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Abstract. The discrete logarithm over finite fields of small character-
istic can be solved much more efficiently than previously thought. This
algorithmic breakthrough is based on heuristic polynomial time algo-
rithms to compute the factor base discrete logarithm. In this paper, we
concentrate on the Kummer extension Fq2(q−1) . We design a new heuris-

tic algorithm with an improved bit complexity Õ(q1+θ) (or algebraic
complexity Õ(qθ)) to compute the discrete logarithms of elements in a
factor base of cardinality q2, where θ < 2.373 is the matrix multiplication
exponent. We reduce the correctness of the algorithm to a conjecture con-
cerning the determinant of a simple (q + 1)−dimensional lattice, rather
than to elusive smoothness assumptions. We verify the conjecture numer-
ically for all q’s such that log2(q2(q−1)) ≤ 5000, and provide theoretical
supporting evidences.
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1 Introduction

One of the basic assumptions in cryptography is the difficulty of solving discrete
logarithm over a finite field. While the assumption still holds now for a general
field, in particular a prime order field, it has been weakened dramatically if the
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characteristic of the field is small, due to recent ground-breaking work [8, 14, 15,
3]. The new algorithms follow the same two-step strategy as in the index calcu-
lus, function field sieve and number field sieve [1, 2]. In the first step the discrete
logarithms of elements in a factor base are calculated. In the second step, the
discrete logarithm of the target element is computed. The factor base is closely
related to the concept of smoothness, which plays a critical role in many algo-
rithms attacking public key cryptosystems. An integer is smooth if all its prime
factors are small. A polynomial is smooth if it can be factored into a product of
irreducible polynomials of small degrees. Small prime numbers, or small degree
irreducible polynomials, form a factor base. If a multiplicative relation among
elements in the factor base can be found, one obtains a linear equation by taking
logarithm. While previous approaches use exhaustive search to find relations, the
new algorithms [8, 14, 15, 9] rely on a guided way, dubbed as “pinpointing” in
[14]. It works very well in practice, inspires the first heuristic quasi-polynomial
time algorithm [3], and produces a sequence of record-breaking numerical results.
However, the correctness of these algorithms is based on smoothness assumptions
that are impossible to prove using current number theoretical techniques.

In the method of [15], to solve the discrete logarithm problems in small char-
acteristic fields such as Fq2n = Fq2 [X], the factor base consists of the polynomial
in Fq2 [X] of degree 1. From every element in PGL2(Fq2), one obtains an equa-
tion, where the left hand side is a product of linear polynomials in Fq2 [X], and
the right hand side is of low degree. A relation is found if the right hand side can
be factored completely into linear factors. It has been observed that for the Kum-
mer extension Fq2(q−1) , in the equation obtained from an element in the Borel
subgroup of PGL2(Fq2), the right hand is automatically linear [13]. The relations
from the subgroup give us a linear system of q2 − 1 variables and O(q2) many
equations, without using smoothness assumptions. A natural question is whether
it is sufficient to solve the discrete logarithm of linear factors from this system.
In this paper, we first give a negative answer to the question. We then propose to
add a few simple relations that are not derived from an element in PGL2(Fq2) .
Our computation examples show that after adding them, the discrete logarithm
can be computed. To analyze the algorithm, we formulate a conjecture concern-
ing the determinant of a (q + 1)-dimensional lattice. If the conjecture is true, it
implies that discrete logarithms of the factor base (of cardinality q2 ) in Fq2(q−1)

can be solved in Õ(q1+θ) bit operations ( or algebraic complexity Õ(qθ)), which
is an improvement over (algebraic) complexity O(q6), claimed in [16]. We have
verified the conjecture numerically for all q’s such that log2(q2(q−1)) ≤ 5000,
which covers all the fields that are cryptographically relevant. We also provide
theoretical evidences that support the conjecture.

Our Motivation Even though in cryptography, the Kummer extensions are not
used, and fields with small characteristic are generally avoided, we feel that it is
worthwhile to study the discrete logarithm problem in Kummer extensions:

– The Kummer extensions are usually the testbeds for new ideas on solving
discrete logarithms. The efficiency of the algorithm in the Kummer case
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attains the upper bound, thus many of the numerical records are achieved
in Kummer extensions.

– All the new algorithms are heuristic, even in the case of Kummer extensions,
except a recent result in [10], where it is randomized. Removing the heuris-
tic and/or the randomness from the algorithm, or even just weakening the
heuristic, is an interesting and important problem. The Kummer extensions
are naturally the first candidates for investigations.

1.1 New Method of Finding Relations

Let Fq be a finite field with q elements. Let h0(x) and h1(x) be polynomials over
Fq2 of small degrees. Let g be an element in Fq2 such that 〈g〉 = F∗q2 . Following

Joux’s idea, we start with the identity in Fq2 [x]:∏
α∈Fq

(x− α) = xq − x.

Apply the Möbius transformation

x 7→ ax+ b

cx+ d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2 is nonsingular. We have

∏
α∈Fq

(
ax+ b

cx+ d
− α) = (

ax+ b

cx+ d
)q − ax+ b

cx+ d
.

Clearing the denominator, we get

(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (ax+ b)q(cx+ d)− (ax+ b)(cx+ d)q

= (aqxq + bq)(cx+ d)− (ax+ b)(cqxq + dq).

Multiplying both sides by h1(x) and replacing xqh1(x) by h0(x), we obtain

h1(x)(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

=(aqh0(x) + bqh1(x))(cx+ d)− (ax+ b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)). (1)

The left hand is a product of linear polynomials if h1(x) has degree ≤ 1. Let
f(x) be irreducible factor of xqh1(x) − h0(x) of degree n. If the right hand,
which already has small degree, can be factored into linear factors, then we have
a relation among factor base elements in Fq2 [x]/(f(x)) ∼= Fq2n . One hopes to
find enough relations so that the factor base discrete logarithm can be found.
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For any (n, q) ( n < q ) of cryptography interests, the small degree poly-
nomials h0(x) and h1(x) can be found easily so that xqh1(x) − h0(x) has an
irreducible factor of degree n. However proving that they exist in general is a
very hard mathematical problem. One can compare it with the much weaker
Hansen-Mullen Conjecture [11, Conjecture B] concerning the distribution of ir-
reducible polynomials with some prefixed coefficients, and subsequent work such
as [19]. Because this work focuses on provability of the computational complex-
ity, we feel that the Kummer extension Fq2(q−1) should be dealt with firstly. It
can be modeled by Fq2 [x]/(xq−1−A), where A ∈ Fq2 and xq−1−A is irreducible
over Fq2 . In this case, existence of h0 and h1 can be easily established, and in
fact,

h1(x) = 1, h0(x) = Ax.

Equation (1) becomes

(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (aqAx+ bq)(cx+ d)− (ax+ b)(cqAx+ dq) (mod xq −Ax).

1.2 Our Contributions

If aqc = acq, then the right hand side has degree one, which gives us a relation.
To satisfy aqc = acq, we can set a = 0, in which case c can be made to 1; or we
set c = 0, in which case a can be made to 1; or we can set a = 1 and c = 1.
One can verify that these three cases give us the same set of relations, since they
are in the same PGL2(Fq)−coset of the group PGL2(Fq2), and the elements in
the same PGL2(Fq)−coset generate the same linear equation. W.l.o.g., we will
assume that c = 0 and d = 1. Denote X = x (mod xq−1 −A), we have∏

α∈Fq

((aX + b)− α) = (aqAX + bq)− (aX + b).

If b 6∈ Fq, then we can simply assume that b = g, and obtain∏
α∈Fq

((aX + g)− α) = (aqAX + gq)− (aX + g).

We have

aq
∏
α∈Fq

(X +
g − α
a

) = (aqA− a)(X +
gq − g
aqA− a

).

Let log be the discrete logarithm based on a prefixed multiplicative generator
of (Fq2(q−1))∗/F∗q2 . For example, log a = 0 for every a ∈ F∗q2 . We obtain a linear
system

∀a ∈ F∗q2 ,
∑
α∈Fq

log(X +
g − α
a

) = log(X +
gq − g
aqA− a

) (2)
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of q2 − 1 equations in q2 − 1 variables, which represent log(x + h) ( h ∈ F∗q2).

Define a matrix M = (mi,j)0≤i,j≤q2−2 such that

mi,j =

{
1, if ∃ α ∈ Fq, s.t. gi = (g + α)Ag

jq−gj
gq−g ;

0, otherwise.

One can verify that the coefficient matrix of the linear system is M − I.
Note that {(

a b
0 1

)
| a ∈ F∗q2 , b ∈ Fq2

}
is the Borel subgroup of PGL2(Fq2). We should only consider PGL2(Fq)−coset
representatives, which can be partitioned into two subsets{(

a g
0 1

)
| a ∈ F∗q2

}
∪
{(

a 0
0 1

)
| a ∈ F∗q2/F

∗
q

}
.

The linear system (2) is obtained by considering the first subset. The second
subset gives us a system of q + 1 equations:

∀a ∈ F∗q2/F
∗
q ,
∑
α∈F∗q

log(X +
−α
a

) = 0. (3)

None of the equations contains the variable corresponding to logX, which is
known as a trap [4]. But it is easy to calculate log(X) in the Kummer case since
the order of X is small.

Note that the linear system (2), as well as (3), is homogeneous. If the solution
space is one dimensional, then the discrete logarithms of linear factors can be
determined up to a scalar that depends on the logarithm base. We will show
that the linear system (2) is not sufficient for the purpose of solving discrete
logarithm of the factor base. To achieve this, we prove that the eigenvalues of
M , viewed as an integral matrix, include 1 with multiplicity at least (q − 1)/2.
We will also give a numerical example that shows adding (3) does not help.

We then propose to add a simple relation into the linear system. One observes
that over F∗

q2(q−1)/F∗q2 , we have (X + a)q
2

= X + a
Aq+1 , thus

∀a ∈ F∗q2 , q
2 log(X + a) = log(X +

a

Aq+1
). (4)

With this observation, given the value log(X+a) for any a ∈ F∗q2 , log(x+aβ)

for all β ∈ F∗q can be computed, since 1
Aq+1 is a generator of the multiplicative

group F∗q . Therefore, after adding (4), we can reduce the number of variables in
(2) from q2 − 1 to q + 1. This relation was studied in [14]. This improves the
efficiency of solving the linear system to bit complexity O(q3.4). Note that we
can use

∀a ∈ F∗q2 , q log(X + a) = log(X +
aq

A
) (5)
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instead of (4) to have a slightly better algorithm. In this paper, since our goal
is mainly about provability, we will use (4).

To analyze the new algorithm, we introduce a conjecture about the determi-
nant of a simple (q + 1)−dimensional lattice, derived from M . The conjecture
implies that this more efficient algorithm can solve the factor base discrete log-
arithm for any Fq2(q−1) . We have done an extensive numerical study to confirm
the conjecture. On the theoretical side, we prove that all the complex eigenvalues
of M , other than q, 1 and −1, have complex norm

√
q, using the character sum

technique. This allows us to bound the complex norm of eigenvalues of M − I
over the complex number C, which provides a strong supporting evidence to our
conjecture.

This paper is organized as follows. In Section 2, we decompose M into a block
diagonal form, and show that adding (3) essentially removes one small block
from M , thus will not have a big impact on the efficiency of the algorithm. In
Section 3, we show that adding (4) allows us to select just one block from the
block diagonal form of M , which greatly improves the efficiency. We formulate
a conjecture that implies the correctness of our algorithm, and supply some
numerical and theoretical evidences. We make some concluding remarks in the
last section.

2 Block Diagonal Form of M over C

In this section, we show that the linear system (2) is singular over Q with a kernel
of dimension at least (q − 1)/2. To this end, we first decompose M , viewed as a

linear transformation of C[x]/(xq
2−1 − 1),

M(xk) =

q2−2∑
i=0

mi,kx
i =

∑
α∈Fq

x
logg

(
(g+α)·Ag

kq−gk
gq−g

)
, for all 0 ≤ k ≤ q2 − 2,

into a directed sum of linear operators. For the linear system (3), we have a
corresponding transformation

C(xk) =
∑
α∈Fq

x
logg

(
−α·Ag

kq−gk
gq−g

)
, for all 0 ≤ k ≤ q2 − 2.

Definition 1. Define two linear transformations G and T over the C-linear
space C[x]/(xq

2−1 − 1) as:

G(xk) = xk
∑
α∈Fq

xlogg(g+α), T (xk) = xkxlogg
Agk(q−1)−1

gq−g .

Note that M,C,G and T are well-defined, since logg is a map from F∗q2 to

Z/(q2 − 1)Z if g is a multiplicative generator of Fq2 .

Theorem 1. We have M = GT .
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Proof. For any 0 ≤ k ≤ q2 − 2,

M(xk) =
∑
α∈Fq

x
logg

(
(g+α)·Ag

kq−gk
gq−g

)

=

∑
α∈Fq

xlogg(g+α)

 · xlogg Agkq−gkgq−g ,

which proves the theorem. ut

According to Chinese Remainder Theorem, we have a ring isomorphism:

C[x]/(xq
2−1 − 1)→

q−2⊕
i=0

C[x]/(xq+1 − ζiq−1),

where ζq−1 = e
2πi
q−1 . It decomposes the linear space C[x]/(xq

2−1 − 1) into q − 1
subspaces, each has dimension q + 1. The following theorem shows that each of
the components is an invariant subspace for T and G, thus M can be represented
by a block-diagonal matrix.

Theorem 2. The linear transformation M over C[x]/(xq
2−1− 1) defined above

is similar to a block-diagonal matrix:

M = U−1


M0

M1

. . .

Mq−2

U, (6)

where for i = 0, 1, · · · , q − 2, Mi = M |C[x]/(xq+1−ζiq−1)
, denoting the transfor-

mation of M acting on the invariant subspace C[x]/(xq+1 − ζiq−1), and U is an
invertible matrix.

Proof. Let Vi,j be the polynomial

xj
∏
k 6=i

(xq+1 − ζkq−1)

in C[x]/(xq
2−1 − 1). It is easy to see that for any 0 ≤ j ≤ q, 0 ≤ i ≤ q − 2, if

k 6= i, we have
Vi,j = 0 (mod xq+1 − ζkq−1).

And Vi,0, Vi,1, · · · , Vi,q is a basis of subspace C[x]/(xq+1 − ζiq−1). One can verify
that

T (xm(q+1)xn) = xm(q+1)xnxlogg
Ag(n+m(q+1))(q−1)−1

gq−g

= xm(q+1)xnxlogg
Agn(q−1)−1

gq−g

= xm(q+1)T (xn)
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for any integer m and n. We have T (Vi,j) = yVi,j′ for some integer j′ and y ∈ C.
Thus, the space spanned by Vi,0, Vi,1, · · · , Vi,q is invariant under T . It is also
invariant under G, the block diagonal structure of M is derived. ut

2.1 The Linear Transformation T

It turns out that T is a very simple transformation.

Theorem 3. Let 0 ≤ i ≤ q − 2 be an integer. Note that since 1−Aq+1

(gq−g)2 ∈ F∗q ,

there must exist a unique complex number τ that is congruent to

x
logg

1−Aq+1

(gq−g)2 (mod xq+1 − ζiq−1).

The linear transformation Ti = T |C[x]/(xq+1−ζiq−1)
can be represented by

D
0 y1

τ/y1 0
0 y2

τ/y2 0
. . .

0 yd
τ/yd 0


where D = diagonal(γ1, · · · , γt) satisfying γ2j = τ for all 1 ≤ j ≤ t. In addition,
we have: t = 1, if q is even; t is 0 or 2, if q is odd.

Proof. In the polynomial ring C[x]/(xq+1 − ζiq−1), we have

T 2(xk) = x
logg

1−Aq+1

(gq−g)2 · xk = τxk.

since

A
(
Agkq−gk
gq−g

)q
− Agkq−gk

gq−g

gq − g
= gk · 1−Aq+1

(gq − g)2
.

For any integer 0 ≤ k1 ≤ q, there must exist an integer k2 and y ∈ C, such
that T (xk1) = yxk2 , and T (xk2) = τ

yx
k1 . When k1 = k2, we have T (xk1) = γxk1

with γ2 = τ . We claim that the number of these k1 is at most 2.

Observe that T (xk) = γxk for some γ ∈ C if and only if Agk(q−1)−1
(gq−g) ∈ Fq.

Then we must have

(
Agk(q−1) − 1

gq − g
)q =

Agk(q−1) − 1

gq − g
,

Namely Ag2k(q−1)− 2gk(q−1) +Aq = 0, which is a quadratic equation in gk(q−1).
In addition, gq−1 has order q+1, thus there are at most two 0 ≤ k ≤ q satisfying
the formula.

With proper order of the basis {1, x, x2, · · · , xq}, we obtain our conclusion.
ut
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Corollary 1. The characteristic polynomial of the linear transformation T0 =
T |C[x]/(xq+1−1) is

– (x2 − 1)q/2(x− 1) if q is even;
– (x2 − 1)(q+1)/2 if q is odd and t = 0;
– (x2 − 1)(q−1)/2(x− 1)2 if q is odd and t = 2.

Let us consider the action of M on subspace C[x]/(xq+1 − 1). By Chinese
Remainder Theorem,

C[x]/(xq+1 − 1) ∼= C[x]/(x− 1)⊕ C[x]/(xq + xq−1 + · · ·+ 1).

In the component C[x]/(x− 1) ∼= C, xq +xq−1 + · · ·+ 1 ∈ C[x]/(xq+1− 1) is the
base. Acting on the base, G0 = G |C[x]/(xq+1−1) is just a multiplication by q, and
T fixes the base. In the other component C[x]/(xq + xq−1 + · · ·+ 1), one base is
{xi(x− 1)|0 ≤ i ≤ q − 1}. The action G0 is a multiplication by∑

α∈Fq

xlogg(g+α) =
∑

1≤i≤q

xi = −1,

since for any α ∈ Fq, β ∈ Fq, (g + α)/(g + β) 6∈ Fq if α 6= β. The eigenvalue of
M0 is thus equal to the negation of eigenvalue of T0. Hence

Theorem 4. Let f0(x) be the characteristic polynomial of M0, we have

f0(x) =

{
(x− q)(x2 − 1)

q
2 , q is even;

(x− q)(x2 − 1)
q−1
2 (x± 1), q is odd.

From Theorem 4 , we conclude that M has eigenvalue 1 with multiplicity at
least (q − 1)/2. Hence M − I has a kernel space of dimension (q − 1)/2 over Q.
It means that the q2 − 1 relations in the linear system (2) are not enough to
compute the discrete logarithms of linear factors.

2.2 The Linear Transformation C

Theorem 5. We have

C = U−1


(q − 1)T0

0
. . .

0

U

where T0 is a permutation matrix, and U is the same base change matrix in (6).

Proof. It is easy to verify that C = HT , where H is a linear transformation over
C-linear space C[x]/(xq

2−1 − 1) defined as:

H(xk) = xk
∑
α∈F∗q

xlogg(−α),
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and T is defined in Definition 1.
In the ring C[x]/(x1+q − 1), we have∑

α∈F∗q

xlogg(−α) =
∑

1≤j≤q−1

(xq+1)j = q − 1.

That is, for any polynomial P ∈ C[x]/(xq
2−1 − 1),

C(P (x)) = HT (P (x))

= T (P (x)) ·
∑
α∈F∗q

xlogg(−α)

= (q − 1)T (P (x)) 6= 0.

On the other hand, in the ring C[x]/(x1+q − ζiq−1), 1 ≤ i ≤ q − 2, we have∑
α∈F∗q

xlogg(−α) =
∑

1≤j≤q−1

(xq+1)j =
∑

0≤j≤q−1

(ζiq−1)j = 0.

Then for any P (x), one may obtain:

C(P (x)) = T (P (x)) ·
∑
α∈F∗q

xlogg(−α) = 0.

We conclude that the solution space of (3) belongs to the solution space of
Mi, 1 ≤ i ≤ q − 2, but not M0. ut

Corollary 2. Adding the equations of (3) to the equations of (2), we obtain a
linear system M ′ − I where

M ′ = M1 ⊕M2 ⊕ · · ·Mq−2.

The corollary basically shows that after adding (3), the dimension of the
linear system that we need to solve drops from q2−1 to q2− q−2, which is only
a negligible improvement.

3 The Main Theorem and the Conjecture

Assume that q2(q−1) − 1 has factorization

q2(q−1) − 1 = pe11 p
e2
2 · · · pess N,

where p1, · · · , ps are primes less than q2, and N is free of prime factors less than
q2. Denote S = pe11 p

e2
2 · · · pess . To solve the discrete logarithm problem in Fq2(q−1) ,

we observe the group isomorphism

F∗q2(q−1)
∼= Z/NZ× Z/SZ.
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The discrete logarithm in the subgroup of order S can be solved in O(q2) by
Pohlig-Hellman algorithm [17], since the group order is smooth. So we should
focus on the subgroup of order N . To compute the discrete logarithm in this
subgroup, we will have to solve the equation system (2) combining with (3) over
Z/NZ. Ideally it is preferable to solve linear systems in a finite field Fl, where
l|N , as there are no zero divisors in a field. However it is hard to factor N in
general. For this reason, we should solve the linear system by computing the
Hermite Normal Form, instead of using the Gauss Elimination.

As we have shown in the previous sections, the system (2) alone is not enough,
since it has a kernel over Q of dimension much bigger than 1. Can we avoid the
problem by adding the linear equations (3)? We found that when q = 31, M ′ has
eigenvalue 1 with multiplicity 2 over Fl for the prime factor l = 2521 of N , thus
the M ′ − I have a kernel of dimension 2 over Fl. Here we include the details:

For the case q = 31, we build the extension field Fq2 = Fq[x]/(x2−2x+3).
Let g = x (mod x2 − 2x + 3). One can verify that g is a multiplicative
generator of F∗q2 . The element A is selected to be g, We compute h(x),

the characteristic polynomial of M
′
, and find that when l = 2521, the

power of the factor x− 1 in h(x) (mod l) is 2.

This shows that the discrete logarithm over the subgroup of size l can not
be uniquely determined by the linear system (2) plus (3). Furthermore, even in
the case that (2) plus (3) is sufficient, it is not efficient, since we need to solve a
linear system with O(q2) many variables.

Nevertheless if we add (4), numerical data confirm that discrete logarithm
can always be found. The new linear system have only q + 1 variables, and
the coefficient matrix can be described by the action of G and T , as defined
in Definiton 1, on the Z/NZ-module (Z/NZ)[x]/(xq+1 − µ̃(g1+q)), where µ̃ is
homomorphism from F∗q to 〈q2〉 ∈ (Z/NZ)∗ satisfying

µ̃(1/A1+q) = q2.

We will denote the coefficient matrix of GT in base {xi|0 ≤ i ≤ q} by M̃1,
which can be regarded as an integer matrix. We use L to denote the map from
an integer matrix to the lattice generated by the row vectors of the matrix.
Construct a lattice

L1 = L(M̃1 − I) +NZq+1.

Theorem 6. We have N |det(L1)|Nq+1.

Proof. Note that L1 is a sublattice of NZq+1, we conclude that det(L1)|Nq+1.
The linear factors X + a ( a ∈ Fq2 ) generate the cyclic multiplicative group

F∗
q2(q−1) [5]. From (4), we conclude that 〈X + gi|0 ≤ i ≤ q〉 contains the cyclic

multiplicative group F∗
q2(q−1)/〈X〉, which includes the subgroup of cardinality N .

There is an injection from this subgroup into of Zq+1/L1, thus N |det(L1). Note
that if we need use a different base for the Z/NZ-module (Z/NZ)[x]/(xq+1 −
µ̃(g1+q)), the determinant of lattice remains the same. ut
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We make the following conjecture

Conjecture 1. det(L1) = N.

It implies that we can use Smith Normal Form of L1 to find a generator
of subgroup of cardinality N , and determine the factor base discrete logarithm
with respect to that element in the subgroup. We have verified the conjecture
for all the prime power q less than 307.

Theorem 7. Assume that the conjecture is true. We can find a generator of
the subgroup of cardinality N of F∗

q2(q−1) , and compute the discrete logarithms of

linear factors with respect to the generator in time Õ(q1+θ).

Proof. Assuming that for any basis B of lattice L1, we have the Smith Normal
Form transformation D = S1BS2, where D is the Smith Normal Form of lattice
L1, and S1, S2 are corresponding transformations with respect to B. Then it is
easy to verify that the last column of S2 are the ratio of the discrete logarithms
of

X +
gq − g
A− 1

, X +
gq − g
Agq − g

, · · · , X +
gq − g

Agkq − gk
, · · · , X +

gq − g
Ag − gq

over Z/NZ respectively.
Assuming that the last row of S−12 is (e′0, e

′
1, · · · , e′q), one may verify that

〈
∏q
i=0(X + gq−g

Agkq−gk )e
′
k〉 contains the subgroup of (Fq2(q−1))∗ of order N . With

the ratio, it is easy to calculate the discrete logarithms of X + gq−g
Agkq−gk (k =

0, 1, · · · , q) with respect to the generator. And the discrete logarithm of other
elements in the factor base can be obtained through relation (4).

Two q × q matrices can be multiplied in O(qθ) arithmetic operations. Ac-
cording to [6, 7, 20], θ is less than 2.373. The cost of computing the Smith Nor-
mal Form is O(qθ)([18]). Furthermore, with Optimized CW-like algorithms [6,
7, 20], the complexity of computing the inverse of S2 is also bounded by O(qθ)
arithmetic operations. In our case, the arithmetic operations are additions and
multiplications in Z/NZ, each has bit complexity Õ(q). ut

3.1 Other Eigenvalues of M over C

Theorem 6 states that N |det(L1)|Nq+1. We conjecture that det(L1) is in fact
N , so qualitatively the determinant of an N -ary lattice derived from M̃1 − I
should be small. In this subsection, we show that the determinant of Mi−I over
C is indeed small.

Theorem 8. For 1 ≤ i ≤ q−2, the complex norm of the determinant of Mi− I
is not zero, and it is no larger than (

√
q + 1)q+1.

Note that the determinant is in general not a rational integer, but a cyclo-
tomic integer in Z[ζq−1]. In our view, it provides a strong supporting evidence
of the conjecture. The theorem follows easily from the statement that the eigen-
values of Mi ( 1 ≤ i ≤ q − 2 ) have complex norm

√
q, which we prove in this

subsection. First we compute the eigenvalue of Gi for i 6= 0 .
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Lemma 1. Acting on any subspace C[x]/(xq+1− ζiq−1)(1 ≤ i ≤ q−2), all of the
eigenvalues of Gi have complex norm

√
q.

Proof. We can factor xq+1− ζiq−1 completely over C, and by Chinese Remainder
Theorem,

C[x]/(xq+1 − ζiq−1) ∼=
q⊕
j=0

C[x]/(x− ζj(q−1)+iq2−1 ),

where ζq2−1 = e2πi/(q
2−1). In each component, G is a multiplication by a con-

stant, thus the eigenvalue of G is equal to∑
α∈Fq

ζ
(j(q−1)+i) logg(g+α)
q2−1 =

∑
α∈Fq

µj(g + α),

where µj is a multiplicative character from F∗q2 to C by sending g to ζ
j(q−1)+i
q2−1 .

The Lemma follows from the next lemma. ut
Lemma 2. Let µ be a multiplicative character for Fq2 that is not trivial over
F∗q , we have |

∑
α∈Fq µ(g + α)| = √q.

Note that if µ is trivial over Fq2 , we have
∑
α∈Fq µ(g + α) = q. If µ is not

trivial over F∗q2 but is trivial over F∗q , then
∑
α∈Fq,β∈Fq µ(gβ + α) = 0. On the

other hand ∑
α∈Fq,β∈Fq

µ(gβ + α) =
∑
α∈Fq

µ(α) +
∑
β∈F∗q

∑
α∈Fq

µ(gβ + α)

= q − 1 + (q − 1)
∑
α∈Fq

µ(g + α),

hence we have
∑
α∈Fq µ(g + α) = −1. This gives another way to explain the

eigenvalues of G0.

Proof. Observe that for any two pairs (α1, β1) 6= (α1, β1) in F2
q, where α1 6= β1

and α2 6= β2, we have (g + α1)/(g + β1) 6= (g + α2)/(g + β2). So the map from
F2
q − {(a, a)|a ∈ Fq} to Fq2 that sends (α, β) to (g + α)/(g + β) is an injection,

where the image is Fq2 − Fq, so we have

(
∑
α∈Fq

µ(g + α))(
∑
α∈Fq

µ−1(g + α))

=q +
∑

α∈Fq,β∈Fq,α6=β
µ((g + α)/(g + β))

=q +
∑

γ∈Fq2−Fq

µ(γ)

=q +
∑
γ∈Fq2

µ(γ)−
∑
γ∈Fq

µ(γ)

=q

ut



14 Factor Base Discrete Logarithms in Kummer Extensions

Note that ∑
α∈Fq

µq(g + α) =
∑
α∈Fq

µ((g + α)q)

=
∑
α∈Fq

µ(gq + α)

=
∑
α∈Fq

µ(S − g + α)

= µ(−1)
∑
α∈Fq

µ(g + α).

So these sums come in pairs. We have the following conclusion about the eigen-
values of M :

Theorem 9. For M in any subspace C[x]/(xq+1 − ζiq−1)(1 ≤ i ≤ q − 2), all of
the eigenvalues of Mi have complex norm

√
q.

Proof. With the consideration of Theorem 3, T |C[x]/(xq−1−ζiq−1)
is a unitary

transformation under the basis 1, x, · · · , xq. On the other hand, by Lemma 1,
1√
qG |C[x]/(xq−1−ζiq−1)

is also a unitary matrix under that basis. It can be diago-

nalized by the unitary matrix Ũ = (µj(g
k))(j, k ∈ [q]), where µj is a multiplica-

tive character from F∗q2 to C satisfying µj(g
1+q) = ζiq−1.

Thus we have that GT/
√
q is a unitary transformation([12]), which implies

our conclusion. ut

Corollary 3. The determinant of the linear system Mi ⊕Mq−1−i is qq+1.

With a direct deduction, we obtain the following theorem:

Theorem 10. Let f(x) be the characteristic polynomial of M , we have:

f(x) =

{
(x− q)(x2 − 1)

q
2 h(x), q is even;

(x− q)(x2 − 1)
q−1
2 (x± 1)h(x), q is odd,

where h(x) is a polynomial in Z[x] with degree q2− q−2, all of whose roots have
complex norm

√
q.

4 Concluding Remarks

In this work we focus on provability of the recent ground-breaking algorithm
on the discrete logarithm over small characteristic finite fields. We feel that the
Kummer case can be tackled using the current techniques, so we concentrate
on this interesting case. We design a more efficient algorithm to solve the factor
base discrete logarithm, and reduce the correctness of algorithm to a conjecture
on the determinant of a simple lattice. We leave the proof of the conjecture as
an open problem.
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9. Granger, R., Kleinjung, T., Zumbrägel, J.: On the powers of 2. Cryptology ePrint
Archive, Report 2014/300 (2014)
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