
Secure Multi-party Graph Computation

Varsha Bhat, Harsimran Singh, and Sudarshan Iyengar

Department of Computer Science and Engineering,
Indian Institute of Technology Ropar,

Punjab, India.
{varsha.bhat, sharsimran, sudarshan}@iitrpr.ac.in

Abstract. In this paper, we present a protocol to compute a friend-
ship network of n people without revealing the identities of the people
involved. The final result is an unlabelled graph which doesn’t disclose
the identity of the parties. As part of the protocol, we present and make
use of a technique to compute a random assignment of the numbers
{1, 2, ..., n} to n people. Our work has direct applications in the data
collection stage of Social Network Analysis, where, it is of vital impor-
tance to compute the underlying network without compromising on the
personal information or identity of the parties involved.

Key words: Multiparty computation, social network analysis.

1 Introduction

Advancement in technology has allowed individuals to stay connected through
various online social networking platforms such as Facebook, Twitter, LinkedIn,
LiveJournal, etc. These networks can be visualised as graphs of social actors (in-
dividuals and/or organisations) seen as nodes, and the dyadic ties between them
as edges. These edges in the network can represent a variety of relationships such
as friendship, common interests, financial exchanges, email correspondence. Al-
though this has led to the availability of copious amounts of data related to the
social interactions, accessibility of this data, however, is not at par with its avail-
ability. This is primarily because of privacy issues of the involved individuals.
With the emerging interest in the analysis of these social networks, the difficulty
in accessing the underlying network has raised much concern.

Social Network Analysis (SNA) can be viewed as a three step process in-
volving the collection of data (i.e the network), its analysis and inferring the
theories that explain the patterns observed in these structures [10]. The anal-
ysis of the underlying network is beneficial for various case studies such as the
transmission of diseases [13, 14] classification of the influence or popularity of
individuals [3], evolution of a social network [2], the flow of information in a
social network [4], measuring influence of a publication [11]. It is known that
the topology of the network affects the underlying dynamics such as information
flow, social behaviour, small world phenomenon, structural properties such as

existence of communities, hubs, etc. However, the usage of SNA is subject to the
availability of the underlying graph. That is, only if we have the social network
at our disposal can we proceed with its analysis.
The availability of the network data depends on the willingness of social actors to
share their private data. While the user data is made public for analysis in some
cases, the fear of sensitive information being leaked prevents the users from shar-
ing their data. For example, [13] builds the network of HIV infected people (and
their partners) in Colorado Springs, USA. This network was constructed through
the process of interviewing them individually. This would require the individuals
to disclose their intimate relationships with other individuals, which they may
be hesitant to reveal. The study in [13] relates the structure of the network to
the epidemicity of the STD which would not have been possible without the
data. Most of the sexual network data are collected through interviews, surveys
and hospital records. This requires that a trusted third party collects the data
and anonymizes it prior to making the network public for analysis. Anonymiza-
tion is a process in which, only the interconnections between the social actors is
retained. Every other information about the social actors is removed (i.e. name,
email-address etc.). The idea is to keep the identity of the social actors private
while researchers can still use the structure of the network for analysis.

Trusting a third party with sensitive information is what prevents individu-
als from sharing their data privately. Thus, there is a necessity for a method to
generate the underlying network such that an external agent does not partici-
pate in the construction. Hence, the anonymized network must be computed by
those individuals who themselves are a part of the network. Also, the process
should be such that, no individual participating in the construction should be
able to learn information related to any other individual. This is precisely what
constitutes a multiparty computation.
Multiparty computation in general involves a set of parties interested in comput-
ing a function of their private data. The process must ensure that nothing but
the final result is revealed. Here are a few instances where a multiparty protocol
to compute an unlabelled graph would be helpful.

– Sexual networks, as noted above, can be easily computed by the concerned
individuals themselves.

– The underlying network of people in an office that represents a like/dislike
relationship can reveal a lot about the environment being healthy or not.
In such a situation, employees may not be comfortable revealing their true
feelings for his/her colleagues. Studying this network can reveal the stability
of professional relationship among employees in a company.

– If the owner of a company wishes to determine the optimal number of man-
agers that he needs to appoint from amongst his current employees, he should
look at the underlying network of employees and see how many hubs are
present.

– The underlying structure of a social network of the type PatientsLikeMe
could prove very useful for the research on various diseases [5].

The anonymization defined above (removing labels from nodes and preserv-
ing the structure) is known as naive anonymization. [1] explains how naive
anonymization is not enough, i.e. some of the nodes are still re-identifiable with
little prior knowledge about the network. They describe passive and active at-
tacks to re-identify some nodes in a naively anonymized network. [15] proposes
a measure called topological anonymity which assesses the vulnerability of a net-
work against node re-identification. The discussion in our paper will not concern
this issue as [8, 9, 12, 7, 16] describe how to modify a naively anonymized network
while preserving the usefulness of the network but rendering re-identification at-
tacks useless to a certain extent. Once we have a naively anonymized network
using our protocol, individuals can use the techniques mentioned in the refer-
ences above to further ensure the privacy protection before releasing the network.

1.1 Our Contribution

In this paper, we provide a method for secure computation of a graph/network.
Our contribution is two folds:

– We provide a protocol that the individuals of the network can follow to
generate the underlying unlabelled network and thereby eliminating the need
for a trusted third party

– As a part of the protocol, we also provide a technique using which n indi-
viduals assign themselves a unique number between 1 to n, such that each
individual knows only his number and none others’. This also is done without
a third party.

2 Preliminaries

There are a few terminologies that are necessary before we proceed further with
the rest of the sections. These terminologies are essentially adapted from [6].

– View: The view of a party is every bit of data that it sees during the exe-
cution of the protocol.

– Adversary: There is a possibility of the parties being corrupt either by
sharing their views or by deviating from the protocol (i.e not following the
instructions as per the protocol). This situation is modelled by assuming
the existence of a centralised adversary who is capable of corrupting some
parties. That is, the adversary is able to listen to the channel over which the
party is communicating as well as tamper with the data being communicated.

– Allowed influence and leakage: When a party gives a wrong input to the
protocol, we do not consider it a deviation from the protocol and is called
input substitution. This is because we cannot stop the parties from changing
their inputs. When a party provides wrong input, inp to the protocol, it

is not considered as a corrupt party. Instead, it is considered as an honest
party whose actual input is inp. Thus, input substitution constitutes allowed
influence that an adversary can have on a party. Anything other than the al-
lowed influence is considered as actual influence of an adversary over a party.

It is not possible that a party does not know its own input and output.
We cannot deprive any party of this information. Therefore, the input and
the output of a party constitutes the allowed leakage of the protocol to that
party. Anything that the protocol leaks to a party during its execution, other
than the allowed leakage, is called the actual leakage of the protocol to that
party.

– Security of a Multiparty Protocol: When is a multiparty protocol se-
cure? A protocol is said to be secure when a party cannot know anything
about the inputs of the other parties based on its view alone. In the presence
of corrupt parties, the definition of security changes as follows: if the set of
corrupt parties cannot know anything about the inputs of the honest parties
based on their combined views, then the protocol is said to be secure. Parties
can be corrupted by an adversary in following ways:
• Passive and active corruption: We say a party is passively corrupted

by an adversary when the adversary is only listening to the conversation
of the party. Let us say the adversary has passively corrupted any t num-
ber of parties. If the adversary is unable to get any information about
the inputs and outputs of the honest parties, then we call the protocol
secure against passive corruption under the threshold t.

A party is actively corrupted by an adversary if it is taking all the deci-
sions on behalf of the party. If the active corruption of any t parties does
not lead to the leakage of honest parties’ input and output, then we call
the protocol to be actively secure against the corruption of size t.

• Static and dynamic corruption: In the case of static corruption, the
set of corrupt parties remains the same throughout the execution of the
protocol. In the case of dynamic corruption, the set of corrupt parties
may change at each step of the protocol. However, the number of corrupt
parties never exceeds the threshold t.

A party can be modelled by an interactive agent. An interactive agent has
some input ports and some output ports for communication with other in-
teractive agents. It also has an internal state.

The interaction between parties is modelled by an interactive agent, πAT ,
as defined in [6]. The proof for the security of the interactive agent πAT is
also given in [6]. The agent πAT (Fig.1) ensures that the interaction between
two parties is secure and information exchanged between them is not leaked
to other parties. A multiparty protocol, say πprt, is nothing but a set of

interactions between parties. Hence it can be modelled using an interactive
agent IPi for each party Pi and an agent πAT for modelling the interactions
between these parties. Interactive agent IPi has three input ports prt.ini,
AT.infli, AT.outi and three output ports prt.outi, AT.leaki, At.ini as given
in Fig.2. The ports prt.ini and prt.outi are for the input and output of the
party respectively. The ports At.ini and AT.outi are to interact with agent
πAT to talk to other parties. The output port AT.leaki is used to leak the
view of a corrupt party Pi. The input port AT.infli is used to deliver the
instructions to the party Pi when it is actively corrupt.

Fig. 1. Agent for party IPi

Fig. 2. Agent for Authenticated Transfer πAT

For each protocol πprt, we construct an ideal functionality named Fprt (Fig.3).
The ideal functionality is also an interactive agent. It has n input ports
named prt.ini and n output ports named prt.outi where i ∈ {1, 2, . . . , n}.
prt.ini is for the input of the party Pi and prt.outi is for the output of the
party Pi. The ideal functionality takes the input of each party and computes
the desired function and delivers the output to the parties. The ideal func-

tionality also has an input port F.infl and output port F.leak. The output
port F.leak is to leak the views of all the corrupted parties. The input port
F.infl is to influence the actively corrupted parties.

Fig. 3. Ideal agent Fprt

We need to show that the protocol πprt is as secure as the ideal functionality
Fprt. To show this, we need to show the existence of an Simulator Sprt

(Fig.4). Sprt is also modeled by an interactive agent. Sprt has input ports
prt.leak, AT.infl and AT.infli where i ∈ {1, 2, . . . , n} and output ports
prt.infl, AT.leak and AT.leaki where i ∈ {1, 2, . . . , n}.

Fig. 4. Simulator Sprt

If we compose the interactive agents Fprt and Sprt (i.e. if one interactive
agent has an input port with same name as the output port of another in-
teractive agent, then we join them together), we get an interactive system

Fprt ◦ Sprt. Fprt ◦ Sprt has same port structure as πprt.

Now we define an agent for the adversary, Envt, where t is the maxi-
mum number of parties that an adversary corrupts. The agent Envt has
input ports AT.leak, prt.outi, AT.leaki and output ports AT.infl, prt.ini,
AT.infli where i ∈ {1, 2, . . . , n}. When we compose Envt with Fprt ◦ Sprt

or with πprt (Fig.5 and 6), it becomes a closed interactive system, i.e. there
are no open ports in this system.

To prove the security of the protocol πprt, we play the following game with
the adversary Envt: Attach the adversary Envt with either Fprt ◦ Sprt or
πprt. The adversary has to tell which interactive system it is attached to.

If we can build a simulator such that the adversary is not able to distinguish
between the two interactive systems, then we can say that the protocol πprt
is as secure as the ideal functionality Fprt ◦Sprt. If both the systems πprt and
Fprt◦Sprt are behaving same with respect to adversary Envt, then Simulator
Sprt is essentially computing the actual leakage and influence from allowed
leakage and influence. Therefore, the actual leakage and influence contains
no more information than the allowed leakage and influence.

Fig. 5. Environment interacting with πprt directly

– Secret Sharing Protocol

A party P wants to share its secret with n parties (including P) such that
each party has a share (some information) about the secret. The information
contained in a share owned by a party is not enough to compute the secret.
But, once all the parties (including P) combine their shares, then the secret
can be computed.

Fig. 6. Environment interacting with Fprt ◦ Sprt

Let S ∈ Zq be the secret of party P which it wants to share. P chooses n
random numbers {S1, S2, . . . , Sn} from Zq such that:

S =

n∑
i=1

Si (1)

P gives each party exactly one share. This completes the protocol. Only when
all the parties combine together they generate the secret S by summing up
their shares.

– Protocol for Secure Addition
There are n parties, {P1, P2, . . . , Pn}. Each party has a secret xi. All the
parties want to know the sum of their secrets, without revealing their secret
to anyone. The required sum is:

Sum =

n∑
i=1

xi (2)

Following is the description of the protocol:

• Each party shares its secret xi with all the parties using secret sharing
protocol as mentioned above. The shares of secret xi are denoted as
{xi1, xi2, . . . , xin}. Therefore,

xi =

n∑
j=1

xij (3)

• Each party Pi has: {x1i, x2i, . . . , xni}. Pi computes:

ui =

n∑
j=1

xji (4)

Each party makes the ui public.

• All the parties now compute:

Sum′ =

n∑
i=1

ui =

n∑
i=1

n∑
j=1

xji =

n∑
j=1

n∑
i=1

xji =

n∑
j=1

xj = Sum (5)

3 The SMPGC Problem

The secure multiparty graph comtutation problem involves securely generating
the graph of the underlying network of people such that no information apart
from the structure is revealed. That is, the identity of the social actors is to
be concealed, disallowing any sort of re-identification. We firstly give a formal
definition of the problem followed by the protocol for solving it. We also show
how the protocol is secure and no information is leaked.

3.1 Problem statement

Consider n parties P1, P2 . . . Pn who are interested in generating the graph of
their network. The constraint, however, is that the resulting graph must be
unlabelled to prevent identification of the individual parties. Also, the graph
generation process must be such that there is no risk of disclosing data that
is private to a party. Thus, the problem of multiple parties securely computing
their underlying graph is known as secure multi-party graph computation. Secure
here means that no knowledge regarding the identity of nodes in the network is
revealed to anyone (i.e anonymized) and correctness of the network generated
is guaranteed. These being the constraints, we cannot have any third party
generating the graph.

3.2 Definitions

Throughout the execution of the protocol, the parties exchange data in the
form of matrices. These matrices are generated in a specific way. It is therefore
required that a few terms are defined that lay the groundwork to understand
the protocol.

– Column Replicated matrix (CRM): is an n× n matrix that is generated by
replicating a random n × 1 column vector n times. The column vector to
be replicated is chosen uniformly at random from set of n× 1 vectors in Zq

(where q ∈ N and Zq is a group under addition) .

M =

1 1 1 1
6 6 6 6
3 3 3 3
5 5 5 5

– Mapped adjacency vector (MAi): The adjacency vector Ai of a party Pi is
of the order 1 × n and consists of 1’s to indicate the presence of a tie and
0’s otherwise. However, the parties generate this vector in accordance with
an already agreed upon column labelling (i.e which column corresponds to
which party in the vector). In our protocol, column labelling is always such
that column i corresponds to label Pi. We set a variable called splitter (k)
to a specific value in Zq and map all the 0’s in the adjacency vector to a
random number greater than k, picked uniformly at random. Similarly we
map all the 1’s in the adjacency vector to a random number lesser than or
equal to k picked uniformly at random. This modified adjacency vector is
called a mapped adjacency vector (MAi) of the party.

Ai =
(
1 0 0 1

) q=6,k=3−−−−−→ MAi =
(
4 1 0 5

)
– Mapped adjacency matrix (MA): The matrix obtained using mapped adja-

cency vectors of all the parties, where each row of the matrix is the MAi

corresponding to some party Pi, is called mapped adjacency matrix MA.
Note that if the value of k is known we can easily reverse map the mapped
adjacency matrix MA to adjacency matrix A.

MA =

1 2 0 3
4 4 1 1
1 5 4 0
2 1 4 5

 q=6,k=3←−−−−→ A =

1 1 1 1
0 0 1 1
1 0 0 1
1 1 0 0

3.3 SMPGC Protocol

In this section, we shall provide a protocol for generating the underlying graph
on n parties P1, P2, ...Pn. The final output of the protocol will be the unlabelled
adjacency matrix representing the underlying graph. The protocol involves the
parties processing matrices of the order n × n which would finally morph into
the desired adjacency matrix. All the matrices, vectors, as well as the operations
performed on them are under modulo q in the following discussion.
The working of the SMPGC protocol assumes that certain functionality is pos-
sible. For instance, it should be possible for each party Pi to easily share his
secret s such that the information of s is collectively held by parties and no sin-
gle party apart from Pi has any information on s. It is also required that these
n parties be capable of securely adding their secrets and revealing only the sum
of all the secrets. Another function that is assumed possible is that each party
can be securely assigned a unique number between 1 − n. The assignment is
made unanimously, but no party is aware of the assignment of any other party.
The first two functionalities are easily achievable through the protocol of secret
sharing and secure addition respectively, as mentioned in Section 2 . The next
functionality of unique integer assignment is discussed in detail in Section 4,
along with its security and correctness are also shown. For now, however, we
shall assume the working of this functionality as a black box for our protocol
given below.

Step 1: Computing the splitter k
The choice of splitter is dependent on the density of the graph that is being
constructed. This is easily computable once we know the sum of degree of all
the nodes in the graph, i.e the number of ties each party has in the network.
Thus the parties can choose the secret as their degree in the network, given by
the number of one’s in their adjacency vector. This is shared using the Secret
Sharing protocol. All the parties will add these secrets using the protocol for
Secure Addition . This gives the total degree d of the network. The density
of the graph D can be computed as:

D =
d

n2
(6)

Each party sets the value of k (the splitter used to map adjacency vector) to
D∗q, where q is the input space Zq that was publicly chosen. This will result
in the uniform distribution of the mapped adjacency vector under modulo
q. However, the assumption made here is that all the adjacency vectors with
given density are possible.

Step 2: Hidden Permutation generation
The next step is for the parties to unanimously assign oneself a distinct
number between 1 − n using the protocol for secure permutation. Let the
number uniquely assigned to a party Pi be denoted by ai. Thus, each of the
ai is unique and spans over the entire range 1− n.

Step 3: Computing the unlabelled mapped adjacency matrix : This is
the most important step of the protocol where we wish to compute the
underlying graph represented in the adjacency matrix form. But, this step
provides the graph in the form of mapped adjacency matrix which can later
be mapped back to the adjacency matrix. Let the desired mapped adjacency
matrix be MAD.
– Now that the splitter k is known to all, each party Pi generates his

mapped adjacency vector MAi and also a column replicated matrix
CRMi. The previous step provides a unique number ai to each party.
The generated MAi is added to the athi row of CRMi. This modified
CRMi would be each persons secret si1.

si1 =

α1 α1 α1 α1

α2 α2 α2 α2

α3 α3 α3 α3

α4 α4 α4 α4

CRMi

+

0 0 0 0
0 0 0 0
. MAi . . . ai
0 0 0 0

– All the parties add these secret matrices using Protocol for secure Addi-
tion allowing each of the parties to know the sum of all the (CRM + MA)

′
s.

Let this sum be denoted by the matrix M . It is clearly visible that
the sum of all the CRMi’s is yet another column replicated matrix
CRM ′.The matrix M reveals nothing as the splitter in each row i of
the underlying MA is masked by the random shift created by the addi-
tion with the value αi which is the ith row entry of the underlying matrix

CRM ′. So, the reverse mapping of MA is not possible.

M =

i=n∑
i=1

si1

=

i=n∑
i=1

CRMi +MA

= CRM ′ +MA

(7)

– Now we see that the row labels of M are hidden as each party knows only
his row (ai) in which resides his mapped adjacency vector MAi masked
by the corresponding row of the column replicated matrix CRM ′ . But,
the column label is still known to all. Another point to be noted is
that the row ordering of the obtained matrix M does not match the
column ordering. Thus, the next attempt is to make the row ordering
and the column ordering the same, without which no sensible data can be
extracted. To accomplish this, each party Pi will generate its own random
matrix Ri and copy the ith column of M (i.e ith column corresponds to
label Pi) and add this column to athi column of Ri. Now, the column
labelling of the matrix is hidden (as only Pi knows ai) and is brought
to its right place. Let Zi be the matrix of each party whose all entries
are zeroes except that its athi column has entries of the ith column of M .
The matrix that will be each party’s secret si2 in next step is as given
below.

si2 = Ri + Zi (8)

– All the parties add these secret matrices si2 using Protocol for secure
Addition. Let the resulting sum matrix be M1. Let M ′ be the resulting
matrix obtained by reordering the matrix M such that row order respects
the column ordering. Then we know M1 can be given as follows:

M1 =

i=n∑
i=1

Ri + M ′

= R+M ′

(9)

M ′ = CRM ′ + MAD (10)

∴M1 = R + CRM ′ + MAD (11)

– Now the parties perform secure addition to compute the sum of all their
CRMi’s and R′is. The sum of CRMi and Ri be R′i for each party which
is his secret. Let all their sum be denoted by matrix M2.

R′i = CRMi +Ri (12)

M2 =

i=n∑
i=1

R′i

=

i=n∑
i=1

(CRMi +Ri)

=

i=n∑
i=1

CRMi +

i=n∑
i=1

Ri

= CRM ′ + R

(13)

– All the parties thus have access to both M1 and M2. Each party subtracts
M2 from M1 and therefore obtains the unlabelled mapped adjacency
matrix of the underlying network MAD.

M1 − M2 = (R + CRM ′ + MAD) − (CRM ′ + R)

= MAD

(14)

Step 4: Reverse Mapping
At this step of the protocol, each party has the unlabelled adjacency matrix
and also has knowledge of the splitter k value. With k known, each of them
easily reverse map the values in the matrix. That is, replace all the values
in the matrix that are greater than k by 0’s and the rest by 1’s. Thus, you
obtain the required adjacency matrix, ensuring no labels are revealed.

3.4 Proof of Correctness

We have seen that all the matrices and vectors that are dealt with belong to Zq,
set of integers modulo q. Now, it is important to understand that the value q helps
in making every mapped adjacency vector equiprobable from the sample space.
This is so because, even if the occurrence of 0’s and 1’s in the adjacency vector
are skewed, it is lost when they are mapped to values in the set {0, 1, 2, . . . , q}
such that every value is equally likely. Thus, q value is dependent on the density
of 1’s in the adjacency matrix of the network, D. Based on the value of D, the
range [0, q] is split into two parts ranging from [0, Dq] and [(Dq + 1), q]. All the
1’s in the adjacency vector map to range [0, Dq] in the mapped adjacency vector
and similarly 0’s to [(Dq + 1), q].
Now we need to show that following the steps of the protocol actually leads to
the correct output, i.e it generates the desired matrix at the end. As mentioned
earlier, this Section will deal only with the correctness of the third step of the
protocol assuming the previous as a black box.
Firstly each party Pi computes his modified CRM which is used as the secret
si1 in secure addition. On the basis of the correctness of secure addition, we can
be guaranteed that the sum matrix M computed is the sum of all the individual
CRMi’s and the mapped adjacency matrix MA. Thus, the CRM ′ masks the ma-
trix MA in the matrix M . Now to obtain the desired MAD matrix, a reshuffling

of the columns of matrix MA is required such that the column ordering matches
the row ordering. It can be seen that this reshuffling has been distributed among
all parties where each party brings his column to the right place. It is to be noted
that while shuffling columns of matrix M , the underlying CRM ′ is undisturbed
as all its columns are identical. But, this is done in conjunction with a random
matrix to hide the data change that is happening. Once the MA is changed to
MAD, the underlying CRM ′ and all the random matrices are removed.

3.5 Proof of Security

From the SMPGC-Protocol, we can clearly see that, it is enough to show the
security of the step of computing the unlabelled mapped adjacency matrix. Let
this be implemented by an interactive system denoted as πUG. The security of
the hidden permutation is assumed true and it will be discussed in full length in
the Section 4.4. Now, to establish security through behavioral equivalence, we
model an ideal functionality Fug whose internal structure is ignored while the
functionality achieved is the same as that of πug.

Agent FUG

– initialize: The ideal functionality keeps track of three sets, A (Actively
Corrupted Parties), P (Passively Corrupted parties), C (Corrupted Par-
ties). It also keeps bits delivery − round, evaluated, inputs − ready,
input− ready1, input− ready2, . . . ,input− readyn ∈ {0, 1} initially set
to 0.

– Honest inputs: On input (clockin, i) on UG.infl for i /∈ A, read a
message from UG.ini. If there was a message xi on UG.ini and input−
readyi = 0, then set input−readyi ← 1, store (i, xi) and output (input, i)
on UG.leak. xi is an adjacency vector showing the relationships of ith

party.
– Corrupted inputs: On input (change, i, xi) on UG.infl, where i ∈ A

and evaluated=0, set input − readyi ← 1 and store (i, xi), overriding
any such previous value stored for party i (i.e. as long as the function
has not been evaluated on the inputs, the corrupted parties are allowed
to change their inputs).

– Simultaneous inputs: If it holds in some round that after the clock-
in phase ends there exist i, j /∈ A such that input − readyi = 0 and
input − readyj = 1, then do a complete break down. If it happens in
some round that after the clock-in phase ends that input− readyi = 1
for all i /∈ A and inputs− ready = 0, then set inputs− ready ← 1 and
for each i ∈ A where input− readyi = 0, store (i, xi) = (i, 0).

– Evaluate function: On input (evaluate) on UG.infl where input −
ready = 1 and evaluated = 0, set evaluated ← 1, generate an adja-
cency matrix using the inputs x1, x2, . . . xn and then permute this

adjacency matrix. Call this permuted matrix y. Then output {(i, y)}i∈C
on UG.leak, and if C later grows, then output (j, y) on ug.leak for the
new j ∈ C.

– Simultaneous output: On input (delivery−round) on UG.infl, where
evaluated= 1 and delivery− round= 0, proceed as follows: if we are at
a point where no party i ∈ A was clocked out yet, then set delivery −
round← 1.

– Delivery: On input (clockout, i) on UG.infl, where delivery − round
= 1, output y on UG.outi.

Now we propose a simulator Sug to prove that πug �πAT is indistinguishable
from Fug �Sug. Sug knows the input of each person. Using this data, calculation
of splitter is easy. The values ai for each party Pi is obtained using the protocol
πprm whose security will be proven. It chooses CRM randomly for all the parties
as in the protocol and follows rest of the instructions for the protocol as it is.
Now, the security of the protocol for secure addition is already proven. In Step
3, S chooses a random matrix Ri for each party Pi and follows rest of the
instructions mentioned in the step as it is. Rest of the steps are followed by the
simulator as mentioned by the protocol with no new random choices being made.
The adversary against which we are going to show the security of this protocol is
again Envt where t < n−1 because the protocol for secure addition is being used
as a sub-protocol. Even if the view of t (< n− 1) corrupted parties is fixed, still
Sug is able to make random choices for honest parties as they are independent
of the choices made by corrupted parties. That is, in no way do the choices of
corrupt parties limit the choices of the honest parties.

4 The SMPPC Problem

4.1 Problem Definition

There are n parties. They want to assign each one of themselves a number from 1
to n. It can be viewed as permuting the parties such that each party knows only
its position in the permutation. A party should not know anything about the
position of other parties in the permutation. The permutation generated by the
protocol should be random. The protocol should be such that it does not favour
any party. This problem is termed as secure multiparty permutation computation
problem.

4.2 SMPPC Protocol

Step 1: All the parties (active participants) choose a random number between
1− n

Step 2: Now begins the rounds of questioning. In each round of questioning,
the following question is asked- “Has anyone chosen the number i? ”, where
i runs from 1 to n. The answer to the question is obtained through voting
implemented using the protocol for secure addition where each party shares
a secret 1 to denote a positive vote (Yes) and 0 otherwise (No).

Step 3: What we obtain as answer in the questioning round i, is the number
of people who happened to choose their random number as i. All the parties
also maintain an ordered list of current free slots. Free slots list has the
numbers that are yet to be assigned. Initially the list is empty.
– If the voting results in the answer zero, it indicates none have chosen the

number i. The particular i is then queued in the list of free slots.
– If the voting results in the answer one, then there are no duplicates.

Hence, it is assumed that the party is allotted the first number in the
free slot list.Thus, the particular i is dequeued from the list. If the free
slot list is currently empty, then the party is assumed to to be allotted
the number i itself.

– If the voting results in an answer greater than one, then it indicates that
there are duplicates as more than one party has chosen the same number.
In this case, none of the parties are assigned any number in this round.
The particular i is added to the free slot instead.

Step 4: Let the number of parties that chose unique integers in Step 1 be x.
Then, after the last round of questioning - Has anyone chosen the number
‘n’? - all the x parties would have been allotted a unique number in the
range 1− x.

Step 5: The Steps 1 through 4 is repeated until all the parties are assigned a
random number. Each cycle of Steps 1-4 is called a pass. In each pass, the
following changes are made:
– Only those parties that had selected duplicate numbers in the previous

pass and hence not allotted a number, actively participate. The parties
who are assigned a number continue participating passively.

– The x parties whose number was fixed in any of the previous passes
continue to participate passively where they only take part in voting.
Their vote is 0 in each round of the passes.

– When repeating the Step 1, the active participants now choose a random
integer from the range [(x+ 1), n] instead of [1, n]

– In each pass, for questioning rounds only the integers from [(x + 1), n]
will be considered.

4.3 Proof of Correctness

To prove the correctness of the protocol, it is enough to show that:

1. Each party is assigned a unique number once the execution of the protocol
is finished.

2. The protocol does not favour any party, i.e the probability of some party
being assigned a number i is the same as the probability that any other
party is assigned i.

Proof: In the protocol, a party is assigned some number i ∈ {1, 2, . . . , n} only
when it picked a number j ∈ {1, 2, . . . , n} and no other party picked the number
j. Once a party is assigned a number from {1, 2, . . . , n}, its contribution towards
the protocol is passive. It will not be assigned any number again. No other party
will chose the number assigned to this party in the remaining rounds of the pro-
tocol, as the random selection of the numbers is allowed from the non-assigned
numbers only. There are only n numbers, so each of the n parties will be assigned
a unique number. However, a question may arise - what if the parties does not
follow the protocol? This situation will be tackled in the following Section.

The final choice of the permutation by the protocol is random as it is based on
the random choices of the parties. Each possible permutation should be equally
likely to be assigned to the parties. To prove this, it is enough to show that a
party Pi is equally likely to be assigned any number from {1, 2, . . . , n}. In each
pass of the protocol, Pi selects a number from i ∈ {1, 2, . . . , n}, uniformly at
random. Whether i will be assigned to this party depends upon the random
selections made by other parties in the protocol. Assuming all parties of equal
intelligence, we can see that there can exist no strategy for a party to ensure
he is assigned a desired number i in the permutation. If there were to be such
a strategy, then all the parties would employ the same, resulting in a collision
of choices which in turn causes the failure of assignment. Another observation
to be made is that the parties have no incentive to obtain a particular number
assigned in the permutation. Everyone playing the protocol is guaranteed of an
assignment and no assignment is more favourable than the other. This being the
case, it is easy to see that the protocol does not favour any party during the
assignment of the numbers.

4.4 Proof of Security

As we discussed in the preliminaries, we need to define a simulator Sprm for the
permutation protocol πprm to prove that πprm is as secure as the ideal function-
ality Fprm. Following is the description of Fprm:

Agent Fprm

– initialize: The ideal functionality keeps track of three sets, A (Actively
Corrupted Parties), P (Passively Corrupted parties), C (Corrupted Par-
ties). It also keeps bits delivery − round, permuted, ready, ready1,
ready2,. . . , readyn ∈ {0, 1},
initially set to 0.

– Honest inputs: On input (clockin, i) on prm.infl for i /∈ A, read a
message from prm.ini. If there was a message ready on prm.ini and
readyi = 0, then set readyi ← 1, store (i, ready) and output (input, i)
on prm.leak.

– Corrupted inputs: On input (change, i, ready) on prm.infl, where
i ∈ A and permuted=0, set readyi ← 1 and store (i, ready), overriding
any such previous value stored for party i.

– Simultaneous inputs: If it holds, in some round, that after the clock-
in phase ends there exists i, j /∈ A such that readyi = 0 and readyj = 1,
then do a complete break down. If it happens in some round that after
the clock-in phase ends, readyi = 1 for all i /∈ A and ready = 0, then
set ready ← 1 and for each i ∈ A where readyi = 0, store (i, ready).

– Permutation: On input (permute) on prm.infl where ready = 1 and
permuted = 0, set permuted ← 1, select a permutation of integers in
[1,n] uniformly at random. Let this permutation be {a1, a2, a3, . . . , an}
where each ai ∈ {1, 2, . . . , n}. Then output
{(i, ai)}i∈C on prm.leak, and if C later grows, then output (j, ai) on
prm.leak for the new j ∈ C.

– Simultaneous output: On input (delivery − round) on prm.infl,
where permuted= 1 and delivery − round= 0, proceed as follows: if
we are at a point where no party i ∈ A was clocked out yet, then set
delivery − round← 1.

– Delivery: On input (clockout, i) on prm.infl, where delivery − round
= 1, output ai on prm.outi.

Let str be the string that is obtained by concatenating views of all the parties
from P1 to Pn. If we prove that str for πprm and Fprm ◦ Sprm are statistically
indistinguishable from each other then Envt can’t distinguish one system from
another. Following is the description of the Simulator.

We know that the protocol πadd is secure under dynamic and active corrup-
tion with threshold t = n− 1. Using the Universally Composable (UC) theorem
mentioned in [6], we don’t need to separately define the simulator’s actions for
πadd used in πprm as a sub protocol. We can use the simulator Sadd’s actions
when πadd is being executed in the πprm. We’ll define rest of the Sprm’s actions.
There are no inputs that parties give to the protocol, but random choices. At
the start of the protocol Envt sends the set of parties that it is going to corrupt
to the port AT.infl.

We will first consider passive and static security. Let C be the set of passively
corrupted parties. Note that, C can’t be of size more than n − 2 otherwise the
security of πadd will break. The simulator Sprm should be such that πprm and
Fprm ◦Sprm behave similarly. We will run a copy of πprm inside the Sprm under
same adversary (or environment) Envt, while describing the actions of simu-
lator in order to make the decisions taken by simulator clear. In the first step
of the protocol, each party picks a random number from the set {1, 2, . . . , n}.
The number generated by party Pi will be leaked to simulator through prm.leaki

where Pi ∈ C. For the set of honest parties it randomly generates a number from
{1, 2, . . . , n}. The honest parties were doing exactly the same in πprm. Views of
corrupted parties are available to Sprm, the string str consisting of views of all
parties until now, are indistinguishable for both the systems. In the second step
of protocol, all the parties are performing addition using πadd, Sprm will mimic
the behavior of Sadd in this step. The contents of free slot list is known to all the
parties, therefore it is known to the simulator. In the Step 4, Step 1 is repeated
just with a different range to pick the numbers from. Therefore, the actions of
simulator in Step 1 can be extended to actions required in Step 3. Simulator will
always add 0 to the view of an party which has already been assigned a number.
For the rest of the parties, simulator behaves in same way it did in Step 1. The
Step 5 is just a repetition of Step 1 to Step 4 and we have already dealt with
those cases. Therefore, the protocol πprm is secure under passive and
static corruption under the threshold t = n− 2.

Take the case for active and static security. As mentioned earlier, input sub-
stitution is not considered as deviation or active corruption of a party. In the
protocol πprm, we shall see what constitute active corruption of a party. Let C be
the set of actively corrupted parties. In the Step 1 of the protocol, an adversary
can only change the number that the corrupted party was going to select. This
deviation is same as the input substitution. We assume the party to be honest
whose input is the number selected by the party. In Step 2 and 3, the deviation
from protocol can be of the following types:

1. A party has chosen number i in Step 1, but he votes 0 for the question:
Has anyone chosen the number i? and votes 1 for the question: Has anyone
chosen the number j? where j 6= i.

2. A party votes x ≥ 2 for any question or it votes 1 for multiple questions
(multiple votes).

3. A party votes a negative number to counter the effect of its vote x ≥ 2 in a
different question.

The deviation of type 1 is input substitution only i.e. if a party is voting 1
for the question: Has anyone chosen the number j? but it had chosen i in the
previous step then we assume that it is an honest party which would have chosen
j in Step 1.

The deviation of type 2 can be easily detected by summing up the answer to
each question at the end of each pass. If the sum is more than n then there are
actively corrupted parties present in the protocol and protocol will halt.

The deviation of type 3 cannot always be detected. There might be the cases
when the sum of result of all the questions is equal to n, but there are actively
corrupt parties present in the protocol whose influence is more than the allowed
influence. For example, assume only one party, say Pi, is actively corrupted. If Pi

does not deviate from the protocol, assume the result of voting for the question:

“Has anyone chosen the number j?” is 1 because only Pi has chosen j. Also as-
sume the result of the voting for the question: “Has anyone chosen the number
k” is 2, because some two parties have chosen the number k. The party Pi can
vote 3 (instead of 1) for the question: “Has anyone chosen the number j?” and
it votes -2 (i.e. m− 2, if we are doing the addition under modulo m, m > n) for
the question: “Has anyone chosen the number k”. In the case mentioned above
the active deviation of Pi can be detected by anyone one of the parties which
voted 1 for the number k, because they know that result should be atleast 1 but
it is 0 in the case above. But if Pi votes -1 (m-1) for the number k and -1 for
some other number k′, assuming that at least 2 parties voted 1 for the number
k′ and k both. In this case, the party Pi’s deviation will not get caught and can
result in disrupting the output of the protocol. Assume exactly 2 parties voted
1 for the number k, the result of the question: “Has anyone chosen the number
k” is going to be 1 because Pi voted -1 for k. Both the parties will now assume
that there is no collision (when in fact there is a collision) and they will take
the first number from free slot list or they both will take number k if free slot
list is empty. The result is, two parties are assigned the same number, which
is undesirable. Also, for the number j there was no collision, but the deviation
resulted in the collision at number j. But, this does not mean that the adversary
can make an actively corrupted party deviate from protocol in this way without
worrying about getting caught. When an adversary is actively corrupting a party
with deviation type 3, it runs the risk of getting caught.

The set of actively corrupted parties can cause another type of problem to
the protocol called starvation. The adversary can deliberately choose the same
number for more than one actively corrupted parties in each pass. This will pre-
vent the protocol from reaching its completion. Thus the adversary is starving
the protocol. In the Section 4.5, we show that the expected number of passes
required for the completion of protocol is O(log(n)). If the number of passes
completed has become O(n2) then the parties can suspect that there is an active
adversary starving the protocol, because otherwise the probability of protocol
reaching O(n2) passes is very less.

The protocol πprm is not completely secure under the active cor-
ruption.

Take the case for passive and dynamic security. There can be different set
of passively corrupted parties C for each step of the πprm. The set of corrupted
parties cannot be changed during a round. If in the same round, the adversary
changes the set of corrupted parties from C1 to C2 then it is equivalent to the
adversary corrupting the C1 ∪C2 in that round. The argument can be extended
to any number of times the adversary changed the set of corrupted parties during
a round. Without losing the generality, we can assume that the adversary does
not change the set of corrupted parties in a round. In the Step 1, the adversary
can corrupt a set C, of size n− 2, parties and get to know their views, i.e. which

number did they choose. In the next step, i.e. the rounds of questioning, the
adversary corrupts only one party Pi which was not corrupted in Step 1. After
these rounds are completed, the adversary will get to know the number that the
party Pi chose in the Step 1, based on the information: to which question did Pi

vote 1. The adversary knows what all the parties in the set C are going to vote
for each question and it also knows what Pi is going to vote in each questioning
round. Let the result for the question: “Has anyone chosen the number j?”, be
x according to the information known to the adversary, but the actual result is
x+ 1. The extra vote is coming from the party which is honest in all the rounds.
Therefore, adversary is able to determine the input of the honest party without
crossing the security threshold t = n− 2 in any round (or step).

Therefore, the protocol πprm is not secure under dynamic corrup-
tion.

4.5 Expected number of passes required by SMPPC

In the protocol SMPPC, the parties whose choices collided in a pass were not
assigned any number during that pass. They are required to choose from unas-
signed numbers in the following pass. The protocol goes on until after some pass
each party has been assigned a number. The question arises that: How many
passes are required so that each party is assigned a number?
Let Xi be the indicator random variable,

Xi =

{
1 exactly one person chose number i

0 otherwise
(15)

Let X be the random variable:

X =

n∑
i=1

Xi (16)

Given n parties at the start of the round which are not assigned any number,
E(X) denote the expected number of parties which will be assigned a number
in this pass.

E(X) = E(

n∑
i=1

Xi) = n
∑

E(Xi) (17)

We can take the sum out of the expectation because each parties choices are
independent of other parties. The expectation of Xi is:

E(Xi) =

(
n

1

)
∗ 1

n
∗ (1− 1

n
)n−1 (18)

E(Xi)→
1

e
. . . as n→∞ (19)

E(X) = n ∗ E(Xi) =
n

e
(20)

In each pass, (n
e) is the expected number of parties that are assigned a number.

In the next pass, (n− n
e) parties will actively participate.

n ∗ (1− 1
e) : The number of parties not assigned a number after pass 1

n ∗ (1− 1
e)2 : The number of parties not assigned a number after pass 2

n ∗ (1− 1
e)3 : The number of parties not assigned a number after pass 3

. . .

. . .

. . .
After each pass, a constant fraction of parties are being assigned a number.
Therefore, after O(log(n)) number of passes, all the parties will be assigned a
number. The expected number of passes required by our protocol is
O(log(n)).

References

1. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th international conference on World Wide Web. pp. 181–190. ACM (2007)

2. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining.
pp. 44–54. ACM (2006)

3. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence
in twitter: The million follower fallacy. ICWSM 10(10-17), 30 (2010)

4. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in the flickr social network. In: Proceedings of the 18th Interna-
tional Conference on World Wide Web. pp. 721–730. WWW ’09, ACM, New York,
NY, USA (2009), http://doi.acm.org/10.1145/1526709.1526806

5. Chester, S., Kapron, B.M., Srivastava, G., Venkatesh, S.: Complexity of social
network anonymization. Social Network Analysis and Mining 3(2), 151–166 (2013)

6. Cramer, R., Damgard, I., Nielsen, J.B.: Secure multiparty computation and secret
sharing-an information theoretic appoach. Book Draft (2012)

7. Gnanasekar, V., Jayanthi, S.: Privacy preservation of social network data against
structural attack using k-auto restructure. International Journal of Computer Sci-
ence & Information Technologies 5(2) (2014)

8. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-
identification in anonymized social networks. Proceedings of the VLDB Endowment
1(1), 102–114 (2008)

9. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social net-
works. Computer Science Department Faculty Publication Series p. 180 (2007)

10. Kapucu, N., Yuldashev, F., Demiroz, F., Arslan, T.: Social network analysis (sna)
applications in evaluating mpa classes. Journal of Public Affairs Education pp.
541–563 (2010)

11. Li, N., Gillet, D.: Identifying influential scholars in academic social media plat-
forms. In: Proceedings of the 2013 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining. pp. 608–614. ACM (2013)

12. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the 2008 ACM SIGMOD international conference on Management of data. pp.
93–106. ACM (2008)

13. Potterat, J., Phillips-Plummer, L., Muth, S., Rothenberg, R., Woodhouse, D.,
Maldonado-Long, T., Zimmerman, H., Muth, J.: Risk network structure in the
early epidemic phase of hiv transmission in colorado springs. Sexually transmitted
infections 78(suppl 1), i159–i163 (2002)

14. Salathe, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.:
A high-resolution human contact network for infectious disease transmission. Pro-
ceedings of the National Academy of Sciences 107(51), 22020–22025 (2010)

15. Singh, L., Zhan, J.: Measuring topological anonymity in social networks. In: Gran-
ular Computing, 2007. GRC 2007. IEEE International Conference on. pp. 770–770.
IEEE (2007)

16. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference
on. pp. 506–515. IEEE (2008)

