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Abstract. A noisy non-uniformly distributed secret often needs to be
transformed into a stable high-entropy key. Biometric systems and physi-
cally unclonable functions (PUFs) exemplify the need for this conversion.
Secure sketches are a useful tool hereby as they alleviate the noisiness
while keeping the corresponding min-entropy loss to a minimum. The
novelty of our work is twofold. First, seven secure sketch constructions,
all based on a binary [n, k, d] block code, are proven to be largely in-
terchangeable. Despite having different looks and properties, all exhibit
the same min-entropy loss, when fed with the same probability distribu-
tion. Second, for PUF-induced distributions with practical relevance, we
derive new unified bounds on the min-entropy loss, considerably tighter
than the more general well-known (n− k) bound. Our bounds allow for
an efficient evaluation and are hence suitable for reducing the implemen-
tation footprint of the sketch. This is beneficial for resource-constrained
devices in particular.

Keywords: secure sketch, fuzzy extractor, min-entropy, physically un-
clonable functions, biometrics, coding theory

1 Introduction

Cryptography relies on reproducible uniformly distributed secret keys. Unfortu-
nately, harvesting entropy from physical entities does not immediately fit within
this framework. Biometric sensors and physically unclonable functions (PUFs)
harvest from a human and an integrated circuit respectively. In both cases, mea-
surements are corrupted by noise and non-uniformities are bound to occur. A



secure sketch, as part of a fuzzy extractor [9], provides a mechanism to convert
such data into a high-quality key. This while providing information-theoretic
security, i.e., irrespective of the computational power of an attacker.

1.1 Contribution

We consider seven secure sketch constructions: the syndrome method of Bennett
et al. [3], the three code-offset variants of Juels et al. [14], Dodis et al. [9] and
Tuyls et al. [22], the systematic methods of Yu [26] and Kang et al. [15] and
finally the multi-code method of Ahlswede et al. [1]. The novelty of our work is
twofold:

– First, we prove that all seven sketches have an identical min-entropy loss. At
least, given that the underlying [n, k, d] binary block code and ingoing proba-
bility distribution are the same. We stress that no constraints are imposed on
the probability distribution. Therefore, our equivalencies reach considerably
further than related work in [24, 12], covering fewer methods and establishing
the link for uniformly distributed inputs only.

– Second, we derive new unified bounds on the min-entropy loss for PUF-
induced distributions with practical relevance. Our bounds are considerably
tighter than the well-known (n−k) formula, hereby improving the implemen-
tation efficiency of PUF-based key generators. It is important to note that a
variety of commonly used codes is covered, regardless of their algebraic com-
plexity. Furthermore, a large variety of distributions could be supported.
Therefore, our scope reaches considerable further than related work in [8,
18], focussing on simple repetition codes and biased distributions only. As in
the latter works, our bounds are easy-to-evaluate and able to support large
codes.

1.2 Organization

The remainder of this manuscript is organized as follows. Section 2 introduces
notation and preliminaries. Section 3 revisits all seven secure sketch construc-
tions. In Section 4, we prove the min-entropy loss equivalencies. In Section 5, we
derive new unified bounds on the min-entropy loss, which are valid for all seven
equivalent sketches. Section 6 concludes the work.

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g., x. All vectors
are row vectors. All-zeros and all-ones vectors are denoted with 0 and 1 respec-
tively. Binary matrices are denoted with a bold uppercase character, e.g., H.
A random variable and its corresponding set of outcomes are denoted with an



uppercase italic and calligraphic character respectively, e.g., X and X . Variable
assignment is denoted with an arrow, e.g., x ← X. Custom-defined procedure
names are printed in a sans-serif font, e.g., Hamming weight HW(x) and Ham-
ming distance HD(x, x̃). The probability of an event A is denoted as P(A).
The expected value of a function g(X) of random variable X is denoted as
Ex←X [g(X)].

2.2 Min-Entropy Definitions

The min-entropy of a random variable X is as defined in Equation (1). Consider
now a pair of possibly correlated random variables: X and I. The conditional
min-entropy [9] of X given I is as defined in Equation (2). Terms with P(I = i) =
0 are evaluated as 0. Both definitions quantify the probability that an attacker
guesses x ← X first time right, on a logarithmic scale. Consider three possibly
correlated random variables: X, I1 and I2. It was proven in [9] that Equation (3)
holds. We stress that min-entropy is a more conservative notion than Shannon
entropy and therefore often preferred within cryptology.

H∞(X) = − log2

(
max
x∈X

P(X = x)
)
. (1)

H̃∞(X|I) = − log2

(
Ei←I

[
max
x∈X

P((X = x)|(I = i))
])
. (2)

H̃∞(X|(I1, I2)) ≥ H̃∞(X|I1)− log2(|I2|). (3)

2.3 Secure Sketches and Fuzzy Extractors

Consider a metric space X with distance function dist. An attacker knows the
probability distribution of x← X and might be given some additional informa-
tion i← I. Variable I models external information that may be available about
x regardless of the sketching procedure. For instance, X might capture a bio-
metric with respect to the whole population and I could reshape the statistics
according to age, gender, ethnicity, etc. For PUFs, I is considerably less relevant
and typically omitted. Consider a noisy version x̃ of sample x. An average-case
secure sketch [9] is a pair of efficient and possibly randomized procedures: the
sketching procedure p ← SSGen(x), with helper data p ∈ P, and the recovery
procedure y ← SSRep(x̃,p), with y ∈ Y. There are two defining properties:

– Correctness. If dist(x, x̃) ≤ t, correctness of reconstruction is guaranteed,
i.e., SSRep(x,p) = SSRep(x̃,p). If dist(x, x̃) > t, there is no guarantee what-
soever.

– Security. For a certain lower-bound on the ingoing min-entropy, i.e., H̃∞(X|I)
≥ hin, there is a corresponding lower-bound on the residual min-entropy, i.e.,
H̃∞(Y |(P, I)) ≥ hout. Often, but not necessarily, this condition can be sat-
isfied regardless of hin. Or stated otherwise, there is a certain upper bound
on the min-entropy loss ∆H∞ = H̃∞(X|I)− H̃∞(Y |(P, I)).



A slightly modified notion brings us to the average-case fuzzy extractor [9].
Output k ∈ K is then required to be nearly-uniform, given observations p← P
and i← I, and is therefore suitable as a secret key. A more formal definition is
given in Appendix A. Although secure sketches are our primary topic of inter-
est, results automatically extend to fuzzy extractors. Simply because there are
standard methods for crafting a fuzzy extractor from a secure sketch, as detailed
again in Appendix A.

If we omit I, former constructions would reduce to a secure sketch and fuzzy
extractor [9] respectively, i.e., without the average-case. In practice though, it is a
frequent habit to omit the adjective average-case by default, even though it does
apply. That’s because many constructions exhibit the average-case property, e.g.,
all these in [9] as well as this work. Also, we generalized the original secure sketch
definition so that the constraint x ← SSRep(x,p) does not apply anymore. As
such, the prior notion of fuzzy commitment [14] is supported as well. Hereby, we
commit to a secret value y by binding it to x. One may decommit given an x̃
which is sufficiently close to x. Constructions which return a substring of x = x,
e.g., [15], are supported too. As a side note, the fuzzy extractor definition offers
intrinsic support for both cases, without any modifications from our part.

2.4 Coding Theory

A binary code C is a bijection from a message space M to a codeword space
W ⊆ {0, 1}1×n. The minimum distance d is the minimum number of bits in
which any two distinct codewords differ. A procedure w ← Encode(m) maps a
message m ∈ M to a codeword w ∈ W. A procedure ŵ ← Correct(w̃) corrects
up to t = bd−12 c errors for any noise-corrupted codeword w̃ = w ⊕ e, with
HW(e) ≤ t. An extended procedure m̂← Decode(w̃) returns the corresponding
message instead. Equation (4) expresses the Hamming bound [16]. The equality
holds for perfect codes only, implicating that any vector in {0, 1}1×n is within
distance t of a codeword. All other codes are subject to the inequality. A code is
optimal if it has a maximum d for a given n and |M|. A perfect code is optimal
always, but the reverse is not necessarily true.

t∑
i=0

(
n

i

)
|M| ≤ 2n. (4)

A binary [n, k, d] block code C restricts the message length k = log2(|M|) to
an integer. For a linear block code, any linear combination of codewords is again
a codeword. A k × n generator matrix G, having full rank, can then implement
the encoding procedure, i.e., w = m ·G. A generator matrix is in standard form
if G = (Ik‖A). I.e., the first k bits of a codeword equal the message, followed by
n− k redundancy bits. A parity check matrix H, with dimensions (n− k)× n,
determines the so-called syndrome s = w̃ ·HT . The syndrome captures all the
information necessary for decoding w̃. For each codeword w, the following holds:
0 = w ·HT . Therefore, the syndrome can be rewritten as s = e ·HT . Generator
and parity check matrices can be derived from each other. E.g., for a generator



matrix in standard form, H = (AT ‖In−k). The minimum distance d of a linear
code equals the minimum Hamming weight of its nonzero codewords. A linear
code C is cyclic if every circular shift of a codeword is again a codeword belonging
to C.

For any τ ∈ {0, 1}1×n and linear code C, the set {τ ⊕ w : w ∈ W} is
referred to as a coset. Two cosets are either disjoint or coincide. Therefore, the
vector space {0, 1}1×n is fully covered by 2n−k cosets, referred to as the standard
array. The minimum weight vector ε in a coset is called the coset leader. In case
of conflict, i.e., a common minimum HW(ε) > t, an arbitrary leader can be
selected. There is a one-to-one correspondence between cosets and syndromes.

3 Secure Sketch Constructions - Revisited

We assume x to be a binary vector, i.e., x = x. For PUFs, this is generally
speaking the case; for biometrics, this might involve explicit quantization [21].
Figure 1 represents all seven secure sketch constructions, instantiated with a bi-
nary code C. An eight secure sketch, Davida et al. [7], is discussed in Appendix B
as its performance is considerably lower. Distance function dist is instantiated
with Hamming distance HD. For many codes in literature (BCH, Hamming, rep-
etition, etc.), there are efficient decoding algorithms which guarantee correctness
if HD(x, x̃) ≤ t [16]. We stress that the min-entropy loss ∆H∞ does not depend
on the decoding method, simply because the helper data is not affected.

3.1 Syndrome Method of Bennett et al.

The syndrome method of Bennett et al. [3] is represented by Figure 1(a). Al-
though initially proposed as part of a quantum oblivious transfer protocol, it
maps quite easily to the secure sketch framework of Dodis et al. [9]. The method
requires a linear code C, given the use of a parity check matrix H. The well-
known (n − k) upper bound on the min-entropy loss ∆H∞ holds, as proven by
Dodis et al. [9]. This is a trivial consequence from Equation (3), given that the
helper data p is limited to (n− k) bits.

3.2 Code-Offset Methods of Juels et al., Dodis et al. and
Tuyls et al.

The code-offset method of Juels et al. [14] is represented by Figure 1(b). The
code C is not necessarily linear. Even more, it is not required be a block code
either. Entropy loss can be understood as a one-time pad imperfection. Sketch
input x is masked with a random codeword w, i.e., an inherent entropy defi-
ciency: H∞(W ) = log2(|M|) < n. Figure 1(c) represents a modification where
Rep returns sketch input x rather than codeword w, as proposed by Dodis et
al. [9]. For the latter, it was proven that the (n − k) upper bound on the min-
entropy loss ∆H∞ holds, given a block code. The proof is more complicated as



p← SSGen(x) ŷ ← SSRep(x̃,p)

p← x ·HT s← x̃ ·HT ⊕ p = e ·HT

Determine ê

ŷ = x̂← x̃⊕ ê

(a) Syndrome method
of Bennett et al. [3].

Random w ∈ C
p← x⊕w

w̃ ← x̃⊕ p = w ⊕ e
ŷ = ŵ ← Correct(w̃)

(b) Code-offset method
of Juels et al. [14].

w̃ ← x̃⊕ p = w ⊕ e
ŷ = x̂← p⊕ Correct(w̃)

(c) Code-offset method
of Dodis et al. [9].

w̃ ← x̃⊕ p = w ⊕ e
ŷ = m̂← Decode(w̃)

(d) Code-offset method
of Tuyls et al. [22].

p← x(1 : k) ·A
⊕ x(k + 1 : n)

ŵ ← Correct(x̃⊕ (0‖p))

ŷ = x̂← ŵ ⊕ (0‖p)

(e) Systematic method
of Yu [26].

ŷ = x̂(1 : k)← Decode(x̃

⊕(0‖p))

(f) Systematic method
of Kang et al. [15].

p← j so that x ∈ Cj ŷ = m̂← DecodeCj (x̃) (g) Multi-code method
of Ahlswede et al. [1].

Fig. 1. Seven secure sketch constructions, all having an n-bit input x. Correctness is
guaranteed, given a noisy version x̃ with HD(x, x̃) ≤ t.

for the syndrome construction and hence not repeated here. Figure 1(d) repre-
sents another minor modification where Rep returns message m, as suggested
by Tuyls et al. [22]. This necessitates an implementation of Decode rather than
Correct.

3.3 Systematic Methods of Yu and Kang et al.

The method of Yu [26] is represented by Figure 1(e). It requires a linear code C
with the generator matrix in standard form, i.e., G = (Ik‖A). We observe that
∆H∞ ≤ (n − k) holds due to Equation (3), given that helper data p is limited
to (n − k) bits. Figure 1(f) represents a slightly modified method where Rep
returns x(1 : k) rather than x. This was first proposed by Kang et al. in [15]
and independently also by Hiller et al. in [12].



3.4 Multi-Code Method of Ahlswede et al.

The method of Ahlswede et al. [1] is represented by Figure 1(g). Although ini-
tially proposed for secret key transport with correlated sources, it maps quite
easily to our framework of interest, as observed by Hiller et al. [12]. A distin-
guishing feature is the use of multiple codes Cj , covering mutually disjoint sets of
codewords. We restrict our attention to [n, k, d] block codes with j ∈ [0, 2n−k−1].
Every x ∈ X then coincides with exactly one codeword, guaranteeing correct-
ness. Furthermore, ∆H∞ ≤ (n− k) holds due to Equation (3), given that helper
data p = j is limited to (n − k) bits. In [12], Hiller et al. proposed an efficient
implementation where all codes are derived from a single parent code C0. In par-
ticular, C0 is a linear code in standard form, i.e.,G = (Ik‖A), and all other codes
are cosets: Cj = {w⊕ (0‖p) | w ∈ C0}. This turns out to be fully equivalent with
the method of Kang et al. in Figure 1(f), i.e., helper data p and reconstructed
output y are identical.

4 Metamorphosis: Entropy Loss Equivalencies

For several secure sketch constructions, the (n − k) upper bound on the min-
entropy loss was shown to be valid. In this Section, we prove that equivalen-
cies reach considerably further. An overview is provided in Figure 2. All seven
constructions exhibit an identical min-entropy loss. Or more precisely, all have
the same residual min-entropy, given by Equation (5), as long as the ingoing
distribution (X, I) and the code C are identical. Remember that terms with
P((P = p) ∩ (I = i)) = 0 are treated as 0. Also, we note that the equivalencies
easily extend to Shannon entropy, as proven in Appendix C.

Dodis et al. [9]

Juels et al. [14]

Tuyls et al. [22]

Bennett et al. [3]

Yu [26]

Kang et al. [15]

Ahlswede et al. [1]
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Section 4.3Section 4.1Section 4.2

Section 4.2 [12]Section 4.5

Section 4.4

Fig. 2. Entropy loss equivalencies. Transitive relations apply when following the arrows.
E.g., the schemes of Dodis et al. and Kang et al. are equivalent, given that both are
instantiated with a linear code in standard form.

H̃∞(Y |(P, I)) = − log2

(
E(p,i)←(P,I)

[
max
y∈Y

P((Y = y)|((P = p)∩(I = i)))
])
. (5)



4.1 Bennett et al. versus Yu

The methods of Bennett et al. and Yu both reconstruct the sketch input, i.e.,
y = x. We are the first to observe though that the helper data is identical as
well, as proven in Equation (6). Of course, this assumes a generator matrix in
standard form, i.e., G = (Ik‖A), given that Yu’s method is restricted to this
case.

p = x ·HT = x ·
(
A
In−k

)
= x(1 : k) ·A⊕ x(k + 1 : n). (6)

4.2 Juels et al. versus Dodis et al. versus Tuyls et al.

All three code-offset methods produce the same helper data p but differ in their
reconstructed output y. Nevertheless, we argue that the residual min-entropy
is identical. This follows from an underlying one-to-one correspondence, given
by Equation (7). Encode comprehends a bijection between message space M
and codeword space W. Furthermore, for a given p, there is a bijection between
W and a reduced response space X ′ = {p ⊕ w | w ∈ W} ⊆ X . Therefore,
Equation (5) evaluates to the same value for all three methods. Note that |M| =
|W| = |X ′|.

∀(p, i,m) ∈ (P × I ×M),P((M = m)|((P = p) ∩ (I = i)))

= P((W = Encode(m))|((P = p) ∩ (I = i)))

= P((X = Encode(m)⊕ p)|((P = p) ∩ (I = i))).

(7)

4.3 Yu versus Kang et al.

The methods of Yu and Kang et al. produce the same helper data p but recon-
struct y = x and y = x(1 : k) respectively. Nevertheless, Equation (8) indicates
that the residual min-entropy is identical. The main insight is that x(1 : k) and
p fully determine x(k + 1 : n).

∀(p, i,x) ∈ (P × I × X ),P((X(1 : k) = x(1 : k))|((P = p) ∩ (I = i)))

= P((X = (x(1 : k)‖(x(1 : k) ·A⊕ p))|((P = p) ∩ (I = i))).
(8)

4.4 Bennett et al. versus Dodis et al.

The syndrome method of Bennett et al. and the code-offset method of Dodis
et al. both reconstruct y = x. Furthermore, for both methods, helper data
p reveals in which coset x resides. For the syndrome method, this is a trivial
consequence from the one-to-one correspondence between cosets and syndromes.
For the code-offset method, p comprehends a random element in the same coset
as x. Note that the code-offset method is being instantiated with a linear code,



given that the syndrome method is restricted to this case. Equation (5) can hence
be rewritten as shown in Equation (9), with ε the coset leader. Remember that
I models external information about x, regardless of the sketching algorithm, so
it remains invariant given our change of variable.

H̃∞(X|(P, I)) = − log2

(
E(ε,i)←(E,I)

[
max
w∈C

P((X = ε⊕w)|((E = ε) ∩ (I = i)))
])
.

(9)

4.5 Bennett et al. versus Ahlswede et al.

For the multi-code method of Ahlswede et al., we need to assume that all codes
Cj are derived from a single parent code C0. As such, Hiller et al. [12] established
an equivalence with the sketch of Kang et al., given C0 linear and in standard
form. We consider a slightly more general case. In particular, a linear code C0
which is not necessarily in standard form, as required by the method of Bennett
et al. as well. All child codes Cj are again formed as the cosets of C0. Therefore,
helper data p = j still reveals in which coset x resides and Equation (9) holds
once again. The one-to-one correspondence of output y in Equation (10) finalizes
our proof.

∀(p, i,x) ∈ (P × I × X ),P((X = x)|((P = p) ∩ (I = i)))

= P((M = DecodeCp(x))|((P = p) ∩ (I = i))).
(10)

4.6 Generalization: Concatenated Codes in Parallel

The implementation footprint of Correct/Decode imposes upper bounds on code
size parameters [n, k, d]. Therefore, in order to generate a key of sufficient length,
z instances of a smaller code [n1, k1, d1] are typically applied in parallel. Further-
more, for high error rates in particular, concatenated codes are often used [4].
As a generalization, we consider z instances of [n2, k2, d2] ◦ [n1, k1, d1], with n1
an integer multiple of k2. One could think of these as a single umbrella block
code with n = z ·n2 · n1

k1
and k = z · k1. Therefore, prior equivalencies still apply.

4.7 Discussion

We adopt the perspective of an interested system provider, aiming to select
a sketch. Our newly proven equivalencies considerably simplify the selection
procedure. In particular, entropy loss is not a distinguisher. Table 1 lists various
other factors which might affect decision making.

In general, a secure sketch needs to be used as part of a fuzzy extractor
in order to obtain a uniformly distributed key k. This often boils down to an
additional hashing step, i.e., k← Hash(y). However, there are exceptions where
the sketch by itself might be sufficient [12]. Consider an n-bit input X which
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Ingoing bits n n n n n n n
Outgoing bits n n n k n k k

Helper bits n− k n n n n− k n− k n− k
Commitment no yes no yes no no no

Gen deterministic yes no no no yes yes yes

Entropy loss Equivalent. Bounded by ∆H∞ ≤ n− k.

Code requirements L / / / L L
S S

Table 1. Secure sketch comparison for an [n, k, d] block code. For the code require-
ments, ‘L’ denotes linear and ‘S’ denotes systematic.

is (nearly) uniformly distributed and given I absent, as might be the case for
certain PUFs. Sketches which a k-bit output then maintain this (nearly) uniform
distribution, according to the (n − k) bound. In particular, if H∞(X) = n − ε,
then H̃∞(Y |P ) ≥ k − ε, given a presumably small ε ≥ 0.

Furthermore, we consider two conflicting properties regarding the random-
ness of Gen. For a randomized Gen, fuzzy commitment could be considered as
an advantage, as it allows for more control on the key. As an example, one could
easily replace a malfunctioning PUF device without having to change the key. On
the other hand, a deterministic Gen eliminates the need for high-quality random
numbers. This is interesting if Gen is implemented on-chip in particular.

As another distinguisher, helper data size could be considered. Obviously,
(n − k) bits is preferred above n bits. Finally, a code needs to be selected. As
mentioned in [9], dense codes have the benefit. In the ideal case, this would be a
perfect/optimal code. For the same min-entropy loss, i.e., bound (n − k), more
errors, i.e., t, can be corrected then.

5 Tight Unified Bounds

Currently, secure sketch implementations rely on the (n−k) upper bound on the
min-entropy loss, e.g., [19]. Unfortunately, this leads to an overly conservative
design when instantiating security parameters accordingly. Another problem is
that the ingoing min-entropy H∞(X) cannot be determined exhaustively. As n
ranges from hundreds to thousands of bits in order to generate a key of sufficient
length, e.g., 128 bit, one cannot simply measure the probability of occurrence
of the most likely value x ∈ X . For PUFs in particular, one would have to
manufacture and read-out an infeasible number of devices for this purpose. E.g.,
� 21000, for n = 1000, although depending on the distribution as well as the



confidence level. Therefore, theoretical models are unavoidable, allowing to es-
timate min-entropy based on a limited number of samples. So in summary, the
pessimistic (n− k) bound is applied to a good estimate of H∞(X) at best.

We propose a more efficient substitute for the (n−k) bound, targeting PUF-
based key generation in particular. A prominent category of PUFs consists of an
array of identically designed cells, each producing a single bit, or occasionally a
few bits. This includes memory-based designs, such as the SRAM PUF [13], as
well as the coating PUF [23] and a subset of the large number of ring oscillator-
based designs, e.g., [25]. The most prominent entropy-degrading effects for such
PUFs are bias and spatial correlations. Bias comprehends an imbalance between
the number of zeros and ones. Spatial correlations implicate that neighboring
cells might influence each other. Former effects might be incorporated in a model
for distribution X, allowing to estimate H∞(X) as such.

We develop a graphical framework that produces tight bounds on H̃∞(Y |P )
for PUF-induced distributions. The critical first-order effects of bias and spatial
correlations are captured. Both lower and upper bounds are supported. The lower
bounds are of primary interest for a conservative system provider, entertaining
the worst-case scenario. We considerably improve upon the (n− k) bound, i.e.,
the leftmost inequality in Equation (11). We also improve upon the rather trivial
upper bounds which comprehend the rightmost inequality in Equation (11). The
validity of the log2(|M|) bound may be argued from the code-offset method of
Tuyls et al., having a number of outcomes limited to |Y| = |M|. The equivalen-
cies in Section 4 subsequently impose this bound on other sketches.

max(H∞(X)− (n− k), 0)︸ ︷︷ ︸
worst-case

≤ H̃∞(Y |P ) ≤ min(log2(|M|),H∞(X))︸ ︷︷ ︸
best-case

. (11)

Our lower and upper bounds combined define a relatively narrow interval in
which the exact value of H̃∞(Y |P ) is enclosed. We considerably extend related
work in [8, 18] as follows. First, we cover a variety of codes, regardless of their
algebraic complexity. Prior work focussed on repetition codes only. Although
frequently used as the inner code of a concatenated code, full-fledged key gen-
erators typically rely on non-trivial codes, e.g., BCH codes [16, 19]. Second, our
techniques may be applied to a variety of distributions, while prior work covered
biased distributions only. Note that our bounds remain easy-to-evaluate and able
to handle large codes.

5.1 Distributions

Our work is generic in the sense that a large variety of distributions X could be
covered. We only require that X = {0, 1}1×n can be partitioned in subsets ϕj ,
with j ∈ [1, J ], so that all elements of ϕj have the same probability of occurrence
qj . Formally, P(X = x) = qj if and only if x ∈ ϕj . These probabilities are strictly
monotonically decreasing, i.e., q1 > q2 > . . . > qJ . Occasionally, qJ = 0. The
ingoing min-entropy is easily computed as H∞(X) = − log2(q1). We determine



bounds on H̃∞(Y |P ). The runtime of the corresponding algorithms is roughly
proportional to J . The crucial observation is that even a very small J might
suffice to capture realistic PUF models. Below, we describe a parameterized
distribution R for both biased and spatially correlated PUFs.

– Biased distribution. We assume bits to be independent and identically dis-
tributed so that P(X(i) = 1) = b, with i ∈ [1, n] and a real-valued b ∈ [0, 1].
For b = 1

2 , this boils down to a uniform distribution. As a side note, this
model comprehends a very popular abstraction in PUF literature. The min-
entropy loss of various other helper data methods has been analyzed as such,
e.g., IBS [27] and soft-decision decoding [17, 8]. Therefore, our results enable
adequate comparison with related methods, all using a common baseline
distribution.

– Correlated distribution. We assume bits to be distributed so that P(X(i) =
X(i + 1)) = c, with i ∈ [1, n − 1] and a real-valued c ∈ [0, 1]. There is no
bias. For c = 1

2 , this boils down to a uniform distribution. Although spatial
correlations are generally acknowledged to be an issue, these are usually
ignored in theoretical work due to their complexity. We hope that our results
may help turn the tide on this.

Figure 3 specifies the subsets ϕj for both distributions. For the biased dis-
tribution, we partition according to HW(x). Essentially, this boils down to a
binomial distribution with j − 1 successes for n Bernoulli trials, each having
success probability b? = min(b, 1 − b). For the correlated distribution, we par-
tition according to HD(x(1 : n − 1),x(2 : n)), i.e., the number of transitions.
Inputs in subset ϕj exhibit j − 1 transitions and obey either one out of two
forms, i.e., x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .). A related observation is
that if x ∈ ϕj , then so is its ones’ complement, i.e., x ∈ ϕj . This explains the
factors 2 and 1

2 everywhere. Set size |ϕj | is further determined with stars and
bars combinatorics [10]. In particular, we separate n indistinguishable stars into
j distinguishable bins by adding j − 1 out of n− 1 bars.
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Fig. 3. Subsets ϕj for a biased and correlated distribution X, left and right respectively.
We define b? = min(b, 1− b) and c? = min(c, 1− c).



We treat the degenerate case b = c = 1
2 , i.e., a uniform distribution, sepa-

rately. There is only one set then. Formally, J = 1, |ϕ1| = 2n and q1 = 1/2n. As
proven by Reyzin [20], the min-entropy loss of a secure sketch is maximal for a
uniformly distributed input, making this a case of special interest.

5.2 Generic Bounds

Due to the newly proven equivalencies in Section 4, we can limit the analysis to
a single sketch only. We opt for the code-offset construction of Dodis et al., as it
does not impose restrictions on the code, linearity in particular. This maximizes
the generality of our results. Equation (12) holds, given that a codeword is
selected fully at random during enrollment.

P((P = p)|(X = x)) =

{
1/|M|, if ∃w : p = x⊕w
0, otherwise.

(12)

Equation (13) resumes Equation (5), while omitting I. Also, we apply Bayes’
rule and fill in Equation (12). The 0 case is resolved by switching variables for the
max operator. A direct exhaustive evaluation of the resulting formula requires
up to 2n|M| operations.

H̃∞(Y |P ) = − log2

(∑
p∈P

�����P(P = p) max
x∈X

P(X = x)P((P = p)|(X = x))

�����P(P = p)

)

= − log2

(
1

|M|
∑
p∈P

max
w∈W

P(X = p⊕w)

)
.

(13)

For linear codes, the workload can be reduced substantially. With a similar
derivation as before, we rewrite Equation (9) as shown in Equation (14). Up to
2n operations suffice. Nevertheless, direct evaluation is only feasible for small
codes. We stress that our bounds are able to handle large codes, as is typically
the case for a practical key generator.

H̃∞(Y |P ) = − log2

(∑
ε∈E

max
w∈W

P(X = ε⊕w)
)
. (14)

Equation (13) iterates over all p’s and selects each time the most likely x
which is within range, via the addition of a codeword w ∈ W. We now reverse
the roles, as shown in Figure 4. We iterate over all x’s, from most likely to least
likely, i.e., from ϕ1 to ϕJ . Within a certain ϕj , the order of the x’s may be chosen
arbitrarily. Subsequently, we assign p’s to each x, as represented by the black
squares, until the set P of size 2n is depleted. For each assigned p, we assume
that the corresponding x is the most likely vector, according to Equation (13).
Let spj denote the number of black squares assigned to set ϕj . The residual
min-entropy is then easily computed as in Equation (15).



H̃∞(Y |P ) = − log2

(
1

|M|

J∑
j=1

spj qj

)
. (15)

|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

p

|M|

mod(2n, |M|)

b2n/|M|c(a)

p

|M|

mod(2n, |M|)

|M| |M| mod(2n, |M|)(b)

Fig. 4. Reversal of the roles in Equation (13). (a) A lower bound on H̃∞(Y |P ). (b)

An upper bound on H̃∞(Y |P ). Black squares represent terms which contribute to

H̃∞(Y |P ), one for each p ∈ P. White squares represent non-contributing terms, over-
ruled by the max operator. In general, there are few black squares but many white
squares, 2n versus (|M| − 1)2n to be precise. For block codes, i.e., |M| = 2k, the last
column of black squares is completely filled.

Both linear and non-linear codes are supported by former graphical represen-
tation. Nevertheless, we elaborate linear codes as a special case so as to improve
the insights. Figure 5 swaps the order of iteration in Equation (14). Only one row
suffices, i.e., each column of helper data vectors p in Figure 4 is condensed to a
single square. Black and white squares are now assigned to cosets, as represented
by their coset leaders ε. Let sεj denote the number of black squares assigned to set
ϕj . The residual min-entropy is then easily computed as in Equation (16), hereby
dropping denominator |M| compared to Equation (15), given that spj = 2k · sεj .

H̃∞(Y |P ) = − log2

( J∑
j=1

sεjqj

)
. (16)



|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

ε

2n−k(a)

ε

2k 2k 2k(b)

Fig. 5. Reversal of the roles in Equation (14), as applied to linear codes. (a) A lower

bound on H̃∞(Y |P ). (b) An upper bound on H̃∞(Y |P ). Black squares represent terms

which contribute to H̃∞(Y |P ), one for each ε ∈ E . White squares represent non-
contributing terms, overruled by the max operator.

In the worst-case scenario, the most likely x’s all map to unique p’s, without
overlap, resulting in a lower bound on H̃∞(Y |P ). For a linear code, this would
be the case if the first 2n−k x’s all belong to different cosets. In the best-case
scenario, our sequence of x’s exhibits maximum overlap in terms of p, resulting
in an upper bound on H̃∞(Y |P ). For a linear code, this would be the case if
the first 2k x’s all map to the same coset, and this repeated for all 2n−k cosets.
Algorithms 1 and 2 comprehend a literal transcript of Figure 4 and compute the
lower bound and upper bound respectively. Auxiliary variables sp and sx accu-
mulate black and gray squares respectively. To maintain generality, we abstain
from special case algorithms for linear codes, although it would result in a few
simplifications.

Algorithm 1: BoundWorstCase

Input: List 〈|ϕj |, qj〉
Output: Lower bound on H̃∞(Y |P )
j, q, sp ← 0
while sp < 2n do

j ← j + 1
spj ← min(|ϕj ||M|, 2n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(Y |P )← − log2(q/|M|)

Algorithm 2: BoundBestCase

Input: List 〈|ϕj |, qj〉
Output: Upper bound on H̃∞(Y |P )
j, q, sp, sx ← 0
while sp < 2n do

j ← j + 1
sx ← sx + |ϕj |
spj ← d(s

x − sp)/|M|e|M|
spj ← min(max(spj , 0), 2n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(Y |P )← − log2(q/|M|)



Algorithms 1 and 2 may now be applied to a variety of distributions. For a
uniform distribution, the lower and upper bound both evaluate to H̃∞(Y |P ) =
log2(|M|), regardless of other code specifics. Or simply k, for block codes in
particular. The min-entropy loss is hence exactly (n−k), given that H∞(X) = n.
Reyzin’s proof [20] therefore implicates that the general-purpose (n− k) bound
cannot be tightened any further. Although results are fairly presentable already
for the biased and correlated distributions, we further tighten these bounds first.

5.3 Tighter Bounds

Tighter bounds can be obtained by leveraging code properties more effectively.
Algorithms 3 and 4 generalize Algorithms 1 and 2 respectively. In the former
case, an additional input imposes an upper bound on the accumulated number
of black squares, i.e., ∀j, (sp1 + sp2 + . . .+ spj ) ≤ (up1 +up2 + . . .+upj ). In the latter
case, an additional input imposes a lower bound on the accumulated number of
black squares, i.e., ∀j, (sp1 + sp2 + . . .+ spj ) ≥ (lp1 + lp2 + . . .+ lpj ). We now provide
several examples.

Algorithm 3: BoundWorstCase2

Input: List 〈|ϕj |, qj , up
j 〉

Output: Lower bound on H̃∞(Y |P )
j, q, sp, up ← 0
while sp < 2n do

j ← j + 1
up ← up + up

j

spj ← min(|ϕj ||M|, up − sp)

spj ← min(spj , 2
n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(Y |P )← − log2(q/|M|)

Algorithm 4: BoundBestCase2

Input: List 〈|ϕj |, qj , lpj 〉
Output: Upper bound on H̃∞(Y |P )
j, q, sp, sx, lp ← 0
while sp1:j < 2n do

j ← j + 1
sx ← sx + |ϕj |
lp ← lp + lpj
spj ← d(s

x − sp)/|M|e|M|
spj ← max(spj , l

p − sp, 0)

spj ← min(spj , 2
n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(Y |P )← − log2(q/|M|)

Worst-Case Bounds We improve the lower bound on H̃∞(Y |P ) for the cor-
related distribution. At least, for linear codes having the all-ones vector 1 of
length n as a codeword. This includes Reed-Muller codes of any order [16]. This
also includes many BCH, Hamming and repetition codes, on the condition that
these are cyclic and having d odd, as easily proven hereafter. Consider an arbi-
trary codeword with Hamming weight d. XORing all 2n circular shifts of this
codeword results in the all-ones codeword, which ends the proof. As mentioned
before, each set ϕj of the correlated distribution can be partitioned in pairs



{x,x}, with x the ones’ complement of x. Paired inputs belong to the same
coset, i.e., maximum overlap in terms of helper data p. Therefore, we impose
the cumulative upper bound given by Equation (17).

upj = |M| |ϕj |
2

= 2k−1|ϕj |. (17)

For instance, consider linear/cyclic [n, k = 1, d = n] repetition codes, i.e.,
having generator matrix G = 1, with n odd. Algorithms BoundWorstCase2 and
BoundBestCase then converge to the exact result H̃∞(Y |P ) = 1, not depend-
ing on parameter c. This is the best-case scenario, given the universal bound
H̃∞(Y |P ) ≤ k. Figure 6 illustrates the former with squares for n = 5. The re-
sult also holds if the repetition code is neither linear/cyclic nor odd. As long as
w1 ⊕w2 = 1, the elements of each ϕj can be paired into cosets. Although the
term coset is usually preserved for linear codes, translations of a non-linear repe-
tition code are either disjunct or coincide and still partition the space {0, 1}1×n.

2 8 12 8 2

x

⊕w

p

Fig. 6. The exact residual min-entropy H̃∞(Y |P ) for the correlated distribution and
an [n = 5, k = 1, d = 5] repetition code.

Best-Case Bounds We improve the upper bound on H̃∞(Y |P ) for both the
biased and correlated distribution. In particular, we take minimum distance d
into account. The main insight is that two slightly differing inputs xu 6= xv do
not overlap in terms of helper data p. More precisely, if HD(xu,xv) ∈ [1, d− 1],
then {xu ⊕w | w ∈ W} ∩ {xv ⊕w | w ∈ W} = ∅. For the biased distribution,
the following holds: HD(xu,xv) ∈ [1, d− 1] if xu 6= xv and xu,xv ∈ (ϕ1 ∪ ϕ2 ∪
. . . ∪ ϕt+1). Or stated otherwise, the elements of the first t + 1 sets all result
in unique p’s. Therefore, we can impose the constraint given by Equation (18).
Figure 7 depicts the squares.

lpj =

{
|ϕj ||M|, if j ∈ [1, t+ 1]

0, otherwise
. (18)

There is a remarkable observation for perfect codes in particular. As clear
from the Hamming bound in Equation (4), all p’s are covered by the first t+ 1
sets exclusively. BoundWorstCase and BoundBestCase2 hence produce the same
output. I.e., an exact evaluation of the residual min-entropy, as further simplified
by Equation (19). With FB , we denote the cumulative distribution function of a
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Fig. 7. A tightened upper bound on H̃∞(Y |P ) for the biased distribution, hereby
making use of Equation (18).

binomial distribution. This considerable extends a prior result of Delvaux et al.
in [8]. The same formula was derived for [n, k = 1, d = n] repetition codes, with
n odd. Note that such repetition codes are perfect. As a side note, their result
was proven for the methods of Bennett et al. and Dodis et al. separately. Our
equivalencies in Section 4 indicate that latter by itself would have been sufficient.

H̃∞(Y |P ) = − log2

(t+1∑
j=1

|ϕj | · qj
)

= − log2(FB(t;n,min(b, 1− b))). (19)

For codes which do not happen to be perfect, there is still margin for im-
provement. We inject some promising thoughts but abstain from numerical re-
sults later-on. Consider a linear code of which the Hamming weight distribution
of the coset leaders ε is well-understood. Let |Eh| denote the number of cosets
such that h = HW(ε). Clearly, |Eh| =

(
n
h

)
for h ∈ [0, t]. Our interest concerns |Eh|

for h > t, all of which are exactly known in the ideal case, as in [6] for certain
BCH codes. The largest h for which |Eh| > 0 is also referred to as the covering
radius hcr of the code. For a bias b < 1

2 , Equation (20) comprehends the exact
residual min-entropy. The latter expression extends to b > 1

2 in case the all-ones
vector 1 is a codeword. This includes Reed-Muller codes as well as cyclic codes
with d odd, as has been argued earlier-on. If only bounds on |Eh| and/or hcr
are known, one might still be able to further tighten the bounds on H̃∞(Y |P )
correspondingly.

H̃∞(Y |P ) = − log2

(
1

|M|

hcr∑
h=0

|Eh| · |M| · qh+1

)
= − log2

( hcr∑
h=0

|Eh| · qh+1

)
. (20)



For instance, consider [n, k = 1, d = n] repetition codes with n even. These
form the non-perfect and therefore less popular counterpart of n odd. Inputs x
belonging to ϕj and ϕn+2−j are still paired in order to form the cosets. Unlike
n odd, there is a central set ϕt+2 which contains both members of each pair.
Therefore, hcr = t + 1 and |Et+1| = |ϕt+2|/2. As argued before, the operational
principles of cosets extend to non-linear repetition codes. Figure 8 depicts the
squares for n = 4. Equation (21) evaluates the residual min-entropy.

H̃∞(Y |P ) = − log2

(
FB(t;n,min(b, 1− b)) +

1

2

(
n
n
2

)
(b(1− b))n

2

)
. (21)
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Fig. 8. The exact residual min-entropy H̃∞(Y |P ) for the biased distribution and an
[n = 4, k = 1, d = 4] repetition code.

Also for the correlated distribution, distance d might be incorporated to
tighten the upper bound on H̃∞(Y |P ). First of all, we assign |M| unique p’s
to one out of two elements in ϕ1. For ease of understanding, assume x = 0,
comprehending the first case in Equation (22). For each set ϕj , with j ∈ [2, n],
we then count the number of inputs x ∈ ϕj such that h = HW(x) ≤ t. The latter
constraint guarantees all assigned p’s to be unique. We distinguish between two
forms, x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .), resulting in two main terms. For
each form, we apply stars and bars combinatorics twice. In particular, we assign h
indistinguishable stars, i.e., ones, to distinguishable bins and independently also
for n− h zeros. Note that lpj = 0 for j > 2t+ 1. To ensure formula correctness,

one may verify numerically that lp1 + lp2 + . . .+ lp2t+1 equals the left hand side of
the Hamming bound in Equation (4).

lpj =


|M|, if j = 1

|M|
(∑t

h=bj/2c
(

h−1
bj/2c−1

)(
n−h−1
dj/2e−1

)
+
∑t

h=dj/2e
(

h−1
dj/2e−1

)(
n−h−1
bj/2c−1

))
, otherwise.

(22)

5.4 Numerical Results

Figure 9 presents numerical results for various BCH codes. We focus on small
codes, as these allow for an exact exhaustive evaluation of the residual min-
entropy using Equation (13) and/or (14). As such, the tightness of various



bounds can be assessed adequately. Figure 9(d) nevertheless demonstrates that
our algorithms support large codes equally well, in compliance with a practical
key generator. Note that only half of the bias interval b ∈ [0, 1] is depicted. The
reason is that all curves mirror around the vertical axis of symmetry b = 1

2 . The
same holds for the correlated distribution with parameter c.

Especially the lower bounds perform well, which benefits a conservative
system provider. The best lower bounds in Figures 9(a), (b) and (c) visually
coincide with the exact result. The gap with the (n − k) bound is the most
compelling around b, c ≈ 0.7, where the corresponding curves hit the horizon-
tal axis H̃∞(Y |P ) = 0. Also our upper bounds are considerably tighter than
their more general alternatives in Equation (11). Nevertheless, the latter bounds
remain open for further improvement, with the exception of Figure 9(b). An
[n = 7, k = 4, d = 3] code is perfect and lower and upper bounds then converge
to the exact result for a biased distribution.

5.5 Exhaustive Tightening

An exhaustive evaluation of Equations (13) and (14) was deemed infeasible in
practice due to large codes. Nevertheless, to the extent possible, number crunch-
ing may further tighten the outcome of Algorithms 3 and 4. In particular, we
would target the initial sets, i.e., ϕ1 up to a certain ϕg, as these contribute rela-

tively the most to H̃∞(X|P ). The assignment of black and white squares is then
exact. Starting from set ϕg+1, the usual computations take over. We stress that
linear codes are by far the most suitable for this hybrid technique.

6 Conclusion

Secure sketches are the main workhorse of modern PUF-based key generators.
The min-entropy loss of most sketches is upper-bounded by (n− k) bits and de-
signers typically instantiate system parameters accordingly. However, the latter
bound tends to be overly pessimistic, resulting in an unfortunate implementation
overhead. We showcased the proportions for a prominent category of PUFs, with
bias and spatial correlations acting as the main non-uniformities. New consider-
ably tighter bounds were derived, valid for a variety of popular but algebraically
complex codes. These bounds are unified in the sense of being applicable to seven
secure sketch constructions. Deriving tighter alternatives for the (n− k) bound
counts as unexplored territory and we not claim to have reached the end of it.
For instance, new techniques may have to be developed in order to tackle more
advanced second-order distributions.
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3. C. H. Bennett, G. Brassard, C. Crépeau, and M. Skubiszewska. Practical Quantum
Oblivious Transfer. In Advances in Cryptology - CRYPTO 1991, 11th Annual
Cryptology Conference, pages 351–366, 1991.
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A Fuzzy Extractors

The statistical distance between two probability distributions, X1 and X2, is
defined as in Equation (23).

SD(X,Y ) =
1

2

∣∣∣ ∑
x∈(X1∪X2)

(P(X1 = x)− P(X2 = x))
∣∣∣. (23)

An average-case fuzzy extractor [9] is a pair of efficient and possibly ran-
domized procedures: the generation procedure p← FEGen(x), with helper data



p ∈ P, and the recovery procedure k← FERep(x̃,p), with key k ∈ K. There are
two defining properties, as listed below.

– Correctness. If dist(x, x̃) ≤ t, correctness of reconstruction is guaranteed, i.e.,
FERep(x,p) = FERep(x̃,p). If dist(x, x̃) > t, there is no guarantee whatso-
ever.

– Security. For a certain lower-bound on the ingoing min-entropy, i.e., H̃∞(X|I)
≥ hin, the string k is guaranteed to be nearly uniform, even if the helper
data is observed. Formally, SD((K,P, I), (U,P, I)) ≤ ε, with U uniformly
distributed. It is advisable to choose ε negligibly small, e.g., 2−128.

There is a proven standard method to craft a fuzzy extractor from a se-
cure sketch. In particular, a randomness extractor could derive a key from the
secure sketch output, i.e., k ← Ext(y). Universal hash functions [5] are good
randomness extractors, according to the (generalized) leftover hash lemma [11,
2]. Unfortunately, their min-entropy loss is still quite substantial. In practice,
key generators therefore often rely on a cryptographic hash function which is
assumed to behave as a random oracle. The latter idealized heuristic results in
zero min-entropy loss.

B The Sketch of Davida et al. and its Performance

The method of Davida et al. [7] is represented by Figure 10. It requires a linear
code C with the generator matrix in standard form, i.e., G = (Ik‖A). The
method can be understood as an unmasked version of Kang et al. in Figure 1(f).
Equation (3) implies that the min-entropy loss ∆H∞ is bounded by (n − k)
bits, as before. This is relatively large though, as sketch input x comprehends k
rather than n bits, in contrast to all previous methods. On the bright side, t is
relatively larger as well, as only k bits are prone to error. Juels et al. [14] labelled
their sketch nevertheless as an absolute improvement, implying that the latter
does not fully compensate for the former. We are the first to support this claim
with an extensive quantitative analysis.

p← SSGen(x) ŷ ← SSRep(x̃,p)

p← x ·A ŷ = x̂← Decode(x̃‖p) Systematic method
of Davida et al. [7].

Fig. 10. The secure sketch construction of Davida et al., having a k-bit input x. Cor-
rectness is guaranteed, given a noisy version x̃ with HD(x, x̃) ≤ t.

Given the equivalencies in Section 4, the performance upgrade actually ap-
plies to all seven sketches. We limit the scope of our comparison to a uniformly
distributed X with I empty. As proven in Section 5.2, the equivalent sketches



then have a residual min-entropy H̃∞(X|P ) = k. Similarly, for the sketch of
Davida et al., we obtain Equation (24) and subsequently also Equation (25).
When considering A as a linear map from X to P, it follows that |P| = 2rank(A).

P((P = p)|(X = x)) =

{
1, if p = x ·A
0, otherwise

. (24)

H̃∞(X|P ) = − log2

(
|P| 1

2k

)
= − log2

(
2rank(A) 1

2k

)
= k − rank(A). (25)

The rank of a matrix is nonnegative and upper bounded by its dimensions,
i.e., 0 ≤ rank(A) ≤ min(k, n−k). In practice though, A tends to have full rank,
leading to Equation (26). Rank deficiencies would reduce the potential for a high
t. In the extreme case of a zero matrix, i.e., rank(A) = 0, there is no min-entropy
loss, but we would end up with t = 0. For cyclic codes, A is guaranteed to have
full rank, as proven next. Applying a circular shift to the columns of G = (Ik‖A)
results in an equivalent generator matrix G′ = (A‖Ik). The latter matrix could
equally well have been obtained via rank-preserving elementary row operations.
The number of non-zero rows in the submatrix consisting of the rightmost (n−k)
columns of G′ equals min(k, n − k), i.e., the rank of A, which ends the proof.
Note that it is of crucial importance to use codes with more message bits than
redundancy bits, i.e., k > (n−k). For, e.g., repetition codes, there would be zero
min-entropy left.

H̃∞(X|P ) = max(0, 2k − n). (26)

As an ultimate performance comparison, we instantiate key generators under
the following specification. We assume a uniform bit error rate, i.e., PE = 5%.
Furthermore, we aim for H̃∞(X|P ) = 128. Finally, we impose a failure rate
PF = 10−6 on the key reconstruction. For a given number of parallel code
instances z, in accordance with Section 4.6, we instantiate with the smallest
parameters [n1, k1, t1] which meet the specifications. For Davida et al., PF =
1− (FB(t; k, PE))z; for all other sketches, PF = 1− (FB(t;n, PE))z. We use opti-
mal codes. Although not necessarily suitable for implementation, these capture
perfectly how code parameters scale when codes get bigger. We obtain the num-
bers in Table 2. Each row is part of a Pareto frontier, graphically represented
in Figure 11. The sketch of Davida et al. is clearly inefficient in terms of code
complexity and the number of ingoing bits, i.e., H∞(X).

C Secure Sketch Equivalencies for Shannon Entropy

The sketch equivalencies proven for min-entropy in Section 4 trivially extend
to Shannon entropy. Therefore, we limit ourselves to replacing formulas. Equa-
tions (27) and (28) define Shannon entropy and conditional Shannon entropy



Equivalent sketches Davida et al.

z H̃∞(X|P ) [n1, k1, t1] H∞(X) PF [n1, k1, t1] H∞(X) PF

1 128 [269, 128, 33] 269 ≈ 8.15 · 10−7 [502, 315, 37] 315 ≈ 6.26 · 10−7

2 128 [158, 64, 24] 316 ≈ 7.10 · 10−7 [336, 200, 28] 400 ≈ 5.90 · 10−7

3 129 [121, 43, 21] 363 ≈ 4.43 · 10−7 [271, 157, 24] 471 ≈ 9.41 · 10−7

4 128 [99, 32, 19] 396 ≈ 3.53 · 10−7 [246, 139, 23] 556 ≈ 4.55 · 10−7

Table 2. Performance of all equivalent sketches versus Davida et al.
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Fig. 11. Pareto frontiers. We choose n as a representative for the code complexity.

respectively, similar to Equations (1) and (2) before. Undefined terms 0 · log2(0)
are evaluated as 0. The same holds for terms with P(I = i) = 0.

H(X) = −Ex←X

[
log2(P(X = x))

]
. (27)

H̃(X|I) = −Ei←I

[∑
x∈X

P((X = x)|(I = i)) log2(P((X = x)|(I = i)))
]
. (28)

We argue that all seven sketches have the same residual Shannon entropy, as
expressed by Equation (29). At least, given that the ingoing distribution (X, I)
and underlying code C are the same. Equations (6), (7), (8) and (10) still apply.
Equation (30) offers a replacement for Equation (9).

H̃(Y |(P, I)) = −E(p,i)←(P,I)

[∑
y∈Y

P((Y = y)|((P = p) ∩ (I = i)))

log2(P((Y = y)|((P = p) ∩ (I = i))))
]
.

(29)

H̃(X|(P, I)) = −E(ε,i)←(E,I)

[∑
w∈C

P((X = ε⊕w)|((E = ε) ∩ (I = i)))

log2(P((X = ε⊕w)|((E = ε) ∩ (I = i))))
]
.

(30)


