
Secure Multiparty Computation of a Social Network

Varsha Bhat Kukkala∗, S.R.S Iyengar† and Jaspal Singh Saini‡
Department of Computer Science and Engineering, Indian Institute of technology Ropar

Punjab, India - 140001
Email: ∗varsha.bhat@iitrpr.ac.in, †sudarshan@iitrpr.ac.in, ‡jaspal.singh@iitrpr.ac.in

Abstract—The recent explosion of online networked data and
the discovery of universal topological characteristics in real
world networks has led to the emergence of a new domain
of research, namely, social networks. However, much research
in this domain remains unexplored due to the unavailability
of sensitive networks, which include hate networks, trust net-
works and sexual relationship networks. This paper proposes
a secure multiparty protocol which allows a set of parties
to compute the underlying network on them. The proposed
protocol is information theoretic secure, and its security is
further enhanced by a list of security tests, which include,
k-anonymity test, check for self loops and weighted edges.
Although some solutions have been proposed for this problem
earlier, the practicality of each one of those is questionable.

Index Terms—Multiparty computation, Social networks,
Anonymization

1. Introduction

Social networking platforms such as Facebook, Twitter,
LinkedIn, LiveJournal allow individuals to stay connected.
These networks can be visualized as graphs of social
actors (individuals and/or organizations) seen as nodes,
and the dyadic ties bridging them as edges. These
edges in the network can represent a variety of positive
as well as negative relationships - friendship/enmity,
common interests/dissimilarity, trust/distrust. Although
these platforms serve as a rich source of data related to
the social interactions, accessibility of this data is not at
par with its availability. This is primarily attributed to the
privacy concerns of the involved individuals. With the
emerging interest in the analysis of these social networks,
the difficulty in accessing the underlying network has been
a major issue.

Social Network Analysis (SNA) is a three step
process involving the collection of data (i.e. the network),
its analysis and inferring the theories that explain the
patterns observed in these structures [34]. It is known
that the network structure affects the underlying dynamics
such as information flow, social behavior, small world
phenomenon, as well as structural properties such as
existence of communities and hubs. A few case studies
where the analysis of the underlying topology has proven

to be beneficial are: the transmission of diseases [29], [31],
classification of the influence or popularity of individuals
[28], [10], evolution of a social network [2], the flow of
information in a social network [11], measuring influence
of a publication [23]. However, the usage of SNA is subject
to the availability of the underlying graph. That is, only
with the social network data at our disposal can we proceed
with its analysis.

There are several studies conducted on networks with
sensitive information, and the data has mostly been acquired
through surveys [19], [21], [29] and then anonymized1.
The fear of sensitive information being leaked prevents
most of the users from sharing their local network data [6],
[27], [16] or could even lead to reporting false information.
Hence, the survey results are generally less reliable. Thus,
there is a necessity for a protocol that generates the
underlying network securely, by amalgamating the data
that is available distributedly. It must be done in a way
that privacy and integrity of the inputs is ensured while
guaranteeing the correctness of the output. This is precisely
what constitutes a multiparty computation. It involves a set
of parties who follow a specific protocol for computing
a function of their private data. The process must ensure
that nothing but the final result is revealed. The first MPC
protocol was proposed by Yao [35], which allowed two
parties to compare and determine who among the two are
richer, without revealing each others wealth.

The current paper proposes a protocol that allows a
bunch of parties to get together and securely compute their
underlying network, where the edges are held distributedly.
This is achieved without the help of any third party. A few
instances where the protocol to compute the graph can be
put to use include - generation of sexual networks by the
concerned individuals themselves; analyzing the stability
of professional relationships among employees, through
the underlying hatred network; studying the correlation of
productivity with the underlying trust network in a team.
The proposed protocol will help determine the structural
properties of sensitive networks, which would otherwise

1. Anonymization is a process in which, only the interconnections be-
tween the social actors are retained. Every other information about the
social actor is removed (i.e. name, email-address etc.)



not be possible. It can further aid in understanding the
effects of the network structure on social behavior [30].
The structural properties of real world networks that have
been previously studied - scale free property [3], [4], [24],
[32], presence of communities [17], presence of structural
holes [9], navigability of the network [7], structural balance
in signed networks [22], etc., can also be validated.

2. Related Work

General protocols have been proposed for securely
evaluating any computable function [18], [12], [5]. These
theoretical models cannot be put to practical use due to
large communication and computation overhead involved.
Thus, efficient protocols have been further proposed for
specific problems, such as computing approximations on
distributed data [13], auctions [26], private matching and
set intersection [14], secure rank computation [1], privacy
preserving data classification [37] and data mining [25].

Some researchers have also looked at computing certain
aspects of a network securely. Brickell and Shmatikov [8]
look at two party protocols for computing graph algorithms
securely. Here, they assume that the underlying graph is
already known, and is used as the party’s private data
in the protocol. Hu, Chow and Lau, in their work [20],
discuss on how one can detect people belonging to the
same community with minimum information being leaked.
Such a detection allows to suggest friends in a social
network. Zeng et al. also propose a technique for secure
link prediction in online social networks [36].

Securely generating the underlying graph has been
previously studied by Frikken and Golle [15]. It is assumed
that the network information is held in a distributed manner
where each individual possesses some partial information
of the network. The drawbacks of the protocol is that
it uses additional dummy parties called authorities, who
help compile the collected data into the required graph.
Also, the use of threshold Elgamal encryption scheme
and re-encryption mix nets in the protocol, amounts to
increased communication and computation cost. It is to
be noted that the protocol in [15] is cryptographically
secure. The protocol proposed in the current paper avoids
the use of dummy parties and is information theoretically
secure, thereby overcoming the above mentioned drawbacks.

3. Preliminaries and Definitions

The individuals who wish to compute the underlying
network are termed as parties, labelled as P1, P2, . . . , Pn.
The information regarding the edges of underlying graph
on these parties, is assumed to be held distributedly.
Each party contributes her out going links, as private
input to the protocol. The protocol consists of parties

communicating messages amongst each other, across
a secure channel. A message from Pi intended only to
Pj is known to no other party, unless they choose to share it.

The adjacency vector of a party Pi is represented as
vi = [ai1, ai2, . . . , ain], where aij equals 1 if there exists
a directed edge from Pi to Pj , otherwise it equals 0.
Therefore, the adjacency matrix A = [aij ]n×n.

Each party Pi possess a share Ai of the adjacency
matrix A, where the n × n matrix Ai contains the vector
vi in the ith row and zeroes in all the other entries of the
matrix.

Two graphs G and G′ (with the adjacency matrices A
and A′ respectively) are isomorphic if there exists a bijection
σ from the vertex set of G to the vertex set of the G′, such
that the edges are preserved. For simplicity, A′ is represented
as σ(A). An illustration of applying a permutation on a
graph is as shown in Figure 1.

A
c1 c2 c3 c4

r1 0 1 1 0

r2 1 0 1 0

r3 0 0 0 1

r4 1 0 0 0

 σ−→

A’
c1 c4 c2 c3

r1 0 0 1 1

r4 1 0 0 0

r2 1 0 0 1

r3 0 1 0 0


Figure 1. Action of σ = (2 4 3) in cycle notation of a permutation

Throughout the paper, all calculations are assumed
to be in arithmetic modulo q. A matrix R ∈R Rn×n
represents a random n × n matrix, where all its elements
are picked uniformly at random from Zq = {0, 1, . . . , q−1}.

Secret Sharing Protocol: allows a party P to share her
secret with n parties (including P ) such that each party has
a share (some information) of the secret. The information
contained in a share owned by a party is not enough to
compute the secret. But, once all the parties (including P )
combine their shares, the secret can be computed.

Let x ∈ Zq be the secret of party P which she wants to
share. Party P chooses n random numbers {x1, x2, . . . , xn}
from Zq such that x =

∑n
i=1 xi. Each xi would be a share

of the secret x. Party P gives each party exactly one share.
Therefore, only when all the parties collaborate together
can they generate the secret x, by summing up their shares.

Protocol for Secure Addition: allows the n parties to
compute the sum of their secrets, without revealing their
individual secret to anyone. A stepwise description is as
given below:

• Each party shares her secret xi with all the par-
ties using the secret sharing protocol mentioned
above. The n shares of secret xi are denoted as



{xi1, xi2, . . . , xin}, where the share xij is sent by
party Pi to party Pj .

• Each party Pi computes the sum Si over all the
shares she receives, i.e. Si =

∑n
j=1 xji. This partial

sum of few shares is released in public.
• All the parties now compute

∑n
i=1 Si to get the final

desired sum.

4. A Naive Solution

The crux of the solution is to find an isomorphic graph
of the original graph. Our aim, therefore, is to construct
a permuted adjacency matrix σ(A). The permutation σ
should be known to no individual, since one can easily
backtrack to A, using the permutation σ and permuted
adjacency matrix σ(A).

The protocol begins with each party Pi picking two
random matrices Ri1 and Ri2, such that Ai = Ri1 + Ri2.
Here, Ai is party Pi’s share of the adjacency matrix A,
supplied as her secret input to the protocol. Further, each
party Pi passes the first share Ri1 of her secret Ai to party
P1. The second share Ri2 is sent to party P2. Parties P1 and
P2 then sum over all the corresponding shares they received.
Hence, the adjacency matrix A is currently held distributedly
by parties P1 and P2. Next, both the parties P1 and P2

privately agree on a permutation σ1. They further apply
the permutation σ1 to their shares and pass it to party P3.
Party P3 can compute σ1(A) by summing over the received
two shares. Since, σ1 is not known to party P3, she cannot
compute A from the pieces of information she holds. Party
P3 further applies a permutation σ2 and release σ2(σ1(A))
in public. A schematic representation of the same is shown
in Figure 2.

Figure 2. Naive Protocol

Although the protocol seems to be secure, it has certain
pitfalls. Clearly, parties P1, P2, P3 are more powerful than
the others. Collaboration of these powerful parties would
lead to breach in privacy. Consider the case where parties
P1 and P2 collaborate. They can compute A directly by

summing over all their shares. Another dangerous collabo-
ration is that of P3 with either P1, P2 or both. Even when all
the parties are honest and do not collaborate, there are still
chances of information leak due to the structural properties
of the output graph. For example, consider the case where
a party Pj has a unique out-degree in the network. This
would imply that party Pj can easily re-identify herself and
her neighbours in the final isomorphic version.

The paper proposes a secure multiparty graph compu-
tation protocol (SMPGC) in the next section. The SMPGC
protocol improves on this naive protocol by distributing the
work equally among all parties, thus making no party impor-
tant or special. It also minimizes the chances of information
leak due to structural properties of the graph using various
techniques discussed in Section 6.1.

5. SMPGC Protocol

The SMPGC protocol can be briefly decomposed into
two stages. The first stage securely computes the isomorphic
version of the underlying graph, held distributedly. There-
fore, no individual party has the entire isomorphic graph, at
this stage. The second stage performs a few security tests
(discussed in Section 6.1) to determine if the computed
result can be made public or if the protocol needs to be
aborted. The isomorphic graph is released in public only
after the desired security checks are met.

The protocol requires active participation of m2 of the n
parties, selected at random, such that m = b

√
nc. These m2

parties are arranged in a layered structure as shown in Figure
3. Pi,j would represent the jth party in the ith layer of the
given structure. The stepwise description of the protocol is
given below:

Figure 3. Layered structure

Step 1: The focus here lies on data collection. Each
party Pi shares her secret Ai with the parties
in layer 1 using the secret sharing protocol.
Hence party P1,j receives the Ri,j (jth share of
Ai). Therefore, each party in layer 1 receives
n random matrices. In particular, party P1,j

receives R1,j , R2,j , . . . , Rn,j . Each party P1,j

in layer 1 now computes its secret S1,j as given
below:

S1,j =

n∑
i=1

Ri,j (∀1 ≤ j ≤ m)



Step 2: The data collected is processed at each level
and communicated to parties in the next layer
as shown below:

for l := 1 to m-1 do . l iterates over all the layers

Party Pl,1 picks a random permutation σl and shares
it with Pl,2, Pl,3 . . . , Pl,m.

for i := 1 to m do
Using secret sharing protocol, Pl,i sends m ran-

dom shares of σl(Sl,i) to all the parties in layer l+1 i.e.
parties Pl+1,1, Pl+1,2, . . . , Pl+1,m.

end for
for j := 1 to m do

Each party Pl+1,j , adds all the shares received to
obtain Sl+1,j

end for
end for

Similarly, parties in the last layer fix on a per-
mutation σm and apply it on their secrets. At
the end of this step, the parties in the last layer
collectively hold σ(A), where

σ =

m∏
i=1

σi = σm ◦ σm−1 ◦ · · · ◦ σ1 (1)

This marks the end of stage 1 of the protocol.

Step 3: Pm,1 picks a bijection f : Mn×n → Mn×n
uniformly at random, satisfying the following
two properties:

• The rows of the matrix are shuffled
• For each row in the matrix, its entries are

shuffled; independent of the shuffling on
the other rows

Party Pm,1 then shares f with all the m parties
in the last layer. Each of the (n!)n possibili-
ties for the function f is termed as row-wise
permutation functions henceforth. An example
depicting the application of f on a matrix M is
shown in the Figure 4.

M
r1 10 4 6 3

r2 2 19 7 4

r3 24 3 4 5

r4 3 16 13 9

 f−→

f(M)
r2 19 4 7 2

r3 24 4 3 5

r1 3 6 4 10

r4 13 9 16 3


Figure 4. Action of a bijection f on matrix M

Each party Pl,i in the last layer shares f(Sl,i)
with layer 1 using secret sharing protocol.

Step 4: Each party P1,i in layer 1 sums over all the
matrices she receives from the last layer and

these new matrices are represented as S
′

1,i. We
further run the below shown algorithm.

for l := 1 to m-1 do
Pl,1 picks a row-wise permutation function fl uni-

formly at random and share it with Pl,2, Pl,3 . . . , Pl,m
for i := 1 to m do

Party Pl,i sends random shares of fl(S
′

l,i) to all
the parties in layer l + 1

end for
for j := 1 to m do

Each party Pl+1,j , adds all the shares received to
obtain S

′

l+1,j
end for

end for

Step 5: Parties in the last layer Pm,1, Pm,2, . . . , Pm,m
perform secure addition of their secrets
S′m,1, S

′
m,2, . . . , S

′
m,m respectively and release

the sum (lets say S
′
) in public.

Few security tests described in Section 6.1 are
performed on this output matrix S′. If no mali-
cious behaviour by any party is detected, σ(A)
calculated at the end of Step 2 is released in
public, else the protocol is aborted.

6. Security of The Protocol

This section discusses the security tests to be performed
in the second stage of the SMPGC protocol. These tests are
meant to detect possibility of information leak from the final
output, which could be either due to malicious behaviour of
parties in the protocol execution or due to the output graph
structure itself. Further we discuss on the various security
models in MPC. In particular, we discuss on the Honest
model, the Semi-honest model and the Malicious model.

6.1. Security Tests

The SMPGC protocol ensures that the parties do not
learn any additional information in the intermediate stages
(Section 6.2). However, the final graph computed might
inherently posses structure such that re-identification is
possible. For example, a party with unique out degree can
positively identify herself from the final graph and hence
learn some information regarding her neighbours as well.
There is also a possibility for a party to deviate from
the protocol to facilitate re-identification. For all of these
reasons, we propose a set of tests that identify scenarios
that may lead to information leak.

Check for Self Loops: In most of the scenarios, the
underlying network may not have any self loops, as in
the case of frenemy networks and sexual networks. The
appearance of self loops in such cases suggest misbehaviour
and need to be avoided. This can be taken care of with
a minor addition to Step 2 of the protocol. At the end



of step 2, all the parties in the last layer contain shares
of σ(A). We use the fact that the diagonal entries of A
continue to be the diagonal entries of σ(A) (although
permuted). Each party on the last layer can create a
vector containing the diagonal entries of the shares of
σ(A). They can further perform a secure sum of these
vectors to obtain the permuted entries of the diagonal of A.
Hence they can check whether all the entries are zero or not.

Check for Weighted Edges: To generate unweighted
networks securely, the adjacency matrix of the output
isomorphic graph must contain just zeroes and ones. A
malicious party may falsely report weighted edges to
facilitate re-identification of nodes in the output adjacency
matrix. Since all the entries of A are present in σ(A) and
hence in S′ (which is available in public), we can look for
non-zero-one entries in this matrix S′ and confirm that the
underlying network is unweighted.

k-Anonymity Test: If a party in the underlying network
has a unique degree, she can find her position in the released
isomorphic graph easily and this can lead to information
leakage. As a precaution, k-anonymity test was proposed in
[33], and it has since been an active area of research. A
graph is said to be k-anonymized if for every individual in
the network, there exist atleast k−1 other individuals in the
network with the same degree. The publicly available matrix
S′ helps us perform the k-anonymity test on the underlying
graph securely. However, the real challenge lies in making
the underlying graph k-anonymized (in case it is not). This
is done by adding and/or removing a few edges from the
network and can be achieved using the following technique:

1) All the parties agree on a matrix K which should
have been added to the matrix S′ so that the un-
derlying graph is k-anonymized.

2) The last layer distributedly hold the matrix K using
the secret sharing protocol. Each party on the last
layer performs f−1l on her share and passes it to
the upper layer using the secret sharing protocol.

3) The above process is repeated until parties in layer
one perform f−11 on their shares and pass it to the
last layer.

4) Each party Pl,i on the last layer can now add the
received share to her previously held share Sl,i,
and release the sum in public. Therefore, the final
output matrix is a k-anonymized perturbed matrix
of the original isomorphic graph.

A Lower Bound and an Upper Bound on Degree:
In some scenarios, we may want to bound the out-degree
of all the parties. For example, in a friendship graph of
size 5000, we may want to exclude individuals with an out
degree as high as 500. This requires a constraint on all the
participants to report degree lower than 500. The maximum
and minimum degree of the graph can be checked using the
matrix S′ and hence this test can be performed with ease.

6.2. Security Models

There are several behavioural aspects of a party that
could affect the security of the protocol. Each case is
considered separately and its security discussed in detail.

Honest Model: A party is said to be honest when she
neither deviates from the protocol nor does she share her
view with other parties. View of a party here refers to all
the data she sees throughout the execution of the protocol.
Since each party sees only random matrices throughout the
protocol and a single permutation of the net m permutations
masking the adjacency matrix A (Eqn 1), the protocol is
secure in the honest model.

Semi-honest Model: In this model, no party deviates
from the protocol. However a set of corrupt parties may
collaborate with the aim of revealing the private data of the
honest parties. There are only two types of collaborations
which can leak information in such a case:

• Since σ(A) is known publicly, one method to reveal
A is to determine all the σi’s. Therefore, the adja-
cency matrix A can be leaked if there exists atleast
one corrupt party from each layer. This implies that
atleast m corrupt parties are required for breaking
the protocol.

• Consider another case, where all the parties in a
layer l collaborate. A secure sum over their secrets
Sl,i’s would reveal σl−1(σl−2(. . . (σ1(A)))) to the
corrupt parties. To further reveal A, a corrupt party
is required from each of the layers 1, 2, . . . , l − 1.
Therefore, atleast (m + l − 1) corrupt parties are
required in this case.

From the above discussion, we conclude that the threshold2

for the number of corrupt parties in the semi-honest model
is b
√
nc.

Malicious Model: In this model, a corrupt party may
even deviate from the protocol with the hope to reveal some
information about the honest parties. If a corrupt party tries
to add self loops, add weighted edges or make her degree
unique, such behaviour can be detected using the security
tests proposed in Section 6.1. However, if a malicious party
Pl,i makes a change of ±1 to an entry of her share Sl,i,
then it may go undetected if that particular change results
in the entry converting from 0 to 1 or vice versa. For k
such changes (let’s say from 1 to 0) of a malicious party
to go undetected, the malicious party must always pick an
entry which corresponds to 1. Therefore, the probability of
this event occurring is ≈

(
|E|/

(
n
2

))k
i.e. it exponentially

decreases as k increases, where |E| is the number of the
edges in the network.

7. Conclusion

Despite the recent explosion of networked data due to
the WWW, sensitive data remains scarcely accessible due

2. We say that the threshold of a protocol is k if no subset of k − 1
corrupt parties can reveal any information about the honest parties



to privacy concerns. This paper proposes an information
theoretic secure protocol for computing a social network
present on a set of individuals. Various tests including the
k-anonymity test, self loops check and weighted edges check
help further strengthen the security of the protocol. The pro-
posed protocol is efficient in terms of the computation and
communication cost. The SMPGC protocol also provides a
sense of flexibility, since it can be easily fine tuned to handle
the case of unweighted graphs and labelled nodes/edges.
This protocol can be used to test the various hypothesis of
real world networks (like scale free degree distribution, clus-
tering, community structure, homophily, etc) on currently
hidden sensitive social networks. Hence this work can be of
great value to the network science community.
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