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Abstract. Witness encryption (WE) is an exciting new primitive introduced by Garg et al. (STOC
2013). WE is defined for some NP language L and allows to encrypt a message relative to an instance
x so that one can decrypt with any w witnessing x ∈ L. Garg et al. construct WE for an NP-complete
language from multilinear maps and give another construction from indistinguishability obfuscation
(FOCS 2013). Due to the reliance on such heavy tools, WE can currently hardly be implemented on
powerful hardware and will not be realizable on constrained devices like smart cards any time soon.
In this paper we construct a witness encryption scheme where encryption is a single Naor-Yung encryp-
tion (two CPA-encryptions and one NIZK proof showing the ciphertexts encrypt the same message),
so encryption can even be done on a smart card. To achieve this, our scheme has a setup phase, which
outputs public parameters containing an obfuscated circuit (only required for decryption), two public
keys for a standard public-key encryption scheme and a common reference string for the NIZK (used
for encryption). This setup phase need only be run once, and the parameters can be used for arbitrary
many encryptions. Our scheme can easily be turned into a functional WE scheme, where a message is
encrypted w.r.t. a statement and a function f , and using a witness w one learns f(m,w).
Our construction and its proof are inspired by those of functional encryption by Garg et al. (FOCS
2013) and to prove (selective) security of our scheme we also assume indistinguishability obfuscation
and statistically simulation-sound NIZK. We give a construction of the latter in bilinear groups and
combining it with ElGamal encryption, our ciphertexts are of size 1.3 kB at a 128-bit security level.

Keywords: Witness Encryption, Indistinguishability Obfuscation, NIZK.

1 Introduction

Witness encryption. In an encryption scheme, the receiver needs to know some secret piece
of information (the secret key) to decrypt. Garg, Gentry, Sahai and Waters [GGSW13] propose
the intriguing new notion of witness encryption (WE). A WE scheme is defined for some NP
language L with witness relation R: L = {x |R(x,w) = 1}. The encryption algorithm takes an
instance x (instead of a public key) and a message m and produces a ciphertext c. In order to
decrypt a ciphertext c, one needs a witness w such that R(x,w) = 1. Decryption is only possible
if x is actually in the language and it is required that a ciphertext computed for some x 6∈ L
computationally hides the message m.

Applications. As shown in [GGSW13], from WE one can construct powerful cryptographic prim-
itives such as identity-based encryption and even attribute-based encryption [SW05] for circuits.
But WE also allows for applications that were not possible before; for example, one can encrypt
a message with respect to a puzzle, such that only someone who found the solution for it can de-
crypt.1 Another application is asymmetric password-based encryption [BH15], which allows hashed
passwords (for any password-hashing function already in place) to be used as public encryption
keys and passwords to decrypt.

Constructing WE. Garg et al. [GGSW13] construct a WE scheme for the NP-complete language
“exact set cover”, which implies WE for any language L ∈ NP via polynomial-time many-one re-
ductions (a.k.a. Levin reductions). The security of this construction is based on a strong assumption
on “approximate” multilinear maps as constructed in [GGH13a]. Subsequently, a construction of
WE from indistinguishability obfuscation (iO) was given in [GGH+13b] and another one based
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on multilinear maps in [GLW14]. The only candidate construction of iO is also based on the
approximate multilinear maps from [GGH13a].

Implementing multilinear maps as required for iO or WE is computationally very expensive,
but a first—though far from practical—implementation exists [AHKM14], and it is conceivable
that algorithmic and hardware progress yield practical implementations in the not too distant
future.

Offline witness encryption. Given that WE is not even practical on high-end machines, it
seems foolish to hope for an implementation on low-end devices like smart cards. In this paper
we show that it is possible to construct a WE scheme where encryption is very efficient, as the
entire computationally hard work can be moved to a setup phase and—to a lesser extent—to the
decryption process. This setup is either run by the sender before she knows the instance and the
message for an encryption; or it is run by a trusted party once and for all and everyone can use the
same parameters. The first case is reminiscent of online/offline encryption or signatures [EGM96],
except that in our case, once generated, the parameters can be used for arbitrary many “online
phases”.

We call this concept offline witness encryption and define it as a tuple of three algorithms.
The setup phase (which is not present in standard WE) takes as input only a security parameter
1λ and outputs public parameters (ppe, ppd)← Setup(1λ). To encrypt a message m for an instance
x, one runs an encryption algorithm c← Enc(x,m, ppe). Such ciphertext c can then be decrypted
given a witness w, i.e., for which R(x,w) = 1 holds, as m = Dec(c, w, ppd). The goal of offline WE
is to keep the parameters ppe for encryption small and the Enc algorithm efficient.

Applications of offline WE. In any application of witness encryption its offline variant can be
used to make encryption practically efficient, if one accepts an additional setup phase. However,
for applications like IBE and attribute-based encryption, as discussed in [GGSW13], system-wide
parameters must be set up by a trusted party anyway. This party could therefore simply also
generate the offline-WE parameters, meaning encryption can be made efficient without requiring
any additional trust.

Bellare and Tung Hoang [BH15] define and construct asymmetric password-based encryption
(A-PBE), where a hash of a password can be used as a public key to encrypt messages, which can
then be decrypted using the password. Unlike its symmetric counterpart, A-PBE remains secure
even when the server storing hashed passwords is compromised. In particular, they show that
if hashed passwords are already deployed using an already existing password-hashing function,
witness encryption can be used to turn the hashed passwords into public keys.2 The drawback
of using WE is that both encryption and decryption are inefficient. Using offline WE where a
trusted third party produces the system parameters in an offline phase, encryption can be made
significantly more efficient, whereas decryption (and the one-time setup) remains inefficient.

The use of offline WE is therefore particularly appealing in scenarios where decryption is usually
not done anyway, but ciphertexts are made public as a means of deterrent. Consider a scenario
where a content provider lets subscribed users set up passwords and use them to access some
content. The provider typically stores a hash of the password. In order to discourage subscribers
from distributing their passwords and allowing others to access content, the provider could simply
encrypt some sensitive user information (such as credit card details, etc.) under a user’s hashed
password and publish this ciphertext. As anyone who knows the password could decrypt, it is then
in the user’s interest to keep his password secret.

Our construction. Our construction, as well as its proof, is inspired from the functional encryp-
tion scheme by Garg et al. [GGH+13b].

2 Such a key consists of a pair (sa, hpw) of a salt and a hashed password hpw = PH(sa, pw) for a password-hashing
function PH. Given a WE for the NP-language {(sa,PH(sa, pw)) | pw}, messages are encrypted w.r.t. statements
(sa, hpw) and can be decrypted using witness pw such that hpw = PH(sa,pw).
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The parameters required for encryption ppe = (crs, pk1, pk2) consist of two public keys of a
standard public-key encryption (PKE) scheme and a common reference string for a non-interactive
zero-knowledge (NIZK) proof system. The encryption c = (x, c1, c2, π) of a message m for an
instance x is simply a Naor-Yung [NY90, Sah99] CCA-secure encryption of the pair (x,m); that
is, encryptions c1 and c2 of (x,m) under pk1 and pk2, respectively, together with a NIZK proof π
showing that the two ciphertext c1, c2 encrypt the same message.

The setup algorithm samples two key pairs (sk1, pk1), (sk2, pk2) for the PKE scheme and a CRS
for the NIZK proof system. The parameters ppd required for decryption consist of the obfuscation
D̃ of a circuit D, defined as follows. On input a ciphertext c = (x, c1, c2, π) and a string w, the
circuit D

– checks if R(x,w) = 1 (i.e., w is a witness for x ∈ L);

– checks if π is a proof that c1 and c2 encrypt the same message; and

– if both checks pass, decrypts (x′,m) = PK.Dec(sk1, c1) and outputs m if x′ = x.

Given an (obfuscated) circuit as above, the decryption algorithm of our WE scheme simply
evaluates D̃((x, c1, c2, π), w), which will output the encrypted message for any witness w with
R(x,w) = 1.

We prove in Theorem 1 that the above is a secure offline-WE scheme (defined as ciphertexts for
x 6∈ L computationally hiding the message), assuming that the obfuscation satisfies the notion of
indistinguishability obfuscation [BGI+01], the NIKZ is statistically simulation-sound [GGH+13b]
and the PKE is semantically secure under chosen-plaintext attack (CPA).

Efficiency of encryption. In Section 5 we propose a concrete instantiation of our encryption
algorithm. In order to avoid random oracles, we use Groth-Sahai proofs [GS08], which are perfectly
sound NIZK proofs in the standard model for languages defined over bilinear groups (see [GPS08]).
They let us prove that two ElGamal ciphertexts encrypt the same message. Using ideas from
[GGH+13b] and translating them into the bilinear-group framework, we convert the proof system
into a statistically simulation-sound (SSS) proof system. Under the so-called SXDH assumption
(which states that the decisional Diffie-Hellman problem holds in the base groups), the encryption
scheme is CPA-secure and the proof system we construct is zero-knowledge.

In our instantiation a proof consists of 28 elements from a bilinear group and is computed by
using bilinear-group exponentiations. For a 128-bit security level, the size of the output of our
encryption algorithm, comprising 2 ciphertexts and one SSS proof, is about 1.3 kB.

Handling long messages and instances. ElGamal encryption is defined over a group G and
encrypts elements from G; we therefore need to encode the message (x,m) into G. Using elliptic-
curve-based groups, for 128-bit security the length of an element from G is 256 bits, and standard
encoding techniques to elliptic curves [FJT13] allow for encoding of 128 bits into one group element,
which is prohibitively small for any meaningful application.

We could of course choose a larger group such that one group element fits the entire tuple (x,m),
but this would become very inefficient for large values. The encryption procedure we construct in
Section 5 will therefore allow to encrypt arbitrarily long messages by encrypting them block-
wise. We then need to provide a proof for each 128-bit block separately; however, using some
optimization, we manage to limit the growth of the ciphertext to 0.25 kB for every 128 bits of
plaintext, meaning the ciphertext grows by a factor of 16 compared to the plaintext.

A more efficient way of dealing with large m’s is to use key encapsulation: when encrypting,
the sender first picks a key k for a symmetric encryption scheme and generates a ciphertext
c = (cK , cM ), where cK is the WE encryption of (x, k), and cM is the (secret-key) encryption of
m under key k. To decrypt (given a witness w), the receiver first decrypts cK to learn k and then
decrypts cM to recover m.
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Dealing with large x’s turns out more tricky. Standard tricks like encrypting only a hash
y = H(x) instead of the entire x using a collision-resistant hash function3 do work, but require the
obfuscation to satisfy the notion of extractability obfuscation (eO) [BCP14], which seems a much
stronger assumption than indistinguishability obfuscation [GGHW14].

Functional witness encryption. Functional witness encryption was proposed by Boyle et al.
[BCP14]. Here one additionally encrypts a circuit f together with the instance x and message m,
and a party knowing a witness w now does not learn m itself, but only the function f(m,w). For
example, x could be a labeled graph and a party knowing a t-clique in x can learn the labels of this
clique (but no other labels). In Section 4 we explain how our WE scheme can be easily turned into
a functional WE scheme by changing the definition of the (obfuscated) decryption circuit: instead
of outputting m if given a witness w, we now parse m as a pair (f,m′), and output f(m′, w). Note
that key encapsulation as discussed above does not work any more for this functional version of
the WE scheme.

Boyle et al. [BCP14] consider an “extractable” notion of functional WE, where they require that
an adversary who can distinguish the encryption of two messages m0,m1 must know of a witness
w where f(m0, w) 6= f(m1, w). They construct such a scheme assuming extractability obfuscation.
The notion we achieve is akin to that for standard WE, namely that encryptions of m0,m1 are
indistinguishable if x is not in the language, and thus no witness exists. However, we only require
indistinguishability obfuscation, avoiding thereby the implausibility result for extractable witness
encryption and eO by Garg et al. [GGHW14].

Related work. Zhandry [Zha14] proposes the related notion of reusable witness encryption. This
notion is similar to offline WE as defined in this work, the main difference being that now there
is a secret key that allows decryption of any ciphertext (even if it is encrypted relative to a no
instance). Zhandry constructs reusable WE from witness pseudorandom functions, a primitive he
introduces and constructs based on a new family of assumptions on multilinear maps.

The security notion of reusable WE differs from offline WE in two main aspects. First, in
offline WE the challenge is chosen by the adversary, whereas in reusable WE the challenge may
not be arbitrary, for otherwise the implausibility result of [GGHW14] applies. To overcome this
implausibility, the security of reusable WE is defined with respect to a fixed instance sampler, which
upon receiving the offline public parameters samples a challenge instance for the WE adversary.
Second, reusable WE allows for CCA type decryption queries during the security experiment,
whereas for offline WE we don’t consider decryption queries as there’s no secret key which would
allow to implement the security experiment efficiently.

2 Preliminaries

2.1 Notations and Conventions

Families of circuits. A family of circuits {Cλ}λ∈N is of polynomial size if for some polynomial
p(.) the size of every C ∈ Cλ is at most |C| ≤ p(λ).

Probabilistic algorithms. If X is a finite set then x ← X denotes the process of sampling x
uniformly at random from X . Let A be a probabilistic polynomial-time (PPT) algorithm; then
Pr[y ← A(x)] denotes the probability that A(x) outputs y when run on uniformly sampled coins.
We let Pr

[
ϕ(x1, x2, . . .) = 1 : x1 ← X1;x2 ← X2; . . .

]
denote the probability that the predicate ϕ

evaluated on (x1, x2, . . .) is true after the ordered execution of x1 ← X1, x2 ← X2, . . .

Negligible functions. A function ν : N→ R is called negligible, if for every positive polynomial
p(·), and all sufficiently large n ∈ N, it holds that ν(n) ≤ 1

p(n) . With negl(·) we denote a negligible
function.

3 The full x can then be explicitly given to the decryption algorithm, which will check if y
?
= H(x)
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2.2 Indistinguishability Obfuscation

The strongest notion of obfuscation is virtual black-box obfuscation, where one requires that given
the obfuscation of a circuit, everything that can be done could also be done given black-box access
to the functionality realized by the circuit. Barak et al. [BGI+12] show that this notion cannot be
achieved in general. They propose several weaker notions which potentially can be realized, the
weakest being indistinguishability obfuscation (iO), which only requires that the obfuscations of
two circuits computing the same function are indistinguishable.

Definition 1 (Indistinguishability obfuscation [BGI+12,GGH+13b]). A uniform PPT al-
gorithm iO is an indistinguishability obfuscator for a family of polynomial-size circuits {Cλ}λ∈N,
if the following hold:

– For all λ ∈ N, C ∈ Cλ and x we have

Pr
[
C(x) = C̃(x) : C̃ ← iO(1λ, C)

]
= 1 .

– For every non-uniform PPT adversary A, there exists a negligible function negl(·) such that
for all C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x:∣∣Pr

[
A(iO(1λ, C0)) = 1

]
− Pr

[
A(iO(1λ, C1)) = 1

]∣∣ = negl(λ) . (1)

Garg et al. [GGH+13b] construct a candidate iO for families of polynomial-size circuits, based on
a strong assumption on “approximate” multi-linear maps from [GGH13a] and fully homomorphic
encryption [Gen09].

2.3 Statistically Simulation-Sound NIZK

A non-interactive zero-knowledge (NIZK) proof system for a language L ∈ NP consists of four
PPT algorithms: a common-reference string (CRS) generator G, a prover P, a verifier V, and a
simulator S. A proof for a statement y ∈ L on a CRS generated by G consists of a single message π
sent from P to V, to which V responds by either accepting or rejecting. We require a NIZK proof
system to satisfy completeness, statistical soundness, and zero-knowledge. Completeness requires
the ability of an honest P to convince V of the validity of all true statements y ∈ L, by producing
a proof π using a witness for y ∈ L. Statistical soundness requires that no unbounded adversary
can convince an honest verifier of a proof of a false statement. Zero-knowledge means that a proof
does not reveal any information (in a computational sense) about the witness used to compute it;
this is formalized by requiring the existence of a simulator that can output a CRS and a proof for
any statement, which are computationally indistinguishable from real ones.

A NIZK proof system is statistically simulation-sound (SSS-NIZK), as defined in [GGH+13b],
if no unbounded adversary can produce a valid proof of an incorrect statement y /∈ L even when
given a simulated proof for any other statement y′ 6= y.

Definition 2 (SSS-NIZK). A tuple of PPT algorithms (G,P,V,S = (S1,S2)) is a statistically
simulation-sound non-interactive zero-knowledge (SSS-NIZK) proof system for a language L ∈ NP
with witness relation R if the following hold:

– Perfect completeness: For every (y, w) such that R(y, w) = 1,

Pr
[
V(crs, y, π) = 1 : crs← G(1λ) ; π ← P(crs, y, w)

]
= 1 .

– Statistical soundness:

Pr
[
∃ (y, π) s.t. y′ /∈ L ∧ V(crs, y, π) = 1 : crs← G(1λ)

]
= negl(λ) .
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ExpCPA-b
A (λ) :

(sk , pk)← Gen(1λ)

(m0,m1, st)← A1(1λ, pk)
cb ← Enc(pk ,mb)
b′ ← A2(st, cb)
Return b′

Fig. 1. ExpCPA-b
A (λ): The security game of CPA-secure public-key encryption.

– Computational zero-knowledge: For every (y, w) such that R(y, w) = 1, and non-uniform PPT
adversary A, it holds that∣∣Pr

[
A(crs, y, π) = 1 : crs← G(1λ);π ← P(crs, y, w)

]
−

Pr
[
A(crs, y, π) = 1 : (crs, τ)←S1(1

λ, y);π←S2(crs, τ, y)
]∣∣ = negl(λ) . (2)

– Statistical simulation soundness: For every y, it holds that

Pr

[
∃ (y′, π′) s.t. y′ 6= y ∧ y′ /∈ L
∧ V(crs, y′, π′) = 1

:
(crs, τ)← S1(1

λ, y);
π ← S2(crs, τ, y)

]
= negl(λ) . (3)

Garg et al. [GGH+13b] construct an SSS-NIZK scheme from any statistically sound NIZK scheme
and any computationally hiding and perfectly binding non-interactive commitment scheme. In
Sect. 5, we give an efficient instantiation of this, following their blueprint and using Groth-Sahai
proofs [GS08], which are perfectly sound, and ElGamal encryption as perfectly binding and com-
putationally hiding commitment scheme.

2.4 Public-Key Encryption

Our last ingredient is a standard public-key encryption scheme.

Definition 3 (PKE). A public-key encryption scheme for a message space M is a tuple of PPT
algorithms (Gen,Enc,Dec). Gen, on input a security parameter 1λ, outputs a secret/public key pair
(sk , pk). Enc, on input a public key pk and a message m ∈ M, outputs a ciphertext c using
randomness r ∈ {0, 1}`PK(λ). Finally, Dec, on input a secret key sk and a ciphertext c, outputs
m ∈M∪ {⊥}. Furthermore we require correctness and security:

– Correctness: For every λ ∈ N, m ∈ M, (sk , pk) ← Gen(1λ), c ← Enc(pk ,m), it holds that
Dec(sk , c) = m.

– Indistinguishability under chosen-plaintext attacks (CPA): For every non-uniform PPT adver-
sary A = (A1,A2) in ExpCPA-b

A (λ) as defined in Figure 1 (where we assume that A’s output
satisfies |m0| = |m1|), it holds that∣∣Pr

[
ExpCPA-0

A (λ) = 1
]
− Pr

[
ExpCPA-1

A (λ) = 1
]∣∣ = negl(λ) .

Definition 4. Let (PK.Gen,PK.Enc,PK.Dec) be a public-key encryption scheme. Then we define
the NP language Lenc and let Renc denote its corresponding witness relation:

Lenc :=

{
(pk1, pk2, c1, c2)

∣∣∣∣∃ (x,m, r1, r2) s.t. c1 = PK.Enc(pk1, (x,m); r1)
∧ c2 = PK.Enc(pk2, (x,m); r2)

}
(4)
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Expsel-WE-b
L,A (λ) :

(x,m0,m1, st)← A1(1λ)

(ppe, ppd)← Setup(1λ)

cb ← Enc(1λ, x,mb, ppe)
b′ ← A2(st, cb, ppe, ppd)
If x ∈ L, return 0
Return b′

Fig. 2. Expsel-WE-b
L,A (λ): The security game of

selectively-secure witness encryption.

Expadp-WE-b
L,A (λ) :

(ppe, ppd)← Setup(1λ)

(x,m0,m1, st)← A1(1λ, ppe, ppd)
cb ← Enc(1λ, x,mb, ppe)
b′ ← A2(st, cb)
If x ∈ L, return 0
Return b′

Fig. 3. Expadp-WE-b
L,A (λ): The security game of

adaptively-secure witness encryption.

3 Offline Witness Encryption

A (standard) witness encryption scheme [GGSW13, BH15] is defined by an encryption algorithm
Enc that takes a security parameter 1λ, a statement x and a message m and outputs a ciphertext c;
and a decryption algorithm Dec that on input a ciphertext c and a witness w, outputs a message.
Offline witness encryption allows for efficient encryption by outsourcing the resource-heavy com-
putations to a setup phase, which is independent of the statement and message to be encrypted.
There is thus a third algorithm Setup which on input a security parameter 1λ outputs a pair of
parameters: ppe, which is used by Enc, and ppd, which is used by Dec.

In our formalization we follow the strengthened definition of witness encryption put forth by
Bellare and Tung Hoang [BH15], who observe that the original WE definition of [GGSW13] allows
insecure schemes to be proven secure.

Definition 5 (Offline witness encryption). An offline witness encryption scheme for a lan-
guage L ∈ NP with witness relation R is a tuple of PPT algorithms (Setup,Enc,Dec) such that

– (ppe, ppd) ← Setup(1λ): On input a security parameter 1λ, Setup outputs parameters for en-
cryption ppe and parameters for decryption ppd.

– c ← Enc(1λ, x,m, ppe): On input a security parameter 1λ, a string x ∈ {0, 1}∗, a message
m ∈M, and encryption parameters ppe, Enc outputs a ciphertext c.

– Dec(c, w, ppd) ∈M∪{⊥}: On input a ciphertext c, a string w ∈ {0, 1}∗ and decryption param-
eters ppd, Dec outputs m ∈M∪ {⊥}.

We require correctness and security:

– Correctness: For all λ ∈ N, (x,w) such that R(x,w) = 1, m ∈M, (ppe, ppd)← Setup(1λ), and
c← Enc(1λ, x,m, ppe), we have Dec(c, w, ppd) = m.

– Security: (Setup,Enc,Dec) is selectively secure if for every non-uniform PPT adversary A =
(A1,A2) in Expsel-WE-b

L,A (λ) as defined in Figure 2 (where we assume that A’s output satisfies
|m0| = |m1|), it holds that∣∣Pr

[
Expsel-WE-0

L,A (λ) = 1
]
− Pr

[
Expsel-WE-1

L,A (λ) = 1
]∣∣ = negl(λ) .

Furthermore, (Setup,Enc,Dec) is adaptively secure if the same holds for Expadp-WE-b
L,A (λ) as

defined in Figure 3.

We now give our construction of offline WE that we have outlined in the introduction and prove
that it satisfies selective security.

Construction 1 (Offline WE). Let PKE = (PK.Gen,PK.Enc,PK.Dec) be a public-key encryp-
tion scheme, SSS-NIZK = (G,P,V,S = (S1, S2)) an SSS-NIZK scheme for Lenc (Def. 4), and let iO
be an indistinguishability obfuscator for the family of polynomial-size circuits Dλ defined in (5).
We construct an offline witness encryption scheme OWE = (Setup,Enc,Dec) as follows:
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(ppe, ppd)← Setup(1λ): On input a security parameter 1λ, do the following:

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– crs← NIZK.G(1λ).

– Construct the circuit Dskj ,crs ∈ Dλ with j = 1

Dskj ,crs(c, w):

Parse c as c = (x, c1, c2, π)
If NIZK.V(crs, (pk1, pk2, c1, c2), π) = 1

// Verify that π is a proof for (pk1, pk2, c1, c2).
// w.r.t. Lenc, where (pk1, pk2) is hardcoded.

(x̂, m̂) := PK.Dec(sk j , cj)
If (x̂ = x) ∧R(x,w) = 1

Return m̂
Return ⊥

(5)

– D̃sk1,crs ← iO(1λ, Dsk1,crs) after padding Dsk1,crs appropriately.4

– Set ppe = (crs, pk1, pk2) and ppd = D̃sk1,crs.
– Output (ppe, ppd).

c← Enc(1λ, x,m, ppe): On input a security parameter 1λ, a string x ∈ {0, 1}∗, a message m ∈M,

and ppe = (crs, pk1, pk2), Enc does the following:

– r1, r2 ← {0, 1}`PK(λ).
– Set c1 = PK.Enc(pk1, (x,m); r1) and c2 = PK.Enc(pk2, (x,m); r2).
– π ← NIZK.P

(
crs, (pk1, pk2, c1, c2), (x,m, r1, r2)

)
.

– Output c := (x, c1, c2, π).

Dec(c, w, ppd): On input a ciphertext c = (x, c1, c2, π), a string w ∈ {0, 1}∗ and parameters ppd =

D̃sk1,crs, Dec interprets D̃sk1,crs as a circuit and outputs m := D̃sk1,crs(c, w).

Theorem 1. OWE = (Setup,Enc,Dec) from Construction 1 is a selectively-secure offline wit-
ness encryption scheme if PKE = (PK.Gen,PK.Enc,PK.Dec) is a CPA-secure PKE scheme,
SSS-NIZK = (G,P,V, S = (S1, S2)) is an SSS-NIZK scheme for Lenc, and iO is an indistinguisha-
bility obfuscator for Dλ.

Proof. Assume towards contradiction that there exists a non-uniform PPT adversary A that non-
negligibly distinguishes Expsel-WE-0

L,A from Expsel-WE-1
L,A , which we abbreviate as ExpWE-b. We reach

a contradiction by first constructing a series of games Exp(i) defined in Figure 4, where by con-
struction, ExpWE-0 = Exp(0) and ExpWE-1 = Exp(6), and then proving for i = 0, 1, . . . , 5 that
Exp(i) and Exp(i+1) are computationally indistinguishable.

Exp(1) differs from Exp(0), which coincides with the original game ExpWE-0, in that the CRS
crs for the NIZK and the proof π are simulated rather than honestly generated. The zero-knowledge
property of SSS-NIZK guarantees that honestly generated CRSs and proofs are indistinguishable
from simulated ones by PPT adversaries.

Proposition 1. Exp
(0)
Lenc,A(λ) and Exp

(1)
Lenc,A(λ) are computationally indistinguishable if SSS-NIZK

is zero-knowledge.

Exp(2) differs from Exp(1) in that the second ciphertext c2 is generated as PK.Enc(pk2, (x,m1))

rather than PK.Enc(pk2, (x,m0)). (Dsk1,crs and (π, crs) are the same as in Exp(1).) The CPA-
security of PKE for key pk2 guarantees that whether c2 encrypts (x,m0) or (x,m1) is indistin-
guishable by PPT adversaries.

4 W.l.o.g. we assume that |Dsk1,crs| = |Dsk2,crs|; otherwise we always pad to the maximum possible length.
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Exp
(i)
Lenc,A(λ) // i ∈ {0, 1, 2, 3, 4, 5, 6}

(x,m0,m1, st)← A1(1λ)

(sk1, pk1)← PK.Gen(1λ)

(sk2, pk2)← PK.Gen(1λ)

If i ∈ {0, 6} crs← NIZK.G(1λ)

Elseif i ∈ {1, 2, 3, 4, 5} (crs, τ)← NIZK.S1(1
λ, c1, c2)

If i ∈ {0, 1, 2, 5, 6} D := Dskj ,crs with j = 1 as defined in (5)
Elseif i ∈ {3, 4} D := Dskj ,crs with j = 2 as defined in (5)

D̃ ← iO(1λ, D)

Set ppe = (crs, pk1, pk2) and ppd = D̃

r1, r2 ← {0, 1}`PK(λ)

If i ∈ {0, 1, 2, 3} c1 := PK.Enc(pk1, (x,m0); r1)
Elseif i ∈ {4, 5, 6} c1 := PK.Enc(pk1, (x,m1); r1)

If i ∈ {0, 1} c2 := PK.Enc(pk2, (x,m0); r2)
Elseif i ∈ {2, 3, 4, 5, 6} c2 := PK.Enc(pk2, (x,m1); r2)

If i = 0 π ← NIZK.P(crs, (pk1, pk2, c1, c2), (x,m0, r1, r2))
Elseif i = 6 π ← NIZK.P(crs, (pk1, pk2, c1, c2), (x,m1, r1, r2))
Elseif i ∈ {1, 2, 3, 4, 5} π ← NIZK.S2(crs, τ, (pk1, pk2, c1, c2))

Set c = (x, c1, c2, π)
b′ ← A2(st, c, ppe, ppd)
If x ∈ L, return 0
Return b′

Fig. 4. The hybrid games used in the proof of Theorem 1.

Proposition 2. Exp
(1)
Lenc,A(λ) and Exp

(2)
Lenc,A(λ) are computationally indistinguishable if PKE is

CPA-secure.

Exp(3) differs from Exp(2) in thatDsk2,crs is obfuscated instead ofDsk1,crs. Statistical simulation-
soundness of SSS-NIZK now guarantees that Dsk1,crs and Dsk2,crs are functionally equivalent when
crs is simulated for the statement y := (pk1, pk2, c1, c2). It then follows from the security of iO
that their obfuscations are computationally indistinguishable.

Proposition 3. Exp
(2)
Lenc,A(λ) and Exp

(3)
Lenc,A(λ) are computationally indistinguishable if SSS-NIZK

is statistically simulation-sound, and iO is secure.

Exp(4) differs from Exp(3) in that the first ciphertext c1 is generated as PK.Enc(pk1, (x,m1))

rather than PK.Enc(pk1, (x,m0)). (Dsk2,crs and (π, crs) are the same as in Exp(3).) Now CPA
security of PKE w.r.t. pk1 implies that this change is computationally indistinguishable.

Proposition 4. Exp
(3)
Lenc,A(λ) and Exp

(4)
Lenc,A(λ) are computationally indistinguishable if PKE is

CPA-secure.

Exp(5) differs from Exp(4) in that Dsk1,crs is obfuscated rather than Dsk2,crs. Statistical simula-
tion soundness of SSS-NIZK together with security of iO implies that this change is computationally
indistinguishable.

Proposition 5. Exp
(4)
Lenc,A(λ) and Exp

(5)
Lenc,A(λ) are computationally indistinguishable if SSS-NIZK

is statistically simulation-sound, and iO is secure.

Exp(6) coincides with the original game ExpWE-1, and differs from Exp(5) in that the CRS and
NIZK proof (crs, π) are honestly generated rather than simulated. By the zero-knowledge property
of SSS-NIZK this change is computationally indistinguishable.
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Proposition 6. Exp
(5)
Lenc,A(λ) and Exp

(6)
Lenc,A(λ) are computationally indistinguishable if SSS-NIZK

is zero-knowledge.

Theorem 1 now follows from Propositions 1–6, which we prove in Appendix A. ut

4 Offline Functional Witness Encryption

We also define a “functional” version of offline WE. Here a receiver holding a witness w does not
learn the message m, but now we think of the encrypted string m as a tuple (m′, f), and decryption
using witness w yields f(m′, w).

Definition 6 (Offline functional witness encryption). Everything is defined as in Defini-
tion 5, except that we change the correctness property to

– Correctness: For all λ ∈ N, (x,w) such that R(x,w) = 1, m ∈M, (ppe, ppd)← Setup(1λ), and
c← Enc(1λ, x,m, ppe), parsing m as a tuple m = (m′, f), we have Dec(c, w, ppd) = f(m′, w).

Construction 2 (Offline functional WE). This construction is defined exactly as Construc-
tion 1, except that in the definition of the decryption circuit in Equation (5) on page 8 we replace

Return m̂

with
Parse m̂ as (m̂′, f) and return f(m̂′, w) .

Here, f can be any description of a function, like a circuit or a Turing machine. If we let f encode
a Turing machine, we must put an upper bound on its running time, as the decryption, which
must evaluate f(m̂, w), is done by an (obfuscated) circuit whose size is a priori fixed.

The proof of Theorem 2 below is basically identical to the proof of Theorem 1 and is therefore
omitted.

Theorem 2. Construction 2 is a selectively-secure offline functional witness encryption scheme
under the same assumptions as in Theorem 1.

5 Instantiating Enc in the Standard Model

We now show how to efficiently instantiate the encryption algorithm of our offline-WE scheme in a
bilinear group and prove its security under the SXDH assumption without random oracles. We use
ElGamal encryption [ElG84] for the public-key encryption scheme and build an SSS-NIZK proof
system from Groth-Sahai proofs [GS08] following the abstract blueprint for it given in [GGH+13b].

5.1 Tools

Bilinear groups. G is a bilinear-group generator if on input a security parameter 1λ it returns
the description of a bilinear group Λ = (p,G,H,T, e, g, h) with the following properties:

– G, H and T are groups of prime order p, where p is of bit-length λ.
– e : G×H→ T is a bilinear map, that is, e(Ra, Sb) = e(R,S)ab for all R ∈ G, S ∈ H, a, b ∈ Zp.
– g and h generate G and H, resp., and e(g, h) generates T.

We will use Type-3 bilinear groups [GPS08], where no efficiently computable homomorphisms
are assumed to exist from G to H or vice versa. We can therefore assume that the decisional
Diffie-Hellman assumption (DDH) holds in G: for any non-uniform PPT A,∣∣∣∣Pr

[
1← A(Λ, ga, gb, gab) :
Λ← G(1λ); a, b← Zp

]
− Pr

[
1← A(Λ, ga, gb, gc) :
Λ← G(1λ); a, b, c← Zp

]∣∣∣∣ = negl(λ) . (6)

We moreover assume DDH holds in H, that is, (6) holds with g replaced by h. The SXDH assump-
tion for a bilinear-group generator G is that DDH holds in both G and H. It implies security of
Groth-Sahai proofs.
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ElGamal encryption. We use ElGamal encryption to encrypt message vectors in G`, for some
fixed `. A secret key x← Z `

p defines a public key X ∈ G` as Xi := gxi for i = 1, . . . , `. A message

M = (Mi)
`
i=1 ∈ G` is encrypted under X by choosing r ← Zp and setting c = (c1, . . . , c`, c`+1) :=

((Mi ·Xi
r)`i=1, g

r). Note that we use the same randomness for every component, which decreases
ciphertext length. CPA security follows from the DDH assumption in G via a standard hybrid
argument.

Groth-Sahai proofs. Groth-Sahai (GS) proofs [GS08] are efficient non-interactive witness-indis-
tinguishable5 (WI) proofs for several types of equations in bilinear groups. We only require linear
pairing-product equations over variables W1, . . . ,Wn ∈ H, which are of the form

n∏
i=1

e(Ai,Wi) = t , (7)

where (Ai)
n
i=1 ∈ Gn, and t ∈ T are public constants. (As a convention, we always underline the

variables in equations to ease readability.) GS proofs allow a prover to prove that she knows an
assignment to variables which satisfy a given set of equations. Groth-Sahai proofs are perfectly
sound (meaning there do not exist proofs for an unsatisfiable set of equations); moreover, given a
trapdoor for the CRS, one can extract the satisfying values from a proof. The instantiation of GS
proofs we use is WI under the SXDH assumption. The cost of a proof is 2 elements from H per
variable and 2 elements from G per equation.

5.2 Instantiation

Using ElGamal encryption, we encode pairs M = (x,m) (that is, statement/message pairs which
we encrypt in our offline-WE instantiation) as a vector of group elements from G`. We thus assume
that there exists an efficiently decodable encoding Cd of pairs (x,m) into G` [FJT13].

We now construct an SSS-NIZK proof system which allows us to prove that 2 ElGamal cipher-
texts under different keys encrypt the same message M . A CRS for this system consists of a CRS for
GS proofs together with a commitment C to 1 (which we assume is not a valid statement/message
pair M). An SSS-NIZK proof for the statement y: “c(1) and c(2) encrypt the same message” is
a GS proof that either y holds OR C is a commitment to (c(1), c(2)). Statistical soundness now
follows from perfect soundness of GS proofs: since C is not a commitment to (c(1), c(2)), it must
be the case that y holds.

Zero-knowledge holds, since given a statement (c(1), c(2)), the simulator can include a commit-
ment to it in the CRS and can now use the second clause in the disjunction to simulate a proof
for that statement. Since this is (in an information-theoretic sense) the only statement that can
be simulated, statistical simulation-soundness (SSS) holds as well. We now present the details.

Commitment: A statement for our language Lenc defined in Equation (4) is of the form (X(1),
X(2), c(1), c(2)), where X(1),X(2) ∈ G` are ElGamal encryption keys and c(1), c(2) ∈ G`+1

are ElGamal encryptions of the same message. Since the public keys are hard-coded in the
description of Dskj ,crs(c, w) (defined in (5)), we need not include them in the statement.6 We

define our non-interactive commitment scheme that lets us commit to a message (c(1), c(2)) ∈
G2`+2 as follows:

– The commitment key is ck = (K
(1)
1 , . . . ,K

(1)
`+1,K

(2)
1 , . . . ,K

(2)
`+1)← G2`+2.

5 Witness-indistinguishability for a proof system for a language L means the following: no PPT adversary that given
crs chooses y, w0, w1 with R(y, w0) = R(y, w1) = 1 can distinguish π0 ← P(crs, y, w0) from π1 ← P(crs, y, w1).

6 We actually construct a proof system for the language Lenc,pk1,pk2
:= {(c1, c2)| ∃ (M, r1, r2) : c1 = PK.Enc(pk1,M ;

r1) ∧ c2 = PK.Enc(pk2,M ; r2)}, where M is an encoding of (x,m).
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– A commitment Com(ck , (c(1), c(2))) to a message (c(1), c(2)) ∈ G2`+2 is computed by picking
rc ← Zp and setting

C =
((
C

(i)
j := c

(i)
j · (K

(i)
j )rc

)i=1,2

j=1...`+1
, C ′ := grc

)
.

A commitment can be opened by publishing the “opening” W = hrc , which allows one to check
e(C ′, h) = e(g,W ) and

e(C
(i)
j ·(c

(i)
j )−1, h) = e(K

(i)
j ,W ) for i = 1, 2 , j = 1 . . . , `+ 1 .

This yields a perfectly binding commitment scheme for messages from G2`+2, and, as the commit-
ment is an ElGamal encryption, it is computationally hiding under the DDH assumption in G.

Proof system: The CRS of our SSS proof system consists of a crsGS ← GS.G(Λ), a commitment
key ck ← G2`+2 and a commitment C ← Com(ck , (1, . . . , 1)), that is

crs := (crsGS, ck ,C) .

We use (witness-indistinguishable) GS proofs to prove that there exist values Hc, He,W1,W2,
Wc ∈ H which satisfy the following equations:

e(g,Hc ·He · h−1) = 1 (8)

e(C
(i)
j ·(c

(i)
j )−1, Hc) = e(K

(i)
j ,Wc) for i = 1, 2 , j = 1 . . . , `+ 1 (9)

e(C ′, Hc) = e(g,Wc) (10)

e(c
(1)
j ·(c

(2)
j )−1, He) = e(X

(1)
j ,W1) e(X

(2)
j ,W2) for j = 1, . . . , ` (11)

e(c
(i)
`+1, He) = e(g,Wi) for i = 1, 2 (12)

A user who computes encryptions c(1), c(2) as c(i) =
(
(Mj · (X(i)

j )ri)`j=1, g
ri
)

instantiates the
variables as

Hc := 1 , He := h , Wc := 1 , W1 := hr1 , W2 := hr2 ,

which satisfy equations (8)–(12) and can thus compute a GS proof.

Soundness. Below we show that a proof for equations (8)–(12) proves that

– either c(1) and c(2) are encryptions of the same message
– or C contained in the CRS is a commitment to (c(1), c(2)).

(13)

Since GS proofs are statistically sound and an honestly generated CRS contains a commitment
to (1, . . . , 1) (which we assume is not a valid instance/message pair), a valid proof shows that the
“either” clause above is satisfied, thus (c(1), c(2)) is in the language. We now show (13).

– Equation (8) proves that either Hc 6= 1 or He 6= 1; since e(g, 1 · 1 · h−1) 6= 1.

– IfHc 6= 1 then (9)–(10) prove that (C
(1)
1 , . . . , C

(1)
`+1, C

(2)
1 , . . . , C

(2)
`+1, C

′) commits to (c
(1)
1 , . . . , c

(1)
`+1,

c
(2)
1 . . . , c

(2)
`+1): Let η, ω ∈ Zp, η 6= 0, be such that Hc = hη and Wc = hω. From (10) we

have C ′ = gω/η, whereas the equations in (9) yield C
(i)
j · (c

(i)
j )−1 = (K

(i)
j )ω/η, thus C

(i)
j =

c
(i)
j ·(K

(i)
j )ω/η, which together means that (C

(1)
1 , . . . , C

(2)
`+1, C

′) is a commitment to (c
(1)
1 , . . . , c

(2)
`+1)

with randomness rc = ω/η.

– If He 6= 1 then with η 6= 0, ω1 and ω2 such that He = hη and Wi = hωi the equations in (12)

show that c
(i)
`+1 = gωi/η, for i = 1, 2. Set ri := ωi/η and let m

(i)
j be (the unique values) such

that c
(i)
j = gm

(i)
j · (X(i)

j )ri . Then the equations in (11) yield c
(1)
j ·(c

(2)
j )−1 = (X

(1)
j )r1 · (X(2)

j )−r2 ,

thus gm
(1)
j = gm

(2)
j for all j = 1, . . . , `, meaning c(1) and c(2) encrypt the same message.
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Simulation. Given a statement (c(1), c(2)), the simulator sets up the CRS by choosing rc ← Zp
and setting C := Com(ck , (c(1), c(2)); rc). It then computes a proof for equations (8)–(12) by
instantiating the variables as

Hc := h , He := 1 , Wc := hrc , W1 := 1 , W2 := 1 .

Since the commitment in the CRS is hiding under DDH in G, and since GS proofs are witness-
indistinguishable under SXDH, this simulation is also indistinguishable under SXDH (which implies
DDH in G). Statistical simulation-soundness holds, since once the CRS is set up, (c(1), c(2)) is the
only statement for which a proof using the 2nd clause in (13) can be computed. Any other proof
must use the first clause, meaning the statement must be in the language.

5.3 Cost of an Encryption

In standard implementations of bilinear groups for 128-bit security, G elements are of size 256 bits
and H elements are of size 512 bits. Let ` be such that pairs (x,m) are of size < 128 · ` bits, that
is, they can be mapped to G`.

An encryption in our WE scheme then consists of two ElGamal ciphertexts (each in G`+1) and a
GS proof with 5 variables in H (requiring 10 elements from H) and 3`+6 linear equations (requiring
6`+ 12 elements from G). Computing an ElGamal encryption requires `+ 1 exponentiations and `
group operations in G. The 2 elements from H required for each variable require 2 exponentiations
and one group operation in H. The 2 elements from G required for each equation are computed
using together 4 exponentiations and 2 group operations in G.

With the above instantiation the output of Enc is in G8`+14×H10. If two group elements suffice
to encode pairs (x,m) then one encryption has ≈ 1.6 kB. For every 128-bit increase of the message
length, the encryption only grows by 8 elements from G, that is 0.25 kB.
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A Proofs

Below, we assume that the adversary A is deterministic, which is without loss of generality as we
always can fix A’s random coins to some value maximizing its advantage. As A has zero advantage
if the x it initially outputs is in L, we can further assume wlog. that the x initially output by A
is never in L.

A.1 Proof of Proposition 1

Proof. Assume towards contradiction that there exists a non-uniform PPT adversary A = (A1,A2)
and a polynomial p(·) such that for infinitely many λ,∣∣Pr[Exp

(0)
Lenc,A(λ) = 1]− Pr[Exp

(1)
Lenc,A(λ) = 1]

∣∣ ≥ 1

p(λ)
.

Then we use A to construct a non-uniform PPT adversary B against the zero-knowledge security
of SSS-NIZK (cf.(2)) as follows:

B(1λ):

– (x,m0,m1, st)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– r1, r2 ← {0, 1}`PK(λ).
– c1 := PK.Enc(pk1, (x,m0); r1) and c2 := PK.Enc(pk2, (x,m0); r2).

– Set y = (pk1, pk2, c1, c2) and w = (x,m0, r1, r2) and note that Renc(y, w) = 1.

– Submit (y, w) to the zero-knowledge game of (2) to obtain either

– An honest (crs∗, π∗): crs∗ ← NIZK.G(1λ) and π∗ ← NIZK.P(crs∗, y, w), or

– A simulated (crs∗, π∗): (crs∗, τ)← NIZK.S1(1
λ, y), and π∗ ← NIZK.S2(crs

∗, τ, y)

– Set π = π∗ and crs = crs∗.

– Construct D := Dskj ,crs with j = 1 as defined in (5).

– D̃ ← iO(1λ, D).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c = (x, c1, c2, π).

– Output b′ ← A2(st, c, ppe, ppd).

By construction, if (crs∗, π∗) is generated honestly, then B simulates Exp
(0)
Lenc,A, and if (crs∗, π∗)

is simulated, then B simulates Exp
(1)
Lenc,A. Therefore, for all (y, w) such that Renc(y, w) = 1 and
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infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr[Exp
(0)
Lenc,A(λ) = 1]− Pr[Exp

(1)
Lenc,A(λ) = 1]

∣∣ =∣∣∣∣Pr

[
B(crs, y, π)

= 1
:

crs← G(1λ);
π←P(crs, y, w)

]
− Pr

[
B(crs, y, π)

= 1
:

(crs, τ)←S1(1
λ, y);

π ← S2(crs, τ, y)

]∣∣∣∣
We therefore reach a contradiction to the zero-knowledge security of SSS-NIZK, and conclude that∣∣Pr[Exp

(0)
Lenc,A(λ) = 1]− Pr[Exp

(1)
Lenc,A(λ) = 1]

∣∣ = negl(λ) .

A.2 Proof of Proposition 2

Proof. Assume towards contradiction that there exists a non-uniform PPT adversary A = (A1,A2)
and a polynomial p(·) such that for infinitely many λ,∣∣Pr[Exp

(1)
Lenc,A(λ) = 1]− Pr[Exp

(2)
Lenc,A(λ) = 1]

∣∣ ≥ 1
p(λ) .

Then we use A to construct a non-uniform PPT adversary B = (B1,B2) which runs in the CPA
security game ExpCPA-b

B (λ) of PKE (cf. Figure 1) as follows:

B1(1λ, pk):

– (x,m0,m1, stA)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and set pk2 = pk .

– r1 ← {0, 1}`PK(λ).
– c1 := PK.Enc(pk1, (x,m0); r1).

– Set m′0 = (x,m0), m′1 = (x,m1), and st = (sk1, pk1, c1, r1, x,m0,m1, stA).

– Output (m′0,m
′
1, st).

B2(st, c′b):

– Set c2 = c′b and y = (pk1, pk2, c1, c2).

– (crs, τ)← NIZK.S1(1
λ, y).

– π ← NIZK.S2(crs, τ, y).

– Construct D := Dskj ,crs with j = 1 as defined in (5).

– D̃ ← iO(1λ, D).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c = (x, c1, c2, π).

– Output b′ ← A2(stA, c, ppe, ppd).

By construction, if c′b ← PK.Enc(pk ,m′0), then B simulates Exp
(1)
Lenc,A, and if c′b ← PK.Enc(pk ,

m′1), then B simulates Exp
(2)
Lenc,A. Therefore, for infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr[Exp
(1)
Lenc,A(λ) = 1]− Pr[Exp

(2)
Lenc,A(λ) = 1]

∣∣ =∣∣Pr[ExpCPA-0
B (λ) = 1]− Pr[ExpCPA-1

B (λ) = 1]
∣∣ .

We therefore reach a contradiction to the CPA security of PKE, and conclude that∣∣Pr[Exp
(1)
Lenc,A(λ) = 1]− Pr[Exp

(2)
Lenc,A(λ) = 1]

∣∣ = negl(λ) .

A.3 Proof of Proposition 3

Proof. Assume towards contradiction that there exists a non-uniform PPT adversary A = (A1,A2)
and a polynomial p(·) such that for infinitely many λ,∣∣Pr[Exp

(2)
Lenc,A(λ) = 1]− Pr[Exp

(3)
Lenc,A(λ) = 1]

∣∣ ≥ 1
p(λ) .
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Then we use A to construct a non-uniform PPT adversary B = (B1,B2) against the indistinguisha-
bility security of iO (cf. (1)) as follows:

B(1λ):

– (x,m0,m1, st)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– r1, r2 ← {0, 1}`PK(λ).
– Set c1 = PK.Enc(pk1, (x,m0); r1) and c2 = PK.Enc(pk2, (x,m1); r2).

– Set y = (pk1, pk2, c1, c2).

– (crs, τ)← NIZK.S1(1
λ, y).

– π ← NIZK.S2(crs, τ, y).

– Construct Dj := Dskj ,crs for j = 1, 2 as defined in (5).

– Submit (D1, D2) to the iO challenger to obtain D̃ ← iO(1λ, Dj).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c = (x, c1, c2, π).

– Output b′ ← A2(stA, c, ppe, ppd).

By construction, if D̃ ← iO(1λ, D1), then B simulates Exp
(2)
Lenc,A, and if D̃ ← iO(1λ, D2), then

B simulates Exp
(3)
Lenc,A. Therefore, for infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr[Exp
(2)
Lenc,A(λ) = 1]− Pr[Exp

(3)
Lenc,A(λ) = 1]

∣∣ =∣∣Pr[B(iO(1λ, D1)) = 1]− Pr[B(iO(1λ, D2)) = 1]
∣∣ . (14)

Relying on the statistical simulation soundness of SSS-NIZK, we claim that D1 ≡ D2. Let
((x′, c′1, c

′
2, π
′), w′) be an arbitrary input, we show that D1 ≡ D2 as follows:

– If x′ /∈ L, we have D1 ≡ D2 ≡ ⊥ as for any w′ ∈ {0, 1}∗, it holds that R(x′, w′) = 0.
– If x′ ∈ L, observe that D1 6≡ D2 if and only if ∃m′0 6= m′1, pk ′1, pk ′2, r

′
1, r
′
2, and

y′ := (pk ′1, pk ′2, c
′
1 = PK.Enc(pk ′1, (x

′,m′0); r
′
1), c

′
2 = PK.Enc(pk ′1, (x

′,m′1); r
′
2))

such that NIZK.V(crs, y′, π′) = 1. Note that y′ /∈ Lenc, x /∈ L and therefore y 6= y′. It follows
from the statistical simulation soundness of SSS-NIZK (cf. (3)) that there exists no such (y′, π′)
such that NIZK.V(crs, y′, π′) = 1 for a simulated crs.

Together, D1 ≡ D2 and (14) contradict the security of iO, and we conclude that∣∣Pr[Exp
(2)
Lenc,A(λ) = 1]− Pr[Exp

(3)
Lenc,A(λ) = 1]

∣∣ = negl(λ) .

A.4 Proofs of Propositions 4, 5 and 6

The proofs of Propositions 4, 5 and 6 are analogous to those of Propositions 2, 3 and 1, respectively.
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