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Abstract

The notion of group signatures was introduced to allow group members to sign anonymously
on behalf of a group. A group manager allows a user to join a group, and another will be able
to open a signature to revoke its anonymity. Several schemes have already been proposed to fulfil
these properties, however very few of them are proven in the standard model. Of those proven in
the standard model, most schemes rely on a so called q-assumption. The underlying idea of a q-
assumptions is that to prove the security of the scheme, we are given a challenge long enough to
allow the simulator to answer queries. Another common solution is to rely on interactive hypothesis.
We provide one of the first schemes proven in the standard model, requiring a constant-size non-
interactive hypothesis. We then compare its efficiency to existing schemes, and show that this trade-
off is acceptable as most schemes with better efficiency rely on either an interactive or a q-hypothesis.
The exception to this is the recent independent of our work Libert, Peters and Yung (CRYPTO
2015), who presented an efficient group signature scheme in the standard model relying on standard
assumptions.
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1 Introduction

A group signature scheme [Cv91] is a protocol which lets a member of a group individually issue
signatures on behalf of the group, in an anonymous but traceable way. We have an Opener who is able
to revoke anonymity of the actual signer in case of abuse. Several steps have been made in the study
of these protocols: Bellare, Micciancio and Warinschi [BMW03] gave formal definitions of the security
properties of group signatures (the BMW model), and proposed a (impractical proof of concept) scheme
under general assumptions. However, this model required that the size of the group be fixed a priori and
may not change, known as static groups. Later, Bellare, Shi and Zhang [BSZ05] extended this model
to dynamic groups (the BSZ model), which allows the group to grow arbitrarily large, emphasizing the
importance of unforgeability and anonymity. Additionally, there was a similar model proposed by Kiayias
and Yung [KY06], with slightly weaker requirements on the Opener.

Group signatures primarily guarantee anonymity, which means that nobody (except the opener) can
link the signature to the signer, but also unlinkability, which means that one cannot tell whether two
signatures have been produced by the same user.

1.1 Related Work

The first efficient proposed group signature schemes were proven in the Random Oracle Model [ACJT00,
AST02, BBS04, BS04]. One of the first standard model schemes was proposed by Camenish and Lysyan-
skaya [CL04]. Despite being fairly efficient, these schemes suffered from the drawback that the signatures
were non-constant and would grow related to either the size of the group or the number of revoked users.

The first group signature with constant size was due to Groth [Gro06], but with an exceptionally
large size. Soon after another scheme was proposed by Boyen and Waters [BW06], with more plausible
sizes. Groth then improved on the scheme of [Gro06] in [Gro07] and provided not only an efficient group
signature scheme, but also presented a generic approach consisting in using a re-randomisable certificate
to produced a certified signature. Kakvi then proposed in [Kak10] some improvements that lead to a
more efficient SXDH instantiation. The schemes due to Groth [Gro07] and Kakvi [Kak10] all rely on
similar q-assumptions.

Following this, Delerablée and Pointcheval proposed another short scheme based on a q-assumption [DP06].
This scheme was improved and extended by Blazy and Pointcheval in [BP12], with comparable efficiency
while relying on only one, but a somewhat unclassical, q-assumption. (A variation of the q − DHSDH,
where the inputs contain more precise information than what is expected from the adversary).

In a recent independent work, Libert, Peters and Yung [LPY15] have proposed a group signatures
scheme, which is secure without any q-type assumptions. They use the recent advances in structure
preserving signatures [AFG+10] as a principle building block. We note that their scheme has slightly
weaker security guarantees.

There have been other works looking at removing q-type assumptions from cryptographic primitives.
The question of generically removing q-assumptions was studied by Chase and Meiklejohn [CM14]. The
approach of Chase and and Meiklejohn [CM14] transforms schemes in a prime order pairing groups to
schemes in composite order groups. In the other direction, Bresson, Monnerat and Vergnaud [BMV08]
showed separation between q-type assumptions and their non-q or simple variants, for the case of algebraic
reductions.

1.2 Our Contribution.

In this work, we present simple and efficient constructions of group signatures. They can be proven
under reasonable assumptions (variations of the SDH) and prove the security of both schemes in the
standard model. In this paper we combine the use of a Delerablée-Pointcheval [DP06] certificate for
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Waters’ signature [Wat05], and the Groth-Sahai [GS08] methodology. We describe our instantiation
through the framework of Groth [Gro06, Gro07] for generic group signatures.

In independent work, Libert, Peters and Yung [LPY15] recently presented a compact groups signature
scheme based on standard, or “simple”, assumptions1. We note that our signatures are of comparable
size to that of Libert, Peters and Yung, but we have a stronger security notion. Where as the underlying
signature scheme in [LPY15] is proven to be F-CMA secure, we prove full UF-CMA security. Note that
both schemes have a loss linear in the number of signing queries. Additionally the scheme in [LPY15] is
proven in the security model of Kiayias and Yung [KY06], but can be extended to the BSZ model [BSZ05].

1.3 Organization

In the next section, we present the primitive of group signature and the security model, due to Bellare,
Shi and Zhang [BSZ05]. Then, we present the basic tools upon which our instantiations rely. Eventually,
we describe our schemes, in the SXDH setting, with the corresponding assumptions for the security
analysis that is provided. For the sake of consistency, in Appendix B, we then explain the results with
the (intuitive) DLin instantiations of this scheme as it requires roughly the same number of group elements
and, based on the chosen elliptic curve and the way one wants to verify the signatures, one may prefer
one instantiation to the other. It also allows us to compare our signature with the previous one, and
show that we are roughly as efficient as most of the modern schemes, even though we require neither a
q-assumption, nor an interactive one.

2 Preliminaries

2.1 Dynamic Group Signatures

We prove our scheme secure in the growing group security model of Bellare, Shi and Zhang [BSZ05],
here on in referred to as the BSZ model. The model implicitly requires that all users have their own
personal signing/verification key pairs, which are all registered in a Public Key Infrastructure(PKI). We
thus assume that any user Ui wishing to join the group owns a public-secret key pair (upk[i], usk[i]),
certified by the PKI. Within our group signature setting, we have two distinct2 authorities or managers,
namely:

• The Issuer who engages adds new uses to the group and issues them with a group signing key and
the corresponding certificate,

• The Opener, it is able to “open” any signature and extract the identity of the signer.

A group signature scheme is defined by a sequence of (interactive) protocols, GS = (Setup, Join,Sig,
Verif,Open, Judge), which are defined as follows:

• Setup(1λ): Generates the group public key gpk, the issuer key ik for the Issuer, and the opening
key ok for the Opener.

• Join(Ui): This is an interactive protocol between a user Ui (who has their secret key usk[i]) and the
Issuer (using his private key ik). At the end of the protocol, the user obtains their group signing
key ski, and the group manager adds the user to the registration list, Reg. We note I the set of
registered users.

• Sig(pk, ,m, ski): Produces a group signature σ on the message m, under user Ui’s group signing key
ski.

1While q-assumptions are more and more common, they require a polynomial number of inputs and thus should be
avoided to provide a drastic improvement in security

2The BSZ model requires that both authorities must be distinct for certain notions of security. However, one could have
them as the same entity in a relaxed version of the BSZ security model.
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• Verif(pk,m, σ): Verifies the validity of the group signature σ, with respect to the public key pk.
This algorithm thus outputs 1 iff the signature is valid.

• Open(pk,m, σ, ok): If σ is valid, the Opener, using ok, outputs a user identity i assumed to be the
signer of the signature with a proof τ of this accusation.

• Judge(pk,m, σ, i, τ): Verifies that the opening of σ to the identity i was indeed correctly done.

2.2 Security Notions

We now recap the BSZ security model [BSZ05]. The BSZ model requires group signature schemes to
satisfy the following conditions, which we state informally:

• Correctness: All honest users must be able to join the group, receive their group signing key
and use it to generate group signatures. Furthermore all correctly and honestly generated group
signature should verify under the group public key and when opened by the opener should reveal
the correct signer.

• Anonymity: No person, except the opener, should be able to extract the identity of the signer
from any honestly generated group signature. Furthermore any group signatures a user produces
should not be linkable to any other group signature generated by the same user.

• Traceability: Any signature should be traceable to the signer who made the signature, using the
opener’s secret key. In particular a corrupted Opener is unable to make a “false” opening and have
it accepted by the Judge algorithm. In this scenario, we assume the issuer is fully honest.

• Non-frameability: No set of colluding group members can make a signature the will open to
another honest user, even if they collude with both the Issuer and Opener.

For a more detailed discussion of the security requirements we refer the reader to [BSZ05].

2.3 Computational Assumptions.

Our protocols will work with a pairing-friendly elliptic curve, of prime order:

• G1,G2 and GT are multiplicative cyclic groups of finite prime order p, and g1, g2 are generators of
G1,G2;

• e is a map from G1×G2 to GT , that is bilinear and non-degenerated, such that e(g1, g2) is generator
of GT .

In particular we consider Type 3 group, as per the definitions of Galbraith, Paterson and Smart [GPS08].
For our purposes we will need the following assumptions.

Definition 2.1 [Advanced Computational Diffie-Hellman [BFPV11]]
Let G1,G2 be multiplicative cyclic groups of order p generated by g1, g2 respectively, and e an admissible
bilinear map G1 × G2 → GT . The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1), for random

a, b ∈ Zp, it is hard to compute gab1 .

Definition 2.2 [q-Double Hidden Strong Diffie-Hellman [FPV09]] Let G1,G2 be multiplicative cyclic
groups of order p generated by g1, g2 respectively. The q-DHSDH problem consists given (g1, k1, g2, g

γ
2 )

and several tuples of the form (gxi1 , g
xi
2 , g

yi
1 , g

yi
2 , (k1g

yi
1 )1/(γ+xi))i∈[1,q] in computing (gx1 , g

x
2 , g

y
1 , g

y
2 , (k1g

y
1 )1/γ+x)

for a new pair (x, y).

Definition 2.3 [Double Hidden Strong Diffie-Hellman in G1,G2] Let G1,G2 be multiplicative cyclic
groups of order p generated by g1, g2 respectively. The DHSDH problem consists of, given (g1, k1, g2, g

γ
2 )

in computing a tuple of the form (gx1 , g
x
2 , g

y
1 , g

y
2 , (k1g

y
1 )1/γ+x) for any pair (x, y).
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We recall some computational assumptions used in other group signature schemes for completeness.

Definition 2.4 [Decisional Diffie-Hellman Assumption in G [DH76]] Let G be a cyclic group of prime
order p generated by g. The DDH assumption states it is infeasible to distinguish between the tuples
(ga, gb, gab) and (ga, gb, gc) for random a, b, c.

Definition 2.5 [Symmetric eXternal Diffie-Hellman [BBS04]] Let G1,G2 be cyclic groups of prime order,
e : G1 × G2 → GT be a bilinear map. The SXDH assumption states that the DDH assumption holds in
both G1 and G2.

Definition 2.6 [q-Strong Diffie-Hellman Assumption in G [BB04]] Let G be a cyclic group of order p

generated by g. The q-SDH problem consists, given (g, gγ , gγ
2

, . . . , gγ
q

), in computing a pair (x, g1/γ+x).

Definition 2.7 [Decision Linear Assumption in G [BBS04]] Let G be a cyclic group of prime order, with
generator g. The DLin assumption states that given (g, gx, gy, gax, gby, gc), it is hard to decide if c = a+ b
or not, for random a, b, x, y ∈ Zp.

Definition 2.8 [Symmetric eXternal Decision Linear [BBS04]] Let G1,G2 be cyclic groups of prime
order, e : G1 × G2 → GT be a bilinear map. The SXDLin assumption states that the DLin assumption
holds in both G1 and G2.

Definition 2.9 [eXternal Decision Linear 1 Assumption [AFG+10]] Let G1,G2 be cyclic groups of prime
order, with generators (g1, g2), and e : G1 × G2 → GT be a bilinear map.The XDLin1 assumption states

that given a tuple of the form (g1, g
x
1 , g

y
1 , g

ax
1 , gby1 , g2, g

x
2 , g

y
2 , g

ax
2 , gby2 , g

c
1), it is hard to decide if c = a + b

or not, for random a, b, x, y ∈ Zp.

Definition 2.10 [eXternal Decision Linear 2 Assumption [AFG+10]] Let G1,G2 be cyclic groups of prime
order, with generators (g1, g2), and e : G1 × G2 → GT be a bilinear map.The XDLin2 assumption states

that given a tuple of the form (g1, g
x
1 , g

y
1 , g

ax
1 , gby1 , g2, g

x
2 , g

y
2 , g

ax
2 , gby2 , g

c
2), it is hard to decide if c = a + b

or not, for random a, b, x, y ∈ Zp.

2.4 Certified Signatures

We use a primitive known as a certified signature scheme which was introduced by Boldyreva et
al. [BFPW07]. A certified signature scheme is signature scheme where the well-formedness of the pubic
key is verifiable due to an additional certificate. We use the BBS-like certification [BBS04] proposed by
Delerablée and Pointcheval [DP06] to certify a Waters public key [Wat05]. When a receiver wishes to
verify a certified signature, he will not only verify the signature, as per usual, but also verify the certificate
of the well-formedness of the public key.

The security requirements for certified signatures is that we should neither be able to create a signature
using a faked certificate key nor forge a signature for an already issued certificate. Although Boldyreva et
al. provide more general security requirements, we use slightly simpler definitions, as in previous works.
For a certified signature scheme to be secure, we require it to satisfy the following conditions:

• Unfakeability: No adversary should be able to produce a valid certificate for a key pair generated
of his choice, even after having seen a polynomial number of certificates

• Unforgeablity: We require that the basic signature scheme satisfies at least the notion of existen-
tial unforgeability under weak message attack.

We will use a slight variant of the signature scheme due to Waters [Wat05] using a certificates as
described by Delerablée and Pointcheval [DP06], which we refer to as the DPW scheme from here on in.
We describe the scheme in Figure 1

The DPW Scheme was shown to be secure under the q-DHSDH, and CDH+ assumptions. In Sec-
tion 3 we will present a modification of this scheme that such that we can prove the security under the
DHSDH and CDH+ assumptions.
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algorithm KeyGen(1k) algorithm Issue

gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1k)
` = poly(λ)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1

u ∈
R
G`1 //description of F

return (ak, ck) = ((gk,Γ, k1,F), (ak, γ))

User Issuer

y′ ∈
R
Zp

gy
′

1 ,gy
′

2→
x, y′′ ∈

R
Zp

A = (k1g
y′

1 g
y′′

1 )
1

x+γ

cert = (gx1 , g
x
2 , A)

sk = y′ + y′′
y′′,cert←

pk = (gsk1 , g
sk
2 )

return (pk, cert, sk) return (pk, cert)
algorithm Sign(pk, sk,m) algorithm Verify(pk, ak, cert,m, σ)

s ∈
R
Zp

σ1 = hskF(m)s

σ2 = gs1
σ3 = gs2
return σ = (σ1, σ2, σ3)

return 1 if
e(cert1, g2) = e(g1, cert2)∧
e(cert3, ak2pk2) = e(k1, g2)e(g1, pk2)∧
e(cert2, g2) = e(g1, σ3)∧
e(σ2, g2) = e(g1, σ3)∧
e(σ1, g2) = e(h1, pk2)e(F(m), σ3)

else return 0

Figure 1: The Delerablée-Pointcheval Certified Waters Signature Scheme.

2.5 Groth-Sahai Commitments.

We will follow the Groth-Sahai methodology for SXDH-based commitment in the SXDH setting. The
commitment key consists of u ∈ G 2×2

1 and v ∈ G 2×2
2 . There exist two initialisations of the parameters;

either in the perfectly binding setting, or in the perfectly hiding one. Those initialisations are indis-
tinguishable under the SXDH assumption which will be used in the simulation. We denote by C(X) a
commitment of a group element X. An element is always committed in the group (G1 or G2) it belongs
to. If one knows the commitment key in the perfectly binding setting, one can extract the value of X, else
it is perfectly hidden. We note C(1)(x) a commitment of a scalar x embedded in G1 as gx1 . If one knows
the commitment key in the perfectly binding setting, on can extract the value of gx1 else x is perfectly
hidden. The same things can be done in G2, if we want to commit a scalar, embedding it in G2.

Proofs. Under the SXDH assumption, the two initializations of the commitment key (perfectly binding
or perfectly hiding) are indistinguishable. The former provides perfectly sound proofs, whereas the latter
provides perfectly witness hiding proofs. A Groth-Sahai proof, is a pair of elements (π, θ) ∈ G2×2

1 ×G2×2
2 .

These elements are constructed to help verifying pairing relations on committed values. Being able to
produce a valid pair implies knowing plaintexts verifying the appropriate relation.

We will use three kinds of relations:

• pairing products equation which require 4 extra elements in each group;

• multi-scalar multiplication which require 2 elements in one group and 4 in the other;

• quadratic equations which only require 2 elements in each group.

If some of these equations are linear, some of the extra group elements are not needed, which leads
to further optimizations.

In the following, we will generate two Common Reference Strings to handle commitments and proofs
under this methodology through the following algorithm:

• GS.KeyGen(gk): generates two commitment keys, and the associated extraction key xk if it exists.
In our protocol, ckB will provide perfectly binding commitments in both group and while ckH will
provide perfectly hiding commitments in G2.Both commitment keys are added to the CRS: crs.

• C.Commit(ck∗, A): allows to commit to an element A under the commitment key ck∗, this produces
a commitment, and some resulting randomness r used for the commitment.

• GS.Prove(E, (C, ck∗)): generates a Zero Knowledge Groth-Sahai Proof of
Knowledge, the plaintexts committed in C under ck∗ verifies some equation described in E. Such
proofs, requires the of the previous randomness r, and can only be done directly if elements in a
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designated group are committed under the same ck∗. (This means that we have to be careful that,
for a given equation, our commitments in G2 are done solely with ckH or solely with ckB .). This
generates a proof π composed of several group elements.

• GS.Verify(π): verifies the validity of the proof π. To lighten the notation, we suppose that a proof π
induces the previous E, (C, ck∗). A proper notation of this algorithm should be: GS.Verify(E, (C, ck∗), π),
in other words, is π a valid proof that the plaintexts committed in C under ck∗ are a valid solution to
the equation described in E. Once again, to lighten the notation, we will denote GS.Verify(π1, π2, . . .)
the verification of several proofs, this can be done sequentially or using a batch technique, as pre-
sented in [BFI+10].

• GS.Re-Randomize(C, ck∗, π): rerandomizes the commitment C, using
C.Re-Randomize(C, ck∗), and then adapts the proof π. This step does not require the knowledge
of the commitment randomness. When committing to a value previously public in an equation, it
can be seen as randomizing a previous commitment to this variable where the randomness used
was 0. GS.Re-Randomize(C1,...,n, π1,...,k) will once again use the previous contraction and allows to
randomizes all commitments C using the correct ck, and adapts accordingly the proofs π. It should
be noted, that Groth Sahai methodology grants an extra degree of freedom, allowing to randomize
the proof π without touching the commitments.

• C.Extract(C, xk): extracts the plaintext A from C if A was committed in C under a binding key. The
soundness of proof generated by Groth and Sahai methodology implies that if GS.Verify(E, (C, ckB), π)
holds, then we have that C.Extract(C, xk) verifies the equation E.

2.6 A Classical Trick

Our construction will rely on a classical trick used on Groth-Sahai proof. In many e-cash papers [CG07,
BCKL09, LV09, FV10], the construction needs an anonymity property where the adversary should not
be able to get any information on a coin while a judge should be able to extract information while in
the same CRS. Another application around this idea was presented by Fischlin, Libert and Manulis in
[FLM11] where the authors used it to provide a non-interactive technique to commit to elements in the
UC framework.

In those cases, the solution proposed, is to commit twice to the value X, once with a perfectly binding
commitment key, and once with a perfectly hiding key, and then proving the committed value X is the
same in both. (While this is necessarily true because of the perfectly hiding commitment, under the Co-
Soundness of Groth-Sahai proof, this is hard to do without the knowledge of trapdoors in the commitment
key). To then use this X in the rest of the scheme, one simply builds proof using the perfectly hiding
commitment.

We will employ exactly this trick in the context of group signatures. Most schemes rely on a q-
assumption, or even an interactive assumption, to prove anonymity of the scheme. We use this trick to
be able to prove anonymity without using either, thus achieving our goal.

3 Our Construction

3.1 Certified Signatures

We first present a variant of the Delerablée-Pointcheval Certified Waters Signature Scheme, using com-
mitments, which we will call the DPWC scheme from here on in. In the DPWC scheme, instead of
sending the certificate, the certificate authority will send commitments to the certificate, and a proof
that the certificate is well-formed. The receiver must now verify the proof of well-formedness instead
of the certificate. We can now show that the hardness of forging a certificate can be reduced to the
soundness of the commitment scheme, which in turn is based upon the SXDH. Due to technical reasons,
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algorithm KeyGen(1k)
gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1λ)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1, h2,F ∈R G`+2
2

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)
algorithm Sign(pk, sk,m)
s ∈

R
Zp

σ1 = hsk2 F(m)s

σ2 = gs1
σ3 = gs2
return σ = (σ1, σ2, σ3)
algorithm Verify(pk, ak, cert,m, σ)
return 1 if

GS.Verify(π) == 1 ∧
e(σ2, g2) == e(g1, σ3) ∧
e(g1, σ1) == e(pk1, h2)e(σ2,F(m))

return 0 else

algorithm Join/Issue(usk[i], ik)
User Issuer

y′ ∈
R
Zp

gy
′

1→
y′′, x ∈

R
Zp

A = (k1g
y′

1 g
y′′

1 )
1

x+γ

α = C.Commit(ckB , A)
χ = C.Commit(ckH , g

x
2 )

X1 = C.Commit(ckB , g
x
1 )

X2 = C.Commit(ckB , g
x
2 )

π1 = GS.Prove(α, χ)
π2 = GS.Prove(X1, χ)
π3 = GS.Prove(X1, X2)
X = (X1, X2)
π = (π1, π2, π3)
cert = (α, χ,X, π)

y′′,pk,cert←− pk = (g
y′i
1 g

y′′i
1 , g

y′i
2 g

y′′i
2 )

sk = y′ + y′′

if pk 6= (gsk1 , g
sk
2 )

return ⊥
if GS.Verify(π) 6= 1

return ⊥
else

return (pk, cert, sk) return (pk, cert)

Figure 2: The Delerablée-Pointcheval Certified Waters Signature Scheme with Commitments.

we need two common reference strings, one which is perfectly hiding and one which is perfectly binding.
We present the DPWC scheme in Figure 2.

Theorem 3.1 The DPWC scheme is a certified signature scheme with perfect correctness for all messages
m ∈ {0, 1}`. It is unfakebale under the DHSDH assumption and unforgeable under the CDH+ assumption.

Proof: The correctness of the scheme follows from the correctness of the Waters signatures, the Deler-
ablée-Pointcheval certification and the correctness of the Groth-Sahai NIZK scheme.

We now prove unfakeability, using the following lemma:

Lemma 3.2 If an adversary can (q′, t′, ε′)-break the unfakeability of the scheme, then we can (t, ε)-solve
the Double Hidden Strong Diffie-Hellman (DHSDH) problem, with

t ≈ t′ and ε = ε.

Proof: We receive as an initial input the DHSDH challenge of the form
(p,G1,G2,GT , g1, k1, g2, gγ2 , e). We then generate new commitment keys and keys for the proof sys-
tem, thus giving us the extraction keys for the commitments and the ability to simulate the proofs, using
the CRS trapdoor. We send the challenge along with the commitment keys and public parameters for
the proof system to the adversary. Note the these form a valid DPWC public key. The adversary will
then make q queries to the KeyReg oracle, which will allow it to act as a user and receive a key and
certificate. We pick random values y′′, x as before. Now since we do not posses a valid certification key,
we must simulate the certificate. To simulate a certificate, we pick a random value A and commit to it.
We then simulate the zero-knowledge proofs of well-formedness. Since we never send the A values in the
clear, the adversary will not realise this, hence we have a perfect simulation of the scheme. The adversary
will then submit a faked certificate cert∗, a public key pk∗, message m∗, signature σ∗. We first verify the
certified signature. If the adversary has produced a valid certified signature, then both the certificate and
signature must be correctly formed. Using the extraction key on the binding commitments, we are able

to extract the value A∗ from faked certificate, along with the values gx
∗

1 , gx
∗

2 , gy
∗

1 , gy
∗

2 . We then submit

(gx
∗

1 , gx
∗

2 , gy
∗

1 , gy
∗

2 , A∗) our solution to the DHSDH problem. We note that we win with exactly the same
probability as the adversary.
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The unforgeability of the DPW scheme was shown to hold by Blazy et al. in [BFPV11]. We include their
statement in here for completeness.

Lemma 3.3 Given an adversary can (q′, t′, ε′)-break the unforgeability of the scheme, then we can (t, ε)-
solve the Advanced Computational Diffie-Hellman (CDH+) problem, with

t ≈ t′ and ε = Θ(ε/q′
√
`)

where ` is the length of our messages.

Proof: The proof can be found in [BFPV11, Appendix D]. This concludes the proof.

3.2 Group Signature

Now that we have the DPWC scheme, we can begin to construct our group signature scheme. The
näıve approach would be to simply to provide each user with a DPWC certificate and key pair and use
those to produce in the normal manner. However, we can immediately see that these signatures are no
longer unlinkable, as a all the signatures from any user would have their DPWC certificate attached to
it, along with the corresponding public key. This is remedied by treating the DPWC public key as part
of the certificate and committing it as well during the Join/Issue protocol. When signing the user will
re-randomize these commitments and the proofs.

However, the signatures are still linkable. This is due to the fact that given a pair of Waters signatures,
one can check if they are signed using the same key or not. To resolve this problem, we use an idea due to
Fischlin [Fis06] that a commitment to a signature and proof of well-formedness implies a signature. We
apply this idea to the Waters signature and hence get commitments of our signature elements and proofs
of their well-formedness. This “committed” signature and our re-randomized committed certificate and
the relevant proofs are then sent as the group signature.

The Open procedure will use the extraction key xk to extract the certificate from a signature and then
check if there is a registry entry with the same certificate. If a matching certificate is found, we know
that this user must have made that signature and thus it can be opened to their index. To prove that
the opening was done correctly, we simply prove that the commitment stored in the registry and the one
commitment from the signature contain the same certificate.

Theorem 3.4 The scheme described in Figure 3 is a group signature scheme with perfect correctness.
The scheme satisfies anonymity, traceablity and non-frameability under the SXDH,DHSDH and CDH+

assumptions.

Proof: We will now prove each of the statements individually. We begin with correctness.

Lemma 3.5 The scheme described in Figure 3 is a group signature scheme with perfect correctness.

Proof: The correctness follows directly from the correctness of the DPWC certified signature scheme
and the Groth-Sahai proof system.

Lemma 3.6 The scheme described in Figure 3 is a group signature scheme with anonymity, under the
Symmetric External Diffie-Hellman Assumption.

Proof: The identifying information in the group signature is the commitment to the user’s certificate
and public key. If an adversary would be able to distinguish signatures made by one user from the
other, then he would effectively have distinguished between the commitments of two known values, hence
breaking the hiding property of our commitment scheme, and thus the Symmetric External Diffie-Hellman
Assumption.
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algorithm KeyGen(1k) algorithm Join/Issue(usk[i], ik)

gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1k)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1, h2,F ∈R G`+2
2

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)

algorithm Sign(gpk, sk,m)
s ∈

R
Zp

cert′i ←$ GS.Re-Randomize(certi)
Y1 = GS.Re-Randomize(ckB , g

ski
1 , π′i,1)

Y2 = C.Commit(ckB , g
ski
2 )

σ1 = C.Commit(hski2 F(m)s)
σ2 = gs1
σ3 = gs2
π̃1 = GS.Prove(Y1, Y2)
π̃2 = GS.Prove(σ1, σ2, Y2)
return σ = (σ1, σ2, σ3, cert

′
i, Y1, Y2, π̃1, π̃2)

User Issuer

y′i ∈R Zp
gy
′
i

→
y′′i , xi ∈R Zp
Ai = (k1g

y′

1 g
y′′

1 )
1

xi+γ

αi = C.Commit(ckB , Ai)
χi = C.Commit(ckH , g

xi
2 )

Xi,1 = C.Commit(ckB , g
xi
1 )

Xi,2 = C.Commit(ckB , g
xi
2 )

πi,1 = GS.Prove(αi, χi)
πi,2 = GS.Prove(Xi,1, χi)
πi,3 = GS.Prove(Xi,1, Xi,2)
Xi = (Xi,1, Xi,2)
πi = (πi,1, πi,2, πi,3)
certi = (αi, χi, Xi, πi)

ski = y′i + y′′i
certi,y

′′
i←−

if GS.Verify(πi) 6= 1
return ⊥

si = Sign(usk[i], certi)
si→

return (certi, ski) Reg[i] = (i, pk[i], certi, si)
algorithm Open(gpk, ok, σ) algorithm Verify(gpk,m, σ)
cert∗ ← C.Extract(xk, cert′i)
for(i ∈ [1, n])

ĉert← C.Extract(ok, certi)
x̂← C.Extract(ok,Reg[i]4)
if ĉert == cert∗1

τ = GS.Prove(cert, cert∗)
return (i, τ)

endfor
return (0,⊥)

return GS.Verify(π′i, π̃1, π̃2) ∧ e(σ2, g2) == e(g1, σ3)

algorithm Judge(pk, ak, cert,m, σ, τ)

return GS.Verify(τ)

Figure 3: The Group Signature Scheme.

Lemma 3.7 The scheme described in Figure 3 is a group signature scheme with traceability, under the
Double Strong Hidden Diffie-Hellman Assumption.

Proof: For an adversary to be able to succeed in the traceability game, a corrupted user must produce
a valid group signature such that the Opener is unable to trace the signer, or is unable to prove that
he has traced the signer. Since the Opener in this came is only partially corrupt, and hence follows
the algorithm in Figure 3, if the signature can be traced, then the proof produced will be accepted by
the Judge algorithm, due to the Soundness of the Groth-Sahai proof system. Thus, the adversary must
produce a valid group signature which contains a certificate that does not belong to any user and is hence
not in the Registry. If an adversary were able to do this, then this would break the unfakeablity property
of the DPWC certified signature scheme and, thus the Double Strong Hidden Diffie-Hellman Assumption.

Lemma 3.8 The scheme described in Figure 3 is a group signature scheme with non-frameability, under
the Symmetric External Diffie-Hellman, Double Strong Hidden Diffie-Hellman and Advanced Computa-
tional Diffie-Hellman Assumptions.

Proof: For an adversary to win the non-framebility game, they must produce a signature which will be
correctly attributed to an honest user who did not produce this signature. To achieve this, an adversary
must provide:

1. A valid signature under the user’s public key

2. A valid committed certificate, with proofs

9



3. A valid proof that the signature is valid under the public key in the committed certificate

Item 2 can be easily obtained by the adversary as he is able to fully corrupt both the Opener and Issuer
and obtain the correct certificates and the corresponding proof from there. Thus we now need to only
consider how the Adversary produces the other two components. To this end, we consider two types of
Adversaries, namely NF1 and NF2.

Type I Non-Frameability Adversaries The first type of adversary, which we call NF1, is an adver-
sary who wins in the non-frameability game by forging a signature for an honest user. Once the adversary
has a valid forger, he can easily obtain a committed certificate and re-randomize that. Having both these,
the adversary can then honestly generate a proof that the signature is valid. We see that this signature
is a valid group signature and will indeed be attributed to the targeted user. If a NF1 to succeeds, it
can be turned into and adversary against the unforgeability of the DPWC signature scheme, and thus
the Advanced Computational Diffie-Hellman Assumption.

Type II Non-Frameability Adversaries The second type of adversary, which we call NF2, is a
adversary who wins in the non-frameability game by creating a false proof for an incorrect signature. This
adversary chooses a “signature”, which is not a valid signature of the message under the targeted user’s
public key, from the signature space and then proceeds to produce a proof that this invalid “signature” is
indeed valid. If a NF2 adversary succeeds, they will have produced a NIZK proof on a false statement,
which breaks the Soundness of the Groth-Sahai proof system, and thus the Symmetric External Diffie-
Hellman Assumption.

In addition to the above types of adversary, we must also consider an adversary who fakes a certificate
for the targeted user and then performs a Type I or Type II attack. The adversary in this game has the
capability to write to the registry and hence can replace the user’s old certificate with their faked one.
After this the user must perform a Type I or Type II attack as described above. Here we see that the
adversary must first fake a certificate, hence breaking the unfakeability of the DPWC certified signature
scheme, and thus the Double String Hidden Diffie-Hellman Assumption. After this, the adversary will
proceed as a NF1 or NF2 and thus additionally break the Advanced Computational Diffie-Hellman
Assumption or the Symmetric External Diffie-Hellman Assumption.

4 Efficiency Comparison

We now look at the efficiency of our scheme in comparison to the state of the art in signature schemes.
We begin with a look at the exact size of our signatures. We list the size of each component of our
signature in the table below.

Component σ1 σ2 σ3 α χ X1 X2 π1 π2 π3 Y1 Y2 π̃1 π̃2 TOTAL
G1 0 1 0 2 0 2 0 2 2 2 2 0 2 4 19
G2 2 0 1 0 2 0 2 4 2 2 0 2 2 4 23

We recall that the first constant size signature scheme was due to Groth [Gro06], although the signa-
ture size was in the thousands or even millions, hence we will not consider it in our comparison. The first
efficient constant size group signature scheme was proposed by Groth [Gro07], based on the DLin assump-
tion in Type 1 groups. The generic construction of Groth [Gro07] was adapted to Type 2 and 3 groups
by Kakvi [Kak10] and independently adapted to Type 3 groups by Libert, Peters and Yung [LPY15].
Blazy and Pointcheval [BP12] presented an instantiation of traceable signatures with stepping, which is
a special case of group signatures, building on the scheme of Delerablée and Pointcheval [DP06]. In our
comparison we only consider the schemes in Type 3 groups.
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Total Signature Size
Scheme Assumptions G1 G2 Total Bitsize Bitsize

Elements |G1| > |G2| |G2| > |G1|
Adapated Groth [Gro07, LPY15] SXDLin, q-SDH, q-U′ 27 12 39 13056 16896

Kakvi [Kak10] (Scheme 3) SXDLin, q-SDH, q-U3a 24 15 39 13824 16128
Kakvi [Kak10] (Scheme 4) SXDLin, q-SDH, q-U3b 16 23 39 15827 14080

Blazy and Pointcheval [BP12] CDH+, q-DDHI, q-DHSDH 21 16 37 13568 14848
Libert, Peter and Yung [LPY15] SXDH, XDLin2, DLin3 30 14 44 14848 18944

This Work CDH+, DHSDH 19 23 42 16640 15616

Table 1: Comparison of Group Signature Schemes secure in the Standard Model.

Similar to the work of Libert, Peters and Yung [LPY15], we compare not only the number of group
elements, but the bit sizes. We consider two scenarios, namely first when G1 has a larger representation
than G2 and the converse. We take the small group to be 256 bits and the larger to be 512 bits.

As we can see from the table, our signature sizes are comparable to that of the other schemes, but
under standard assumptions. In particular, we have fewer elements than the scheme of Libert, Peters and
Yung [LPY15], albeit with a marginally larger signature in one case. We have slightly larger signatures
across the board when compared to the other schemes, but with the advantage of relying on standard
assumptions. We believe that this trade-off between size and security is an acceptable one to make.
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A Asymmetric Waters Signature Scheme

We briefly recall the asymmetric Waters signature scheme:

• Setup(1k): The scheme needs a (asymmetric) pairing-friendly environment (p,G1,G2,GT , e, g1, g2),
where e : G1 ×G2 → GT is an admissible bilinear map, for groups G1,G2 and GT , of prime order
p, generated by g1, g2 and gt = e(g1, g2) respectively. We will sign messages M = (M1, . . . ,Mk) ∈
{0, 1}k. To this aim, we need a vector ~u = (u0, . . . , uk)

$← Gk+1
1 , and for convenience, we denote

the Waters Hash as F(M) = u0
∏k
i=1 u

Mi
i . We also need an additional generator h1

$← G1. The
global parameters param consist of all these elements (p,G1,G2,GT , e, g1, g2, h1, ~u).

• KeyGen(param): Chooses a random scalar x
$← Zp, which defines the public key as (X1, X2) =

(gx1 , g
x
2 ), and the secret key as sk = Y = hx1 .

• Sign(sk = Y,M ; s): For some random s
$← Zp, define the signature as σ =

(
σ1 = Y (F(M))s, σ2 =

g−s1 , σ3 = g−s2 ).

• Verif((X1, X2),M, σ): Checks whether e(σ1, g2) ·e(F(M), σ3) = e(h1, X2), and e(σ2, g2) = e(g1, σ3).

B A Linear Version of Our Construction

Our previous scheme can be directly transposed in a symmetric group, with Linear Commitments.

algorithm KeyGen(1k) algorithm Issue

gk = (p,G,GT , g, e)←$ Gen(1k)
γ ∈

R
Zp, Γ = gγ

k, h, g2 ∈R G,F ∈
R
G`+1

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k, h, g2,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)

algorithm Sign(gpk, sk,m)

s ∈
R
Zp

cert′i ←$ GS.Re-Randomize(certi)
Y1 = GS.Re-Randomize(ckB , g

ski , π′i,1)

Y2 = C.Commit(ckB , g
ski
2 )

σ1 = C.Commit(hyF(m)s)
σ2 = gs

π̃1 = GS.Prove(Y1, Y2)
π̃2 = GS.Prove(σ1, σ2, Y2)
return σ = (σ1, σ2, cert

′
i, Y1, Y2, π̃1, π̃2)

User Issuer

y′1 ∈R Zp
gy
′
1

→
y′′i , xi ∈R Zp
Ai = (k1g

y′

1 g
y′′

1 )
1

xi+γ

αi = C.Commit(ckB , Ai)
χi = C.Commit(ckH , g

xi)
Xi,1 = C.Commit(ckB , g

xi)
Xi,2 = C.Commit(ckB , g

xi
2 )

πi,1 = GS.Prove(αi, χi)
πi,2 = GS.Prove(Xi,1, χi)
πi,3 = GS.Prove(Xi,1, Xi,2)
Xi = (Xi,1, Xi,2)
πi = (πi,1, πi,2, πi,3)
certi = (αi, χi, Xi, πi)

ski = y′ + y′′
certi,y

′′
i←−

if GS.Verify(πi) 6= 1
return ⊥

si = Sign(sk[i], certi)
si→

return (certi, ski) Reg[i] = (i, pk[i], certi, si)
algorithm Open(gpk, ok, σ) algorithm Verify(gpk,m, σ)
cert∗ ← C.Extract(xk, cert′i)
for(i ∈ [1, n])

ĉert← C.Extract(ok, certi)
x̂← C.Extract(ok,Reg[i]4)
if ĉert == cert∗1

τ = GS.Prove(cert, cert∗)
return (i, τ)

endfor
return (0,⊥)

return GS.Verify(π′i, π̃1, π̃2)

algorithm Judge(pk, ak, cert,m, σ, τ)

return GS.Verify(τ)

Figure 4: The Symmetric Group Signature Scheme.

Theorem B.1 The scheme described in Figure 3 is a group signature scheme with perfect correctness.
The scheme satisfies anonymity, traceablity and non-frameability under the DHSDH,DLin and CDH as-
sumptions.
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Component σ1 σ2 α χ X1 X2 π1 π2 π3 Y1 Y2 π̃1 π̃2 TOTAL
G 3 1 3 3 3 3 ≈ 13 ≈ 13 2 3 3 2 3 ≈ 55

This can be proven following the idea of the asymmetric instantiations. We omit the proofs, as they
are of minimal interest.

On the efficiency of this scheme There is always a trade-off in efficiency while instantiating on a
symmetric group a scheme designed for an asymmetric one. verifying that two elements have the same
discrete logarithm is way more efficient in a DLin setting because this becomes a linear equation while
being a quadratic one in SXDH. However we will have equations with two CRS involved for the same
group, and that is quite inefficient (approximately 13 elements for each proof).

The table above gives a rough estimation of the cost of the symmetric instantiation of our scheme,
while not being so efficient it is still in the same order of magnitude as existing group signatures schemes,
but once again our hypotheses are neither interactive nor relying on q-assumptions.
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