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Abstract

About three decades ago it was realized that implementing private channels between parties
which can be adaptively corrupted requires an encryption scheme that is secure against selective
opening attacks. Whether standard (IND-CPA) security implies security against selective opening
attacks has been a major open question since. The only known reduction from selective opening
to IND-CPA security loses an exponential factor. A polynomial reduction is only known for the
very special case where the distribution considered in the selective opening security experiment
is a product distribution, i.e., the messages are samples independent from each other.

In this paper we give a reduction whose loss is quantified via the dependence graph (where
message dependencies correspond to edges) of the underlying message distribution. In particular,
for some concrete distributions including Markov distributions, our reduction is polynomial.

Keywords: public key encryption, selective opening security, Markov, IND-CPA, IND-SO-CPA

1 Introduction

Security under Selective Opening Attacks. Consider a scenario where many parties 1, . . . , n
send messages to one common receiver. To transmit a message mi, party i samples fresh randomness
ri and sends the ciphertext ci = Encpk (mi; ri) to the receiver. Assume an adversary A that does
not only eavesdrop on the sent ciphertexts (c1, . . . , cn), but corrupts a set I ⊆ [n] of the sender’s
systems, thus learning the encrypted message mi and the randomness ri used to encrypt mi. The
natural question to ask is whether the messages of uncorrupted parties remain confidential. Such
attacks are referred to as selective opening (SO) attacks (under sender corruption).

Selective opening attacks naturally occur in multi-party computation where we assume secure
channels between parties. Since a party might become corrupted we would need the encryption on
the channels to be selective opening secure. In practice, the same argument applies to a server that
establishes secure connections that shall remain secure if users are corrupted.
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Difficulty of Proving Security under Selective Opening Attacks. The widely accepted
standard notion for public-key encryption schemes is indistinguishability under chosen-plaintext
attacks (IND-CPA security). At first sight one might consider a straight-forward hybrid argument
to show that IND-CPA security already implies security against selective opening attacks since
every party samples fresh randomness independently. Though, so far, nobody has been able to
bring such a hybrid argument forward in general. Notice that revealing randomness ri allows a
selective opening adversary to verify that a corrupted ciphertext ci is an encryption of mi. The
adversaries possibility to corrupt parties introduces a difficulty in proving that standard (IND-CPA)
security already implies selective opening security. It seems to be the case that the reduction has
to know (i.e. guess) the complete set I of all corruptions going to be made by A in order to
serve its security game before A actually announced the senders it would like to corrupt. Since
I might be any subset of {1, . . . , n}, a direct approach would lead to an exponential loss in the
reduction. A main technical obstacle is that the encrypted messages may depend on each other.
If, for example, they are encrypted and sent sequentially, message mi may depend on mi−1 and all
previous messages. Thus, corrupting some parties might already leak some information on messages
sent by not corrupted parties.

Until today, the only result in the standard model shows that IND-CPA implies selective opening
security is by [8, 3] for the special case of a product distribution, i.e., all messages m1, . . . ,mn are
sampled independently from each other. Intuitively, this holds since corrupting some ciphertext
cannot reveal information on related messages if there are no related messages at all and the hybrid
argument one might expect to work goes through. This leaves the following open question:

Does standard security imply selective opening security for any non-trivial message distribution?

1.1 Our Contributions

We present the first positive results in the standard model, showing that IND-CPA security implies
IND-SO-CPA security for a class of non-trivial message distributions with few dependencies. Here
IND-SO-CPA security refers to the indistinguishability-based definition of selective opening security
usually referred to as weak IND-SO-CPA security (cf. [4]).

IND-SO-CPA requires that a passive adversary, that obtains ciphertexts (c1, . . . , cn) and access
to a ciphertext opening oracle, revealing the underlying message mi of some ciphertext ci and
the randomness used to encrypt mi, cannot distinguish the originally encrypted messages from
freshly resampled messages that are as likely as the original messages given the messages of opened
ciphertexts.

We consider graph-induced distributions where dependencies among messages correspond to
edges in a graph and show that IND-CPA implies IND-SO-CPA security for all graph-induced dis-
tributions that satisfy a certain low connectivity property.

In particular, our result holds for the class of Markov distributions, i.e. distributions on message
vectors (m1, . . . ,mn) where all information relevant for the distribution of mi is present in mi−1.
We prove that any IND-CPA secure public-key encryption scheme is IND-SO-CPA secure if the
messages are sampled from a Markov distribution.

For instance, our results cover distributions where message mi contains all previous messages
(e.g., email conversations), or distributions where messages are increasing, i.e., m1≤m2 ≤ . . .≤mn.

Details. Think of an n-message vector sampled from some distribution D as a graph G on n
vertices {1, . . . , n} where we have an edge from message mi to message mj if the distribution of mj
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depends on mi. Further, fix any subset I ⊆ {1, . . . , n} of opening queries made by some adversary.

The main observation is that removing I and all incident edges, G decomposes into connected
components C1, . . . , Cn′ that can be resampled independently, i.e. the distribution of messages on
Ck solely depends on the messages in the neighbourhood of Ck and D.

To argue that there is no efficient adversary ASO that distinguishes sampled and resampled
messages in the selective opening experiment, we proceed in a sequence of hybrid games, starting
in a game where ASO obtains only sampled messages. In each hybrid step we use IND-CPA security
to replace sampled messages on a connected component Ck with resampled messages without ASO

noticing. To this end, the reduction from IND-CPA to the indistinguishability of two consecutive
hybrids has to identify Ck to embed its own challenge before ASO makes any opening query.

We consider two approaches for guessing Ck. The first will take graphs into account that consist
of polynomially many connected subgraphs, hence, the reduction can guess Ck right away. The
second take studies graphs were every connected subgraph has a neighbourhood of constant size,
allowing the reduction to guess Ck by guessing its neighbourhood. We show that the first approach
ensures a reduction with polynomial loss for a strictly greater class of graphs than then second one.

Additionally, when the distribution is induced by an acyclic graph, we give a more sophisticated
hybrid argument for the second approach, where merely a single sampled message is replaced by a
resampled message in each hybrid transition allowing for a tighter reduction. Due to the hybrid’s
definition it will suffice to guess on vertex of Ck’s neighbourhood fewer.

1.2 Previous Work

There are three not polynomially equivalent definitions of SO secure encryption (cf. [4]). Since
messages in the IND-SO experiment have to be resampled conditioned on opened messages there
are two notions based on indistinguishability: Weak IND-SO restricts to distributions that support
efficient conditional resampling. [2] gave an indistinguishability-based notion for passive adver-
saries, usually referred to as IND-SO-CPA. Full IND-SO allows for arbitrary distributions on the
messages and is due to [4] that adopted a notion for commitment schemes (cf. [2]) to encryption.

SIM-SO captures semantic security and demands that everything an adversary can output, can
be computed by a simulator that only sees the messages of corrupted parties, whereas it does not
see the public key, any ciphertext or any randomness. The notion dates back to [8] where the
selective decommitment problem was studied and does not suffer from a distribution restriction as
weak IND-SO since it does not involve resampling.

[2] gave the first IND-SO-CPA secure encryption scheme in the standard model based on lossy
encryption. Selective-opening secure encryption can be constructed from deniable encryption (cf.
[6]) as well as from non-committing encryption (cf. [7]). [3, 1] separated SIM-SO-CPA from IND-CPA
security and showed that IND-CPA security entails weak IND-SO-CPA security if the messages
are (basically) sampled independently. The same result was already established for commitment
schemes in [8].

To date, it is the only positive result on IND-CPA implying weak IND-SO-CPA in the standard
model. [4] separated full IND-CPA and SIM-SO-CPA security; neither of them implies the other.
[10] proved that IND-CPA implies weak IND-SO-CPA in the generic group model for a certain class
of encryption schemes and separated IND-CCA from weak IND-SO-CCA security.

Recently, Hofheinz et al. ([9]) managed to construct a contrived first IND-CPA (even IND-CCA)
secure PKE that is not weak IND-SO-CPA secure. Thereby they have to rely on strong assumptions
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as the existence of public-coin differing-inputs obfuscation and certain correlation intractable hash
functions.

2 Preliminaries

We denote the security parameter with λ. A function f is polynomial in n, f(n) = poly(n), if
f(n) = O(nc) for some c > 0. Let 0 < n := n(λ) = poly(λ). A function f(n) is negligible in n,
f(n) = negl(n), if f(n) = O(n−c) for all c > 0. Any algorithm receives the unary representation 1λ

of the security parameter as first input. We say that an algorithm is a PPT algorithm, if it runs
in probabilistic polynomial time (in λ). For a finite set S we denote the sampling of a uniform
random element a by a←$ S, and the sampling according to some distribution D by a← D. For
a, b ∈ N, a ≤ b let [a, b] := {a, a+ 1, . . . , b} and [a] := [1, a]. For a < b let [b, a] := ∅. For I ⊆ [n] let
I := [n]\I. We use bold faced letters to denote vectors and vectors are of length n if not indicated
otherwise. For a vector m and i ∈ [n] let mi denote the ith entry of m and |m| the number of
entries in m. For a set I = {i1, . . . , i|I|}, i1 < . . . < i|I| let mI denote the projection of m to its
I-entries: mI := (mi1

, . . . ,mi|I|
). For an event E let E denote the complementary event.

2.1 Games

A game G is a collection of procedures/oracles {Initialize,P1,P2, . . . ,Pt,Finalize} for t ≥ 0.
Procedures P1 to Pt and Finalize might require some input parameters. We implicitly assume
that boolean flags are initialized to false, numerical types are initialized to 0, sets are initialized to
∅, while strings are initialized to the empty string ε. An adversary A is run in game G if A calls
Initialize. During the game A may run some procedure Pi as often as allowed by the game.

For each game in this paper, the “Open” procedure may be called an arbitrary number of times,
while every other procedure is called one time during the games execution.

The game’s interface is provided by the challenger. IfA calls P, the output of P is returned toA,
except for the Finalize procedure. On A’s call of Finalize the game ends and outputs whatever
Finalize returns. Let GA ⇒ out denote the event that G runs A and outputs out. The advantage
Adv(GA,HA) of A in distinguishing games G and H is defined as

∣∣Pr[GA ⇒ 1]− Pr[HA ⇒ 1]
∣∣. Let

Bad denote the event that a boolean flag Bad was set to true during the execution of some game.

2.2 Public-Key Encryption Schemes

A public-key encryption scheme consists of three PPT algorithms. Gen generates a key pair
(pk, sk) ← Gen(1λ) on input 1λ. The public key pk implicitly contains 1λ and defines three fi-
nite sets: the message space M, the randomness space R, and the ciphertext space C. Given pk,
a message m ∈ M and randomness r ∈ R, Enc outputs an encryption c = Encpk (m; r) ∈ C of m
under pk. The decryption algorithm Dec takes a secret key sk and a ciphertext c ∈ C as input, and
outputs a message m = Decsk (c) ∈ M, or a special symbol ⊥6∈ M indicating that c is not a valid
ciphertext. In the following let PKE = (Gen,Enc,Dec) denote a public-key encryption scheme.

We require PKE to be correct: For all security parameters λ, for all (pk , sk)← Gen(1λ), and for
all m ∈M we have Pr[Decsk (Encpk (m; r)) = m] = 1 where the probability is taken over the choice
of r. We apply Enc and Dec to message vectors m = (m1, . . . ,mn) and randomness r = (r1, . . . , rn)
as Enc(m; r) := (Enc(m1; r1), . . . ,Enc(mn; rn)).
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2.3 IND-CPA and mult-IND-CPA Security

We revise the standard security of IND-CPA security and give a definition of indistinguishable
ciphertext vectors under chosen plaintext attacks that will allow for cleaner proofs of our results.

Definition 2.1 (mult-IND-CPA security) For PKE, an adversary Bmult, s ∈ N and a bit b we
consider the mult-IND-CPABmult

PKE,b game as given in Figure 1. Bmult may only submit message vectors

m0, m1 ∈Ms. To PKE, Bmult and λ we associate the following advantage function

Advmult-IND-CPA
PKE (Bmult, λ) := Adv(mult-IND-CPABmult

PKE,0,mult-IND-CPABmult
PKE,1).

PKE is mult-IND-CPA secure if Advmult-IND-CPA
PKE (Bmult, λ) is negligible for all PPT adversaries Bmult.

Procedure Initialize

(pk , sk)← Gen(λ)
Return pk

Procedure Challenge (m0,m1)

c← Encpk (mb)
Return c

Procedure Finalize(b′)

Return b′

Figure 1: mult-IND-CPAPKE,b game. Bmult has to submit m0,m1 ∈Ms.

For an adversary BCPA, we obtain the definition of IND-CPA security if we let s = 1 and write
AdvIND-CPA

PKE (BCPA, λ) instead of Advmult-IND-CPA
PKE (BCPA, λ). A standard hybrid argument proves the

following Lemma 2.2.

Lemma 2.2 For any adversary Bmult sending message vectors fromMs to the mult-IND-CPA game,
there exists an IND-CPA adversary BCPA with roughly the same running time as Bmult such that

Advmult-IND-CPA
PKE (Bmult, λ) ≤ s ·AdvIND-CPA

PKE (BCPA, λ).

2.4 IND-SO-CPA Security

In this section we recall an indistinguishability-based definition for selective opening security under
chosen plaintext attacks and discuss the existing notions of SO security.

Definition 2.3 (efficiently resamplable distribution) Let M be a finite set. A family of
distributions {Dλ}λ∈N over Mn =Mn(λ) is efficiently resamplable if the following properties hold
for every λ ∈ N:

length-consistency. For every i ∈ [n] we have Prm1←Dλ,m2←Dλ [|m1
i | = |m2

i |] = 1.

resamplability. There exists a PPT resampling algorithm ResampDλ(·, ·) that runs on (m, I) for
m ∈Mn, I ⊆ [n] and outputs a Dλ-distributed vector m′ ∈Mn conditioned on m′I = mI .

A class of families of distributions D is efficiently resamplable if every family {Dλ}λ∈N ∈ D is
efficiently resamplable.

Since the security parameter uniquely specifies an element of a family Dλ we write D instead of
Dλ whenever the security parameter is already fixed.

5



Definition 2.4 For PKE, a bit b, an adversary ASO and a class of families of distributions D over
Mn we consider the IND-SO-CPAASO

PKE,b game in Figure 2. Run in the game, ASO calls Enc once
right after Initialize and has to submit D ∈ D along with a PPT resampling algorithm ResampD.
ASO may call Open multiple times and invokes Challenge once after its last Open query before
calling Finalize. We define the advantage of ASO run in the IND-SO-CPAPKE,b game as

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) := Adv(IND-SO-CPAASO

PKE,0, IND-SO-CPAASO
PKE,1).

PKE is IND-SO-CPA secure w.r.t. D if AdvIND-SO-CPA
PKE (ASO,Dλ, λ) is negligible for all PPT ASO.

Procedure Initialize

(pk , sk)← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D
r←$ Rn
c = Encpk (m0; r)
Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Procedure Finalize(b′)

Return b′

Figure 2: IND-SO-CPAPKE,b game.

Notions of Selective Opening Security. Definition 2.4 is in the spirit of [2] and applies
the same changes as in [4]. [4] renamed IND-SO-CPA to weak IND-SO-CPA and introduced a
strictly stronger definition than IND-SO-CPA called full IND-SO-CPA, where ASO may submit any
distribution (even a not efficiently resamplable) and does not provide a resampling algorithm. We
refer to the security notion given in definition 2.4 as IND-SO-CPA security.

3 Selective Opening for Graph-Induced Distributions

This Section considers graph-induced distributions and identifies connectivity properties such that
IND-CPA entails IND-SO-CPA security. We introduce some notation in Section 3.1. Sections 3.2 and
3.4 discuss a hybrid argument that contemplates the connected components of GI , switching one
of them from sampled to resampled in each transition. Section 3.5 will discuss a different hybrid
argument that will allow for tighter proofs if the distribution-inducing graph is acyclic.

3.1 Graphs

A directed graph G consists of a set of vertices V , identified with [n] for n > 0 and a set of
edges E ⊆ V 2 \ {(v, v) : v ∈ V }, i.e. we do not allow for loops. G is undirected if (v2, v1) ∈ E
for each (v1, v2) ∈ E. For V ′ ⊆ V let GV ′ := (V ′, E′) denote the induced subgraph of G where
E′ := E ∩V ′2. For G = (V,E) we obtain its undirected version, G↔ = (E↔, V ) where E ⊆ E↔, by
adding the minimum number of edges to E such that the graph becomes undirected. For V ′ ⊆ V
let N(V ′) := {v ∈ V \ V ′ : ∃v′ ∈ V ′ s.t. (v, v′) ∈ E↔} denote the (open) neighbourhood of V ′ in G.
For a vertex v, we denote with P (v) = {j : (j, v) ∈ E) the set of its parents.
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A path from v1 to v` in G is a list of at least two vertices (v1, . . . , v`) where vi ∈ V for i ∈ [`]
and (vi, vi+1) ∈ E for all i ∈ [` − 1]. If there is a path from u to v, u is a predecessor of v. Let
pred(v) denote the set of all predecessors of v. A cycle is a path where v` = v1. If G contains no
cycles, it is acyclic. A directed, acyclic graph is called DAG.

A non-empty subset V ′ ⊆ V is connected in G if for every distinct pair of vertices (v1, v2) ∈ V ′
there exists a path form v1 to v2 in G↔. G is connected if V is connected in G. G is disconnected
if G is not connected. We assume G to be connected if not stated otherwise. A (set-)maximal
connected set of vertices of G is called connected component.

Notational Convention. We do not distinguish between the ith message of a n-message vector
and vertex i in a graph on n vertices.

Definition 3.1 (graph-induced distribution) Let {Dλ}λ∈N be a family of distributions over
Mn and let {Gλ}λ∈N be a family of not necessarily connected graphs on n vertices. We say that
{Dλ}λ∈N is {Gλ}λ∈N-induced if for all λ ∈ N, all i ∈ [n] and M = (M1, . . . ,Mn) ← Dλ the
distribution of Mj , given all its predecessors in Gλ, actually depends on its parents in Gλ only.
That is, for all λ ∈ N and i ∈ [n] we have

Pr
M←Dλ

[Mj = mj

∣∣∣ ∧
i∈pred(j)

Mi = mi] = Pr
M←Dλ

[Mj = mj

∣∣∣ ∧
i∈P (j)

Mi = mi].

We demand that for any λ ∈ N one can efficiently reconstruct Gλ from Dλ.

As with a family of distributions, we drop the security parameter and say that D is G-induced
whenever λ is already fixed. Note that G may contain cycles and may be undirected.

Even though our proof ideas can be applied to disconnected graphs directly, Sections 3.2, 3.4, 3.5
consider connected graphs for simplicity. A hybrid argument over the connected components of a
graph as given in Section 3.6 extends any result to disconnected graphs.

3.2 A bound using connected subgraphs

Definition 3.2 (number of connected subgraphs) Let G = (V,E). We define the number of
connected subgraphs of G:

S(G) :=
∣∣{V ′ ⊆ V : V ′ connected}

∣∣ .
For example, for a chain graph on n vertices we have S(G) = 1

2 · n · (n + 1) and for the complete
graph Cn on n vertices we have S(Cn) = 2n − 1.

Theorem 3.3 Let PKE be IND-CPA secure, then PKE is IND-SO-CPA secure w.r.t. the class of
efficiently resamplable and G-induced distribution families over Mn where S(G) = poly(n) and G
is connected.

Precisely, for any adversary ASO run in the IND-SO-CPAPKE game, there exists an IND-CPAPKE

adversary BCPA with roughly the same running time as ASO such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 1

2
· n · (n+ 1) · S(Gλ) ·AdvIND-CPA

PKE (BCPA, λ).
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Proof Idea. Recall the IND-SO-CPAPKE,b game given in Figure 2. During Challenge the
game sends mb, where m0

I consists of sampled messages, while m1
I is resampled (conditioned on

m1
I = m0

I) otherwise. We will define hybrid games H0,H1, . . . ,Hn. For this, let S ⊆ 2V denote all
the connected subgraphs of G. We have |S| = S(G).

Note that GI consists of connected components C1, . . . , Cn′ ⊆ S for some n′ ≤ (n + 1)/2. We
assume those components to be ordered (e.g. by the smallest vertex contained in each).

Thus, if b = 1 in the IND-SO-CPA game, then the challenger can resample m0
I in n′ batches

m1
C1
, . . . ,m1

Cn′
(as I = ∪n′i=1Ci). Moreover, each batch can be resampled independently (i.e., just

as a function of m0
I and D).

Proof of Theorem 3.3: For k = 0, . . . , n we define hybrid game Hk as the IND-SO-CPAPKE game,
whereby the messages of the first k batches C1, . . . , Ck are resampled during Challenge while the
remaining batches stay sampled.

Every procedure except Challenge remains as in Definition 2.4, while the Challenge pro-
cedure is given in Figure 3.

Procedure Challenge

m1 ← ResampD(m0, I)

mi :=

{
m1
i for i ∈

⋃k
j=1Cj

m0
i else

Return m = (m1, . . . ,mn)

Figure 3: Challenge procedure of hybrid game Hk. Ci denotes the ith connected component of GI . The
challenge vector contains resampled messages in the first k batches C1, . . . , Ck while the other messages
remain sampled.

So, in Hk the first k batches of the messages that ASO gets are resampled. Clearly, H0 is the (real)
IND-SO-CPAPKE,0 game and Hn′ for some n′ ≤ (n+ 1)/2 is the (random) IND-SO-CPAPKE,1 game.
Note that for k, j ∈ [n′, n] hybrids Hk and Hj are identical. Clearly

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv(HASO

0 ,HASO
n′ ) ≤

n′−1∑
k=0

Adv(HASO
k ,HASO

k+1).

We upper-bound the distance of two consecutive hybrids using Lemma 3.4.

Lemma 3.4 For every adversary ASO that distinguishes hybrids Hk and Hk+1, there exists a
mult-IND-CPA adversary Bmult with roughly the same running time such that

Adv(HASO
k ,HASO

k+1) ≤ S(G) ·Advmult-IND-CPA
PKE (Bmult, λ).

Proof of Lemma 3.4: We construct adversary Bmult as follows (cf. Figure 4):

Bmult forwards pk to ASO and picks C∗k+1 ←$ S uniformly random (trying to guess Ck+1) after
receiving (D,ResampD). Bmult samples m0 ← D and resamples m1 keeping the neighbourhood
of C∗k+1 fixed. Bmult submits (m0

C∗k+1
,m1

C∗k+1
) to its mult-IND-CPA challenger, obtains ciphertexts

for positions in C∗k+1, picks randomness and encrypts each message in C∗k+1 on its own. Bmult

8



Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

C∗k+1 ←$ S
m0 ← D
m1 ← ResampD(m0, N(C∗k+1))
cC∗k+1

← Challengemult-IND-CPA(m0
C∗k+1

,m1
C∗k+1

)

r←$ Rn

ci =

{
ci for i ∈ C∗k+1

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ C∗k+1

Bad :=true
I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if C∗k+1 6= Ck+1

Bad :=true
m̃1 ← ResampD(m0, I)

mi =

{
m̃1
i for i ∈ ∪kj=1Cj

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Figure 4: ASO’s game interface as provided by Bmult run in the mult-IND-CPA game. Bmult interpolates
between hybrids Hk, Hk+1 for k ∈ [0, n− 1].

sends (c1, . . . , cn) to ASO, embedding its challenge at positions C∗k+1 and answers opening queries
honestly if they do not occur on C∗k+1. If ASO issues such a query, Bmult cannot answer and sets
Bad := true since it guessed Ck+1 wrong. During Challenge, Bmult verifies that it guessed Ck+1

correctly and sets Bad := true if not. Bmult resamples messages m̃1 that are sent in the first k
batches while messages from m0 are sent in every other position. Bmult outputs ASO’s output.

Assume, Bmult guessed correctly, i.e. C∗k+1 = Ck+1. Clearly, Bmult perfectly simulates hybrids Hk
and Hk+1 for messages and ciphertexts at positions in Ck+1. Run in mult-IND-CPAPKE,0, Bmult

obtains Encpk (m0
Ck+1

) and ASO receives encryptions of sampled messages. During Challenge the

k + 1th batch contains sampled messages m0
Ck+1

, thus, Bmult perfectly simulates hybrid Hk.

When Bmult is run in mult-IND-CPAPKE,1, ASO obtains encryptions of resampled messages
Encpk (m1

Ck+1
) while it expects encrypted sampled messages: Encpk (m0

Ck+1
). During Challenge

ASO expects resampled messages m̃1
Ck+1

but obtains sampled m0
Ck+1

. Thus, the sampled and re-
sampled messages change roles on Ck+1.

However, m0
Ck+1

≡ m1
Ck+1

since the messages in N(Ck+1) were fixed when resampling m1 and

the distribution of messages in Ck+1 depends on D and messages in positions N(Ck+1) only.

Additionally, m1
Ck+1

≡ m̃1
Ck+1

for m1 ← ResampD(m0, N(Ck+1)) and m̃1 ← ResampD(m0, I)

since the distribution of messages in Ck+1 solely depends on D and messages in N(Ck+1) ⊆ I and
ASO’s view is identical to hybrid Hk+1. We have

Pr[mult-IND-CPABmult
PKE,0 ⇒ 1] = Pr[HASO

k ⇒ 1 ∧ Bad]

Pr[mult-IND-CPABmult
PKE,1 ⇒ 1] = Pr[HASO

k+1 ⇒ 1 ∧ Bad].
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Observe that Bad does not happen when Bmult guessed Ck+1 correctly. Since Bad is independent of
ASO’s output in a hybrid and |S| = S(G) we have

Advmult-IND-CPA
PKE (Bmult, λ) ≥ 1

S(G)
·Adv(HASO

k ,HASO
k+1)

to conclude the proof.

We proceed with the proof of Theorem 3.3. Using Lemma 3.4:

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n′−1∑
k=0

Adv(HASO
k ,HASO

k+1) ≤
n′−1∑
k=0

S(Gλ) ·Advmult-IND-CPA
PKE (Bmult, λ).

Bmult sends message vectors of length |C∗k+1| ≤ n to its mult-IND-CPA challenger. Using Lemma 2.2:

≤
n′−1∑
k=0

n · S(Gλ) ·AdvIND-CPA
PKE (BCPA, λ) ≤ 1

2
· n · (n+ 1) · S(Gλ) ·AdvIND-CPA

PKE (BCPA, λ)

since n′ ≤ (n+ 1)/2 to complete the proof of Theorem 3.3.

3.3 Markov Distributions

Definition 3.5 Let {Dλ}λ∈N be a family of distributions overMn. Let M = (M1, . . . ,Mn) denote
a vector of M-valued random variables. We say {Dλ}λ∈N is Markov if the following holds for all
λ ∈ N and all Mi:

Pr
M←Dλ

[Mi = mi

∣∣ n∧
j=i+1

Mj = mj ] = Pr
M←Dλ

[Mi = mi

∣∣Mi+1 = mi+1].

Definition 3.5 matches the “usual” definition of a Markov distribution but we impose the Markov
property on (Mn, . . . ,M1) instead of (M1, . . . ,Mn) to ease later notation.

Note that Markov distributions can be seen as graph-induced distributions where the graph
G = (V,E) is a chain on n vertices: V = [n], E = {(i, i− 1) : i ∈ [n]}. Since S(G) = 1

2 · n · (n+ 1)
we immediately obtain Corollary 3.6 whose proof directly follows from Theorem 3.3.

Corollary 3.6 Let PKE be IND-CPA secure , then PKE is IND-SO-CPA secure w.r.t. efficiently
resamplable Markov distributions over Mn.

Precisely, for any adversary ASO run in the IND-SO-CPAPKE game, there exists an IND-CPAPKE

adversary BCPA with roughly the same running time as ASO such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 1

4
· n2 · (n+ 1)2 ·AdvIND-CPA

PKE (BCPA, λ).

3.4 A bound using the maximum border

Definition 3.7 (maximum border) Let G = (V,E). We define the maximum border of G as
the maximum over the size of the neighbourhood of every connected subgraph in G.

B(G) := max{
∣∣N(V ′)

∣∣ : V ′ ⊆ V connected}.

10



For example, if G is an n-path for n ≥ 3 then B(G) = 2. For the complete graph or star graph on
n vertices we have B(G) = n− 1. Notice that B(G) < n.

During the reduction in Section 3.2 we guessed a connected component inGI that would be switched
from sampled to resampled in a hybrid transition. Alternatively, we can guess a connected com-
ponent in GI via its neighbourhood. The following Theorem 3.8 expresses S(G) in terms of B(G).

Theorem 3.8 Let G be a connected graph. Then the following bound on S(G) holds:

S(G) ≤ 2

(B(G)− 1)!
· nB(G) for all 0 < B(G) ≤ n− 2

3
.

We begin with a simple observation given in Lemma 3.9 before proving Theorem 3.8.

Lemma 3.9 Let G = (V,E) and V1 6= V2 each of them connected in G such that N(V1) = N(V2).
Then V1 ∩ V2 = ∅.

Proof of Lemma 3.9: Assume V1 ∩ V2 6= ∅. As V1 6= V2 we have V1 \ V2 6= ∅ without loss of
generality. Because V1 is connected, there exist vertices v∩ ∈ V1 ∩ V2 and v1 ∈ V1 \ V2 such that
(v1, v∩) ∈ E. Since v1 /∈ V2, v∩ ∈ V2 and (v1, v∩) ∈ E we see that v1 ∈ N(V2). As N(V2) = N(V1)
it follows that v1 ∈ N(V1); a contradiction by definition of N(V1).

Proof of Theorem 3.8: Let B := B(G). We have

S(G) =

B∑
i=0

∣∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i
}∣∣

For i = 0 we count the connected components of G.

= 1 +
B∑
i=1

∣∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i
}∣∣

= 1 +

B∑
i=1

∑
Vi⊆V
|Vi|=i

∣∣{V ′ ⊆ V : V ′ connected ∧N(V ′) = Vi
}∣∣

Let Vi ⊆ V be a non-empty subset of V and {V ′ ⊆ V : V ′ connected∧N(V ′) = Vi} = {V ′1 , . . . , V ′k}
for appropriate k. Applying Lemma 3.9 to V ′1 , . . . , V

′
k, we see that those sets V ′j are pairwise disjoint.

Fix any vertex vi ∈ Vi = N(V ′i ). Since N(V ′j ) = Vi for j ∈ [k] and all V ′j are pairwise disjoint, there
exists at least one vertex v′j in each V ′j such that (v′j , vi) ∈ E for all j ∈ [k]. Thus, N(vi) ≥ k, i.e.
B ≥ k. Hence, k ≤ B for given B and we obtain an upper bound for the number of possible sets
V ′ for each fixed Vi. It follows

S(G) ≤ 1 +

B∑
i=1

∑
Vi⊆V
|Vi|=i

B = 1 +B ·
B∑
i=1

(
n

i

)
≤ B ·

B∑
i=0

(
n

i

)
. (1)

11



To bound the sum in (1) we use the geometric series and want to upper-bound1 the quotient of two
consecutive binomial coefficients by 1

2 :(
n
i

)(
n
i+1

) =
i+ 1

n− i
≤ 1

2
⇔ i ≤ n− 2

3
.

Hence

B ·
B∑
i=0

(
n

i

)
≤ B ·

B∑
i=0

1

2i

(
n

B

)
≤ B ·

(
n

B

)
·
∞∑
i=0

1

2i
≤ 2 ·B · n

B

B!
=

2

(B − 1)!
· nB

for B(G) ≤ n−2
3 to conclude the proof.

Since Corollary 3.10 ensures polynomial loss in the reduction for B(G) = const. and we are inter-
ested in asymptotic statements, we do not consider the restriction to n ≥ 3 ·B(G) + 2 grave. One
can easily obtain a version of Theorem 3.8 that is weaker by a factor of roughly B(G) but holds
for all B(G) < n. To this end one bounds the sum of binomial coefficients in (1) in terms of the
incomplete upper gamma function Γ to get

B∑
i=1

(
n

i

)
≤

B∑
i=1

ni

i!
=
enΓ(B + 1, n)

B!
− 1.

Using a nice bound on Γ due to [11] that can be found in [5] we obtain a bound for B(G) < n.

We obtain the following Corollary 3.10.

Corollary 3.10 Let PKE be IND-CPA secure, then PKE is IND-SO-CPA secure w.r.t. the class
of efficiently resamplable and G-induced distribution families over Mn where B(G) = const., n ≥
3 ·B(G) + 2 and G is connected.

Concretely, for any adversary ASO in the IND-SO-CPAPKE game, there exists an IND-CPAPKE

adversary BCPA with roughly the same running time as ASO such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ n+ 1

(B(Gλ)− 1)!
· nB(Gλ)+1 ·AdvIND-CPA

PKE (BCPA, λ).

Proof of Corollary 3.10: The proof directly follows from Theorem 3.3 and Theorem 3.8.

Think of a direct reduction for proving Corollary 3.10 as implicitly guessing Ck+1 via guessing
N(Ck+1) by picking up to B(G) vertices in G and guessing on of at most B(G) connected subgraphs
that has the guessed neighbourhood.

Note that Corollary 3.10 cannot provide a tighter bound on the loss than Theorem 3.3. In
particular, there is (even) connected graphs where Theorem 3.3 ensures an at most polynomial
loss, while Corollary 3.10 does not. For instance, let G be the star graph on log n vertices attached
to the chain graph of n− log n vertices, then S(G) = poly(n), but B(G) > const.

1It suffices to strictly upper-bound by 1 to ensure convergence.
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3.5 A Tighter Reduction for Acyclic Graphs

While we consider graph-induced distributions for arbitrary graphs in Sections 3.2 - 3.4 we consider
DAG-induced distributions in Section 3.5 where we obtain a tighter reduction than presented in
Corollary 3.10.

For a DAG G, we require that the vertices are semi-ordered in such a way that there is no
directed path from i to j for i < j. Note that such an ordering always exists as G has no cycles.

Theorem 3.11 Let PKE be IND-CPA secure, then PKE is IND-SO-CPA secure w.r.t. the class of
efficiently resamplable and G-induced distribution families over Mn where B(G) = const. and G is
a connected DAG.

Precisely, for any adversary ASO run in the IND-SO-CPAPKE game, there exists an IND-CPAPKE

adversary BCPA with roughly the same running time as ASO such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · nB(Gλ)+1 ·AdvIND-CPA

PKE (BCPA, λ).

Proof of Theorem 3.11: We proceed in a sequence of hybrid games H0,H1, . . . ,Hn and switch
message mk+1 from sampled to resampled in hybrid transition Hk to Hk+1. Hybrid Hk will return
the sampled messages for all positions [k+ 1, n]∪I, but resampled messages on all positions [k] \ I
where the resampling is conditioned on every message in [k + 1, n] ∪ I. The code for Challenge
in given in Figure 5, every other procedure stays as in Figure 2.

Procedure Challenge

m← ResampD(m0, [k+1, n]∪I)
Return m

Figure 5: Challenge procedure of hybrid game Hk. For k = n we have [n+ 1, n] = ∅.

Hybrid H0 (resp. Hn) is identical to the IND-SO-CPAPKE,0 game (resp. IND-SO-CPAPKE,1), hence

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv(HASO

0 ,HASO
n ) ≤

n−1∑
k=0

Adv(HASO
k ,HASO

k+1).

We bound the distance of two consecutive hybrids Hk, Hk+1 and proceed with the following lemma.

Lemma 3.12 For every adversary ASO that distinguishes hybrids Hk and Hk+1 there exists a
mult-IND-CPA adversary Bmult with roughly the same running time such that

Adv(HASO
k ,HASO

k+1) ≤ Pr[Badk]
−1 ·Advmult-IND-CPA

PKE (Bmult, λ)

where Pr[Badk]
−1 =

∑B(Gλ)−1
i=0

(
k
i

)
for k < n− 1 and Pr[Badk]

−1 =
∑B(Gλ)

i=0

(
k
i

)
for k = n− 1.

Proof Idea: We construct a mult-IND-CPA adversary Bmult that interpolates between hybrids Hk
and Hk+1. Ideally Bmult embeds its own challenge at position k + 1, but might have to resample
some already resampled messages in m[k] to avoid inconsistencies. Let middle denote the connected

component in G[k+1]\I that contains mk+1. Let right := [k + 2, n], and left := (middle ∪ right).
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Observe that it is sufficient to resample middle again to obtain consistent resampled messages. In
particular, there is no need to resample any right message due to the semi-order imposed on the
vertices, as a message in right does not depend on any message in right (cf. Figure 6). The reduction
will guess middle to embed its mult-IND-CPA challenge, while it waits for all opening queries to
happen to resample the left messages. Note that middle and left are disconnected in GI , thus
can be resampled independently of each other only depending on their respective neighbourhood.
Since right messages are fixed while resampling, it suffices to guess N(middle) ∩ [k]. Further, G is
connected, i.e. N(middle) contains at least one vertex from right = [k + 2, n] as long as k < n− 1.
Hence, for k < n− 1, we have |N(middle) ∩ [k]| ≤ B(G)− 1.

left middle rightk+1

Figure 6: Structure of G. Edges between particular sets cannot exist if there is no arrow depicted. If right 6= ∅,
there is at least one edge from right to middle since G is connected. left and middle are disconnected in GI .

Proof of Lemma 3.12: For k ∈ [0, n] and i ∈ [n] let Openk(i) denote the event that ASO calls
Open(i) in hybrid Hk. Two arbitrary hybrids only differ in the Challenge procedure, hence
Pr[Opens(i)] = Pr[Opent(i)] for all s, t ∈ [0, n], for all i ∈ [n]. Additionally, two consecutive hybrids
Hk, Hk+1 only differ in the k+1th message returned during Challenge unless ASO calls Open(k+1)
in game Hk+1. Thus, we have Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)] = Pr[HASO
k+1 ⇒ 1 ∧ Openk+1(k + 1)] and

obtain

Adv(HASO
k ,HASO

k+1) =
∣∣∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)]− Pr[HASO
k ⇒ 1 ∧ Openk(k + 1)]

∣∣∣ . (2)

We describe Bmult (cf. Figure 7). Bmult passes pk on to ASO. Obtaining (D,ResampD), Bmult makes
a guess for middle – labeled middle∗ – by making a guess – labeled N∗ – of middle’s neighbourhood
in G[k+1] and samples m0 ← D. Bmult resamples m1,0 fixing N∗ ∪ right and resamples m1,1 fixing

N∗∪right∪{k+1}. Bmult sends (m1,0
middle∗ ,m

1,1
middle∗) to its mult-IND-CPA challenger, receives cmiddle∗ ,

samples fresh randomness to encrypt messages in middle∗ on its own and forwards (c1, . . . , cn) to
ASO. Bmult sets Bad := true if ASO calls Open(i) for some i ∈ middle∗ \ {k + 1} since it cannot
answer those queries.2 Other opening queries are answered honestly. On ASO’s call of Challenge,
Bmult checks if N∗ ⊆ I. If not, Bmult guessed middle wrong and sets Bad to true. Otherwise, Bmult

resamples messages fixing those at positions I ∪ right to obtain resampled messages m1 and sends
m1
i for all left positions and m0

i for all remaining positions to ASO. Bmult outputs whatever ASO

outputs.

Assume that Bmult guessed correctly, i.e. N∗ is the neighbourhood of middle in G[k]. Then middle∗ =
middle holds and by definition of middle, Bad cannot happen.

Clearly, Bmult correctly simulates ASO’s hybrid view in all left and right positions. Note
that ASO obtains resampled encryptions Encpk (m1,b

middle) during Enc, but expects sampled encryp-
tions Encpk (m0

middle), while receiving sampled m0
middle on call of Challenge, expecting resampled

2Equation (2) directly accounts for ASO calling Open(k + 1).
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Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

if k < n− 1
N∗ ←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G)− 1]}

else
N∗ ←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G)]}

Let middle∗ denote the connected com-
ponent in G[k+1]\N∗ that contains k+1.

m0 ← D
m1,0 ← ResampD(m0, N∗ ∪ right)
m1,1 ← ResampD(m0, N∗ ∪ right ∪ {k + 1})
cmiddle∗ ← Challengemult-IND-CPA(m1,0

middle∗ ,m
1,1
middle∗)

r←$ Rn

ci =

{
ci for i ∈ middle∗

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ middle∗ \ {k + 1}
Bad :=true

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if N∗ 6⊆ I
Bad :=true

m1 ← ResampD(m0, I ∪ right)

mi =

{
m1
i for i ∈ left

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Figure 7: ASO’s game interface as provided by Bmult run in the mult-IND-CPA game. Bmult interpolates
between hybrids Hk, Hk+1 for k ∈ [0, n− 1].

mmiddle. Thus, sampled middle messages become resampled middle messages from ASO’s view and
vice versa.

However, we have mmiddle ≡m0
middle since N(middle) ⊆ I∪ right, whereby I ∪ right is fixed when

resampling mmiddle.
For Bmult run in the mult-IND-CPAPKE,0 game, ASO receives Encpk (m1,0

middle) where m1,0
middle ≡

m0
middle since N∗ ∪ right = N ∪ right is fixed when m1,0 is resampled. Hence, all middle messages

sent during Challenge look resampled and ASO’s view is identical to hybrid Hk+1.
When Bmult is run in mult-IND-CPAPKE,1, it forwards Encpk (m1,1

middle) to ASO where m1,1
middle ≡

m1
middle for the same reason as for b = 0. Especially, we have m0

k+1 = m1,1
k+1 since m0

k+1 is fixed

while resampling. Consequently, each messages in middle except the k + 1th looks resampled during
Challenge and ASO’s view is identical to hybrid Hk. We have

Advmult-IND-CPA
PKE (Bmult, λ) ≥

∣∣∣Pr[mult-IND-CPABmult
PKE,0 ⇒ 1]− Pr[mult-IND-CPABmult

PKE,1 ⇒ 1]
∣∣∣ .

Bmult outputs 1 in its mult-IND-CPA game if ASO outputs 1 in its respective hybrid and ASO does
not open ciphertext ck+1 and Bad does not happen:

=
∣∣∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k+1) ∧ Bad]− Pr[HASO
k ⇒ 1 ∧ Openk(k+1) ∧ Bad]

∣∣∣ .
Since Bad is independent of HASO

κ ⇒ 1 ∧ Openκ(k + 1) for κ ∈ {k, k + 1} we have

= Pr[Bad] ·
∣∣∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)]− Pr[HASO
k ⇒ 1 ∧ Openk(k + 1)]

∣∣∣ .
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Bmult picks N∗ from a set of size
∑B(Gλ)−1

i=0

(
k
i

)
for k < n − 1, of size

∑B(Gλ)
i=0

(
k
i

)
for k = n − 1,

respectively and the claim of Lemma 3.12 follows by rearranging.

The remaining proof constitutes of tedious computations. We have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n−1∑
k=0

Pr[Badk]
−1 ·Advmult-IND-CPA

PKE (Bmult, λ).

Let B := B(G). Since Bmult submits message vectors of length |middle∗| ≤ k+1 to its mult-IND-CPA
challenger and using Lemma 2.2:

AdvIND-SO-CPA
PKE (ASO,Dλ, λ)≤

(
n−2∑
k=0

(k+1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n−1

i

))
·AdvIND-CPA

PKE (Bmult, λ). (3)

We upper-bound the loss in (3)

n−2∑
k=0

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1

i

)
≤ 5 +

n−1∑
k=2

(k + 1) ·
B−1∑
i=0

ki︸ ︷︷ ︸
≤3·(kB−1)

+
B∑
i=0

ni+1

≤8− 3n+ 3 ·
n−1∑
k=0

kB +

B∑
i=0

ni+1 = 8− 3n+ 3 ·
n−1∑
k=0

kB +
n

n− 1
·
(
nB+1 − 1

)
for all 2 ≤ n.

≤6− 3n+ 3 ·
n∫

0

kBdk + 2 · nB+1 ≤ 6− 3n+

(
2 +

3

B + 1

)
· nB+1 ≤ 3 · nB+1 for all 2 ≤ B.

Since G is connected we have B = 0⇔ n = 1 and B = 1⇔ n = 2. Thus, it remains to verify and
is easy to see that the bound holds for (B,n) ∈ {(0, 1), (1, 2)} as well.

Because Markov distributions are DAG-induced by chain graphs and the maximum border of a
chain graph is at most 2 we immediately obtain a tighter version of Corollary 3.6 whose proof
directly follows from Theorem 3.11.

Corollary 3.13 Let PKE be an IND-CPA secure public key encryption scheme, then PKE is
IND-SO-CPA secure with respect to efficiently resamplable Markov distributions over Mn.

In particular, for any adversary ASO run in the IND-SO-CPAPKE game, there exists an IND-CPAPKE

adversary BCPA with roughly the same running time as ASO such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · n3 ·AdvIND-CPA

PKE (BCPA, λ).

Applying the same proof of 3.11 directly to the Markov case gives a slightly better bound on the
loss, namely: n · (n+ 1) · (2n+ 1)/6, since N(middle)∩ [n− 1] = 1 even for the last transition Hn−1
to Hn. Hence, the loss in Equation (3) boils down to

∑n−1
k=0 (k + 1)2.

Recall that the hybrids in the proof of Theorem 3.11 saved us a factor of n because it suffices to
guess a set of size at most B(G)− 1 instead of B(G) for k < n− 1 as at least one vertex of middle’s
neighbourhood is contained in right.
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Procedure Initialize

(pk , sk)← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D
r←$ Rn
c = Encpk (m0

Vz
; rVz)

Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Vz

Procedure Finalize(b′)

Return b′

Figure 8: BG-SO’s interface in the G-IND-SO-CPAPKE,b,z game.

The same hybrids can be used to strengthen Theorem 3.3 as it suffices to guess a connected
subgraph in [k + 1] (instead of [n]) containing vertex k + 1.

Since G is connected, there is at least a path in {k + 1} ∪ right that contains k + 1, i.e. at
least n − k connected subgraphs in right ∪ {k + 1}. Thus, there exist at least n − k connected
subgraphs in G that contain vertex k + 1 and are identical if restricted to [k + 1]. Hence the
reduction’s probability of guessing Ck+1 correctly can be increased from 1/S(G) to (n− k)/S(G),
merely bringing the loss from O(n2) · S(G) down to O(n · log n) · S(G).

3.6 A Hybrid Argument for Disconnected Graphs

For a graph G on z′ connected components fix any semi-order on them, e.g. ordered by the smallest
vertex in each component and let V1, . . . , Vz′ denote the vertices of the connected components of G.
For j ∈ [z′+ 1, n] let Vj := ∅. We define a security game where an adversary plays the IND-SO-CPA
game on a connected component of the graph that induced the distribution chosen by the adversary.

Definition 3.14 For a public-key encryption scheme PKE := (Gen,Enc,Dec), a bit b, a family F
of efficiently resamplable, G-induced distributions over Mn, z ∈ [n] and an adversary BG-SO we
consider the G-IND-SO-CPABG-SOPKE,b,z game given in Figure 8. Run in the game, BG-SO calls Enc once
right after Initialize and submits D ∈ F along with a PPT resampling algorithm ResampD. BG-SO
may call Open multiple times but only for i ∈ Vz and invokes Challenge once after its last Open
query before calling Finalize. We define the advantage of BG-SO run in the IND-SO-CPAPKE,b,z

game as

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) := Adv(G-IND-SO-CPABG-SOPKE,0,z,G-IND-SO-CPABG-SOPKE,1,z).

PKE is G-IND-SO-CPAz secure w.r.t. F if AdvIND-SO-CPA
PKE,z (BG-SO,Dλ, λ) is negligible for all PPT

adversaries BG-SO. PKE is G-IND-SO-CPA secure w.r.t. F if PKE is G-IND-SO-CPAz secure w.r.t.
F for all z ∈ [n].

We have AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) = 0 for z ∈ [z′ + 1, n].

Theorem 3.15 Let PKE be G-IND-SO-CPA secure w.r.t. a family F of efficiently resamplable and
G-induced distributions over Mn, then PKE is IND-SO-CPA secure w.r.t F .
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Proof of Theorem 3.15: Again, the main idea is that connected components can be dealt
with independently. We give a hybrid argument over the connected components of Gλ using
G-IND-SO-CPAz security for switching connected component z from sampled to resampled. See Fig-
ure 9 for the hybrid’s code of Challenge, every other procedure stays as in the IND-SO-CPAPKE,b

game (cf. Figure 2).

Procedure Challenge

m1 ← ResampD(m0, I)

mi =

{
m1
i for i ∈

⋃z
j=1 Vj

m0
i else

Return m = (m1, . . . ,mn)

Figure 9: Hybrid Hz. The first z connected components are already resampled conditioned on opening
queries, while the remaining are still sampled.

Note that H0 (resp. Hz′) is identical to the IND-SO-CPAPKE,0 (resp. IND-SO-CPAPKE,1) game. Thus

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv(HASO

0 ,HASO
z′ ) ≤

z′−1∑
z=0

Adv(HASO
z ,HASO

z+1).

We proceed with the following Lemma.

Lemma 3.16 For every adversary ASO distinguishing hybrids Hz and Hz+1 there exists an adver-
sary BG-SO run in the G-IND-SO-CPAPKE,z+1 with roughly the same running time such that

Adv(HASO
z ,HASO

z+1) ≤ AdvG-IND-SO-CPA
PKE,z+1 (BG-SO,Dλ, λ).

Proof of Lemma 3.16: We construct an adversary BG-SO that interpolates between hybrids Hz
and Hz+1 for ASO. BG-SO proceeds as follows (cf. Figure 10).
BG-SO forwards pk to ASO. On ASO’s call of Enc, BG-SO calls EncG-IND-SO-CPAz+1 to obtain an
encryption cVz+1

of messages in the Vz+1. BG-SO samples messages m0 ← D on its own and

encrypts the messages in Vz+1. BG-SO sends c = (c1, . . . , cn) to ASO. BG-SO answers open-
ing queries on its own unless they occur on Vz+1, where it invokes its OpenG-IND-SO-CPAz+1 or-
acle to answer. On Challenge, BG-SO receives a challenge message vector mV z+1 by calling

ChallengeG-IND-SO-CPAz+1 and resamples m0 conditioned on I. BG-SO returns resampled messages
m1 on ∪zj=1Vj , its challenge messages mV z+1 and sampled messages m0 for ∪nj=z+2Vj to ASO.
BG-SO outputs whatever ASO outputs.

Obviously BG-SO simulates the hybrids correctly during Enc since it always returns encryptions of
sampled messages. On ASO’s call of Challenge the messages in the first z connected components
are already resampled while the messages in the last n− z − 1 connected components are sampled
as in hybrids Hz and Hz+1. If BG-SO is run in the G-IND-SO-CPAPKE,0,z+1 game, it obtains sampled
messages for the z + 1th connected component, thus it runs ASO in hybrid Hz while BG-SO receives
resampled messages for Vz+1 when run in G-IND-SO-CPAPKE,1,z+1, hence running ASO in hybrid
Hz+1. Thus

Pr[G-IND-SO-CPABG-SOPKE,0,z+1 ⇒ 1] = Pr[HASO
z ⇒ 1]
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Procedure Initialize

pk ← GenG-IND-SO-CPAz+1(1λ)
Return pk

Procedure Enc(D,ResampD)

cVz+1
← EncG-IND-SO-CPAz+1(D,ResampD)

m0 ← D
r←$ Rn

ci =

{
ci for i ∈ Vz+1

Encpk (m0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Finalize(b′)

FinalizeG-IND-SO-CPA(b′)

Procedure Open(i)

I := I ∪ {i}
if i ∈ Vz+1

Return OpenG-IND-SO-CPAz+1(i)
else

Return (m0
i , ri)

Procedure Challenge

mVz+1
← ChallengeG-IND-SO-CPAz+1

m1 ← ResampD(m0, I)

mi =


m1
i for i ∈ ∪zj=1Vj

mi for i ∈ Vz+1

m0
i else

Return m = (m1, . . . ,mn)

Figure 10: Reduction run by BG-SO to simulate Hz (resp. Hz+1) when BG-SO is run in G-IND-SO-CPAPKE,0,z+1

(resp. G-IND-SO-CPAPKE,1,z+1).

and
Pr[G-IND-SO-CPABG-SOPKE,1,z+1 ⇒ 1] = Pr[HASO

z+1 ⇒ 1].

Lemma 3.16 follows.

We obtain

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

z′∑
z=1

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ)

and Theorem 3.15 follows immediately since z′ ≤ n.

In particular we achieve versions of Theorem 3.3, Corollary 3.10 and Theorem 3.11 for disconnected
graphs, whereby

S(G) =
z′∑
i=1

S(Ci) and B(G) = max
i∈[z′]
{B(Ci)}

for a graph G consisting of connected components C1, . . . , Cz′ .

Moreover, for G = ([n], ∅), G-induced distributions become product distributions, i.e. the messages
are sampled independently. Hence, the positive result of [3] can be seen as a special case of
Theorem 3.15.
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