaner bounds.

2 Preliminaries, Notation and Definitions

For a set A, #A will denote its size. We’ll write N to denote 2n, the number of
different blocks possible, n being the number of bits in one block. For integers
i and j, with 0 ≤ i ≤ j, P ij will denote i!

(i−j)! , the number of permutations of

i objects taken j at a time. (Note that the word permutation will later on be
used in a different sense, to be defined.)

Prefixes Let B = {0, 1}n denote the block-space. Then B∗ = ∪∞0 Bi denotes
all finite block-strings, called words. For a word x, ||x|| will denote the number
of blocks in x. Given words x and y, z = xy denotes the concatenation of x
and y. For a word z and a block b, zb will denote the concatenation of z with
the word containing b as its only block. x is called a prefix of z, if z = xy for
some y. Given a set T of words, P(T ) will denote the set of all prefixes of all
words in T . When w has at least j blocks, w1..j denotes the j-block prefix of w.
More generally, wj1..j2 will denote the (j2 − j1 + 1)-block contiguous subword
of w beginning in the j1-th block and ending in the j2-th block. Finally, for a
word w, wR will denote its block-wise reverse.

Online Permutations A permutation E on B∗ is a length-preserving bi-
jection from B∗ to itself. E is called an online permutation if E(x) is a prefix
of E(y) if and only if x is a prefix of y. E is called an online-but-last per-
mutation if for any j, and for any words x and y each having j + 1 or more
blocks, E(x)1..j = E(x)1..j if and only if x1..j = x1..j , i.e., it behaves as an
online permutation with the (possible) exception of the last block. (Thus, an
online permutation is always online-but-last.) The various permutations we will
consider will generally belong to keyed families of permutations, called ciphers.
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Security Notions For any set S, an object X ∈ S is said to be pseudo-
random if X cannot be efficiently distinguished from an object Y sampled
uniformly from S. That is, an efficient adversary A who is allowed to make
finitely many queries to the oracle cannot determine with a significantly high
advantage whether the oracle represents X or Y . (Y is called an ideal random
object of S.) Thus we can have pseudorandom permutations, pseudorandom on-
line permutations and pseudorandom online-but-last permutations. (We’ll often
say secure to mean pseudorandom.) A strong pseudorandom permutation
(or SPRP) is one which is secure against an adversary who is allowed to make
queries both to the oracle and its inverse. The SPRP game is described below,
while developing the notation we’ll follow.

Basic Notation In an SPRP game, the adversary makes q queries, no two of
them identical. For 1 ≤ i ≤ q, δi will denote the direction of the i-th query, with
δi = e for encryption queries and δi = d for decryption queries; and li denotes
the number of blocks in the i-th query. Irrespective of δi, pi = (P i1, ..., P

i
li) will

denote the i-th plaintext, and ci = (Ci1, ..., C
i
li) will denote the i-th ciphertext. P

will denote (p1, ...,pq) and C will denote (c1, ..., cq). E = {i | δi = e} denotes
the set of encryption query indices, and D = {i | δi = d} denotes the set of
decryption query indices. qE = #E denotes the number of encryption queries,
and qD = #D denotes the number of decryption queries. (Thus, q = qE + qD.)
σE =

∑
i∈E l

i denotes the number of encryption query blocks, σD =
∑
i∈D l

i

denotes the number of decryption query blocks, and σ = σE + σD =
∑

16i6q l
i

denotes the total number of query blocks (or, equivalently, the total number of
output blocks). L will denote max li, and for 1 ≤ l ≤ L, ql = {i | li = l} denotes
the set indices corresponding to l-block queries.

Interpolation Probability For an oracle O, given a finite set Q of queries
and a set R of responses, the interpolation probability IPrO[(Q,R)] is de-
fined as Pr[O(Q) = R], i.e., the probability that O takes Q to R. In our
setup, we’ll simply write this as IPr[P → C]. (Note that Q may here consist
of elements from both P and C. The notation is just for convenience.) The
interpolation probability for an ideal random permutation is given by

IPr∗[P→ C] =
∏

16l6L

1

PN l

ql

.

The standard inequality P ij ≥ (1 − j2

i ) · ij will often be used to obtain bounds
on the interpolation probabilities.

Coefficient H Technique Q and R together form a view. Suppose certain
views are called good views, and the rest are called bad views, subject to
the condition that an adversary cannot force a view to be bad (through his

3



choice of queries). Suppose that for a good view, the interpolation probability
for a permutation E is not less than (1− ε1) times the interpolation probability
for an ideal random permutation. Suppose further that for an ideal random
permutation, a view is good with probability not less than (1 − ε2). Then E
cannot be distinguished from random with an advantage greater than ε1 + ε2.
This result is due to Jacques Patarin [5], and will be a key result in our security
proofs.

The Construction The class of constructions we discuss here uses k layers
of a secure Online or Online-But-Last Cipher E alternated with k−1 layers of a
simple linear mixing function, like rev, to get an SPRP, with birthday security
(for k = 2, E secure Online-but-Last) and beyond-birthday secuirty (for k = 3,
E secure Online). We’ll deal with these two cases separately.

3 Two Layers of Secure Online Permutation

3.1 The Original Construction

Let E be a secure online permutation. The construction Π2
rev(E) originally sug-

gested consists of two layers of E with a layer of rev in between. Thus, encryption
is E ◦ rev ◦ E , and decryption is E−1 ◦ rev ◦ E−1.

3.2 Attack

It is easy to mount a 4-query SPRP attack on this construction, as shown in
Figure 3.2. We begin with a three-block encryption query with p1p2p3 and get
c3c2c1 in response. Let E(p1p2p3) be called x1x2x3. Then c3c2c1 = E(x3x2x1).
We next make a two-block decryption query with c3c2, and get p′2p

′
3 in response.

Since E is online, E−1(c3c2) = x3x2, so p′2p
′
3 = E−1(x2x3). From this we see

that
x2 = E(p′2).

Our third query is a two-block encryption query with p1p2, yielding c′2c
′
1. Again,

E(p1p2) = x1x2, so E(x2x1) = c′2c
′
1. From this we see that

E(x2) = c′2.

Finally, we make a one-block encryption query with p′2. Since, x2 = E(p′2) and
E(x2) = c′2, this will yield c′2, which completes the attack.
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p1 p2 p3

x1 x2 x3

x3 x2 x1

c3 c2 c1

Query 1

p′2 p′3

x2 x3

x3 x2

c3 c2

Query 2

p1 p2

x1 x2

x2 x1

c′2 c′1

Query 3

p′2

x2

x2

c′2

Query 4

Figure 1: A 4-Query Attack

4 Two Layers of Secure Online-But-Last Permu-
tation for Birthday Security

4.1 Setup

In the new construction Π2
rev(E), keeping everything else the same, we let E be

a secure online-but-last permutation. We’ll show that this change is enough to
grant it birthday security. For simplicity, we assume different keys are being
used in the two layers of E , and call them E1 and E2. Thus, encryption is
E2 ◦ rev ◦ E1, and decryption is E−1

1 ◦ rev ◦ E−1
2 . For 1 ≤ i ≤ q, E1(pi) will be

denoted xi. X will denote (x1, ...,xq). For notational convenience, we’ll add an
extra layer of rev at the bottom. Thus, ci = E2(xiR)R.

4.2 Freshness and Prefixes

Here we define two important notions, that we’ll need again in the next section,
under slightly modified definitions.

Equivalence Query indices i and i′ are called j-encryption equivalent for
some j < min(li, li

′
) if either i = i′, or

pi
1..j = pi′

1..j .

This is denoted as i ∼ej i′. Similarly, i and i′ are called j-decryption equiv-

alent for some j < min(li, li
′
) if either i = i′, or

ci(li−j+1)..li = ci
′

(li′−j+1)..li′
.

This is denoted as i ∼dj i′. Clearly, whenever i ∼ej i′, we have Xi
j = Xi′

j , and

whenever i ∼dj i′, we have Xi
li−j+1 = Xi′

li′−j+1
.
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Freshness and Ancestors A query index i, 1 ≤ i ≤ q, is called j-fresh,
j ≥ 1 if j = li and i ∈ E, or j = 1 and i ∈ D, or 1 < j < li and @i′ ≤ i with
j < li

′
such that i ∼ej i′ or i ∼dj i′. When i is j-fresh, Xi

j is called a fresh X
block. The encryption j-ancestor of a query index i is defined as

Aej(i) = min
i∼ej

i′
i′.

Similarly, the decryption j-ancestor of a query index i is defined as

Adj (i) = min
i∼dj

i′
i′.

Prefix Matching Let PP = P({pi | i ∈ E}), and PC = P({ci | i ∈ D}). For
w ∈ PP, let mP(w) denote #{x | wx ∈ PP}, and m−P(w) denote #{x | wx ∈
PP−}, where

PP− = {w ∈ PP | w does not intersect with last block of pi for any i ∈ E}.

Also, mC(w) will denote #{x | wx ∈ PC}, and m−C(w) will denote #{x | wx ∈
PC−}, where

PC− = {w ∈ PC | w does not intersect with first block of ci for any i ∈ D}.

4.3 Towards a Proof of Security

Claim We claim that the distinguishing advantage of an SPRP adversary over

Π2
rev(E) cannot exceed 3q2

N .

We now develop some apparatus required for proving this claim.

Good Views A view {(δi)1≤i≤q,P,C} is called good if:

• (∀i ∈ E)(@i′ < i)(Cili = Ci
′

li′
),

• (∀i ∈ D)(@i′ < i)(P i1 = P i
′

1 ).

We shall show that the Interpolation Probability for a Good View under Π2
rev(E)

does not differ from that under the Ideal Random Permutation by more than

a fraction of 2q2

N . From there, the claim will follow using Patarin’s Technique.
We first lay down some terminology, and then proceed to calculating the Inter-
polation Probability.
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P1 P2 P3 P4 P5

E1

X1 X2 X3 X4 X5

rev

X5 X4 X3 X2 X1

E2

C5 C4 C3 C2 C1

rev

C1 C2 C3 C4 C5

Figure 2: SPRP construction with birthday security using two layers of an
online-but-last cipher E around one layer of rev

Variables All Xi
j ’s will be called variables. They together represent the

internal state of the entire computation.

Basis All fresh X blocks together form what we call the basis. Assigning
values to the basis variables assigns values to all variables.

Extension Chains Pick i ∈ E, j ∈ {1, ..., li}. Then Xi
j is a variable. Let b1

be j, and a1 be Aej(i). Having obtained b1, ..., bk and a1, ..., ak, we stop if k is odd
and ak ∈ E, or if k is even and ak ∈ D. Otherwise, let bk+1 = lak − 1− bk, and
ak+1 be Aδ

ak

bk+1
(ak). Since ak+1 > ak, this terminates after finitely many steps,

say upon obtaining ak0 . Then we call ((b1, a1), ..., (bk0 , ak0)) the extension
chain of Xi

j .

Admissibility An assignment of values to the basis variables is called ad-
missible if:

• (@i, i′ ∈ E)(Xi
li = Xi′

li′
)

• (@i, i′ ∈ D)(Xi
1 = Xi′

1 )
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• pi and xi are online-but-last compatible for each i

• ci
R

and xiR are online-but-last compatible for each i

Extending an admissible assignement Suppose we’ve assigned values to
all basis variables, such that the assignment does not violate any of the admis-
siblity criteria. We’ll extend it to get an admissible assignment for all variables.
X1
j is a basis for 1 ≤ j ≤ l1. For some i0 > 1, having assigned values to all Xi

j

for 1 ≤ i < i0, 1 ≤ j ≤ li, we put, for 1 ≤ j ≤ li0 , Xi0
j = X

Ae
j (i0)

j if i0 ∈ E, and

Xi0
li0−j+1

= X
Ad

j (i0)

l
Ad

j
(i0)−j+1

if i0 ∈ D.

Every admissible choice of basis blocks leads to a unique assignment of values to
the variables that is compatible with the given (good) view. That the assignment
is unique is trivial, because the basis elements are themselves variables. To see
that the assignment is compatible with the given view, we just note that every
variable takes the value of a unique basis variable, that can be located by tracing
back along the extension chain till we stop. Instead of talking of an admissible
assignment for basis variables, we’ll simply talk instead of an admissible X.

4.4 The Proof

Interpolation Probability We shall show in the next section that

IPr[P→ C] ≥ (1− ε1)

Nσ
,

where ε1 = q2

N .

Ideal Random Permutation The interpolation probability for an ideal ran-
dom permutation is given by

IPr∗[P→ C] =
∏

16l6L

1

PN l

ql

≤
∏

16l6L

1

(1− q2l
N l ) ·N lql

≤ 1

Nσ
· 1

1−
∑

16l6L

q2l
N l

≤ 1

Nσ
· 1

1− ε1
,
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since q =
∑

16l6L ql.

Thus,
IPr[P→ C] ≥ (1− 2ε1) · IPr∗[P→ C].

Applying Patarin’s Technique Let ε2 denote the probability of a view
being bad under an ideal random permutation. Then

ε2 ≤
∑

16i6q

i

N
≤ ε1.

Thus, by Patarin’s Technique, we can conclude that the distinguishing advan-

tage cannot exceed 3q2

N , as claimed.

4.5 Calculating the Interpolation Probability

Counting Admissible Assignments Let A = {X | X is admissible}. We
want to count #A. The blocks {Xi

li}i∈E , {Xi
1}i∈D can be chosen in PNqE · P

N
qD

ways. The remaining blocks can be chosen in (
∏

w∈PP
PN
m−P(w)

)·(
∏

w∈PC
PN
m−C(w)

)

ways. Thus,

#A = PNqE · P
N
qD · (

∏
w∈PP

PN
m−P(w)

) · (
∏

w∈PC

PN
m−C(w)

).

A Bound on the Total Number of Possible Assignments Recalling that
E1 and E2 are online-but-last, the total number of choices for X cannot exceed
(
∏

w∈PP
PN
m−P(w)

) ·NσE · (
∏

w∈PC
PN
m−C(w)

) ·NσD ·Nq.

Interpolation Probability

IPr[P→ C] ≥
∑
X∈A

Pr[E1(P) = X] · Pr[E2(rev(X)) = rev(C)]

≥ #A
(
∏

w∈PP
PN
m−P(w)

) ·NσE · (
∏

w∈PC
PN
m−C(w)

) ·NσD ·Nq

=
PNqE · P

N
qE

Nq
· 1

Nσ

≥
(1− q2E

N ) ·NqE · (1− q2E
N ) ·NqE

Nq
· 1

Nσ

≥ (1− ε1)

Nσ
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x1 x2 x3 x4

K

E

K

y1 y2 y3 y4

E ′

Figure 3: Getting online-but-last from online

as claimed in the previous section, which completes the proof.

4.6 Obtaining an Online-but-Last Cipher from an Online
Cipher

We now state an easy way of getting an Online-but-last Cipher from an Online
Cipher. Suppose E is a secure Online cipher, and let +K represent the function
that adds K to the last block of the input. Then E ′(K, .) = +K ◦ E ◦ +K is
a secure Online-but-last Cipher, with an extra key K. This is illustrated in
Figure 4.6.

This construction is Online-but-last secure because, for any plaintext with l
blocks, the first l − 1 blocks are simply encrypted through E , and thus behave
like they come from an ideal random Online permutation, as required, and since
K is chosen randomly, the last block of the output is uniform. Thus, the output
behaves like it comes from an ideal random Online-but-last permutation.

5 Three Layers of Secure Online Permutation
for Beyond-Birthday Security

5.1 Setup

Let E now be a secure online permutation. The construction Π3
rev(E) consists

of three layers of E with two layers of rev in between. Again, for simplicity,
we assume different keys are being used in the three layers of E , and call them
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E1, E2 and E3. Thus, encryption is E3 ◦ rev ◦ E2 ◦ rev ◦ E1, and decryption is
E−1

1 ◦ rev ◦ E−1
2 ◦ rev ◦ E−1

3 . For 1 ≤ i ≤ q, E1(pi) will be denoted xi, and E−1
3 (ci)

will be denoted yi. (Thus, E2(xiR) = yiR.) X will denote (x1, ...,xq), and Y
will denote (y1, ...,yq).

5.2 Freshness and Prefixes Revisited

We come back to these two notions we defined earlier, and now give them slightly
modified definitions, as suited to this problem.

Equivalence The definition of j-encryption equivalence remains the same
as before. However, i and i′ will now be called j-decryption equivalent for
some j < min(li, li

′
) if either i = i′, or

ci1..j = ci
′

1..j .

Whenever i ∼ej i′, we still have Xi
j = Xi′

j , and whenever i ∼dj i′, we now have

Y ij = Y i
′

j . j-freshness and j-ancestors are now defined as before, using our
new definitions of equivalence instead of the old ones.

Prefix Matching We now let PP denote simply, P({pi | 1 ≤ i ≤ q}), and
PC denote P({ci | 1 ≤ i ≤ q}). Further, while w ∈ PP, mP(w) continues to
denote #{x | wx ∈ PP}, m−P(w) now stands for #{x | wx ∈ PP−}, where

PP− = {w ∈ PP | w does not intersect with the last two block of any pi}.

Similarly, mC(w) still denotes #{x | wx ∈ PC}, but m−C(w) now stands for
#{x | wx ∈ PC−}, where

PC− = {w ∈ PC | w does not intersect with the last two blocks of any ci}.

5.3 Congruences and Partitions

A congruence∼ on the set {1, ..., q} with exactly k congruence classes, 1 ≤ k ≤ q,
is called a k-partition. (When we write k in the calculations, the ∼ it refers
to will be clear from the context.) Let n1[∼], ..., nk[∼] denote the sizes of the
partitions in decreasing order. Let Πk denote the set of all k-partitions, with
Π = ∪kΠk. Let S[∼] denote the set of q-block sequences compatible with the
∼, i.e., whenever w ∈ S[∼], (wj = wj′)←→ (j ∼ j′).
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P1 P2 P3 P4 P5

E

X1 X2 X3 X4 X5

rev

X5 X4 X3 X2 X1

E

Y5 Y4 Y3 Y2 Y1

rev

Y1 Y2 Y3 Y4 Y5

E

C1 C2 C3 C4 C5

Figure 4: SPRP construction with beyond-birthday security using three layers
of an online cipher E around two layers of rev

5.4 Towards a Proof of Security

Claim We claim that the distinguishing advantage of an SPRP adversary over

Π3
rev(E) cannot exceed 2q2

N2 .

We shall, as before, develop some apparatus for the proof. The notions intro-
duced will be mostly ones that were also used, under slightly different definitions,
in the previous proof. (Note that, for this proof, we do not need to classify any
view as bad, thus eliminating the second term in Patarin’s result.)

Variables {Xi
j , Y

i
j , 1 ≤ i ≤ q, 1 ≤ j ≤ li} will be the variables here.

Basis We now construct the basis B. For i ∈ E:

• Xi
j ∈ B if i is j-fresh

• Y i1 ∈ B if (∀i′ < i)(Ci1 6= Ci
′

1 )

• Y ij ∈ B, 2 ≤ j ≤ li
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For i ∈ D:

• Y ij ∈ B if i is j-fresh

• Xi
1 ∈ B if (∀i′ < i)(P i1 6= P i

′

1 )

• Xi
j ∈ B, 2 ≤ j ≤ li

Extension For i ∈ E, if Y i1 6∈ B, find first occurrence Ci1, i.e., smallest i′ with
Ci1 = Ci

′

1 . Then Y i1 = Y i
′

1 , and Y i
′

1 ∈ B. If Xi
j 6∈ B, find i′ = Aje(i). Then

Xi
j = Xi′

j , and Xi′

j ∈ B. Similarly for i ∈ D.

Admissibility We call an assignment of values to the variables admissible if
it satisfies the following criteria:

• For i 6= i′, (Xi
li−1, X

i
li) 6= (Xi′

li′−1
, Xi′

li′
)

• For i 6= i′, (Y ili−1, Y
i
li) 6= (Y i

′

li′−1
, Y i

′

li′
)

• For i 6= i′, Xi
li = Xi′

li′
if and only if Y ili = Y i

′

li′

• pi and xi are online-but-last compatible for each i

• ci and yi are online-but-last compatible for each i

5.5 The Proof

Interpolation Probability We shall show that

IPr[P→ C] ≥ (1− ε) · 1

PNq−q
· 1

Nσ−(q−q) ,

where ε = q2

N2 .
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Ideal Random Permutation Now,

IPr∗[P→ C] =
∏

16l6L

1

PN l

ql

≤ 1

PNq1
·

∏
26l6L

1

(1− q2l
N l ) ·N lql

≤ 1

PNq1
· 1

Nσ−q1
· 1

1−
∑

26l6L

q2l
N l

≤ 1

PNq1
· 1

Nσ−q1
· 1

1− (q−q1)2

N2

.

Putting q1 = q − q, we have

IPr∗[P→ C] ≤ 1

PNq−q
· 1

Nσ−(q−q) ·
1

1− ε
.

Applying Patarin’s Technique We conclude that

IPr[P→ C] ≥ (1− 2ε) · IPr∗[P→ C],

from which Patarin’s Result tells us that the distinguishing advantage cannot

exceed 2q2

N2 .

5.6 Calculating the Interpolation Probability

Interpolation Probability in terms of Prefix Match counts We initially
assume li ≥ 2, 1 ≤ i ≤ q, and later incorporate the case where single block
queries are allowed. We’ll show that

IPr[P→ C] ≥ PN
2

q ·N2q ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
.

Counting Admissible Assignments We shall count the number of admis-
sible (X,Y) pairs. We begin with the last blocks, for which we have an equal-
ity restriction, and the last-but-one blocks. Let last(X) denote the column
{Xi

li}1≤i≤q, and lbo(X) denote the column {Xi
li−1}1≤i≤q. Similarly, let last(Y)

denote the column {Y ili}1≤i≤q, and lbo(Y) denote the column {Y ili−1}1≤i≤q.
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The Last Blocks Fix ∼. Clearly,

#S[∼] = Pnk ,

since ∼ allows only k distinct values. Thus,

#{(last(X), last(Y)) | last(X) ∈ S[∼], last(Y) ∈ S[∼]} = (PNk )2.

Now, by the admissibility criteria, whenever Xi
li = Xi′

li′
, i.e., whenever i ∼ i′,

we need Xi
li−1 6= Xi′

li′−1
, and similarly for Y. Thus, given a valid choice of

(last(X), last(Y)), we have

#{valid (lbo(X), lbo(Y))} = (

k∏
i=1

PNni[∼])
2.

Thus, the total number of valid choices for the last two blocks of X and Y is
(PNk ·

∏k
i=1 P

N
ni[∼])

2.

The Remaining Blocks The remaining blocks need to be chosen so as
to maintain online compatibility with P and C. Let T [∼] denote the set
{(X,Y) admissible | last(X) ∈ S[∼], last(Y) ∈ S[∼]}. Then

#T [∼] = (
∏

w∈PP

PN
m−P(w)

) · (
∏

w∈PC

PN
m−C(w)

) · (PNk ·
k∏
i=1

PNni[∼])
2.

We note here that ∑
∼∈Π

(PNk ·
k∏
i=1

PNni[∼]) = PN
2

q .
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Interpolation probability Next we obtain an expression for the interpola-
tion probability.

IPr[P→ C]

≥
∑
∼∈Π

∑
(X,Y)∈T [∼]

Pr[E(P) = X] · Pr[E(rev(X)) = rev(Y)] · Pr[E(Y) = C]

=
∑
∼∈Π

∑
(X,Y)∈T [∼]

1∏
w∈PP

PNmP(w)

· ( 1

Nσ−2q
· 1

PNk
· 1
k∏
i=1

PNni[∼]

) · 1∏
w∈PC

PNmC(w)

=
1∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ−2q
·
∑
∼∈Π

∑
(X,Y)∈T [∼]

1

PNk ·
k∏
i=1

PNni[∼]

=
1∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ−2q
·

∑
∼∈Π

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)

· (PNk ·
∏k
i=1 P

N
ni[∼])

2

PNk ·
k∏
i=1

PNni[∼]

=PN
2

q ·N2q ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
,

as claimed before.

Allowing Single-Block Queries The above analysis assumes all queries to
have two or more blocks. Now we analyse the case when single-block queries
are allowed. The counting for the last blocks remains the same, except that the
single-block queries must correspond to distinct last blocks in the equivalence
relation. The counting for the last-but-one blocks, however, need to be adjusted
to accommodate the single-block queries. We shall show that

IPr[P→ C] ≥ PN
2

q · PNq−q ·Nq+q ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
.

Fixing the Counts Suppose 1 ⊂ {1, ..., q} is the set of all single-block query
indices. We now fix a ∼ as before, with the additional restriction that ∼ puts the
indices in 1 into distinct classes. (We call the collection of equivalence relations
satisfying this new criterion Π∗.) Let π1[∼], ..., πk[∼] denote the partitions of ∼
arranged in order of decreasing size. (Thus, for 1 ≤ i ≤ k, ni[∼] = #πi[∼].) We
define ni = #(πi[∼]\1). Thus, ni[∼] counts the number of indices in πi[∼] that

16



correspond to indices of length two or more. (Note that n1[∼], ..., nk[∼] need
not be in decreasing order. But that will not bother us.)

In counting the last-but-one blocks, we’ll now simply ignore the single-block
queries, and count for the rest. The modified expression is thus

#T [∼] = (
∏

w∈PP

PN
m−P(w)

) · (
∏

w∈PC

PN
m−C(w)

) · (PNk ·
k∏
i=1

PNni[∼])
2.

Let q denote q−#1, the number of queries with two or more blocks. Then the
new expression for Pr[E(rev(X)) = rev(Y)] in our calculation of IPr[P → C]
becomes

1

Nσ−(q+q)
· 1

PNk
· 1
k∏
i=1

PNni[∼]

.

Putting it back in the Earlier Expression We note next that

∑
∼∈Π∗

(PNk ·
k∏
i=1

PNni[∼]) = PN
2

q · PNq−q,

and putting this in our earlier calculation gives

IPr[P→ C] ≥ PN
2

q · PNq−q ·Nq+q ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
,

as claimed.

Simplifying the Inequality We shall show next that∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

≥ 1

(PNq−q)
2
· 1

N4q
.

We begin by analysing the prefix-match counts. Now,

PN
m−P(w)

PNmP(w)

=
1

P
N−m−P(w)

mP(w)−m−P(w)

≥ 1

NmP(w)−m−P(w)
.
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and similarly for
PN

m
−
C

(w)

PN
mC(w)

. It is easy to see that

∑
w∈PP

(mP(w)−m−P(w)) = #(PP \ PP−),

∑
w∈PC

(mC(w)−m−C(w)) = #(PC \ PC−).

By construction of the sets PP and PP− , each element of PP \ PP− must cor-
respond to a distinct x such that x is one of the last two blocks of pi for some
i. Thus, #(PP \ PP−) ≤ q + q, and similarly #(PC \ PC−) ≤ q + q.

Let λ be the empty word. For each i ∈ 1, Xi
li = Xi

1 is in PP but not in PP− .
Thus, mP(λ) − m−P(λ) ≥ q − q, and similarly mC(λ) − m−C(λ) ≥ q − q. Let
aP = mP(λ)−m−P(λ)− (q − q), and aC = mC(λ)−m−C(λ)− (q − q). So,∑

w∈PP,w 6=λ

(mP(w)−m−P(w)) ≤ 2q − aP,∑
w∈PC,w 6=λ

(mC(w)−m−C(w)) ≤ 2q − aC.

From this we conclude that∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

≥ 1

(PNq−q)
2
· 1

N4q−aP−aC
≥ 1

(PNq−q)
2
· 1

N4q
,

as claimed.

The Final Expression Putting all this together, we have

IPr[P→ C] ≥
PN

2

q

PNq−q
· 1

N3q−q ·
1

Nσ

≥ (1− ε) · 1

PNq−q
· 1

Nσ−(q−q) ,

which completes the proof.

5.7 Improved Security for Queries of Size at least 2m

When all the queries are guaranteed to be at least 2m blocks long, for some
m ≥ 1, we can improve this security bound.
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Claim When each query is guaranteed to have at least 2m blocks, the distin-

guishing advantage of an SPRP adversary over Π3
rev(E) cannot exceed 2q2

N2m .

Proof of Claim We’ll show below that

IPr[P→ C] ≥ 1− ε
Nσ

,

where ε = q2

N2m .

We recall that

IPr∗[P→ C] =
∏

16l6L

1

PN l

ql

.

From this we get

IPr∗[P→ C] ≤
∏

16l6L

1

(1− q2l
N l ) ·N lql

≤ 1

Nσ
· 1

1−
∑

16l6L

q2l
N l

.

Now, N l ≥ N2m for each l, and
∑

16l6L q
2
l ≤ q2. Thus,

IPr∗[P→ C] ≤ 1

Nσ
· 1

1− ε
.

As before, we conclude that

IPr[P→ C] ≥ (1− 2ε) · IPr∗[P→ C],

from which Patarin’s Result tells us that the distinguishing advantage cannot

exceed 2q2

N2m .

Calculating the Interpolation Probability We’ll begin by showing that

IPr[P→ C] ≥ PN
2m

q ·N2mq ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
.

Arguing as before, #(PP \ PP−) ≤ 2mq, and #(PC \ PC−) ≤ 2mq. Thus,∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

≥ 1

N4mq
.

19



Putting all this together, we have

IPr[P→ C] ≥
PN

2m

q

N2mq
· 1

Nσ
≥ 1− ε

Nσ
,

where ε = q2

N2m .

Counting Admissible Assignments As before, we bound the Interpolation
Probability by counting the number of admissible assignments. Now, instead of
counting the last two blocks separately, we count the last 2m blocks separately.

Last 2m Blocks Let ∼ now denote an equivalence relation over the last 2m−1
blocks, i.e., on the set {1, ..., q}2m−1, with k, n1[∼], ..., nk[∼] defined as before.
Clearly, the number of valid choices for the last 2m blocks of X and Y is
(PN

2m−1

k ·
∏k
i=1 P

N
ni[∼])

2.

The Remaining Blocks For w ∈ PP, let m−P(w) now denote #{x|wx ∈
PP−}, where

PP− = {w ∈ PP|w does not intersect with last 2m blocks of pi for any i},

with m−C(w) similarly defined.

Let T [∼] now denote the set {(X,Y) admissible | last 2m − 1 blocks of X ∈
S[∼], last 2m− 1 blocks of Y ∈ S[∼]}. Then

#T [∼] = (
∏

w∈PP

PN
m−P(w)

) · (
∏

w∈PC

PN
m−C(w)

) · (PN
2m−1

k ·
k∏
i=1

PNni[∼])
2.

Also, ∑
∼∈Π

(PN
2m−1

k ·
k∏
i=1

PNni[∼]) = PN
2m

q .

Interpolation Probability The new expression for Pr[E(rev(X)) = rev(Y)]
in our calculation of IPr[P→ C] becomes

1

Nσ−2mq
· 1

PN
2m−1

k

· 1
k∏
i=1

PNni[∼]

.
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Substituting the expression for #T [∼] above and summing over ∼, we have

IPr[P→ C] ≥ PN
2m

q ·N2mq ·

∏
w∈PP

PN
m−P(w)

·
∏

w∈PC

PN
m−C(w)∏

w∈PP

PNmP(w) ·
∏

w∈PC

PNmC(w)

· 1

Nσ
,

which completes the proof.

6 Conclusion

In conclusion, we recall that while three passes of a secure online cipher inter-
leaved with a simple mixing layer ensures beyond-birthday SPRP security, two
passes with a reverse in between falls short of SPRP security. This can be fixed
by a slight compromise in the efficiency of the secure online cipher, by replacing
it with a secure online-but-last cipher. We also note the importance of simple
and transparent security proofs, and the usefulness of Patarin’s Technique in
achieving this.
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